Homework Sheet #14

MasterMath: Set Theory

2021/22: 1st Semester

K. P. Hart, Steef Hegeman, Benedikt Löwe & Robert Paßmann

Deadline for Homework Set #14: Monday, 20 December 2021, 2pm. Please hand in via the elo webpage as a single pdf file.

- (46) Let \mathbb{P} be a partial order in which every antichain is countable; commonly called a *ccc partial order*. Let G be an M-generic filter on \mathbb{P} .
 - a. Prove: if X and Y are in M and if $f: X \to Y$ is a function in M[G] then there is a map $F: X \to Y$ $[Y]^{\leq \aleph_0}$ in M such that $(\forall x \in X)(f(x) \in F(x))$.
 - b. Prove: for all ordinals α in M we have $\operatorname{cf}^{M[G]} \alpha = \operatorname{cf}^M \alpha$.
 - c. Let $f: \omega_1 \to \omega_1$ be a function in M[G]. Show that there is a closed and unbounded set C in M such that for all $\delta \in C$ we have $(\forall \alpha \in \delta)(f(\alpha) < \delta)$.
 - d. Use the previous part to show that if $S \in M$ is stationary in ω_1 in M then S is also stationary in ω_1 in M[G]. Hint: Show that a closed unbounded set $C \in M[G]$ contains a closed unbounded set D such that $D \in M$.
- (47) Assume *M* satisfies GCH and let *G* be *M*-generic on $\operatorname{Fn}(\omega_{\omega} \times \omega, 2)$. Calculate the values of 2^{\aleph_0} and $2^{\aleph_{\omega}}$ in M[G].
- (48) Let M be an arbitrary countable model of ZFC. Let $\mathbb{P} = \operatorname{Fn}(\omega_1 \times \omega, 2, \aleph_1)^M$ and let G be M-generic on \mathbb{P} .
 - a. For a subset x of ω in M let D_x be the set of $p \in \mathbb{P}$ for which there is an $\alpha \in \omega_1$ such that $\{\alpha\} \times \omega \subseteq \operatorname{dom} p \text{ and } x = \{n : p(\alpha, n) = 1\}.$ Verify that D_x is dense in \mathbb{P} .
 - b. For $\alpha \in \omega_1^M$ let $x_\alpha = \{n : \bigcup G(\alpha, n) = 1\}$. Prove that $\mathcal{P}^M(\omega) = \{x_\alpha : \alpha \in \omega_1^M\}$. c. Prove that $\mathcal{P}^{M[G]}(\omega) = \mathcal{P}^M(\omega)$.

 - d. Deduce that CH holds in M[G].