EXERCISES SET THEORY (08)

2022/23

A direct proof that $|L_{\alpha}| = |\alpha|$, when $\alpha \ge \omega$. And some exercises on elementarity.

- 1. We assume we have the well-orders $<_{\alpha}$ of the L_{α} as constructed in class and Jech's book; we denote the order-type of $(L_{\alpha}, <\alpha)$ by λ_{α} . Fix an $\alpha \ge \omega$ and let β_n be the order-type of W_n^{α} for each n.
 - a. Show that $\beta_{n+1} \leq \beta_n^2 \cdot 10$ for all *n* (ordinal arithmetic).
 - b. Deduce that $\lambda_{\alpha+1} \leq \lambda_{\alpha}^{\omega}$ (ordinal arithmetic).
 - c. Deduce that $|L_{\alpha+1}| = |L_{\alpha}|$.
- **2**. Continuing the previous exercise, but making α variable again.
 - a. Prove that for cardinals κ we have $\lambda_{\kappa} = \kappa$.
 - b. Prove that $\alpha \mapsto \lambda_{\alpha}$ is a normal function.
 - c. Prove: if κ is regular then $\{\alpha \in \kappa : \lambda_{\alpha} = \alpha\}$ is closed and unbounded.
- **3**. This exercise fleshes out the comments made in class about elementary substructures of the $H(\kappa)$. We work in $H(\aleph_2)$ and we let M be a countable elementary substructure of $H(\aleph_2)$. We let $\delta = M \cap \omega_1$.
 - a. Show that $\emptyset \in M$. *Hint*: We have $(\exists x \in H(\aleph_2))((\forall y \in x)(y \neq y))^{H(\aleph_2)}$, so we also have $(\exists x \in M)((\forall y \in x)(y \neq y))^{H(\aleph_2)}$. But \emptyset is the *only* member of $H(\aleph_2)$ that satisfies the formula.
 - b. Show: if $\alpha \in M$ then $\alpha + 1 \in M$. *Hint*: Again: there is only one element of $H(\aleph_2)$ that satisfies the defining formula of $\alpha + 1$.
 - c. Show: $\omega \in M$ and $\omega_1 \in M$ (so M is definitely not transitive). *Hint*: ω and ω_1 are uniquely definable.
 - d. Prove that $\delta \subseteq M$ and $\delta \notin M$.
 - e. Let $C \in M$ be a cub subset of ω_1 . Prove that $\delta \in C$. *Hint*: Prove that $\delta = \sup(C \cap \delta)$, via $(\exists \gamma \in H(\aleph_2))(\gamma \in C \land \gamma > \alpha)$, where $\alpha < \delta$.
 - f. Let $S \in M$ be such that $\delta \in S$. Prove that S is stationary in M. Hint: Assume there is a cub set C such that $C \cap S = \emptyset$. Show that $C \in H(\aleph_2)$. Deduce that there is (another) cub set D such that $D \in M$ and $D \cap S = \emptyset$.

Date: dinsdag 13-12-2022 at 11:50:05 (cet).