Zeros of Bessel functions

The Bessel function J,(z) of the first kind of order v € R can be written as
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This is a solution of the Bessel differential equation which can be written as

2y'(2) + 2/ () + (2= 1A)y(2) =0, vER. @

We will derive some basic facts about the zeros of the Bessel function J,(z) and its derivative

J!(z). We have
Theorem 1. All zeros of J,,(z), except z = 0 possibly, are simple.

Proof. 1f zp # 0 is a multiple zero of J,(z), then we have at least that J,(zp) = 0 and
J}(z0) = 0. Since zg # 0 it follows from the differential equation (2) that also .J} (z9) = 0.

Iteration then leads to Jﬁ”)(zo) = 0 for all n € {0,1,2,...}, which implies that J,(z) is
identically zero. This is a trivial contradiction.

Theorem 2. All zeros of J),(z), except z =0 or z = v possibly, are simple.

Proof. If 2 is a multiple zero of J),(z), then we have at least that J/,(z9) = 0 and J!/(29) = 0.
For zp # 0 and zp # £v it then follows from the differential equation (2) that also .J,(z9) = 0.
Again this leads to J,(z) being identically zero which is clearly not true.

Theorem 3. If zy € C is a zero of J,(z), then also —zy and +Z;.
Proof. Since this is trivial for zyp = 0 we now assume that zp # 0. Then it follows from (1)

that zg is a zero of
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This series is even and has real coefﬁments. This implies that —zp and +Zj are zeros too.
Theorem 4. If zy € C is a zero of J.,(2), then also —zy and +%.

Proof. From (1) it follows that
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Hence, if z5 # 0 is a zero of J),(z) it must be a zero of
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which is even and also has real coefficients. This implies that —zg and +Zj are zeros too.



Lemma 1. For v > —1 we have
(a® — b?) / tJy,(at)J, (bt) dt = 2z [bJ,(az)J,(bz) — aJ,(az)J,(b2)] . (3)
0

Proof. The differential equation (2) implies that
222 J))(c2) + ez J),(cz) + (¢*2® —v?) J,(cz) =0, ce€C.

Hence we have

Zdi (b2, (az)J,,(bz) — azJ),(az) ], (bz)]

z
= bzJ,(a2)J,(bz) + abz® T (a2)J,(bz) + b*2%J,(az)J! (bz)
—azJ(az)J,(bz) — abz*J,(az)J, (bz) — a*2* ! (az)J, (bz)

= (a?2? = v?) Jy(az)J,(b2) — (b°2% — v?) J,(az)J, (bz)
= (a® = v*)2%J,(az)J,(bz).

This implies that

d%: [bzJ, (az)J),(bz) — azJ)(az)J,(bz)] = (a* — b%)zJ,(az)J,(b2),

which proves the lemma.
Theorem 5. For v > —1 the Bessel function J,(z) only has real zeros.

Proof. Since v € R we have: if 29 € C is a zero of J,(z), so is Zg. Now we apply (3) with
z=1, a=zy and b = Zj to find that
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This implies that z:g = %2, which can only be true if zyg = = € R or zy = iy with y € R. Note
that for z = iy with y € R we have
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for v > —1. This implies that J,(z) only has real zeros for v > —1. For v = —1 we have
J_1(z) = —J1(2), which implies that the theorem also holds for v = —1.

Theorem 6. For v > 0 the derivative of the Bessel function J),(z) only has real zeros.

Proof. Since v € R we have: if 25 € C is a zero of J),(z), so is Zg. As before (3) implies that
zo =x € R or 29 = iy with y € R. Note that for z = iy with y € R we have
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for v > 0.

Theorem 7. Both J,(z) and J}(z) have infinitely many positive zeros.

Proof. Since all positive zeros of J,(z) are simple, this follows from the asymptotic behavior
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