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(45) Question I

Every multiple-choice question below has exactly one correct answer (3 points each):

Week 1. Consider Zermelo’s set Z0 (the smallest set that contains ∅ and that is closed under a 7→ {a}).
Which of the following properties is not shared by Z0 and ω.

□ A: There is a well-order ≺ on the set such that “x ∈ y” implies x ≺ y”.

□ B: The set is infinite.

□ C: There is no well-order ≺ on the set such that “x ∈ y” implies y ≺ x”.

□ D: There are elements x and y in the set such that x ̸= y and there is a bijection f : x → y.

Week 2. Our definition of the ordered pair is ⟨x, y⟩ =
{
{x}, {x, y}

}
. What is the relationship between

the ordered pair ⟨0, 1⟩ and the ordinal 3?

□ A: They are incomparable.

□ B: 3 = ⟨0, 1⟩.
□ C: 3 ⊂ ⟨0, 1⟩ (proper subset).
□ D: ⟨0, 1⟩ ⊂ 3 (proper subset).

Week 3. The definition of ranR makes sense (formally) for arbitrary sets. Using this formal definition
ranω is equal to

□ A: ∅.

□ B: {1, 2}.
□ C: ω \ {0}.
□ D: ω.

Week 4. Zermelo’s proof of the well-ordering theorem starts, given a set X, with a choice function γ for
the family P(X) \ {∅} and produces a well-order ≺γ . The map γ 7→≺γ from the set of choice
functions to the well-orders of X is

□ A: surjective and injective.

□ B: neither injective nor surjective.

□ C: injective but not surjective.

□ D: surjective but not injective.

Week 5. What is (ω2022 + 2023) · (ω2023 + 2022) (ordinal arithmetic)?

□ A: ω4045 + 4090506.

□ B: ω4045 + ω2023 · 2023 + 2022.

□ C: ω4045 + ω2022 · 2022 + 2023.

□ D: ω4045 + ω2023 + ω2022 · 2022 + 4090506.

Week 6. One of the following statements can be proved in ZF without the Axiom of Choice. Which
one?

□ A: For every pair of sets X and Y , every surjective map f : X → Y has a right-inverse: a
map g : Y → X such that f ◦ g = IdY .

□ B: For every pair of sets X and Y there is an injective map f : X → Y or an injective map
f : Y → X.

□ C: ℵ2023 is a regular cardinal.

□ D: For every pair of sets X and Y , every injective map f : X → Y has a left-inverse: a map
g : Y → X such that g ◦ f = IdX .

Week 7. Which of the following statements is incompatible with the Axiom of Foundation?

□ A: There is a sequence ⟨xn : n ∈ ω⟩ of sets such that x2n+2 ∈ x2n for all n.

□ B: For every sequence ⟨xn : n ∈ ω⟩ of sets there are m and n such that m < n and xn /∈ xm.

□ C: There is a sequence ⟨xn : n ∈ ω⟩ of sets such that x3n+2 ∈ x3n+1 ∈ x3n for all n.

□ D: There is a sequence ⟨xn : n ∈ ω⟩ of such that xn ∈ x2n for all n.
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Week 8. Which one of the following alephs represents a possible value of 2ℵ2022?

□ A: ℵω2023+ω2022 .

□ B: ℵω2023+ω2023 .

□ C: ℵω2023+ω2020 .

□ D: ℵω2023+ω2021 .

Week 9. Let S = {α + 1 : α ∈ ω1} be the set of successor ordinals in ω1. Using the Pressing-Down
Lemma we can prove

□ A: If f : S → ω1 is regressive then f is constant on an uncountable subset of S.

□ B: Nothing, because S is not stationary.

□ C: If f : S → S is regressive then f is constant on an uncountable subset of S.

□ D: S has subsets that are stationary in ω1.

Week 10. Let ⟨qn : n ∈ ω⟩ be an enumeration of Q, the set of rational numbers. Define F : [R]2 → ω
by F

(
{x, y}

)
= min{n : x < qn < y or y < qn < x} (in words: qn is the first rational in the

enumeration that lies between x and y).
This colouring provides a counterexample to which partition relation?

□ A: 2ℵ0 → (ℵ0)
2
2.

□ B: ℵ0 → (3)23.

□ C: ℵ2 → (ℵ1,ℵ0)
2.

□ D: 2ℵ0 → (3)2ℵ0
.

Week 11. Let T =
{
s ∈ ω<ω1 :

∣∣{i ∈ dom s : s(i) ̸= 0}
∣∣ < ℵ0

}
. The cardinality of the set of branches of

length ω1 of the tree T is

□ A: 0.

□ B: ℵ0.

□ C: ℵ1.

□ D: 2ℵ0 .

Week 12. The informal definition of L in week 12 was made formal by

□ A: Fixing an enumeration of the formulas of Set Theory.

□ B: Working with ∆0-formulas only.

□ C: Showing that α → Lα is absolute.

□ D: Redefining Def(M) as the closure of a set under some functions.

Week 13. Let M be a countable transitive model of ZF − P. Which of the following notions is not
downward absolute between M and V ?

□ A: x is a natural number

□ B: x is countable.

□ C: x is an ordinal

□ D: x is an ordered pair.

Week 14. Let M ≺ Lω1 be a countable elementary substructure. Among the statements below, which is
the strongest that we can prove about M?

□ A: M is isomorphic to Lβ for some successor ordinal β.

□ B: M is transitive.

□ C: M is isomorphic to Lβ for some limit ordinal β.

□ D: M = Lβ for some limit ordinal β.

Week 15. Which of the following statements about ω1-trees in L is provable?

□ A: Every Aronszajn tree is a Souslin tree.

□ B: The <L-first Aronszajn tree is also Souslin.

□ C: There is a definable Aronszajn tree that is not Souslin.

□ D: A tree is either an Aronszajn tree or a Kurepa tree.



4 Exam Set Theory (Mastermath) — 13 February 2023, 1400–17:00

(20) Question II

In this problem we do not assume the Axiom of Choice.
A set X is Dedekind-finite if every injective map f : X → X is surjective. We call X S-finite

if every surjective map f : X → X is injective.

(5) (i) Prove that every S-finite set is Dedekind-finite. Hint: The contrapositive is easier.

Assume ⟨Pn : n ∈ ω⟩ is a sequence of two-element sets without a choice function, i.e., there is
no map f : ω →

⋃
n∈ω Pn such that f(n) ∈ Pn for all n (this assumption is consistent with ZF).

For n ∈ ω let Tn be the set of functions s such that dom s = n and s(i) ∈ Pi for all i ∈ n.
Let T =

⋃
n∈ω Tn and order T by inclusion.

(5) (ii) Prove that T is a tree and that |Tn| = 2n for every n ∈ ω.

(5) (iii) Prove that T has no infinite branches and define a surjective map f : T → T that is not
injective (so T is not S-finite).

(5) (iv) Prove that T is Dedekind-finite. Hint: You may use that X is Dedekind-infinite iff there
is an injective map f : ω → X. Use such a map to define an infinite branch.

(15) Question III

Define a relation ◁ on the class On2 =
{
⟨α, β⟩ : α, β ∈ On

}
of pairs of ordinal numbers by

⟨α, β⟩ ◁ ⟨γ, δ⟩ if

{
α+ β < γ + δ or

α+ β = γ + δ and α < γ

(5) (i) Prove that ◁ is a well-order of On2.

(5) (ii) Prove that for every ordinal δ we have: if α, β < ωδ (ordinal arithmetic) then α+ β < ωδ.

(5) (iii) Prove: for every infinite cardinal κ we have κ2 =
{
⟨α, β⟩ : ⟨α, β⟩ ◁ ⟨0, κ⟩

}
and the order

type of ⟨κ2,◁⟩ is equal to κ.

(20) Question IV

(10) (i) Prove Hausdorff’s formula: ℵℵβ

α+1 = ℵℵβ
α · ℵα+1.

(10) (ii) Prove the first case of the Erdős-Rado theorem: (2ℵ0)+ → (ℵ1)
2
ℵ0
.

(15) Question V

We consider the construction of a Souslin tree from the ♢-principle.
(5) (i) Prove that ♢ is equivalent to the statement: there is a sequence ⟨fα : α ∈ ω1⟩ such that

fα : α → α for all α ∈ ω1 and such that for every f : ω1 → ω1 the set {α : f ↾ α = fα} is
stationary.

An auto-isomorphism of a tree ⟨T,◁⟩ is a bijection g : T → T such that s ◁ t iff g(s) ◁ g(t) for
all s, t ∈ T .

The construction of a Souslin tree from ♢ involved defining an order ◁ on ω1 such that ⟨S,◁⟩
was a Souslin tree and the interval

[
ω · α, ω · (α+ 1)

)
was the αth level Sα of S.

(5) (ii) Assume (for convenience) that α = ω · α and that the ordering ◁ has been constructed on
the set α. Also assume g : α → α is an auto-isomorphism of ⟨α,◁⟩ such that g(β) ̸= β
for some β < α. Show how to extend the order ◁ to α+ ω in such a way that there is no
extension of g to an auto-isomorphism of ⟨α+ ω,◁⟩.

(5) (iii) Use the previous part to modify the construction of a Souslin tree so as to obtain one that
is rigid : the only auto-isomorphism is the identity map.


