The confluent hypergeometric function

The confluent hypergeometric function is given by
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This is a solution of the confluent hypergeometric differential equation
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For ¢ ¢ Z the general solution of the confluent hypergeometric differential equation (2) can

be written as )
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with A and B arbitrary constants.

Based on Euler’s integral representation for the o /] hypergeometric function, one might expect
that the confluent hypergeometric function satisfies
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Now we have

which leads to
Theorem 1. For Rec > Rea > 0 we have
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Proof. Note that we have
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and for Rea > 0 and Re(c—a) >0
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This integral representation can be used to prove Kummer’s transformation formula:
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Proof. We use the substitution £ = 1 — u to obtain

Theorem 2.
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Note that this also follows from Pfaff’s transformation formula for the o Fj:
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by replacing z by z/b and taking the limit b — oc.

This implies that

We also have a Barnes-type integral representation for the confluent hypergeometric function.
In order to find this representation we compute its Mellin transform. By using Kummer’s
transformation formula (4) we obtain
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Now we have I'(s + n) = I'(s) (s),, and by using Gauss’s summation formula
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This leads to
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where the path of integration is curved, if necessary, to separate the poles s = —a — n from

the poles s = n with n € {0,1,2,...}.

Proof. The proof is similar to the proof of Barnes’ integral representation for the oF) hy-
pergeometric function. Application of Cauchy’s residue theorem then gives that the integral
equals the sum of residues
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