Homework Sheet #10

MasterMath: Set Theory

2021/22: 1st Semester

K. P. Hart, Steef Hegeman, Benedikt Löwe & Robert Paßmann

Deadline for Homework Set #10: Monday, 22 November 2021, 2pm. Please hand in via the elo webpage as a single pdf file.

- (34) Some (standard) applications of Ramsey's theorem.
 - a. Let $\langle L, < \rangle$ be an infinite linearly ordered set. Prove that L has an infinite subset X that is well-ordered by < or an infinite subset Y that is well-ordered by >.
 - b. Prove that every bounded sequence of real numbers has a convergent subsequence (the Bolzano-Weierstraß theorem). *Hint*: Find a monotone subsequence.
 - c. Let $\langle P, \langle \rangle$ be an infinite partially ordered set. Prove that P has an infinite subset C that is linearly ordered by < (a chain) or an infinite subset U that is unordered by <, which means that if x and y in U are distinct then neither x < y nor y < x.
- (35) Another application of Ramsey's theorem. Here are four well-behaved families of subsets of ω :

(1)
$$\mathcal{A} = \{\{n\} : n \in \omega\}$$

(2)
$$\mathcal{B} = \{n : n \in \omega\},\$$

- (3) $C = \{ \omega \setminus \{n\} : n \in \omega \}, \text{ and }$
- (4) $\mathcal{D} = \{ \omega \setminus n : n \in \omega \}.$

Let X be an infinite set and S an infinite family of subsets of X. Prove that there is a sequence $\langle x_n : n \in \omega \rangle$ of points in X and there is a sequence $\langle S_n : n \in \omega \rangle$ of members of S such that

$$\{\{m \in \omega : x_m \in S_n\} : n \in \omega\}$$

is equal to one of $\mathcal{A}, \mathcal{B}, \mathcal{C}$, and \mathcal{D} . (So every infinite family of sets is well-behaved somewhere.)

- a. Construct a sequence $\langle x_n : n \in \omega \rangle$ of points in X and a sequence $\langle S_n : n \in \omega \rangle$ of infinite subfamilies of S such that $S_0 = S$ and for every n the following hold: either $S_{n+1} = \{S \in S_n : x_n \in S\}$ or $S_{n+1} = \{S \in S_n : x_n \notin S\}$, and in addition S_{n+1} is a proper subset of S_n .
- b. Choose $S_n \in S_n \setminus S_{n+1}$ for every n. Verify that if $x_m \in S_m$ then $x_m \notin S_n$ for all n > m and, conversely, if $x_m \notin S_m$ then $x_m \in S_n$ whenever n > m.
- c. Now consider the colouring $F : [\omega]^2 \to 4$ given by: if i < j then

$F\bigl(\{i,j\}\bigr) = \bigg\langle$	0	if $x_i \notin S_j$ and $x_j \notin S_i$
	1	if $x_i \notin S_j$ and $x_j \in S_i$
	2	if $x_i \in S_j$ and $x_j \notin S_i$
		if $x_i \in S_j$ and $x_j \in S_i$

(36) The following example shows that with infinitely many colours one cannot even expect three-point homogeneous sets: $2^{\aleph_0} \not\to (3)^2_{\aleph_0}$. Enumerate \mathbb{Q} as $\langle q_n : n < \omega \rangle$ and define $T : [\mathbb{R}]^2 \to \omega$ by

 $T(\{x, y\}) = \min\{n : q_n \text{ is strictly between } x \text{ and } y\}.$

Show that there are no three-point homogeneous sets for T.