EXERCISES SET THEORY (03)

2022/23

These exercise are there to fill in the details in the arguments that I gave in class for the properties of ordinal arithmetic.

1. Prove: if $\boldsymbol{F}: \boldsymbol{O n} \rightarrow \boldsymbol{O n}$ is a normal function then
a. $\quad \boldsymbol{F}(\beta) \geqslant \beta$ for all β
b. For every α there is a $\beta \geqslant \alpha$ such that $\boldsymbol{F}(\beta)=\beta$.
2. Verify that the following are normal functions.
a. $\beta \mapsto \alpha+\beta$
b. $\beta \mapsto \alpha \cdot \beta($ if $\alpha>0)$
c. $\beta \mapsto \alpha^{\beta}($ if $\alpha>1)$
3. Let α be an ordinal.
a. Prove: there is a β such that $\alpha+\gamma=\gamma$ whenever $\gamma \geqslant \beta$.
b. Express the minimum β with this property in terms of α.
4. Subtraction and division with remainder.
a. Prove: if $\alpha \leqslant \beta$ then there is exactly one γ such that $\beta=\alpha+\gamma$.
b. Prove: if $\alpha \neq 0$ and $\alpha \leqslant \beta$ then there are unique γ and δ such that $\beta=\alpha \cdot \delta+\gamma$ and $\gamma<\alpha$.
5. Prove that the following are equivalent for an ordinal α.
(1) $(\exists \delta)\left(\alpha=\omega^{\delta}\right)$,
(2) $(\forall \beta<\alpha)(\beta+\alpha=\alpha)$,
(3) $(\forall \beta, \gamma<\alpha)(\beta+\gamma<\alpha)$.

Such ordinals are called indecomposable.

[^0]
[^0]: Date: maandag 10-10-2022 at 22:37:38 (cest).

