Status Documentlevering Bron PATRON Indiener NLTUD Verstrekkers

Bibliografische informatie

Lokale ID 1235.733.8

Auteur

Titel The Theory of Models

Туре

Kopiëren

12/06/2021

Aanvraagdatum

Ontvangstdatum

Impressum [unknown] : [unknown], 1965

ISBN

INFORMATIE OVER IBL

Geverifieerd source=unknown Max. kosten Leenkosten Beperkingen OCLC # 0 Uiterlijk nodig 12/13/2021

211106322

Vervaldatum

Auteur artikel ROBERT SOLOVAY | Titel artikel 2χοCAN BE ANYTHING IT OUGHT TO BE

Materiaal Series OPLAGE Jaargang Nummer Datum 1965 Pagina's 435

Onderdeel van Copyright Handtekening verkregen

Verzenddatum Faxnummer E-mail

> ODYSSEY ARIEL FTP Ariel e-mail

Factuur aan

, US

Lenerinformatie

Lener-ID 610014667 Status lener Telefoon lener Fax lener E-mail lener K.P.Hart@tudelft.nl Opmerking m.b.t. lener NB: 20211213

Verzendinformatie

Verzenden via Library Mail Verzenden aan , US Naam lener Hart, Klaas Pieter Adres lener , US

Afdeling lener Ophaallocatie

> Retour via Retour aan

Symposium on the Theory of Models; North-Holland Publ. Co., Amsterdam (1965)

2^{N0} CAN BE ANYTHING IT OUGHT TO BE

ROBERT SOLOVAY

Princeton University, Princeton, New Jersey, U.S.A.

We consider countable models for Zermelo-Fraenkel set theory (including the axiom of choice), which we call, for brevity, ZF*-models. Let $\mathfrak{M} (= (M, \in_M))$ and \mathfrak{N} be ZF*-models. Then \mathfrak{N} is an *excellent extension* of \mathfrak{M} if and only if: (a) \mathfrak{M} is a complete submodel of \mathfrak{N} ; (b) the ordinals (cardinals) of \mathfrak{N} are exactly the ordinals (cardinals) of \mathfrak{M} ; and (c) the confinality, cf(\mathfrak{R}), of a cardinal \mathfrak{R} has the same value in \mathfrak{M} as in \mathfrak{N} .

The proofs of the following three theorems use the new techniques introduced in Cohen [63, 64]. (The first theorem is due, independently, to Cohen.) Let \mathfrak{M} be a ZF^{*}-model in which V = L is valid, fixed once for all.

Theorem 1. Let \aleph be an infinite cardinal of \mathfrak{M} with $\aleph_0 < \operatorname{cf}(\aleph)$. Then there is an excellent extension \mathfrak{N} of \mathfrak{M} in which $2^{\aleph_0} = \aleph$.

Theorem 2. Let \aleph and \aleph' be infinite cardinals of \mathfrak{M} with $\aleph = \operatorname{cf}(\aleph) < \operatorname{cf}(\aleph')$. Then there is an excellent extension \mathfrak{N} of \mathfrak{M} in which:

(i) $2^{\aleph} = \aleph';$

(ii) if $\aleph_{\alpha} < \aleph$, then $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$.

Theorem 3. Identify the ordinary integers with an initial segment of the integers of \mathfrak{M} . Let k, n_0, \ldots, n_k be ordinary integers and suppose that $i < n_i$ (for 0 < i < k) and $n_0 < n_1 < \ldots < n_k$. Then there is an excellent extension \mathfrak{R} of \mathfrak{M} in which $2^{\aleph_i} = \aleph_{n_i}$ (for 0 < i < k).

Remarks on the proof Theorem 2. The essential point is to make sure that no "new" sets of cardinality less than \aleph land in \Re . This is insured as follows: (1) we add a generic subset of \aleph' , say A; (2) a set of conditions on A will be a set (of \mathfrak{M}) of conditions of the form " $\alpha \in A$ " (or " $\neg \alpha \in A$ ") whose cardinality in \mathfrak{M} is less than \aleph . (Of course, outside of \mathfrak{M} , the sets of conditions are denumerable since \mathfrak{M} is, so Cohen's diagonal construction applies.) The crucial observation is the following:

Lemma. Let Σ be a set (in \mathfrak{M}) of limited statements whose cardinality (in \mathfrak{M}) is less than \mathfrak{X} . Then any set of conditions P has an extension forcing each member of Σ .