Homework Sheet #13

MasterMath: Set Theory

2021/22: 1st Semester

K. P. Hart, Steef Hegeman, Benedikt Löwe & Robert Paßmann

Deadline for Homework Set #13: Monday, 13 December 2021, 2pm. Please hand in via the elo webpage as a single pdf file.

- (43) Let \mathbb{P} be a partial order. Define, by recursion on α :
 - $N_0 = \emptyset$,
 - $N_{\alpha+1} = \mathcal{P}(N_{\alpha} \times \mathbb{P})$, and
 - $N_{\alpha} = \bigcup_{\beta < \alpha} N_{\beta}$ if α is a limit ordinal.

Prove that $\bigcup_{\alpha} N_{\alpha}$ is equal to the class $V^{\mathbb{P}}$ of all \mathbb{P} -names.

- (44) Let M be a countable model of ZFC and $\mathbb{P} \in M$ a partial order. Generalize Problem (41) from last week and prove the following general statement: a filter G on \mathbb{P} is M-generic if and only if it interescts every maximal antichain in \mathbb{P} that is an element of M.
- (45) The results in class imply that $p \Vdash (\exists x)(\varphi(x,\tau))$ is equivalent to the set

$$E = \left\{ q \leqslant p : (\exists \sigma) \left(q \Vdash \varphi(\sigma, \tau) \right) \right\}$$

being dense below p. This problem proves that it is in fact equivalent to

$$(\exists \sigma) (p \Vdash \varphi(\sigma, \tau)).$$

(as one would probably expect).

a. Prove that there is a maximal antichain A in E.

b. Prove that there is a function that chooses for every $q \in A$ a name σ_q such that $q \Vdash \varphi(\sigma_q, \tau)$.

Let $D = \bigcup \{ \operatorname{dom} \sigma_q : q \in A \}$. Define

 $\sigma = \{ \langle \pi, r \rangle : (\exists q \in A) (\exists t \in \mathbb{P}) (r \leqslant q \land r \leqslant t \land \langle \pi, t \rangle \in \sigma_q) \}$

c. Prove that $p \Vdash \varphi(\sigma, \tau)$. *Hint*: If G is M-generic then $G \cap A$ consists of exactly one point q; prove that $val(\sigma, G) = val(\sigma_q, G)$.