Homework Sheet #8

MasterMath: Set Theory

2021/22: 1st Semester

K. P. Hart, Steef Hegeman, Benedikt Löwe & Robert Paßmann

Deadline for Homework Set #8: Monday, 8 November 2021, 2pm. Please hand in via the elo webpage as a single pdf file.

- (27) Let κ be infinite. Prove that every ordinal $\alpha < \kappa^+$ can be written as the union of countably many sets, $\alpha = \bigcup_{n < \omega} X_{\alpha,n}$, such that for every *n* the order type of $X_{\alpha,n}$ is at most κ^n (ordinal power). *Hint*: This is easy if $\alpha \leq \kappa$; use induction above κ . Going from α to $\alpha + 1$ shift the sets $X_{\alpha,n}$ one up and put α in $X_{\alpha+1,0}$; if α is a limit combine the earlier $X_{\beta,k}$ into sets $X_{\alpha,n}$ (and use that cf $\alpha \leq \kappa$).
- (28) Let λ be an infinite cardinal, $\langle \kappa_i : i < \lambda \rangle$ an increasing sequence of regular cardinals, and $\kappa = \sup_{i < \lambda} \kappa_i$. Give a direct proof of the formula

6

$$2^{\kappa} = \prod_{i < \lambda} 2^{\kappa_i}$$

by constructing a bijection between $\mathcal{P}(\kappa)$ and $\prod_{i < \lambda} \mathcal{P}(\kappa_i)$.

- (29) Prove the following statements
 - a. $\aleph_{\omega}^{\aleph_1} = \aleph_{\omega}^{\aleph_0} \cdot 2^{\aleph_1}$.

 - b. If $2^{\aleph_1} = \aleph_2$ and $\aleph_{\omega}^{\aleph_0} > \aleph_{\omega_1}$ then $\aleph_{\omega_1}^{\aleph_1} = \aleph_{\omega}^{\aleph_0}$. c. If $2^{\aleph_0} \ge \aleph_{\omega_1}$ then $\beth(\aleph_{\omega}) = 2^{\aleph_0}$ and $\beth(\aleph_{\omega_1}) = 2^{\aleph_1}$.
- (30) Prove: if β is such that $2^{\aleph_{\alpha}} = \aleph_{\alpha+\beta}$ for all α then $\beta < \omega$. Complete the following steps. Assume $\beta \ge \omega$. a. Let α be minimal such that $\alpha + \beta > \beta$. Show that α is a limit.
 - b. Let $\kappa = \aleph_{\alpha+\alpha}$; show κ is singular.
 - c. Prove: $2^{\aleph_{\alpha+\xi}} = \aleph_{\alpha+\beta}$ whenever $\xi < \alpha$.
 - d. Calculate 2^{κ} and derive a contradiction.

Remark. It is consistent to have $2^{\aleph_{\alpha}} = \aleph_{\alpha+2}$ for all α .