HOMEWORK SET THEORY (06) 2022-12-06

Hand in next week by 23:59 on 2022-12-13, either by hand in class (on 2022-12-12 of course), or by uploading to the course page on elo.mastermath.nl.

Collaboration is not forbidden, encouraged even. You may also hand in joint work, provided each contributes equally to the solutions (honour system).

1. For an infinite cardinal κ let $H(\kappa)=\{x:|\operatorname{trcl} x|<\kappa\}$. Prove the following about $H(\kappa)$.
a. $H(\kappa)$ is transitive.
b. $H(\kappa) \cap \boldsymbol{O} \boldsymbol{n}=\kappa$.
c. If $x \in H(\kappa)$ and $y \subseteq x$ then $y \in H(\kappa)$.
d. Show that $H(\kappa)$ is closed under the Gödel operations.
e. [AC] If κ is regular then $x \in H(\kappa)$ if and only if $x \subseteq H(\kappa)$ and $|x|<\kappa$.
f. [AC] If κ is regular and uncountable then $H(\kappa)$ is a model of ZFC - P.
g. Conclude that ZFC $-P$ is consistent with the statement that every set is countable (if ZFC is consistent).
2. This exercise proves that " x is finite" is a Δ_{1}-property.
a. Verify that the definition of finiteness can be expressed as a Σ_{1}-formula.
b. Show that finiteness can also be expressed/characterized by a Π_{1}-formula.

Hint: Look at Homework 03.
3. We work in $H\left(\aleph_{2}\right)$. One can extend the methods used in class to prove the following: if $A \in H\left(\aleph_{2}\right)$ is countable then there is a countable set $M \in H\left(\aleph_{2}\right)$ that contains A and that satisfies the equivalence

$$
\phi^{M}\left(m_{1}, \ldots, m_{k}\right) \leftrightarrow \phi^{H\left(\aleph_{2}\right)}\left(m_{1}, \ldots, m_{k}\right)
$$

for all formulas ϕ and all $m_{1}, \ldots, m_{k} \in M$.
Now let $f: \omega_{1} \rightarrow \omega_{1}$ be a regressive function and let M be as above for the countable set $\{f\}$.
a. Verify that $\omega_{1} \in M$.
b. Prove that $\omega \in M$ and $\omega \subseteq M$. Hint: ω is the unique first limit ordinal, and $\omega \subseteq M$ can be proven by induction.
c. Prove: if $x \in M$ is countable then $x \subseteq M$. Hint: we must have $((\exists b)(b: \omega \xrightarrow{\text { onto }} x))^{M}$, take such a $b \in M$ and show that $b(n) \in M$ for all $n \in \omega$.
d. Let $\delta=\min \omega_{1} \backslash M$; prove that $\delta=M \cap \omega_{1}$.
e. Let $\gamma=f(\delta)$ and show that $\{\alpha: f(\alpha)=\gamma\}$ is cofinal. Hint: For every $\beta<\delta$ we have, thanks to δ itself: $\left(\left(\exists \alpha \in \omega_{1}\right)(\beta<\alpha \wedge f(\alpha)=\gamma)\right)^{H\left(\aleph_{2}\right)}$, hence also $\left(\left(\exists \alpha \in \omega_{1}\right)(\beta<\alpha \wedge f(\alpha)=\gamma)\right)^{M}$. Show that this implies $\left(\left(\forall \beta \in \omega_{1}\right)\left(\exists \alpha \in \omega_{1}\right)(\beta<\alpha \wedge f(\alpha)=\gamma)\right)^{M}$, and hence \ldots

