
6. The Axiom of Regularity

The Axiom of Regularity states that the relation ∈ on any family of sets is
well-founded:

Axiom of Regularity. Every nonempty set has an ∈-minimal element :

∀S (S �= ∅ → (∃x ∈ S)S ∩ x = ∅).

As a consequence, there is no infinite sequence

x0 � x1 � x2 � . . . .

(Consider the set S = {x0, x1, x2, . . .} and apply the axiom.) In particular,
there is no set x such that

x ∈ x

and there are no “cycles”

x0 ∈ x1 ∈ . . . ∈ xn ∈ x0.

Thus the Axiom of Regularity postulates that sets of certain type do no
exist. This restriction on the universe of sets is not contradictory (i.e., the
axiom is consistent with the other axioms) and is irrelevant for the devel-
opment of ordinal and cardinal numbers, natural and real numbers, and in
fact of all ordinary mathematics. However, it is extremely useful in the meta-
mathematics of set theory, in construction of models. In particular, all sets
can be assigned ranks and can be arranged in a cumulative hierarchy.

We recall that a set T is transitive if x ∈ T implies x ⊂ T .

Lemma 6.1. For every set S there exists a transitive set T ⊃ S.

Proof. We define by induction

S0 = S, Sn+1 =
⋃

Sn

and

(6.1) T =
∞⋃

n=0
Sn.

Clearly, T is transitive and T ⊃ S. ��
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Since every transitive set must satisfy
⋃

T ⊂ T , it follows that the set
in (6.1) is the smallest transitive T ⊃ S; it is called transitive closure of S:

TC(S) =
⋂
{T : T ⊃ S and T is transitive}.

Lemma 6.2. Every nonempty class C has an ∈-minimal element.

Proof. Let S ∈ C be arbitrary. If S ∩ C = ∅, then S is a minimal element
of C; if S ∩ C �= ∅, we let X = T ∩ C where T = TC(S). X is a nonempty
set and by the Axiom of Regularity, there is x ∈ X such that x ∩ X = ∅.
It follows that x ∩ C = ∅; otherwise, if y ∈ x and y ∈ C, then y ∈ T since
T is transitive, and so y ∈ x∩ T ∩C = x∩ X . Hence x is a minimal element
of C. ��

The Cumulative Hierarchy of Sets

We define, by transfinite induction,

V0 = ∅, Vα+1 = P (Vα),

Vα =
⋃

β<α

Vβ if α is a limit ordinal.

The sets Vα have the following properties (by induction):

(i) Each Vα is transitive.
(ii) If α < β, then Vα ⊂ Vβ .
(iii) α ⊂ Vα.

The Axiom of Regularity implies that every set is in some Vα:

Lemma 6.3. For every x there is α such that x ∈ Vα:

(6.2)
⋃

α∈Ord

Vα = V.

Proof. Let C be the class of all x that are not in any Vα. If C is nonempty,
then C has an ∈-minimal element x. That is, x ∈ C, and z ∈

⋃
α Vα for every

z ∈ x. Hence x ⊂
⋃

α∈Ord Vα. By Replacement, there exists an ordinal γ such
that x ⊂

⋃
α<γ Vα. Hence x ⊂ Vγ and so x ∈ Vγ+1. Thus C is empty and we

have (6.2). ��

Since every x is in some Vα, we may define the rank of x:

(6.3) rank(x) = the least α such that x ∈ Vα+1.

Thus each Vα is the collection of all sets of rank less than α, and we have

(i) If x ∈ y, then rank(x) < rank(y).
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(ii) rank(α) = α.

One of the uses of the rank function is a definition of equivalence classes
for equivalence relations on a proper class. The basic trick is the following:

Given a class C, let

(6.4) Ĉ = {x ∈ C : (∀z ∈ C) rankx ≤ rank z}.

Ĉ is always a set, and if C is nonempty, then Ĉ is nonempty. Moreover,
(6.4) can be applied uniformly.

Thus, for example, if ≡ is an equivalence on a proper class C, we ap-
ply (6.4) to each equivalence class of ≡, and define

[x] = {y ∈ C : y ≡ x and ∀z ∈ C (z ≡ x → rank y ≤ rank z)}

and
C/≡ = {[x] : x ∈ C}.

In particular, this trick enables us to define isomorphism types for a given
isomorphism. For instance, one can define order-types of linearly ordered sets,
or cardinal numbers (even without AC).

We use the same argument to prove the following.

Collection Principle.

(6.5) ∀X ∃Y (∀u ∈ X)[∃v ϕ(u, v, p) → (∃v ∈ Y )ϕ(u, v, p)]

(p is a parameter).

The Collection Principle is a schema of formulas. We can formulate it as
follows:

Given a “collection of classes” Cu, u ∈ X (X is a set), then there is a set Y
such that for every u ∈ X ,

if Cu �= ∅, then Cu ∩ Y �= ∅.

To prove (6.5), we let
Y =

⋃
u∈X

Ĉu

where Cu = {v : ϕ(u, v, p)}, i.e.,

v ∈ Y ↔ (∃u ∈ X)(ϕ(u, v, p) and ∀z (ϕ(u, z, p) → rankv ≤ rank z)).

That Y is a set follows from the Replacement Schema.
Note that the Collection Principle implies the Replacement Schema:

Given a function F , then for every set X we let Y be a set such that

(∀u ∈ X)(∃v ∈ Y )F (u) = v.

Then
F �X = F ∩ (X × Y )

is a set by the Separation Schema.



66 Part I. Basic Set Theory

∈-Induction

The method of transfinite induction can be extended to an arbitrary transitive
class (instead of Ord), both for the proof and for the definition by induction:

Theorem 6.4 (∈-Induction). Let T be a transitive class, let Φ be a prop-
erty. Assume that

(i) Φ(∅);
(ii) if x ∈ T and Φ(z) holds for every z ∈ x, then Φ(x).

Then every x ∈ T has property Φ.

Proof. Let C be the class of all x ∈ T that do not have the property Φ. If
C is nonempty, then it has an ∈-minimal element x; apply (i) or (ii). ��

Theorem 6.5 (∈-Recursion). Let T be a transitive class and let G be
a function (defined for all x). Then there is a function F on T such that

(6.6) F (x) = G(F �x)

for every x ∈ T .
Moreover, F is the unique function that satisfies (6.6).

Proof. We let, for every x ∈ T ,

F (x) = y ↔ there exists a function f such that
dom(f) is a transitive subset of T and:

(i) (∀z ∈ dom(f)) f(z) = G(f�z),

(ii) f(x) = y.

That F is a (unique) function on T satisfying (6.6) is proved by ∈-induction.
��

Corollary 6.6. Let A be a class. There is a unique class B such that

(6.7) B = {x ∈ A : x ⊂ B}.

Proof. Let

F (x) =
{

1 if x ∈ A and F (z) = 1 for all z ∈ x,

0 otherwise.

Let B = {x : F (x) = 1}. The uniqueness of B is proved by ∈-induction. ��

We say that each x ∈ B is hereditarily in A.
One consequence of the Axiom of Regularity is that the universe does not

admit nontrivial ∈-automorphisms. More generally:
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Theorem 6.7. Let T1, T2 be transitive classes and let π be an ∈-isomorphism
of T1 onto T2; i.e., π is one-to-one and

(6.8) u ∈ v ↔ πu ∈ πv.

Then T1 = T2 and πu = u for every u ∈ T1.

Proof. We show, by ∈-induction, that πx = x for every x ∈ T1. Assume that
πz = z for each z ∈ x and let y = πx.

We have x ⊂ y because if z ∈ x, then z = πz ∈ πx = y.
We also have y ⊂ x: Let t ∈ y. Since y ⊂ T2, there is z ∈ T1 such that

πz = t. Since πz ∈ y, we have z ∈ x, and so t = πz = z. Thus t ∈ x.
Therefore πx = x for all x ∈ T1, and T2 = T1. ��

Well-Founded Relations

The notion of well-founded relations that was introduced in Chapter 2 can
be generalized to relations on proper classes, and one can extend the method
of induction to well-founded relations.

Let E be a binary relation on a class P . For each x ∈ P , we let

extE(x) = {z ∈ P : z E x}

the extension of x.

Definition 6.8. A relation E on P is well-founded, if:

(i) every nonempty set x ⊂ P has an E-minimal element;
(ii) extE(x) is a set, for every x ∈ P .

(6.9)

(Condition (ii) is vacuous if P is a set.) Note that the relation ∈ is well-
founded on any class, by the Axiom of Regularity.

Lemma 6.9. If E is a well-founded relation on P , then every nonempty class
C ⊂ P has an E-minimal element.

Proof. We follow the proof of Lemma 6.2; we are looking for x ∈ C such that
extE(x) ∩ C = ∅. Let S ∈ C be arbitrary and assume that extE(S) ∩ C �= ∅.
We let X = T ∩ C where

T =
∞⋃

n=0
Sn

and
S0 = extE S, Sn+1 =

⋃
{extE(z) : z ∈ Sn}.

As in Lemma 6.2, it follows that an E-minimal element x of X is E-minimal
in C. ��
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Theorem 6.10 (Well-Founded Induction). Let E be a well-founded re-
lation on P . Let Φ be a property. Assume that :

(i) every E-minimal element x has property Φ;
(ii) if x ∈ P and if Φ(z) holds for every z such that z E x, then Φ(x).

Then every x ∈ P has property Φ.

Proof. A modification of the proof of Theorem 6.4. ��

Theorem 6.11 (Well-Founded Recursion). Let E be a well-founded rela-
tion on P . Let G be a function (on V ×V ). Then there is a unique function F
on P such that

(6.10) F (x) = G(x, F � extE(x))

for every x ∈ P .

Proof. A modification of the proof of Theorem 6.5. ��

(Note that if F (x) = G(F � ext(x)) for some G, then F (x) = F (y) when-
ever ext(x) = ext(y); in particular, F (x) is the same for all minimal elements.)

Example 6.12 (The Rank Function). We define, by induction, for all
x ∈ P :

ρ(x) = sup{ρ(z) + 1 : z E x}
(compare with (2.7)). The range of ρ is either an ordinal or the class Ord .
For all x, y ∈ P ,

x E y → ρ(x) < ρ(y). ��

Example 6.13 (The Transitive Collapse). By induction, let

π(x) = {π(z) : z E x}

for every x ∈ P . The range of π is a transitive class, and for all x, y ∈ P ,

x E y → π(x) ∈ π(y). ��

The transitive collapse of a well-founded relation is not necessarily a one-
to-one function. It is one-to-one if E satisfies an additional condition, exten-
sionality.

Definition 6.14. A well-founded relation E on a class P is extensional if

(6.11) extE(X) �= extE(Y )

whenever X and Y are distinct elements of P .
A class M is extensional if the relation ∈ on M is extensional, i.e., if for

any distinct X and Y ∈ M , X ∩ M �= Y ∩ M .
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The following theorem shows that the transitive collapse of an extensional
well-founded relation is one-to-one, and that every extensional class is ∈-
isomorphic to a transitive class.

Theorem 6.15 (Mostowski’s Collapsing Theorem).

(i) If E is a well-founded and extensional relation on a class P , then there
is a transitive class M and an isomorphism π between (P, E) and
(M,∈). The transitive class M and the isomorphism π are unique.

(ii) In particular, every extensional class P is isomorphic to a transitive
class M . The transitive class M and the isomorphism π are unique.

(iii) In case (ii), if T ⊂ P is transitive, then πx = x for every x ∈ T .

Proof. Since (ii) is a special case of (i) (E = ∈ in case (ii)), we shall prove
the existence of an isomorphism in the general case.

Since E is a well-founded relation, we can define π by well-founded induc-
tion (Theorem 6.11), i.e., π(x) can be defined in terms of the π(z)’s, where
z E x. We let, for each x ∈ P

(6.12) π(x) = {π(z) : z E x}.

In particular, in the case E = ∈, (6.12) becomes

(6.13) π(x) = {π(z) : z ∈ x ∩ P}.

The function π maps P onto a class M = π(P ), and it is immediate from the
definition (6.12) that M is transitive.

We use the extensionality of E to show that π is one-to-one. Let z ∈ M
be of least rank such that z = π(x) = π(y) for some x �= y. Then extE(x) �=
extE(y) and there is, e.g., some u ∈ extE(x) such that u /∈ extE(y). Let
t = π(u). Since t ∈ z = π(y), there is v ∈ extE(y) such that t = π(v). Thus
we have t = π(u) = π(v), u �= v, and t is of lesser rank than z (since t ∈ z).
A contradiction.

Now it follows easily that

(6.14) x E y ↔ π(x) ∈ π(y).

If x E y, then π(x) ∈ π(y) by definition (6.12). On the other hand, if π(x) ∈
π(y), then by (6.12), π(x) = π(z) for some z E y. Since π is one-to-one, we
have x = z and so x E y.

The uniqueness of the isomorphism π, and the transitive class M = π(P ),
follows from Theorem 6.7. If π1 and π2 are two isomorphisms of P and M1,
M2, respectively, then π2π

−1
1 is an isomorphism between M1 and M2, and

therefore the identity mapping. Hence π1 = π2.
It remains to prove (iii). If T ⊂ P is transitive, then we first observe that

x ⊂ P for every x ∈ T and so x ∩ P = x, and we have

π(x) = {π(z) : z ∈ x}

for all x ∈ T . It follows easily by ∈-induction that π(x) = x for all x ∈ T . ��
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The Bernays-Gödel Axiomatic Set Theory

There is an alternative axiomatization of set theory. We consider two types
of objects: sets (for which we use lower case letters) and classes (denoted by
capital letters).

A. 1. Extensionality: ∀u (u ∈ X ↔ y ∈ Y ) → X = Y .
2. Every set is a class.
3. If X ∈ Y , then X is a set.
4. Pairing: For any sets x and y there is a set {x, y}.

B. Comprehension:

∀X1 . . . ∀Xn ∃Y Y = {x : ϕ(x, X1, . . . , Xn)}

where ϕ is a formula in which only set variables are quantified.
C. 1. Infinity: There is an infinite set.

2. Union: For every set x the set
⋃

x exists.
3. Power Set: For every set x the power set P (x) of x exists.
4. Replacement: If a class F is a function and x is a set, then {F (z) :

z ∈ x} is a set.
D. Regularity.
E. Choice: There is a function F such that F (x) ∈ x for every nonempty

set x.

Let BG denote the axiomatic theory A–D and let BGC denote BG +
Choice.

If a set-theoretical statement is provable in ZF (ZFC), then it is provable
in BG (BGC).

On the other hand, a theorem of Shoenfield (using proof-theoretic meth-
ods) states that if a sentence involving only set variables is provable in BG,
then it is provable in ZF. This result can be extended to BGC/ZFC using
the method of forcing.

Exercises

6.1. rank(x) = sup{rank(z) + 1 : z ∈ x}.
6.2. |Vω| = ℵ0, |Vω+α| = �α.

6.3. If κ is inaccessible, then |Vκ| = κ.

6.4. If x and y have rank ≤ α then {x, y}, 〈x, y〉, x ∪ y,
S

x, P (x), and xy have
rank < α + ω

6.5. The sets Z, Q, R are in Vω+ω.

6.6. Let B be the class of all x that are hereditarily in the class A. Show that

(i) x ∈ B if and only if TC(x) ⊂ A,
(ii) B is the largest transitive class B ⊂ A.
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Historical Notes

The Axiom of Regularity was introduced by von Neumann in [1925], although a sim-
ilar principle had been considered previously by Skolem (see [1970], pp. 137–152).
The concept of rank appears first in Mirimanov [1917]. The transitive collapse is
defined in Mostowski [1949]. Induction on well-founded relations (Theorems 6.10,
6.11) was formulated by Montague in [1955].

The axiomatic system BG was introduced by Bernays in [1937]. Shoenfield’s
result was published in [1954].

For more references on the history of axioms of set theory consult Fraenkel et
al. [1973].


