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(45) Question I

Every multiple-choice question below has exactly one correct answer (3 points each):

Week 1. Consider Zermelo’s set Z0 (the smallest set that contains ∅ and that is closed under a 7→ {a})
Define f : ω → Z0 by f(0) = ∅ and f(n+ 1) = {f(n)}. The first n ∈ ω for which f(n) ̸= n is

□ A: 2.

□ B: 4.

□ C: 1.

□ D: 3.

Week 2. Our definition of the ordered pair is ⟨x, y⟩ =
{
{x}, {x, y}

}
. What is the relationship between

the ordered pair ⟨1, 2⟩ and the ordinal 3?

□ A: ⟨1, 2⟩ ⊂ 3 (proper subset).

□ B: 3 ⊂ ⟨1, 2⟩ (proper subset).
□ C: They are incomparable.

□ D: 3 = ⟨1, 2⟩.

Week 3. The definition of domR makes sense (formally) for arbitrary sets. Using this formal definition
domω is equal to

□ A: ω.

□ B: {0, 1}.
□ C: {0}.
□ D: ∅.

Week 4. Zermelo’s proof of the well-ordering theorem starts, given a set X, with a choice function γ for
the family P(X) \ {∅}. The resulting well-order ≺ satisfies:

□ A: The order-type of (X,≺) is equal to the cardinal number of X.

□ B: The order-type of (X,≺) is a singular ordinal.

□ C: For all x ∈ X we have x = γ
(
{y : x ≼ y}

)
.

□ D: For all A ∈ P(X) \ {∅} we have minA = γ(A).

Week 5. What is (ω2023 + 2022) · (ω2022 + 2023) (ordinal arithmetic)?

□ A: ω4045 + ω2023 · 2023 + 2022.

□ B: ω4045 + ω2022 · 2022 + 2023.

□ C: ω4045 + ω2022 + ω2023 · 2023 + 4090506.

□ D: ω4045 + 4090506.

Week 6. One of the following statements cannot be proved in ZF without the Axiom of Choice. Which
one?

□ A: If f : ω → R is a map then f is not surjective.

□ B: There is an injection from ω1 into P(ω).

□ C: There is a bijection between [0, 1] and [0, 1]ω.

□ D: There is a surjection from P(ω) to ω1.

Week 7. Which of the following statements is not forbidden by the Axiom of Foundation?

□ A: There is a sequence ⟨xn : n ∈ ω⟩ of sets such that xn+1 ∈ xn for all n.

□ B: There is an x such that x ∈ x.

□ C: There is a sequence ⟨xn : n ∈ ω⟩ of sets such that x2n+1 ∈ x2n for all n.

□ D: There are x and y such that x ∈ y and y ∈ x.

Week 8. Assume that 2ℵn = ℵω+n+2023 for all n ⩾ 2022. Then the value of 2ℵω is

□ A: ℵω+ω

□ B: ℵℵ0
ω+ω.

□ C: ℵω+2023.

□ D: Not determined on the basis of the information provided.
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Week 9. Define a set-mapping F on the ordinal ωω as follows: if α < ω0 then F (α) = α, and if ωn ⩽
α < ωn+1 then F (α) = α \ ωn. The maximum cardinality of a free set for this mapping is

□ A: ℵ2023.

□ B: 1.

□ C: ℵ0.

□ D: ℵω.

Week 10. Let ⟨qn : n ∈ ω⟩ be an enumeration of Q, the set of rational numbers. Define a F [Q]2 → {0, 1}
by

F
(
{qm, qn}

)
=

{
1 if m ∈ n ⇔ qm < qn

0 if m ∈ n ⇔ qm > qn

Which of one of the following sets is definitely not homogeneous for F (independent of the
chosen enumeration)?

□ A: N.
□ B: {2−n : n ∈ N}.
□ C: {−3n : n ∈ N}.
□ D: {(−2)−n : n ∈ N}.

Week 11. Let T = {s ∈ ω<ω : (∀i ∈ dom s)(s(i) ⩽ i)}. The cardinality of the set of branches of T is

□ A: ℵ1.

□ B: 2ℵ0 .

□ C: ℵ0.

□ D: 0.

Week 12. The informal definition of L in week 12 was really informal because

□ A: The operation Def(M) only worked on the meta-level.

□ B: We could not prove the Comprehension/Separation schema.

□ C: Not every formula is a ∆0-formula.

□ D: Not every property is absolute.

Week 13. Let M be a countable transitive model of ZF−P. Which of the following notions is not upward
absolute between M and V ?

□ A: x is a natural number

□ B: x is countable.

□ C: x is an ordinal

□ D: x is uncountable.

Week 14. Let δ be a limit ordinal larger than ω and let M ≺ Lδ be an elementary substructure. Which
of the following statements is definitely true about M?

□ A: M is isomorphic to Lβ for some limit ordinal β.

□ B: M is isomorphic to Lβ for some successor ordinal β.

□ C: M = Lβ for some limit ordinal β.

□ D: M is transitive.

Week 15. Let (S,<) be the Souslin tree constructed in week 15. What is special about S?

□ A: S is the <L-first Souslin tree.

□ B: S is definable in Lω2 .

□ C: All antichains of S are finite.

□ D: It is also an Aronszajn tree.
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(10) Question II

In this problem we do not assume the Axiom of Choice.
By definition a set X is finite if there are n ∈ ω and a bijection f : n → X.
Another notion of finiteness was proposed by Dedekind: X is DD-finite if there is a map
f : X → X with the property that if Y ⊆ X and f [Y ] ⊆ Y then Y = X or Y = ∅.

(5) (i) Prove that every finite set is DD-finite.

(5) (ii) Prove that every DD-finite set is finite. Hint: Fix a ∈ X and define g : ω → X by
g(0) = f(a) and g(n+ 1) = f(g(n)). Consider Y = g[ω].

(20) Question III

Let [ω1]
<ω denote the family of finite subsets of ω1, and let F be the subtree of the tree ω<ω

1
that consists of all strictly decreasing sequences.
On F we define

s ◁ t if

{
s ⊂ t (proper initial segment), or

s(i) < t(i) where i = min{j : s(j) ̸= t(j)}
(5) (i) Prove that f : F → [ω1]

<ω, defined by f(s) = ran s, is a bijection.

(5) (ii) Prove that ◁ is a well-order of F .

Let ≺ be the well-order on [ω1]
<ω induced by ◁ and f .

(5) (iii) Prove: if α ∈ ω1 then [α]<ω = {a : a ≺ {α}}.
(5) (iv) Calculate the order-types of [ω]<ω, [ω + 1]<ω, and [ω1]

<ω with respect to the order ≺.

(20) Question IV

(10) (i) Let κ = (2ℵ0)+ and let {Aα : α < κ} be a family of countable subsets of κ. Prove that
there are a countable subset R of κ and a stationary subset S of κ such that Aα ∩Aβ = R
whenever α, β ∈ S and α ̸= β. Hint: Let T = {α < κ : cf α > ℵ0} and consider f : T → κ
defined by f(α) = sup(Aα ∩ α).

(10) (ii) Prove the first non-trivial case of Ramsey’s theorem:

ℵ0 → (ℵ0)
2
2.

(15) Question V

One way to define the set Z of integers is via the following equivalence relation on ω2: we let
⟨k, l⟩ ≡ ⟨m,n⟩ iff k+n = m+ l, and we let Z be the set of ≡-equivalence classes (the equivalence
class of ⟨k, l⟩ represents “k − l”).

(5) (i) Calculate rank(Z), the rank of Z in the hierarchy ⟨Vα : α ∈ On⟩.
(5) (ii) Prove that Z ⊆ Lω+1, that is, every ≡-equivalence class is a definable subset of Lω.

(5) (iii) Calculate ρ(Z), the rank of Z in the hierarchy ⟨Lα : α ∈ On⟩.


