HOMEWORK SET THEORY (02) 2022-10-03

Hand in next week by 14:00 on 2022-10-11, either by hand in class (on 2022-10-10 of course), or by uploading to the course page on elo.mastermath.nl.

This homework is about well-orders. Two larger questions rather than many small ones. We assume the Power Set Axiom.

1. This problem deals with the statement "for every two sets x and y there is an injection from x into y or an injection from y into x "; let us call it T.
a. Prove: the Axiom of Choice implies T.
b. Prove: for every set x there is an ordinal α such that there is no injective map from α into x. (The smallest such ordinal is written $\aleph(x)$ and called Hartogs' aleph.) Hint: Consider the set of pairs $\langle A, R\rangle$ where $A \subseteq x, R \subseteq x \times x$ and R well-orders A. Collect their order types in a set.
c. Prove that T implies the Axiom of Choice.
2. This problem leads you through Zermelo's second proof of the Well-Ordering Theorem. As in the first proof we start with a set M and a choice function $\gamma: \mathcal{P}(M) \backslash\{\emptyset\} \rightarrow M$.

A subfamily \mathcal{A} of $\mathcal{P}(M)$ is a γ-chain if
(1) $M \in \mathcal{A}$,
(2) if $A \in \mathcal{A} \backslash\{\emptyset\}$ then $A^{\prime}=A \backslash\{\gamma(A)\}$ belongs to \mathcal{A} too, and
(3) if $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ then $\bigcap \mathcal{A}^{\prime} \in \mathcal{A}$.
a. Verify that $\mathcal{P}(M)$ is a γ-chain.
b. Show if \mathfrak{A} is a family of γ-chains then $\bigcap \mathfrak{A}$ is a γ-chain.

Now let \mathcal{W} be the intersection of the collection of all γ-chains. Call $A \in \mathcal{W}$ comparable if for all $U \in \mathcal{W}$ we have $A \subseteq U$ or $U \subseteq A$.
c. Prove that every member of \mathcal{W} is comparable. Hint: Show that the comparable elements of \mathcal{W} form a γ-chain. When proving property (2) show that $\left\{U \in \mathcal{W}: U \subseteq A^{\prime}\right.$ or $\left.A^{\prime} \subseteq U\right\}$ is a γ-chain.
d. Let $N \subseteq M$ be nonempty. Show there is a unique member W of \mathcal{W} such that $N \subseteq W$ and $\gamma(W) \in N$. Hint: Consider $\bigcap\{W \in \mathcal{W}: N \subseteq W\}$.
In particular we have for every $x \in M$ a unique $W_{x} \in \mathcal{W}$ such that $x \in W_{x}$ and $x=\gamma\left(W_{x}\right)$. Define $x \prec y$ iff $y \in W_{x}^{\prime}$.
e. Prove that \prec is a well-order of M.
f. Bonus: both proofs of Zermelo construct a well-order from γ in an unambiguous way. What is the relation (if any) between the resulting two well-orders?

