2022/23

These exercise are there to fill in the details in the arguments that I gave in class for the properties of ordinal arithmetic.

- 1. Prove: if F: On
 ightarrow On is a normal function then
 - a. $F(\beta) \ge \beta$ for all β
 - b. For every α there is a $\beta \ge \alpha$ such that $F(\beta) = \beta$.
- 2. Verify that the following are normal functions.
 - a. $\beta \mapsto \alpha + \beta$
 - b. $\beta \mapsto \alpha \cdot \beta \text{ (if } \alpha > 0)$
 - c. $\beta \mapsto \alpha^{\beta}$ (if $\alpha > 1$)
- **3**. Let α be an ordinal.
 - a. Prove: there is a β such that $\alpha + \gamma = \gamma$ whenever $\gamma \ge \beta$.
 - b. Express the minimum β with this property in terms of α .

4. Subtraction and division with remainder.

- a. Prove: if $\alpha \leq \beta$ then there is exactly one γ such that $\beta = \alpha + \gamma$.
- b. Prove: if $\alpha \neq 0$ and $\alpha \leqslant \beta$ then there are unique γ and δ such that $\beta = \alpha \cdot \delta + \gamma$ and $\gamma < \alpha$.
- **5**. Prove that the following are equivalent for an ordinal α .
 - (1) $(\exists \delta)(\alpha = \omega^{\delta}),$
 - (2) $(\forall \beta < \alpha)(\beta + \alpha = \alpha),$
 - (3) $(\forall \beta, \gamma < \alpha)(\beta + \gamma < \alpha).$

Such ordinals are called indecomposable.

Date: maandag 10-10-2022 at 22:37:38 (cest).