EXERCISES SET THEORY (06)

2022/23

Some exercises about trees.

- 1. Go through the construction of an Aroszajn tree carefully.
 - a. Show that we can arrange that for all $t \in T$ we have $\sup \operatorname{ran} t \in \mathbb{Q}$.
 - b. Show that in that new situation: if sup ran $s = \sup \operatorname{ran} t$ then s = t or s and t are incomparable.
 - c. Deduce that in that case our tree is the union of countably many antichains.
- **2**. Let $(T, <_T)$ be the Aronszajn tree constructed in class. Let L be the set of all maximal chains in T.
 - a. Let $C \in L$. Show that the order type of C is a limit ordinal, call it α_C , and verify that $\bigcup C$ is a strictly increasing function from α_C to \mathbb{Q} , call it f_C .

Define an order on L by $C \prec D$ iff $f_C(\gamma) < f_D(\gamma)$, where $\gamma = \min\{\beta : f_C(\beta) \neq f_D(\beta)\}$, and \langle is the normal order of \mathbb{Q} .

- b. Prove that \prec is a linear order.
- c. Prove that there is no strictly increasing ω_1 -sequence in (L, \prec) . *Hint*: Let $\langle C_{\xi} : \xi < \omega_1 \rangle$ is strictly increasing. Prove that for every α there are a $t_{\alpha} \in T_{\alpha}$ and an $\eta < \omega_1$ such that for all $\xi > \eta$ the order type of C_{ξ} is larger than α and $t_{\alpha} \in C_{\xi}$. Deduce that $\langle t_{\alpha} : \alpha < \omega_1 \rangle$ would be an uncountable branch in T.

Date: donderdag 24-11-2022 at 15:50:56 (cet).