
Zeros of Bessel functions

The Bessel function Jν(z) of the first kind of order ν ∈ R can be written as

Jν(z) =
(z

2

)ν ∞∑
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This is a solution of the Bessel differential equation which can be written as

z2y′′(z) + zy′(z) + (z2 − ν2)y(z) = 0, ν ∈ R. (2)

We will derive some basic facts about the zeros of the Bessel function Jν(z) and its derivative
J ′ν(z). We have

Theorem 1. All zeros of Jν(z), except z = 0 possibly, are simple.

Proof. If z0 6= 0 is a multiple zero of Jν(z), then we have at least that Jν(z0) = 0 and
J ′ν(z0) = 0. Since z0 6= 0 it follows from the differential equation (2) that also J ′′ν (z0) = 0.
Iteration then leads to J

(n)
ν (z0) = 0 for all n ∈ {0, 1, 2, . . .}, which implies that Jν(z) is

identically zero. This is a trivial contradiction.

Theorem 2. All zeros of J ′ν(z), except z = 0 or z = ±ν possibly, are simple.

Proof. If z0 is a multiple zero of J ′ν(z), then we have at least that J ′ν(z0) = 0 and J ′′ν (z0) = 0.
For z0 6= 0 and z0 6= ±ν it then follows from the differential equation (2) that also Jν(z0) = 0.
Again this leads to Jν(z) being identically zero which is clearly not true.

Theorem 3. If z0 ∈ C is a zero of Jν(z), then also −z0 and ±z0.

Proof. Since this is trivial for z0 = 0 we now assume that z0 6= 0. Then it follows from (1)
that z0 is a zero of
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This series is even and has real coefficients. This implies that −z0 and ±z0 are zeros too.

Theorem 4. If z0 ∈ C is a zero of J ′ν(z), then also −z0 and ±z0.

Proof. From (1) it follows that

J ′ν(z) =
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Hence, if z0 6= 0 is a zero of J ′ν(z) it must be a zero of
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which is even and also has real coefficients. This implies that −z0 and ±z0 are zeros too.
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Lemma 1. For ν > −1 we have

(a2 − b2)
∫ z

0
tJν(at)Jν(bt) dt = z

[
bJν(az)J ′ν(bz)− aJ ′ν(az)Jν(bz)

]
. (3)

Proof. The differential equation (2) implies that

c2z2J ′′ν (cz) + czJ ′ν(cz) +
(
c2z2 − ν2

)
Jν(cz) = 0, c ∈ C.

Hence we have

z
d

dz

[
bzJν(az)J ′ν(bz)− azJ ′ν(az)Jν(bz)

]
= bzJν(az)J ′ν(bz) + abz2J ′ν(az)J ′ν(bz) + b2z2Jν(az)J ′′ν (bz)

− azJ ′ν(az)Jν(bz)− abz2J ′ν(az)J ′ν(bz)− a2z2J ′′ν (az)Jν(bz)
=
(
a2z2 − ν2

)
Jν(az)Jν(bz)−

(
b2z2 − ν2

)
Jν(az)Jν(bz)

= (a2 − b2)z2Jν(az)Jν(bz).

This implies that

d

dz

[
bzJν(az)J ′ν(bz)− azJ ′ν(az)Jν(bz)

]
= (a2 − b2)zJν(az)Jν(bz),

which proves the lemma.

Theorem 5. For ν ≥ −1 the Bessel function Jν(z) only has real zeros.

Proof. Since ν ∈ R we have: if z0 ∈ C is a zero of Jν(z), so is z0. Now we apply (3) with
z = 1, a = z0 and b = z0 to find that

0 = (z2
0 − z02)

∫ 1

0
tJν(z0t)Jν(z0t) dt = (z2

0 − z02)
∫ 1

0
t |Jν(z0t)|2 dt.

This implies that z2
0 = z0

2, which can only be true if z0 = x ∈ R or z0 = iy with y ∈ R. Note
that for z = iy with y ∈ R we have
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for ν > −1. This implies that Jν(z) only has real zeros for ν > −1. For ν = −1 we have
J−1(z) = −J1(z), which implies that the theorem also holds for ν = −1.

Theorem 6. For ν ≥ 0 the derivative of the Bessel function J ′ν(z) only has real zeros.

Proof. Since ν ∈ R we have: if z0 ∈ C is a zero of J ′ν(z), so is z0. As before (3) implies that
z0 = x ∈ R or z0 = iy with y ∈ R. Note that for z = iy with y ∈ R we have
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for ν ≥ 0.

Theorem 7. Both Jν(z) and J ′ν(z) have infinitely many positive zeros.

Proof. Since all positive zeros of Jν(z) are simple, this follows from the asymptotic behavior

Jν(z) ∼
√

2
πz

cos
(
z − πν

2
− π

4

)
, |z| → ∞ with |arg(z)| ≤ π − δ < π.
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