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In this note we apply the method of P. J. Cohen" 2 to the following problem
of Souslin3: Let S be a linearly ordered continuous set without first and last
elements in which every family of disjoint intervals is countable. Is S isomorphic
to the real line? We obtain models of the contemporary axioms for set theory
in which the answer is negative. Moreover, in one of these the continuum hy-
pothesis holds, and in others it fails. In a later paper,4 written with R. Solovay,
Cohen's method is extended to define models in which the answer is affirmative.
Thus the current axioms do not suffice to settle Souslin's problem.
For convenience, the following version of the problem will be considered:

Let T be a tree' such that every chain and antichain! in T has cardinality less
than %4. but the field of T has cardinality 4a. Call such a T an %4.-Souslin tree.
It is known that a negative answer to Souslin's problem is equivalent to the
existence of an ,-Souslin tree.
THEOREM 1. There exists a model 9l of set theory such that a contains an 8L-

Souslin tree and satisfies 2& = Na+,.
The proof of this theorem assumes complete familiarity with references 1 and

2, hereafter referred to as (C).
Let on be a countable transitive model for set theory satisfying V = L. We

will obtain OT from on by adjoining a generic tree T C Ni X W.
Definition 1: For a an ordinal in OE define F. as follows:
(1) If 0 < a < Ni) Fet a.
(2) If N, < a < 2 N,, let F. enumerate all unordered pairs (as,) for a, P < 41.
(3) If 2%41 < a < 3%1, let F. enumerate all ordered pairs (a,#) for a, f <
(4) If a =3i, Fa = , X Hi
(5) If a = 3,N1 + 1, Fa = T.
(6) Suppose a > 3N, + 1. If N(a) = 0, F. = {Fa'f a' < a}. If N(a)

= i,0 < i < 9, then Fa = 5;1(F0,F,) where , = Ki(a), y = K2(a).8 If N(a)
= 9, F. = IFcuI a' < a, N(a') = 9}.
This definition replaces Definition 1 of (C). Definition 5 of (C) is replaced

by
Definition 2: Let 2 be the set of all- characteristic functions of trees whose

fields are finite subsets of Hi. Thus Q E 2 if and only if there is a tree t whose
field t* is a finite subset of H, such that Q(a,f) = 1 if a = , or if a precedes i6 in
t, Q(a,,f) = 0 if a, P C t* but a doesn't precede ft in t, and Q(a,fl) is undefined
otherwise. Define a partial order in 2 as follows: QL . Q2 if the function Q,
extends the function Q2. Let 2' = {QjQ C 2, Q(a),8) = 1 =-) a < 03. In the
rest of this note P, P', P0, P,, etc., shall always designate elements of V or,
when there is no chance of confusion, the associated trees. Finally P, and P2 are
called compatible if there is a P such that P > P,, P > P2.
We modify clause III(i) in Definition 6 of (C) by stipulating that P forces
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MATHEMATICS: S. TENNENBAUM

the statement [(a,,3) £ T] if P(a,#) = 1, P forces [(a,,) V TI if P(a,f3) = 0,
and P forces [F7 X T] if 0 < y < 2NI or if y = 3NI, 3N, + 1. The properties
of forcing expressed in Lemmas 2, 3, and 4 of (C) are now easily proved.

Definition 3: Let I P} be a sequence such that Pn+± 2 P,, for every n and
such that every statement or its negation is forced by some Pn. Then lim Pn

n-*,Ah
is the characteristic function of a tree T, T C Ni X 41. Let 9Z = { Fa, a in 91O}.
That a statement is true in 91 if and only if it is forced by some Pn is proved in

the same way as Lemma 5 of (C).
LEMMA 1. Let W C 2'. Suppose (p is a function such that sp(P) E P* for all

P E W and sup p(P) = Ni. Then there exists Q C 2', PI, P2 E W such that
p(P1) < sP(P2), Q(ep(Pl), (P(P2)) = 1, and Q 2 P1, Q > P2.
Proof: Let W1 be an uncountable subset of W such that sp maps W1 one to

one into M4. For some integer k there is an uncountable W2 C W1 such that the
cardinality of P* = k for all P E W2. Let A be a maximal set contained in
uncountably many P*, P* C W2. We may assume that p(P) E P*- A for all
P C W2. Let C(P) be the set of elements of P* which equal or precede O(P) in
P. Call Pi, P2 E W2 equivalent if they agree within A and if c(P1) n A =
0(P2) n A. Since there are only finitely many equivalence classes, there is an
uncountable one, W3.
Now there is an uncountable W4 5 W3 such that min(P* - A) > max A for

all P C W4 Otherwise, for uncountably many P E W3, P*- A would contain
an ordinal < max A. Then, since max A is countable, there would be a t such
that t E P* - A for uncountably many P E W3, thereby contradicting the
maximality of A. Let P1 C W4. In the same way it follows that there is a
P2 E W4 such that min(P2* - A) > max P1*.

Let B be the branch of P2 consisting of the elements which succeed or are equal
to some a in (P2) -A and define Q = P1 U P2 U H, where H = (C(P1) - A)
X B. Since P1 and P2 agree within A, the common part of their fields, and
P1 n P2 is an initial segment of both P1 and P2, it is evident that P1 U P2 C 2
and P1 U P2 > P1, P2. Note that by adding H we are sliding the branch B of
P, U P2 upward along the interval C(P1) - A from its point of origin, max
(C(P2) n A) = max(C(Po) n A), to 50(P1), its iiew point of origin. Therefore
Q E 2. Moreover, since H contains no pair of elements of either P1* or P2*,
Q > P1, Q > P2. Finally, it is clear that Q E 2',)P(Pl) < eP(P2), and Q(p(P1),
p(P2)) = 1.
LEMMA 2. Any set of mutually incompatible P's is countable.
Proof: Suppose W is an uncountable set of such P's. Define p(P) = max

P* for all P in W. Lemma 1 yields a contradiction.
LEMMA 3. 91 is a model of set theory (including the axiom of choice). The

ordinals and cardinals of 91 are the same as those of M.
Proof: Same as (C) with our Lemma 2 replacing Lemma 11 of (C).
LEMMA 4. 284a = Na+l holds in 91.
Proof: Since this statement holds in M and all sets in 91 are constructible

from T C N, X Ni, the proof in (C) of the power set axiom can be extended to
show the lenina.9
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LEMMA 5. The cardinality of T* = Ni.
Proof: Immediate.
LEMMA 6. Every antichain in T is countable.
Proof: Suppose otherwise. Then some Po forces [F5 is an uncountable anti-

chain of T]. From the definition of forcing, it follows that for each a < Ni there
is a f > a and P > Po such that P forces [,3 E F5]. We may assume for each
such 13 and P that /3 E P*. Now let W be the set of these P's. For P E W,
define so(P) to be the largest 3 EC P* for which P forces [3 CE F5]. We conclude
by Lemma 1 that there exists Q CE ', P1, P2 C W such that Q > P1, Q > P2,
o(P1) < <(P2), and Q(p(P1), <(P2)) = 1. But since Q extends P1, P2, Q forces
[p(P1) E F6], [p(P2) C F5]. Thus Q cannot force [F5 is an antichain of T].
Since Q > Po, this is a contradiction.
LEMMA 7. Every chain in T is countable.
Proof: Let F,,, be an uncountable chain in T. Whenever some P forces
C-C Fa].5[6 E Fa], and [(y,6) C TI for -y < 6, there is an w > 'y, 6 and a P' > P

such that P' forces [('y,w) C T], [(6,5) Z T], and [(w,6) Z T]. An un-
countable antichain in T results by applying this remark to the Ni-increasing
sequence of ordinals in F,,,, thereby contradicting Lemma 6.
Lemmas 5, 6, and 7 imply that T is an Ni-Souslin tree in 9N. Theorem 1 is

therefore established.
THEOREM 2. There exists a model 91 of set theory such that 91 contains an Ni-

Souslin tree but 2No #£ Ni.
This theorem is proved by starting with a model 91 in which 2NA $ Ni and

imitating the proof of Theorem 1.10
The results of Mary Ellen Rudin11 and C. H. Dowker'2 show that if there is

an N1-Souslin tree, then there is a normal Hausdorff space whose product with
the closed unit interval is not normal. It follows that the nonexistence of such
pathological spaces cannot be deduced from the current axioms for set theory.

I am grateful to Georg Kreisel, Anil Nerode, and Dana Scott for pointing out gaps in
previous versions of the proof of Theorem 1 and to Professor Godel for simplifying my
proof of Lemma 1.

* This work was supported in part under National Science Foundation grant GP-124 while
the author was a research associate at Cornell University during the summer of 1963. Theo-
rems 1 and 2 were presented with substantially the same proof in a series of lectures at Harvard
University, January 27-29, 1964, and in a talk at the Invited Symposium on Foundations of
Set Theory which was held on September 1 at the Hebrew University as a part of the 1;64
International Congress for Logic, Methodology and Philosophy of Science.

1 Cohen, P. J., "The independence of the continuum hypothesis," these PROCEEDINGS, 50,
1143-1148 (1963).

2Ibid., 51, 105-110 (1964).
3 Souslin, M., "Problbme 3," Fundamenta Mathematicae, 1, 223 (1920).
4Solovay, R., and S. Tennenbaum, "Souslin's problem II," to be submitted to Fundamenta

Mathematicae.
5 A tree is a partially ordered set in which the set of elements preceding any given element

forms a chain.
6 An antichain is a set of pairwise incomparable elements.
7Miller, Edwin W., "A note on Souslin's problem," Am. J. Math., 65, 673-678 (1943).
8 The functions K, and K2 are defined in exact analogy to those of (C).
9 For a detailed proof, see ref. 4.
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10 Theorems 1 and 2 are easily seen to remain true when any of the ordinary strong axioms
of infinity is adjoined to set theory.

11 Rudin, Mary Ellen, "Countable paracompactness and Souslin's problem," Can. J. Math.,
7, 543-547 (1955).

12 Dowker, C. H., "On countably paracompact spaces," Can. J. Math., 3, 219-224 (1951).
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