HOMEWORK SET THEORY (06) 2022-12-06

2022/23

Hand in next week by 23:59 on 2022-12-13, either by hand in class (on 2022-12-12 of course), or by uploading to the course page on elo.mastermath.nl.

Collaboration is not forbidden, encouraged even. You may also hand in joint work, provided each contributes equally to the solutions (honour system).

- **1**. For an infinite cardinal κ let $H(\kappa) = \{x : |\operatorname{trcl} x| < \kappa\}$. Prove the following about $H(\kappa)$.
 - a. $H(\kappa)$ is transitive.
 - b. $H(\kappa) \cap \boldsymbol{On} = \kappa$.
 - c. If $x \in H(\kappa)$ and $y \subseteq x$ then $y \in H(\kappa)$.
 - d. Show that $H(\kappa)$ is closed under the Gödel operations.
 - e. [AC] If κ is regular then $x \in H(\kappa)$ if and only if $x \subseteq H(\kappa)$ and $|x| < \kappa$.
 - f. [AC] If κ is regular and uncountable then $H(\kappa)$ is a model of ZFC P.
 - g. Conclude that ZFC P is consistent with the statement that every set is countable (if ZFC is consistent).
- **2**. This exercise proves that "x is finite" is a Δ_1 -property.
 - a. Verify that the definition of finiteness can be expressed as a Σ_1 -formula.
 - b. Show that finiteness can also be expressed/characterized by a Π_1 -formula. *Hint*: Look at Homework 03.
- **3**. We work in $H(\aleph_2)$. One can extend the methods used in class to prove the following: if $A \in H(\aleph_2)$ is countable then there is a countable set $M \in H(\aleph_2)$ that contains A and that satisfies the equivalence

$$\phi^M(m_1,\ldots,m_k) \leftrightarrow \phi^{H(\aleph_2)}(m_1,\ldots,m_k)$$

for all formulas ϕ and all $m_1, \ldots, m_k \in M$.

- Now let $f: \omega_1 \to \omega_1$ be a regressive function and let M be as above for the countable set $\{f\}$.
- a. Verify that $\omega_1 \in M$.
- b. Prove that $\omega \in M$ and $\omega \subseteq M$. *Hint*: ω is the unique first limit ordinal, and $\omega \subseteq M$ can be proven by induction.
- c. Prove: if $x \in M$ is countable then $x \subseteq M$. *Hint*: we must have $((\exists b)(b : \omega \xrightarrow{onto} x))^M$, take such a $b \in M$ and show that $b(n) \in M$ for all $n \in \omega$.
- d. Let $\delta = \min \omega_1 \setminus M$; prove that $\delta = M \cap \omega_1$.
- e. Let $\gamma = f(\delta)$ and show that $\{\alpha : f(\alpha) = \gamma\}$ is cofinal. *Hint*: For every $\beta < \delta$ we have, thanks to δ itself: $((\exists \alpha \in \omega_1)(\beta < \alpha \land f(\alpha) = \gamma))^{H(\aleph_2)}$, hence also $((\exists \alpha \in \omega_1)(\beta < \alpha \land f(\alpha) = \gamma))^M$. Show that this implies $((\forall \beta \in \omega_1)(\exists \alpha \in \omega_1)(\beta < \alpha \land f(\alpha) = \gamma))^M$, and hence

Date: dinsdag 06-12-2022 at 16:27:57 (cet).