HOMEWORK SET THEORY (05) 2022-11-14

Hand in next week by 23:59 on 2022-11-22, either by hand in class (on 2022-11-21 of course), or by uploading to the course page on elo.mastermath.nl.

Collaboration is not forbidden, encouraged even. You may also hand in joint work, provided each contributes equally to the solutions (honour system).

This homework is about stationary sets and partitions.

1. Let S be a stationary subset of ω_{1}. Prove that for every $\alpha \in \omega_{1}$ there is a closed subset of ω_{1} of order type $\alpha+1$ that is a subset of S. Hint: Prove the following statement by induction on α :
"for every stationary subset S of ω_{1} there is closed subset of order type $\alpha+1$ that is contained in $S^{\prime \prime}$.
For the limit case let $\left\langle\alpha_{n}: n \in \omega\right\rangle$ be increasing and cofinal in α. Show that there is a sequence $\left\langle C_{\gamma}: \gamma \in \omega_{1}\right\rangle$ of countable closed sets such that $C_{\gamma} \subseteq S$ for all $\gamma ; \max C_{\gamma}<\min C_{\delta}$ whenever $\gamma<\delta$ and if $\gamma=\omega \cdot \delta+n$ then C_{γ} has order type $\alpha_{n}+1$. Consider the set of limit points of $\left\{\max C_{\gamma}: \gamma \in \omega_{1}\right\}$.
2. Some (standard) applications of Ramsey's theorem.
a. Let $\langle L,\langle \rangle$ be an infinite linearly ordered set. Prove that L has an infinite subset X that is wellordered by $<$ or an infinite subset Y that is well-ordered by $>$.
b. Prove that every bounded sequence of real numbers has a convergent subsequence (the BolzanoWeierstraß theorem). Hint: Find a monotone subsequence.
c. Let $\langle P,<\rangle$ be an infinite partially ordered set. Prove that P has an infinite subset C that is linearly ordered by $<$ (a chain) or an infinite subset U that is unordered by $<$, which means that if x and y in U are distinct then neither $x<y$ nor $y<x$.
3. Another application of Ramsey's theorem. Here are four well-behaved families of subsets of ω :
(1) $\mathcal{A}=\{\{n\}: n \in \omega\}$,
(2) $\mathcal{B}=\{n: n \in \omega\}$,
(3) $\mathcal{C}=\{\omega \backslash\{n\}: n \in \omega\}$, and
(4) $\mathcal{D}=\{\omega \backslash n: n \in \omega\}$.

Let X be an infinite set and \mathcal{S} an infinite family of subsets of X. Prove that there is a sequence $\left\langle x_{n}: n \in \omega\right\rangle$ of points in X and there is a sequence $\left\langle S_{n}: n \in \omega\right\rangle$ of members of \mathcal{S} such that

$$
\left\{\left\{m \in \omega: x_{m} \in S_{n}\right\}: n \in \omega\right\}
$$

is equal to one of $\mathcal{A}, \mathcal{B}, \mathcal{C}$, and \mathcal{D}. (So every infinite family of sets is well-behaved somewhere.)
a. Construct a sequence $\left\langle x_{n}: n \in \omega\right\rangle$ of points in X and a sequence $\left\langle\mathcal{S}_{n}: n \in \omega\right\rangle$ of infinite subfamilies of \mathcal{S} such that $\mathcal{S}_{0}=\mathcal{S}$ and for every n the following hold: either $\mathcal{S}_{n+1}=\left\{S \in \mathcal{S}_{n}: x_{n} \in S\right\}$ or $\mathcal{S}_{n+1}=\left\{S \in \mathcal{S}_{n}: x_{n} \notin S\right\}$, and in addition \mathcal{S}_{n+1} is a proper subset of \mathcal{S}_{n}.
b. Choose $S_{n} \in \mathcal{S}_{n} \backslash \mathcal{S}_{n+1}$ for every n. Verify that if $x_{m} \in S_{m}$ then $x_{m} \notin S_{n}$ for all $n>m$ and, conversely, if $x_{m} \notin S_{m}$ then $x_{m} \in S_{n}$ whenever $n>m$.
c. Now consider the colouring $F:[\omega]^{2} \rightarrow 4$ given by: if $i<j$ then

$$
F(\{i, j\})= \begin{cases}0 & \text { if } x_{i} \notin S_{j} \text { and } x_{j} \notin S_{i} \\ 1 & \text { if } x_{i} \notin S_{j} \text { and } x_{j} \in S_{i} \\ 2 & \text { if } x_{i} \in S_{j} \text { and } x_{j} \notin S_{i} \\ 3 & \text { if } x_{i} \in S_{j} \text { and } x_{j} \in S_{i}\end{cases}
$$

