Homework Sheet #9

MasterMath: Set Theory

2021/22: 1st Semester

K. P. Hart, Steef Hegeman, Benedikt Löwe & Robert Paßmann

Deadline for Homework Set #9: Monday, 15 November 2021, 2pm. Please hand in via the elo webpage as a single pdf file.

- (31) Let $f: \omega_1 \to \mathbb{R}$ be an injective map. For $q \in \mathbb{Q}$ put $A_q = \{\alpha : f(\alpha) < q\}$ and $B_q = \{\alpha : f(\alpha) > q\}$. Let $I = \{q : A_q \text{ contains a cub set}\}$ and $J = \{q : B_q \text{ contains a cub set}\}$.
 - a. Prove: if $p \in I$ and $q \in J$ then q < p.
 - b. Prove: $I \neq \mathbb{Q}$ and $J \neq \mathbb{Q}$.
 - c. Prove: $\sup J < \inf I$ (by convention: $\sup \emptyset = -\infty$ and $\inf \emptyset = \infty$).
 - d. Prove: there is a $q \in \mathbb{Q}$ such that both A_q and B_q are stationary.
- (32) Let S be a stationary subset of ω_1 . Prove that for every $\alpha \in \omega_1$ there is a closed subset of ω_1 of order type $\alpha + 1$ that is a subset of S. *Hint*: Prove the following statement by induction on α : "for every stationary subset S of ω_1 there is closed subset of order type $\alpha + 1$ that is contained in S". For the limit case let $\langle \alpha_n : n \in \omega \rangle$ be increasing and cofinal in α . Show that there is a sequence $\langle C_{\gamma} : \gamma \in \omega_1 \rangle$ of countable closed sets such that $C_{\gamma} \subseteq S$ for all γ ; max $C_{\gamma} < \min C_{\delta}$ whenever $\gamma < \delta$ and if $\gamma = \omega \cdot \delta + n$ then C_{γ} has order type $\alpha_n + 1$. Consider the set of limit points of $\{\max C_{\gamma} : \gamma \in \omega_1\}$.
- (33) In class the proof of the Δ -system lemma for \aleph_2 many countable sets failed because of, as we shall see later, the possibility that $2^{\aleph_0} \ge \aleph_2$.
 - a. Study the proof and extract from it a proof of the following statement: if $\langle C_{\alpha} : \alpha \in \omega_2 \rangle$ is a sequence of countable subsets of ω_2 such that $a \notin C_{\alpha}$ for all α then there is a subset F of ω_2 of cardinality \aleph_2 such that $\alpha \notin C_{\beta}$ whenever α and β are different elements of F.

A set set like F is called *free* for the set mapping $\alpha \mapsto C_{\alpha}$, and the statement you just proved is a special case of what is known as the *Free Set Lemma*, which states:

if κ and λ are cardinals with $\lambda < \kappa$ and $S : \kappa \to [\kappa]^{<\lambda}$ is a map such that $\alpha \notin S(\alpha)$ for all α then there is s free set F for S of cardinality κ .

- b. Verify that there are counterexamples to this statement if we only require that $|S(\alpha)| \leq \lambda$ for all α .
- c. Prove the Free Set Lemma in case both κ and λ are regular, and κ is uncountable. *Hint*: Consider E_{λ}^{κ} .
- d. Prove the Free Set Lemma in case κ is regular and uncountable, and λ is singular. *Hint*: Prove first that there is a regular cardinal μ below λ such that $\{\alpha : |S(\alpha)| < \mu\}$ has cardinality κ .
- e. Prove the Free Set Lemma in case $\kappa = \aleph_0$. *Hint*: Induction on λ .

Note: the proof of the Free Set Lemma for singular κ (and arbitrary λ) is much longer than the proof for the regular case given here and needs new ideas. The Free Set Lemma illustrates a common occurrence in Set Theory: proofs for regular cardinals tend to be much shorter than proofs for singular cardinals. We shall see another instance of this in Lecture 10.