EXERCISES SET THEORY (05)

2022/23

In the following exercises κ always denotes a regular uncountable cardinal.

- **1**. Prove: if C is cub in κ and S is stationary in κ then $C \cap S$ is stationary in κ . *Hint*: This is not overly difficult but a good exercise in writing down a solution so that another student can understand it without difficulty.
- **2**. Remember that a map $f: \kappa \to \kappa$ is normal if it is strictly increasing and continuous.
 - a. Prove: if $C \subseteq \kappa$ is cub then the (unique) isomorphism $f : \kappa \to C$ is normal.
 - b. Prove: if $f : \kappa \to \kappa$ is normal then ran f is cub.
 - c. Prove: if $f : \kappa \to \kappa$ is normal then $\{\alpha : f(\alpha) = \alpha\}$ is cub.
 - d. Prove: if $f : \kappa \to \kappa$ is normal and $C \subseteq \kappa$ is cub then f[C] is cub.
- **3.** The details of the two disjoint stationary sets in ω_1 . Let $f : \omega_1 \to \mathbb{R}$ be injective. For every $x \in \mathbb{R}$ put $A_x = \{\alpha : f(\alpha) < x\}$ and $B_x = \{\alpha : f(\alpha) > x\}$.
 - a. Prove: for every x at least one of A_x and B_x is stationary.
 - Let $I = \{x : A_x \text{ is non-stationary}\}\$ and $E = \{x : B_x \text{ is non-stationary}\}\$
 - b. Prove: if $x \in I$ and y < x then $y \in I$, and symmetrically: if $x \in E$ and x < y then $y \in E$.
 - c. Prove: $\bigcup_{x \in I} A_x$ and $\bigcup_{x \in E} B_x$ are both stationary. *Hint*: Consider $I \cap \mathbb{Q}$ and $E \cap \mathbb{Q}$.
 - d. Prove: $\sup I < \inf E$. (By convention $\sup \emptyset = -\infty$ and $\inf \emptyset = \infty$.)
 - e. Let $x \in (\sup I, \inf E)$; show that A_x and B_x are both stationary.
- 4. Assume the Continuum Hypothesis $(2^{\aleph_0} = \aleph_1)$ and prove the Δ -system for countable subsets of ω_2 : if \mathcal{A} is a family of countable subsets of ω_2 and $|\mathcal{A}| = \aleph_2$ then \mathcal{A} has a subfamily \mathcal{B} of cardinality \aleph_2 that is a Δ -system.
- **5**. Let \mathcal{A} be the following family of finite subsets of ω_{ω} :

$$\bigcup_{n<\omega} \{\{\omega_n,\alpha\}: \omega_n<\alpha<\omega_{n+1}\}$$

Show that $|\mathcal{A}| = \aleph_{\omega}$ and that every subfamily of \mathcal{A} that is a Δ -system has cardinality less than \aleph_{ω} .

Date: maandag 07-11-2022 at 22:28:28 (cet).