Zeros of Bessel functions

The Bessel function $J_{\nu}(z)$ of the first kind of order $\nu \in \mathbb{R}$ can be written as

$$J_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(\nu+k+1)\,k!} \left(\frac{z}{2}\right)^{2k}.$$
 (1)

This is a solution of the Bessel differential equation which can be written as

$$z^{2}y''(z) + zy'(z) + (z^{2} - \nu^{2})y(z) = 0, \quad \nu \in \mathbb{R}.$$
(2)

We will derive some basic facts about the zeros of the Bessel function $J_{\nu}(z)$ and its derivative $J'_{\nu}(z)$. We have

Theorem 1. All zeros of $J_{\nu}(z)$, except z = 0 possibly, are simple.

Proof. If $z_0 \neq 0$ is a multiple zero of $J_{\nu}(z)$, then we have at least that $J_{\nu}(z_0) = 0$ and $J'_{\nu}(z_0) = 0$. Since $z_0 \neq 0$ it follows from the differential equation (2) that also $J''_{\nu}(z_0) = 0$. Iteration then leads to $J_{\nu}^{(n)}(z_0) = 0$ for all $n \in \{0, 1, 2, ...\}$, which implies that $J_{\nu}(z)$ is identically zero. This is a trivial contradiction.

Theorem 2. All zeros of $J'_{\nu}(z)$, except z = 0 or $z = \pm \nu$ possibly, are simple.

Proof. If z_0 is a multiple zero of $J'_{\nu}(z)$, then we have at least that $J'_{\nu}(z_0) = 0$ and $J''_{\nu}(z_0) = 0$. For $z_0 \neq 0$ and $z_0 \neq \pm \nu$ it then follows from the differential equation (2) that also $J_{\nu}(z_0) = 0$. Again this leads to $J_{\nu}(z)$ being identically zero which is clearly not true.

Theorem 3. If $z_0 \in \mathbb{C}$ is a zero of $J_{\nu}(z)$, then also $-z_0$ and $\pm \overline{z_0}$.

Proof. Since this is trivial for $z_0 = 0$ we now assume that $z_0 \neq 0$. Then it follows from (1) that z_0 is a zero of

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(\nu+k+1)\,k!} \left(\frac{z}{2}\right)^{2k}$$

This series is even and has real coefficients. This implies that $-z_0$ and $\pm \overline{z_0}$ are zeros too.

Theorem 4. If $z_0 \in \mathbb{C}$ is a zero of $J'_{\nu}(z)$, then also $-z_0$ and $\pm \overline{z_0}$.

Proof. From (1) it follows that

$$J'_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu-1} \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{\nu}{2} + k\right)}{\Gamma(\nu+k+1) \, k!} \left(\frac{z}{2}\right)^{2k}.$$

Hence, if $z_0 \neq 0$ is a zero of $J'_{\nu}(z)$ it must be a zero of

$$\sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{\nu}{2} + k\right)}{\Gamma(\nu + k + 1) k!} \left(\frac{z}{2}\right)^{2k},$$

which is even and also has real coefficients. This implies that $-z_0$ and $\pm \overline{z_0}$ are zeros too.

Lemma 1. For $\nu > -1$ we have

$$(a^{2} - b^{2}) \int_{0}^{z} t J_{\nu}(at) J_{\nu}(bt) dt = z \left[b J_{\nu}(az) J_{\nu}'(bz) - a J_{\nu}'(az) J_{\nu}(bz) \right].$$
(3)

Proof. The differential equation (2) implies that

$$c^{2}z^{2}J_{\nu}''(cz) + czJ_{\nu}'(cz) + (c^{2}z^{2} - \nu^{2})J_{\nu}(cz) = 0, \quad c \in \mathbb{C}.$$

Hence we have

$$\begin{aligned} z \frac{d}{dz} \left[bz J_{\nu}(az) J_{\nu}'(bz) - az J_{\nu}'(az) J_{\nu}(bz) \right] \\ &= bz J_{\nu}(az) J_{\nu}'(bz) + abz^2 J_{\nu}'(az) J_{\nu}'(bz) + b^2 z^2 J_{\nu}(az) J_{\nu}''(bz) \\ &\quad - az J_{\nu}'(az) J_{\nu}(bz) - abz^2 J_{\nu}'(az) J_{\nu}'(bz) - a^2 z^2 J_{\nu}''(az) J_{\nu}(bz) \\ &= \left(a^2 z^2 - \nu^2\right) J_{\nu}(az) J_{\nu}(bz) - \left(b^2 z^2 - \nu^2\right) J_{\nu}(az) J_{\nu}(bz) \\ &= (a^2 - b^2) z^2 J_{\nu}(az) J_{\nu}(bz). \end{aligned}$$

This implies that

$$\frac{d}{dz} \left[bz J_{\nu}(az) J_{\nu}'(bz) - az J_{\nu}'(az) J_{\nu}(bz) \right] = (a^2 - b^2) z J_{\nu}(az) J_{\nu}(bz),$$

which proves the lemma.

Theorem 5. For $\nu \geq -1$ the Bessel function $J_{\nu}(z)$ only has real zeros.

Proof. Since $\nu \in \mathbb{R}$ we have: if $z_0 \in \mathbb{C}$ is a zero of $J_{\nu}(z)$, so is $\overline{z_0}$. Now we apply (3) with $z = 1, a = z_0$ and $b = \overline{z_0}$ to find that

$$0 = (z_0^2 - \overline{z_0}^2) \int_0^1 t J_\nu(z_0 t) J_\nu(\overline{z_0} t) dt = (z_0^2 - \overline{z_0}^2) \int_0^1 t |J_\nu(z_0 t)|^2 dt.$$

This implies that $z_0^2 = \overline{z_0}^2$, which can only be true if $z_0 = x \in \mathbb{R}$ or $z_0 = iy$ with $y \in \mathbb{R}$. Note that for z = iy with $y \in \mathbb{R}$ we have

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(\nu+k+1)\,k!} \left(\frac{z}{2}\right)^{2k} = \sum_{k=0}^{\infty} \frac{1}{\Gamma(\nu+k+1)\,k!} \left(\frac{y}{2}\right)^{2k} > 0$$

for $\nu > -1$. This implies that $J_{\nu}(z)$ only has real zeros for $\nu > -1$. For $\nu = -1$ we have $J_{-1}(z) = -J_1(z)$, which implies that the theorem also holds for $\nu = -1$.

Theorem 6. For $\nu \ge 0$ the derivative of the Bessel function $J'_{\nu}(z)$ only has real zeros.

Proof. Since $\nu \in \mathbb{R}$ we have: if $z_0 \in \mathbb{C}$ is a zero of $J'_{\nu}(z)$, so is $\overline{z_0}$. As before (3) implies that $z_0 = x \in \mathbb{R}$ or $z_0 = iy$ with $y \in \mathbb{R}$. Note that for z = iy with $y \in \mathbb{R}$ we have

$$\sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{\nu}{2} + k\right)}{\Gamma(\nu + k + 1) k!} \left(\frac{z}{2}\right)^{2k} = \sum_{k=0}^{\infty} \frac{\frac{\nu}{2} + k}{\Gamma(\nu + k + 1) k!} \left(\frac{y}{2}\right)^{2k} > 0$$

for $\nu \geq 0$.

Theorem 7. Both $J_{\nu}(z)$ and $J'_{\nu}(z)$ have infinitely many positive zeros.

Proof. Since all positive zeros of $J_{\nu}(z)$ are simple, this follows from the asymptotic behavior

$$J_{\nu}(z) \sim \sqrt{\frac{2}{\pi z}} \cos\left(z - \frac{\pi\nu}{2} - \frac{\pi}{4}\right), \quad |z| \to \infty \quad \text{with} \quad |\arg(z)| \le \pi - \delta < \pi.$$