

Set Theory 2022/2023 1st Semester K. P. Hart

Written Exam 16 January 2020, 1400–17:00, SP H0.08

Name:

University:

Student ID:

General comments.

- (1) The time for this exam is 3 hours (180 minutes).
- (2) There are 110 points in the exam: if a student obtains x points, the exam grade will be $\frac{x+10}{12}$.
- (3) Please mark the answers to the questions in Question I on this sheet by crosses.
- (4) Make sure that you have your name, university and student ID on each of the sheets you are handing in.
- (5) If you have any questions, please indicate this silently and someone will come to you. Answers to questions that are relevant for everyone will be announced publicly.
- (6) No talking during the exam.
- (7) Cell phones must be switched off and stowed.

Question I.	(45 points)	Question IV.	(20 points)
Question II.	(10 points)	Question V.	(15 points)
Question III.	(20 points)	TOTAL	(110 points)
		GRADE	

(45) Question I

Every multiple-choice question below has exactly one correct answer (3 points each):

- Week 1. Consider Zermelo's set Z_0 (the smallest set that contains \emptyset and that is closed under $a \mapsto \{a\}$) Define $f : \omega \to Z_0$ by $f(0) = \emptyset$ and $f(n+1) = \{f(n)\}$. The first $n \in \omega$ for which $f(n) \neq n$ is \Box **A**: 2.
 - \square **B**: 4.
 - \Box **C**: 1.

 - \Box **D**: 3.
- Week 2. Our definition of the ordered pair is $\langle x, y \rangle = \{\{x\}, \{x, y\}\}$. What is the relationship between the ordered pair $\langle 1, 2 \rangle$ and the ordinal 3?
 - $\Box \mathbf{A}: \langle 1, 2 \rangle \subset 3$ (proper subset).
 - \square **B**: $3 \subset \langle 1, 2 \rangle$ (proper subset).
 - \Box **C**: They are incomparable.
 - $\Box \mathbf{D}: 3 = \langle 1, 2 \rangle.$
- Week 3. The definition of dom R makes sense (formally) for arbitrary sets. Using this formal definition dom ω is equal to
 - \Box **A**: ω .
 - \Box **B**: {0,1}.
 - \Box C: {0}.
 - \Box **D**: \emptyset .
- Week 4. Zermelo's proof of the well-ordering theorem starts, given a set X, with a choice function γ for the family $\mathcal{P}(X) \setminus \{\emptyset\}$. The resulting well-order \prec satisfies:
 - \Box A: The order-type of (X, \prec) is equal to the cardinal number of X.
 - \square **B**: The order-type of (X, \prec) is a singular ordinal.
 - \Box C: For all $x \in X$ we have $x = \gamma(\{y : x \preccurlyeq y\})$.
 - \Box **D**: For all $A \in \mathcal{P}(X) \setminus \{\emptyset\}$ we have min $A = \gamma(A)$.
- Week 5. What is $(\omega^{2023} + 2022) \cdot (\omega^{2022} + 2023)$ (ordinal arithmetic)?
 - $\Box \mathbf{A}: \omega^{4045} + \omega^{2023} \cdot 2023 + 2022.$
 - \Box **B**: $\omega^{4045} + \omega^{2022} \cdot 2022 + 2023$.
 - $\Box \mathbf{C}: \, \omega^{4045} + \omega^{2022} + \omega^{2023} \cdot 2023 + 4090506.$
 - \Box **D**: $\omega^{4045} + 4090506$.
- Week 6. One of the following statements *cannot* be proved in ZF without the Axiom of Choice. Which one?
 - \square **A**: If $f: \omega \to \mathbb{R}$ is a map then f is not surjective.
 - \square **B**: There is an injection from ω_1 into $\mathcal{P}(\omega)$.
 - \square C: There is a bijection between [0, 1] and [0, 1]^{ω}.
 - \Box **D**: There is a surjection from $\mathcal{P}(\omega)$ to ω_1 .
- Week 7. Which of the following statements is **not** forbidden by the Axiom of Foundation?
 - \Box A: There is a sequence $\langle x_n : n \in \omega \rangle$ of sets such that $x_{n+1} \in x_n$ for all n.
 - \square **B**: There is an x such that $x \in x$.
 - \Box C: There is a sequence $\langle x_n : n \in \omega \rangle$ of sets such that $x_{2n+1} \in x_{2n}$ for all n.
 - \Box **D**: There are x and y such that $x \in y$ and $y \in x$.

Week 8. Assume that $2^{\aleph_n} = \aleph_{\omega+n+2023}$ for all $n \ge 2022$. Then the value of $2^{\aleph_{\omega}}$ is

- $\Box \mathbf{A}: \aleph_{\omega+\omega}$
- \Box **B**: $\aleph_{\omega+\omega}^{\aleph_0}$.
- \Box C: $\aleph_{\omega+2023}$.
- \Box **D**: Not determined on the basis of the information provided.

- Week 9. Define a set-mapping F on the ordinal ω_{ω} as follows: if $\alpha < \omega_0$ then $F(\alpha) = \alpha$, and if $\omega_n \leq \alpha < \omega_{n+1}$ then $F(\alpha) = \alpha \setminus \omega_n$. The maximum cardinality of a free set for this mapping is $\Box \mathbf{A}$: \aleph_{2023} .
 - \square **B**: 1.
 - $\Box \mathbf{C}: \aleph_0.$
 - \Box **D**: \aleph_{ω} .
- Week 10. Let $\langle q_n : n \in \omega \rangle$ be an enumeration of \mathbb{Q} , the set of rational numbers. Define a $F[\mathbb{Q}]^2 \to \{0,1\}$ by

$$F(\lbrace q_m, q_n \rbrace) = \begin{cases} 1 & \text{if } m \in n \Leftrightarrow q_m < q_n \\ 0 & \text{if } m \in n \Leftrightarrow q_m > q_n \end{cases}$$

Which of one of the following sets is *definitely not* homogeneous for F (independent of the chosen enumeration)?

- $\Box \mathbf{A}: \mathbb{N}.$
- $\square \mathbf{B}: \{2^{-n} : n \in \mathbb{N}\}.$
- $\Box \mathbf{C}: \{-3^n : n \in \mathbb{N}\}.$
- $\Box \mathbf{D}: \{ (-2)^{-n} : n \in \mathbb{N} \}.$

Week 11. Let $T = \{s \in \omega^{<\omega} : (\forall i \in \text{dom } s)(s(i) \leq i)\}$. The cardinality of the set of branches of T is $\Box \mathbf{A}: \aleph_1$.

- $\Box \mathbf{A} \cdot \mathbf{N}$
- \Box **B**: 2^{\aleph_0} .
- $\Box \mathbf{C}: \aleph_0.$
- \Box **D**: 0.

Week 12. The informal definition of L in week 12 was really informal because

- \square A: The operation Def(M) only worked on the meta-level.
- \Box B: We could not prove the Comprehension/Separation schema.
- \Box C: Not every formula is a Δ_0 -formula.
- \Box **D**: Not every property is absolute.
- Week 13. Let M be a countable transitive model of ZF P. Which of the following notions *is not* upward absolute between M and V?
 - \Box **A**: *x* is a natural number
 - \Box **B**: *x* is countable.
 - \Box **C**: *x* is an ordinal
 - \Box **D**: x is uncountable.

Week 14. Let δ be a limit ordinal larger than ω and let $M \prec L_{\delta}$ be an elementary substructure. Which of the following statements is *definitely true* about M?

- \Box **A**: *M* is isomorphic to L_{β} for some limit ordinal β .
- \square **B**: *M* is isomorphic to L_{β} for some successor ordinal β .
- \Box **C**: $M = L_{\beta}$ for some limit ordinal β .
- \Box **D**: *M* is transitive.

Week 15. Let (S, <) be the Souslin tree constructed in week 15. What is special about S?

- \Box A: S is the $<_L$ -first Souslin tree.
- \square **B**: *S* is definable in L_{ω_2} .
- \square C: All antichains of S are finite.
- \Box **D**: It is also an Aronszajn tree.

(10) Question II

In this problem we do not assume the Axiom of Choice.

By definition a set X is finite if there are $n \in \omega$ and a bijection $f: n \to X$.

Another notion of finiteness was proposed by Dedekind: X is DD-finite if there is a map $f: X \to X$ with the property that if $Y \subseteq X$ and $f[Y] \subseteq Y$ then Y = X or $Y = \emptyset$.

- (5) (i) Prove that every finite set is DD-finite.
- (5) (ii) Prove that every DD-finite set is finite. Hint: Fix $a \in X$ and define $g : \omega \to X$ by g(0) = f(a) and g(n+1) = f(g(n)). Consider $Y = g[\omega]$.

(20) Question III

Let $[\omega_1]^{<\omega}$ denote the family of finite subsets of ω_1 , and let F be the subtree of the tree $\omega_1^{<\omega}$ that consists of all *strictly decreasing* sequences. On F we define

$$s \lhd t \text{ if } \begin{cases} s \subset t & \text{(proper initial segment), or} \\ s(i) < t(i) & \text{where } i = \min\{j : s(j) \neq t(j)\} \end{cases}$$

(5) (i) Prove that $f: F \to [\omega_1]^{<\omega}$, defined by $f(s) = \operatorname{ran} s$, is a bijection.

(5) (ii) Prove that \triangleleft is a well-order of F.

Let \prec be the well-order on $[\omega_1]^{<\omega}$ induced by \triangleleft and f.

- (5) (iii) Prove: if $\alpha \in \omega_1$ then $[\alpha]^{<\omega} = \{a : a \prec \{\alpha\}\}.$
- (5) (iv) Calculate the order-types of $[\omega]^{<\omega}$, $[\omega+1]^{<\omega}$, and $[\omega_1]^{<\omega}$ with respect to the order \prec .

(20) Question IV

- (10) (i) Let $\kappa = (2^{\aleph_0})^+$ and let $\{A_{\alpha} : \alpha < \kappa\}$ be a family of countable subsets of κ . Prove that there are a countable subset R of κ and a stationary subset S of κ such that $A_{\alpha} \cap A_{\beta} = R$ whenever $\alpha, \beta \in S$ and $\alpha \neq \beta$. Hint: Let $T = \{\alpha < \kappa : \text{cf } \alpha > \aleph_0\}$ and consider $f: T \to \kappa$ defined by $f(\alpha) = \sup(A_{\alpha} \cap \alpha)$.
- (10) (ii) Prove the first non-trivial case of Ramsey's theorem:

$$\aleph_0 \to (\aleph_0)_2^2.$$

(15) Question V

One way to define the set \mathbb{Z} of integers is via the following equivalence relation on ω^2 : we let $\langle k, l \rangle \equiv \langle m, n \rangle$ iff k + n = m + l, and we let \mathbb{Z} be the set of \equiv -equivalence classes (the equivalence class of $\langle k, l \rangle$ represents "k - l").

- (5) (i) Calculate rank(\mathbb{Z}), the rank of \mathbb{Z} in the hierarchy $\langle V_{\alpha} : \alpha \in \mathbf{On} \rangle$.
- (5) (ii) Prove that $\mathbb{Z} \subseteq L_{\omega+1}$, that is, every \equiv -equivalence class is a definable subset of L_{ω} .
- (5) (iii) Calculate $\rho(\mathbb{Z})$, the rank of \mathbb{Z} in the hierarchy $\langle L_{\alpha} : \alpha \in \mathbf{On} \rangle$.

4