Bibliografische informatie

Lokale ID 1235.733.8
Auteur

Titel The Theory of Models
Impressum [unknown]: [unknown], 1965
ISBN

Auteur artikel ROBERT SOLOVAY

Titel artikel $2 \times$ CAN BE ANYTHING IT OUGHT TO BE
Materiaal Series
OPLAGE
Jaargang
Nummer
Datum 1965
Pagina's 435

Onderdeel van

Copyright Handtekening verkregen
Verzenddatum
Faxnummer E-mail

ODYSSEY
ARIEL FTP
Ariel e-mail
Factuur aan
, us

Lenerinformatie

Lener-ID 610014667
Status lener
Telefoon lener
Fax lener
E-mail lener K.P.Hart@tudelf.nl
Opmerking m.b.t. lener NB: 20211213

Naam lener Hart, Klaas Pieter
Adres lener, US

Afdeling lener
Ophaallocatie

Retour via
Retour aan

Verzenden via Library Mail
Verzenden aan
, us

$2^{\text {xo }}$ CAN BE ANYTHING IT OUGHT TO BE

ROBERT SOLOVAY
Princeton University, Princeton, New Jersey, U.S.A.

We consider countable models for Zermelo-Fraenkel set theory (including the axiom of choice), which we call, for brevity, ZF*-models. Let $\mathfrak{M}\left(=\left(M, \in_{M}\right)\right)$ and \mathfrak{P} be $Z F^{*}$-models. Then \mathfrak{P} is an excellent extension of \mathfrak{M} if and only if: (a) \mathfrak{M} is a complete submodel of \mathfrak{R}; (b) the ordinals (cardinals) of \mathfrak{N} are exactly the ordinals (cardinals) of \mathfrak{M}; and (c) the confinality, $\operatorname{cf}(\mathbb{\aleph})$, of a cardinal \mathbb{N} has the same value in \mathfrak{M} as in \mathfrak{N}.

The proofs of the following three theorems use the new techniques introduced in Cohen [63,64]. (The first theorem is due, independently, to Cohen.) Let \mathfrak{M} be a ZF^{*}-model in which $V=L$ is valid, fixed once for all.

Theorem 1. Let $\mathbb{\aleph}$ be an infinite cardinal of \mathfrak{M} with $\mathbf{N}_{0}<\operatorname{cf}(\mathbb{\aleph})$. Then there is an excellent extension \mathfrak{N} of \mathfrak{M} in which $2^{\mathfrak{N}_{0}}=\mathbb{N}$.

Theorem 2. Let \mathfrak{N} and $\boldsymbol{\aleph}^{\prime}$ be infinite cardinals of \mathfrak{M} with $\boldsymbol{\aleph}=\operatorname{cf}(\mathbb{N})<$ $<\operatorname{cf}\left(\mathfrak{N}^{\prime}\right)$. Then there is an excellent extension \mathfrak{M} of \mathfrak{M} in which:
(i) $2^{\boldsymbol{N}}=\boldsymbol{K}^{\prime}$;
(ii) if $\boldsymbol{\aleph}_{\alpha}<\boldsymbol{N}$, then $2^{\boldsymbol{N}_{\alpha}}=\boldsymbol{\aleph}_{\alpha+1}$.

Theorem 3. Identify the ordinary integers with an initial segment of the integers of \mathfrak{M}. Let k, n_{0}, \ldots, n_{k} be ordinary integers and suppose that $i<n_{i}($ for $0 \leqslant i \leqslant k)$ and $n_{0} \leqslant n_{1} \leqslant \ldots \leqslant n_{k}$. Then there is an excellent extension \mathfrak{P} of \mathfrak{M} in which $2^{\mathfrak{N}_{i}}=\boldsymbol{N}_{n_{i}}$ (for $\left.0 \leqslant i \leqslant k\right)$.

Remarks on the proof Theorem 2. The essential point is to make sure that no "new" sets of cardinality less than \mathcal{N} land in \mathfrak{M}. This is insured as follows: (1) we add a generic subset of $\boldsymbol{\kappa}^{\prime}$, say A; (2) a set of conditions on A will be a set (of \mathfrak{M}) of conditions of the form " $\alpha \in A$ " (or " $\neg \alpha \in A$ ") whose cardinality in \mathfrak{M} is less than $\mathfrak{\aleph}$. (Of course, outside of \mathfrak{M}, the sets of conditions are denumerable since \mathfrak{M} is, so Cohen's diagonal construction applies.) The crucial observation is the following:

Lemma. Let Σ be a set (in \mathfrak{M}) of limited statements whose cardinality (in \mathfrak{M}) is less than $\mathfrak{\aleph}$. Then any set of conditions P has an extension forcing each member of Σ.

