Homework Sheet #12

MasterMath: Set Theory

2021/22: 1st Semester

K. P. Hart, Steef Hegeman, Benedikt Löwe & Robert Paßmann

Deadline for Homework Set #12: Monday, 6 December 2021, 2pm. Please hand in via the elo webpage as a single pdf file.

- (40) In contrast with Chapter 2 of Jech's book we define a partial order on a set \mathbb{P} to be a relation \leq that is
 - (1) reflexive: $x \leq x$
 - (2) antisymmetric: $x \leq y$ and $y \leq x$ implies x = y
 - (3) transitive: $x \leq y$ and $y \leq z$ implies $x \leq z$
 - We call the pair $\langle \mathbb{P}, \leqslant \rangle$ a partially ordered set.

As in class we call a subset D of \mathbb{P} dense if for every $p \in \mathbb{P}$ there is a $q \in D$ such that $q \leq p$.

We call two elements p and q compatible if there is an r such that $r \leq p$ and $r \leq q$; otherwise they are *incompatible* we write $p \perp q$ if p and q are incompatible.

An *antichain* in \mathbb{P} is a subset A such that $p \perp q$ whenever p and q in A are distinct.

a. Prove that every antichain is contained in a *maximal* antichain.

b. Assume D is dense in \mathbb{P} and let A be a antichain that is maximal as an antichain in D. Prove that A is also maximal as an antichain in \mathbb{P} .

We denote the partial order use in class by $\operatorname{Fn}(\omega_2 \times \omega, 2)$.

- (41) Prove that a filter G on $\operatorname{Fn}(\omega_2^M \times \omega, 2)$ is M-generic if and only if it intersects every maximal antichain of $\operatorname{Fn}(\omega_2 \times \omega, 2)$ that is in M.
- (42) Analogous to the partial order used in class we define a partial order consisting of *countable* partial functions: $\operatorname{Fn}(X, Y, \aleph_1)$ is the set of functions p that satisfy dom $p \subseteq X$, ran $p \subseteq Y$ and $|p| < \aleph_1$. For this exercise we assume that X is uncountable and Y = 2.
 - a. Construct an antichain in $\operatorname{Fn}(X, 2, \aleph_1)$ that is of cardinality 2^{\aleph_0} .
 - b. Revisit the material from Lecture 9 on Δ -systems and prove that if κ is regular and satifies $\lambda^{\aleph_0} < \kappa$ for all $\lambda < \kappa$ then every family of κ many countable sets has a subfamily of cardinality κ that is a Δ -system.
 - c. Now modify the proof in class to show that every antichain in $\operatorname{Fn}(X, 2, \aleph_1)$ has cardinality at most 2^{\aleph_0} .