

Set Theory 2022/2023 1st Semester K. P. Hart

Written Exam 13 February 2023, 1400–17:00, SP G1.18

Name:

University:

Student ID:

General comments.

- (1) The time for this exam is 3 hours (180 minutes).
- (2) There are 115 points in the exam: if a student obtains x points, the exam grade will be $\frac{x+15}{13}$.
- (3) Please mark the answers to the questions in Question I on this sheet by crosses.
- (4) Make sure that you have your name, university and student ID on each of the sheets you are handing in.
- (5) If you have any questions, please indicate this silently and someone will come to you. Answers to questions that are relevant for everyone will be announced publicly.
- (6) No talking during the exam.
- (7) Cell phones must be switched off and stowed.

Question I.	(45 points)	Question IV.	(20 points)
Question II.	(20 points)	Question V.	(15 points)
Question III.	(15 points)	TOTAL	(115 points)
		GRADE	

(45) Question I

Every multiple-choice question below has exactly one correct answer (3 points each):

- Week 1. Consider Zermelo's set Z_0 (the smallest set that contains \emptyset and that is closed under $a \mapsto \{a\}$). Which of the following properties is **not** shared by Z_0 and ω .
 - \Box A: There is a well-order \prec on the set such that " $x \in y$ " implies $x \prec y$ ".
 - \square **B**: The set is infinite.
 - \Box C: There is no well-order \prec on the set such that " $x \in y$ " implies $y \prec x$ ".
 - \Box D: There are elements x and y in the set such that $x \neq y$ and there is a bijection $f: x \rightarrow y$.
- Week 2. Our definition of the ordered pair is $\langle x, y \rangle = \{\{x\}, \{x, y\}\}$. What is the relationship between the ordered pair $\langle 0, 1 \rangle$ and the ordinal 3?
 - \Box **A**: They are incomparable.
 - $\Box \mathbf{B}: 3 = \langle 0, 1 \rangle.$
 - \Box C: 3 $\subset \langle 0, 1 \rangle$ (proper subset).
 - \Box **D**: $\langle 0, 1 \rangle \subset 3$ (proper subset).
- Week 3. The definition of ran R makes sense (formally) for arbitrary sets. Using this formal definition ran ω is equal to
 - $\Box \mathbf{A}: \emptyset.$
 - \square **B**: {1,2}.
 - $\Box \mathbf{C}: \omega \setminus \{0\}.$
 - \Box **D**: ω .
- Week 4. Zermelo's proof of the well-ordering theorem starts, given a set X, with a choice function γ for the family $\mathcal{P}(X) \setminus \{\emptyset\}$ and produces a well-order \prec_{γ} . The map $\gamma \mapsto \prec_{\gamma}$ from the set of choice functions to the well-orders of X is
 - \Box **A**: surjective and injective.
 - \square **B**: neither injective nor surjective.
 - \Box C: injective but not surjective.
 - \Box **D**: surjective but not injective.

Week 5. What is $(\omega^{2022} + 2023) \cdot (\omega^{2023} + 2022)$ (ordinal arithmetic)?

- \Box **A**: $\omega^{4045} + 4090506$.
- $\Box \ \mathbf{B}: \ \omega^{4045} + \omega^{2023} \cdot 2023 + 2022.$
- \Box **C**: $\omega^{4045} + \omega^{2022} \cdot 2022 + 2023$.
- $\Box \mathbf{D}: \omega^{4045} + \omega^{2023} + \omega^{2022} \cdot 2022 + 4090506.$
- Week 6. One of the following statements *can* be proved in ZF without the Axiom of Choice. Which one?
 - \square A: For every pair of sets X and Y, every surjective map $f: X \to Y$ has a right-inverse: a map $g: Y \to X$ such that $f \circ g = \operatorname{Id}_Y$.
 - \square **B**: For every pair of sets X and Y there is an injective map $f: X \to Y$ or an injective map $f: Y \to X$.
 - \Box C: \aleph_{2023} is a regular cardinal.
 - \Box **D**: For every pair of sets X and Y, every injective map $f: X \to Y$ has a left-inverse: a map $g: Y \to X$ such that $g \circ f = \operatorname{Id}_X$.

Week 7. Which of the following statements is *incompatible* with the Axiom of Foundation?

- \Box A: There is a sequence $\langle x_n : n \in \omega \rangle$ of sets such that $x_{2n+2} \in x_{2n}$ for all n.
- \square **B**: For every sequence $\langle x_n : n \in \omega \rangle$ of sets there are *m* and *n* such that m < n and $x_n \notin x_m$.
- \Box C: There is a sequence $\langle x_n : n \in \omega \rangle$ of sets such that $x_{3n+2} \in x_{3n+1} \in x_{3n}$ for all n.
- \Box **D**: There is a sequence $\langle x_n : n \in \omega \rangle$ of such that $x_n \in x_{2^n}$ for all n.

 $\mathbf{2}$

Week 8. Which **one** of the following alephs represents a possible value of $2^{\aleph_{2022}}$?

- $\Box \mathbf{A} \colon \aleph_{\omega_{2023} + \omega_{2022}}.$
- $\Box \mathbf{B}: \aleph_{\omega_{2023}+\omega_{2023}}.$
- $\Box \mathbf{C}: \aleph_{\omega_{2023}+\omega_{2020}}.$
- $\Box \mathbf{D}: \aleph_{\omega_{2023}+\omega_{2021}}.$
- Week 9. Let $S = \{\alpha + 1 : \alpha \in \omega_1\}$ be the set of successor ordinals in ω_1 . Using the Pressing-Down Lemma we can prove
 - \Box A: If $f: S \to \omega_1$ is regressive then f is constant on an uncountable subset of S.
 - \square **B**: Nothing, because *S* is not stationary.
 - \Box C: If $f: S \to S$ is regressive then f is constant on an uncountable subset of S.
 - \Box **D**: *S* has subsets that are stationary in ω_1 .
- Week 10. Let $\langle q_n : n \in \omega \rangle$ be an enumeration of \mathbb{Q} , the set of rational numbers. Define $F : [\mathbb{R}]^2 \to \omega$ by $F(\{x, y\}) = \min\{n : x < q_n < y \text{ or } y < q_n < x\}$ (in words: q_n is the first rational in the enumeration that lies between x and y).
 - This colouring provides a counterexample to which partition relation?
 - $\label{eq:constraint} \begin{array}{l} \square \ \mathbf{A} \colon 2^{\aleph_0} \to (\aleph_0)_2^2. \\ \square \ \mathbf{B} \colon \aleph_0 \to (3)_3^2. \\ \square \ \mathbf{C} \colon \aleph_2 \to (\aleph_1, \aleph_0)^2. \end{array}$
 - \Box **D**: $2^{\aleph_0} \rightarrow (3)^2_{\aleph_0}$.
- Week 11. Let $T = \{s \in \omega^{<\omega_1} : |\{i \in \text{dom } s : s(i) \neq 0\}| < \aleph_0\}$. The cardinality of the set of branches of length ω_1 of the tree T is
 - $\Box \mathbf{A}: 0.$
 - \Box **B**: \aleph_0 .
 - $\Box \mathbf{C}: \aleph_1.$
 - \Box **D**: 2^{\aleph_0} .

Week 12. The informal definition of L in week 12 was made formal by

- \Box **A**: Fixing an enumeration of the formulas of Set Theory.
 - \square **B**: Working with Δ_0 -formulas only.
 - \Box C: Showing that $\alpha \to L_{\alpha}$ is absolute.
 - \Box **D**: Redefining Def(M) as the closure of a set under some functions.
- Week 13. Let M be a countable transitive model of ZF P. Which of the following notions *is not* downward absolute between M and V?
 - \Box **A**: *x* is a natural number
 - \square **B**: x is countable.
 - \Box **C**: *x* is an ordinal
 - \Box **D**: *x* is an ordered pair.
- Week 14. Let $M \prec L_{\omega_1}$ be a countable elementary substructure. Among the statements below, which is the **strongest** that we can prove about M?
 - \Box **A**: *M* is isomorphic to L_{β} for some successor ordinal β .
 - \square **B**: *M* is transitive.
 - \Box **C**: *M* is isomorphic to L_{β} for some limit ordinal β .
 - \Box **D**: $M = L_{\beta}$ for some limit ordinal β .
- Week 15. Which of the following statements about ω_1 -trees in L is provable?
 - \Box A: Every Aronszajn tree is a Souslin tree.
 - \square **B**: The $<_L$ -first Aronszajn tree is also Souslin.
 - \Box C: There is a definable Aronszajn tree that is not Souslin.
 - \Box **D**: A tree is either an Aronszajn tree or a Kurepa tree.

(20) Question II

In this problem we do not assume the Axiom of Choice.

A set X is Dedekind-finite if every injective map $f: X \to X$ is surjective. We call X S-finite if every surjective map $f: X \to X$ is injective.

(5) (i) Prove that every S-finite set is Dedekind-finite. Hint: The contrapositive is easier. Assume $\langle P_n : n \in \omega \rangle$ is a sequence of two-element sets without a choice function, i.e., there is

no map $f: \omega \to \bigcup_{n \in \omega} P_n$ such that $f(n) \in P_n$ for all n (this assumption is consistent with ZF). For $n \in \omega$ let T_n be the set of functions s such that dom s = n and $s(i) \in P_i$ for all $i \in n$. Let $T = \bigcup_{n \in \omega} T_n$ and order T by inclusion.

- (5) (ii) Prove that T is a tree and that $|T_n| = 2^n$ for every $n \in \omega$.
- (5) (iii) Prove that T has no infinite branches and define a surjective map $f: T \to T$ that is not injective (so T is not S-finite).
- (5) (iv) Prove that T is Dedekind-finite. *Hint*: You may use that X is Dedekind-infinite iff there is an injective map $f : \omega \to X$. Use such a map to define an infinite branch.

(15) Question III

Define a relation \triangleleft on the class $On^2 = \{ \langle \alpha, \beta \rangle : \alpha, \beta \in On \}$ of pairs of ordinal numbers by

$$\langle \alpha, \beta \rangle \lhd \langle \gamma, \delta \rangle \ \, \text{if} \ \ \, \begin{cases} \alpha + \beta < \gamma + \delta & \text{or} \\ \alpha + \beta = \gamma + \delta & \text{and} \ \, \alpha < \gamma \end{cases}$$

- (5) (i) Prove that \triangleleft is a well-order of On^2 .
- (5) (ii) Prove that for every ordinal δ we have: if $\alpha, \beta < \omega^{\delta}$ (ordinal arithmetic) then $\alpha + \beta < \omega^{\delta}$.
- (5) (iii) Prove: for every infinite cardinal κ we have $\kappa^2 = \{ \langle \alpha, \beta \rangle : \langle \alpha, \beta \rangle \lhd \langle 0, \kappa \rangle \}$ and the order type of $\langle \kappa^2, \triangleleft \rangle$ is equal to κ .

(20) Question IV

- (10) (i) Prove Hausdorff's formula: $\aleph_{\alpha+1}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1}$.
- (10) (ii) Prove the first case of the Erdős-Rado theorem: $(2^{\aleph_0})^+ \to (\aleph_1)^2_{\aleph_0}$.

(15) Question V

We consider the construction of a Souslin tree from the \Diamond -principle.

(5) (i) Prove that \diamond is equivalent to the statement: there is a sequence $\langle f_{\alpha} : \alpha \in \omega_1 \rangle$ such that $f_{\alpha} : \alpha \to \alpha$ for all $\alpha \in \omega_1$ and such that for every $f : \omega_1 \to \omega_1$ the set $\{\alpha : f \upharpoonright \alpha = f_{\alpha}\}$ is stationary.

An auto-isomorphism of a tree $\langle T, \triangleleft \rangle$ is a bijection $g: T \to T$ such that $s \triangleleft t$ iff $g(s) \triangleleft g(t)$ for all $s, t \in T$.

The construction of a Souslin tree from \diamond involved defining an order \triangleleft on ω_1 such that $\langle S, \triangleleft \rangle$ was a Souslin tree and the interval $[\omega \cdot \alpha, \omega \cdot (\alpha + 1))$ was the α th level S_{α} of S.

- (5) (ii) Assume (for convenience) that $\alpha = \omega \cdot \alpha$ and that the ordering \triangleleft has been constructed on the set α . Also assume $g : \alpha \to \alpha$ is an auto-isomorphism of $\langle \alpha, \triangleleft \rangle$ such that $g(\beta) \neq \beta$ for some $\beta < \alpha$. Show how to extend the order \triangleleft to $\alpha + \omega$ in such a way that there is no extension of g to an auto-isomorphism of $\langle \alpha + \omega, \triangleleft \rangle$.
- (5) (iii) Use the previous part to modify the construction of a Souslin tree so as to obtain one that is *rigid*: the only auto-isomorphism is the identity map.

4