2022/23

On variations of \Diamond , and a direct construction of a Souslin line.

1. Use suitable bijections to show that the following statements are equivalent to \Diamond :

- (1) There is a sequence $\langle A_{\alpha} : \alpha < \omega_1 \rangle$ of sets such that $A_{\alpha} \subseteq \alpha \times \alpha$ for all α , and for every subset A of $\omega_1 \times \omega_1$ the set $\{\alpha : A \cap (\alpha \times \alpha) = A_{\alpha}\}$ is stationary.
- (2) There is a sequence $\langle f_{\alpha} : \alpha < \omega_1 \rangle$ of functions such that $f_{\alpha} : \alpha \to \alpha$ for all α , and for every function $f : \omega_1 \to \omega_1$ the set $\{\alpha : f \mid \alpha = f_{\alpha}\}$ is stationary.
- (3) There is a sequence $\langle \langle A_{\alpha}, B_{\alpha} \rangle : \alpha < \omega_1 \rangle$ of such that $A_{\alpha}, B_{\alpha} \subseteq \alpha$ for all α , and for every ordered pair $\langle A, B \rangle$ of subsets of ω_1 the set $\{\alpha : A \cap \alpha = A_{\alpha} \text{ and } B \cap \alpha = B_{\alpha}\}$ is stationary.
- 2. To prove that \diamond^* implies \diamond we need an equivalent of \diamond that looks more like \diamond^* . The principle \diamond^- says: there is a sequence $\langle \mathcal{A}_{\alpha} : \alpha < \omega_1 \rangle$ such that \mathcal{A}_{α} is a countable subfamily of $\mathcal{P}(\alpha)$ for all α , and for every subset A of ω_1 the set $\{\alpha : A \cap \alpha \in \mathcal{A}_{\alpha}\}$ is stationary.

a. Verify that \Diamond and \Diamond^* both imply \Diamond^- .

We now prove that \Diamond^- implies \Diamond . Let $\langle \mathcal{A}_{\alpha} : \alpha < \omega_1 \rangle$ be a \Diamond^- -sequence.

b. Use a bijection to transform $\langle \mathcal{A}_{\alpha} : \alpha < \omega_1 \rangle$ into $\langle \mathcal{B}_{\alpha} : \alpha < \omega_1 \rangle$ where \mathcal{B}_{α} is a countable subfamily of $\mathcal{P}(\alpha \times \omega)$ for all α and for every $B \subseteq \omega_1 \times \omega$ the set $\{\alpha : B \cap (\alpha \times \omega) \in \mathcal{B}_{\alpha}\}$ is stationary. Enumerate every \mathcal{B}_{α} as $\langle \mathcal{B}_{\alpha}(k) : k < \omega \rangle$.

c. Prove: for every $B \subseteq \omega_1 \times \omega$ there is a k such that $\{\alpha : B \cap (\alpha \times \omega) = B_\alpha(k)\}$ is stationary. Define $B_\alpha(k,n) = \{\gamma \in \alpha : \langle \gamma, n \rangle \in B_\alpha(k)\}.$

d. Prove: there is an *n* such that $\langle B_{\alpha}(n,n) : \alpha < \omega_1 \rangle$ is a \diamond -sequence. *Hint*: Assume not and choose a counterexample X_n for every *n*. Let $X = \bigcup_{n < \omega} (X_n \times \{n\})$ and show that part c would fail for *X*.

Date: dinsdag 20-12-2022 at 14:46:55 (cet).

2022/23

- **3.** We construct a Souslin line directly, using \Diamond , in two steps. First we build a linear order \triangleleft on ω_1 with the following properties
 - (1) it is a dense order without first of last elements,
 - (2) all closed nowhere dense sets are countable, and
 - (3) it is not separable.

Then the Dedekind completion of $(\omega_1, \triangleleft)$ is a counterexample to Souslin's question. A set K is closed is for every $x \in \omega_1 \setminus K$ there is an interval (u, v) that contains x and is disjoint from K. A set closed K is nowhere dense is there is not non-trivial interval (u, v) that is contained in K.

a. Prove that property (2) implies that pairwise disjoint families of open intervals are countable. *Hint*: By Zorn's Lemma assume that $\{(u_i, v_i) : i \in I\}$ is a *maximal* pairwise disjoint family of open intervals in $(\omega_1, \triangleleft)$. Show that $K = \omega_1 \setminus \bigcup_{i \in I} (u_i, v_i)$ is closed and nowhere dense, and that $u_i, v_i \in K$ for all i.

Let $\langle A_{\alpha} : \alpha < \omega_1 \rangle$ be a \diamond -sequence. We construct linear orders \triangleleft_{α} on $\omega \cdot \alpha$ for all α such that $(\omega \cdot \alpha, \triangleleft_{\alpha})$ is isomorphic to \mathbb{Q} , and such that \triangleleft_{α} extends \triangleleft_{β} whenever $\beta < \alpha$.

To begin let \triangleleft_1 order ω via some bijection with \mathbb{Q} . If α is a limit let $\triangleleft_{\alpha} = \bigcup_{\beta < \alpha} \triangleleft_{\beta}$.

- b. Show that $(\omega \cdot \alpha, \triangleleft_{\alpha})$ is isomorphic with \mathbb{Q} .
- For the successor step we need to look at \mathbb{Q} and \mathbb{R} .
- c. Prove: if $K \subseteq \mathbb{Q}$ is closed and nowhere dense $in \mathbb{Q}$ then its closure in \mathbb{R} is closed and nowhere dense $in \mathbb{R}$.
- d. Prove (or remember) the Baire Category Theorem: if $\{K_n : n < \omega\}$ is a family of closed and nowhere dense subsets of \mathbb{R} then $\mathbb{R} \setminus \bigcup_n K_n$ is dense in \mathbb{R} .
- e. Deduce: if $\{K_n : n < \omega\}$ is a family of closed and nowhere dense subsets of \mathbb{R} then there are irrational numbers in $\mathbb{R} \setminus \bigcup_n K_n$. *Hint*: If $q \in \mathbb{Q}$ then $\{q\}$ is nowhere dense.

Assume \triangleleft_{α} is given such that $(\omega \cdot \alpha, \triangleleft_{\alpha})$ is isomorphic to \mathbb{Q} . A *Dedekind cut* in $(\omega \cdot \alpha, \triangleleft_{\alpha})$ is a pair of subsets such that such that $A \cup B = \omega \cdot \alpha$, if $a \in A$ and $b \in B$ then $a \triangleleft_{\alpha} b$, A has no maximum, and B has no minimum.

f. Show that there is a Dedekind cut (A, B) in $(\omega \cdot \alpha, \triangleleft_{\alpha})$ such that for every $\beta \leq \alpha$: if A_{β} is closed and nowhere dense in $(\omega \cdot \alpha, \triangleleft_{\alpha})$ then there are $a \in A$ and $b \in B$ such that $(a, b) \cap A_{\beta} = \emptyset$. *Hint*: Via an isomorphism with \mathbb{Q} find an irrational number that is not in the closure (in \mathbb{R}) of

Hint: Via an isomorphism with \mathbb{Q} find an irrational number that is not in the closure (in \mathbb{R}) of any A_{β} , with $\beta \leq \alpha$, that is closed and nowhere dense in $(\omega \cdot \alpha, \triangleleft_{\alpha})$.

Now order the set $I_{\alpha} = \{\omega \cdot \alpha + n : n \}$

 $in\omega$ isomorphic with \mathbb{Q} and insert it between A and B: $a \triangleleft_{\alpha+1} x \triangleleft_{\alpha+1} b$ whenever $a \in A, x \in I_{\alpha}$, and $b \in B$.

g. Show that $\triangleleft_{\alpha+1}$ orders $\omega \cdot (\alpha+1)$ isomorphic with \mathbb{Q} .

In the end let $\triangleleft = \bigcup_{\alpha < \omega_1} \triangleleft_{\alpha}$.

h. Show that $(\omega_1, \triangleleft)$ has properties (1), (2), and (3). *Hint*: For (2): is A is closed and nowhere dense then show that $\{\alpha : A \cap \omega \cdot \alpha \text{ is closed and nowhere dense in } (\omega \cdot \alpha, \triangleleft_\alpha)\}$ is cub. For (3): the interval I_{α} (and anything inserted into it later) shows that $\omega \cdot \alpha$ will not be a dense subset in the final order.