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4.3 Characterizations of Hölder continuity. . . . . . . . . . . . . . 30

5 Bounded mean oscillation. 32
5.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 The John-Nirenberg theorem. . . . . . . . . . . . . . . . . . . 37
5.3 Some consequences. . . . . . . . . . . . . . . . . . . . . . . . . 41

1



1 Averages and the theorem of Lebesgue.

1.1 Notation.

We consider the space Rn with Lebesgue measure m and we also write
dm (x) = dx. For x ∈ Rn and r > 0 we define

B (x, r) = {y ∈ Rn : |x− y| < r}

and Br = B (0, r); so m (B (x, r)) = m (Br). The closure of B (x, r) is
B̄ (x, r). We denote by ωn the (n − 1)-dimensional surface area of the unit
sphere ∂B1; so m (Br) = n−1ωnr

n. For F ⊆ Rn and x ∈ Rn we denote by
dist (x, F ) the distance of x to F , i.e.,

dist (x, F ) = inf {|x− y| : y ∈ F} .

Furthermore, for any non-empty D ⊆ Rn we denote the diameter by

diam (D) = sup {|x− y| : x, y ∈ D} .

If Ω ⊆ Rn is an open subset, then we denote by L1
loc (Ω) the space of

all locally integrable functions on Ω, i.e., L1
loc (Ω) consists of all measurable

functions f : Rn → C for which
∫

K
|f | dx <∞ for all compact subsets K ⊆ Ω

(with identification of functions which are equal a.e.). We denote by Cc (Ω)
the space of all continuous functions on Ω with compact support in Ω and
C∞

c (Ω) is the subspace of all C∞-functions in Cc (Ω).
Suppose that f : Rn → [0,∞] is a measurable function. The distribution

function df : [0,∞) → [0,∞] is defined by

df (λ) = m {x ∈ Rn : f (x) > λ} .

It is clear that df is decreasing and right-continuous. Moreover, if df (λ0) <
∞ for some λ0 ≥ 0, then df (λ) → 0 as λ→∞. If f ∈ L1 (Rn) then

d|f | (λ) ≤ 1

λ
‖f‖1 (1)

for all λ > 0. Indeed, with Eλ = {x ∈ Rn : |f (x)| > λ} we have

‖f‖1 ≥
∫

Eλ

|f (x)| dx ≥ λm (Eλ) = λd|f | (λ) .
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1.2 Averages.

Let f ∈ L1
loc (Rn) be given. For x ∈ Rn and r > 0 we define

f̄x,r =
1

m (Br)

∫
B(x,r)

f (y) dy. (2)

Remark 1.1 1. For fixed r > 0, the function x 7−→ fx,r is continuous.
This follows immediately from the dominated convergence theorem.

2. Suppose that Ω ⊆ Rn is open and f ∈ L1
loc (Rn), then f|Ω ∈ C (Ω) if

and only if fx,r → f (x) as r ↓ 0 uniformly (a.e.) on every compact
subset of Ω. Indeed, first suppose that f|Ω ∈ C (Ω) and let K ⊆ Ω be
compact. There exists δ > 0 such that the set

Kδ = {x ∈ Rn : dist (x,K) ≤ δ}

is contained in Ω. For 0 < r < δ we have

sup
x∈K

∣∣f̄x,r − f (x)
∣∣ ≤ sup

x∈K

1

m (Br)

∫
B(x,r)

|f (y)− f (x)| dy

≤ sup
x∈K

sup
y∈B(x,r)

|f (y)− f (x)|

≤ sup {|f (y)− f (x)| : x, y ∈ Kδ, |y − x| < r} ,

which converges to zero as r ↓ 0 since f is uniformly continuous on
the compact set Kδ. The converse statement is clear from the above
observation.

3. Now assume f ∈ L1 (Rn) that and write fr (x) = f̄x,r. We claim that
‖fr − f‖1 → 0 as r ↓ 0. Indeed,∫

Rn

|fr (x)− f (x)| dx ≤ 1

m (Br)

∫
Rn

(∫
B(x,r)

|f (y)− f (x)| dy
)
dx

=
1

m (Br)

∫
Rn

(∫
Br

|f (y + x)− f (x)| dy
)
dx

=
1

m (Br)

∫
Br

(∫
Rn

|f (y + x)− f (x)| dx
)
dy

≤ sup
y∈Br

∫
Rn

|f (y + x)− f (x)| dx

= sup
y∈Br

‖τ yf − f‖1 .
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If f ∈ Cc (Rn) then it follows by uniform continuity that

sup
y∈Br

‖τ yf − f‖1 → 0 as r ↓ 0. (3)

Since Cc (Rn) is dense in L1 (Rn) this implies that (3) holds for all
f ∈ L1 (Rn), which proves the claim.

It follows in particular from this last remark that for every f ∈ L1 (Rn)
there exists some sequence rk ↓ 0 such that fx,rk

→ f (x) for almost all
x ∈ Rn. This is however not enough to conclude that fx,r → f (x) as r ↓ 0
for almost all x ∈ Rn, which is Lebesgue’s theorem. For the proof of this we
need some preparations.

1.3 The maximal function.

For f ∈ L1
loc (Rn) we define the maximal function Mf : Rn → [0,∞] by

Mf (x) = sup
r>0

1

m (Br)

∫
B(x,r)

|f (y)| dy. (4)

The mapping M : f 7−→Mf is called the Hardy-Littlewood maximal opera-
tor. Since Mf is the pointwise supremum of continuous functions it follows
that Mf is lower semi-continuous. In particular Mf is a measurable func-
tion. The following simple properties of the operator M are easily verified:

1. M (f + g) ≤ Mf + Mg and M (λf) = |λ|Mf for all f, g ∈ L1
loc (Rn)

and all λ ∈ C;

2. if |f | ≤ |g| a.e. in L1
loc (Rn) then Mf ≤Mg;

3. ‖Mf‖∞ ≤ ‖f‖∞ for all f ∈ L∞ (Rn).

Observe that Mf ∈ L1 (Rn) implies that f = 0 a.e. Indeed, if 0 6= f ∈
L1

loc (Rn) then there exists a constant c > 0 such that Mf (x) ≥ c |x|−n as
|x| → ∞, so Mf /∈ L1 (Rn). Furthermore, Mf need not be locally integrable
in general.

1.4 A covering lemma.

Our next objective is to estimate the size of the maximal function. For this
we need a Vitali type covering lemma.
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Lemma 1.2 Suppose that K is a compact subset of Rn and that B is a
collection of open balls such that K ⊆

⋃
{B : B ∈ B}. Then there exist

finitely many disjoint balls B1, . . . , Bk ∈ B such that

m (K) ≤ 3n

k∑
j=1

m (Bj) .

Proof. Since K is compact we may assume without loss of generality
that B is finite. Let B1 be a ball in B with largest radius r1. Then take
B2 ∈ B disjoint from B1 with largest radius r2. Let B3 be the largest ball
with radius r3 in B disjoint from B1 and B2, etc. Since B is finite this process
stops after finitely many, say k steps. By construction the balls B1, . . . , Bk

are disjoint. Let B̃j be the ball with the same center as Bj and with radius
3rj. We claim that

K ⊆
k⋃

j=1

B̃j.

Indeed, suppose not. Then there exists x ∈ K such that x /∈ B̃j for all
j = 1, . . . , k. Since B covers K, there exists B ∈ B with radius r such that
x ∈ B. By the choice of B1 we have r ≤ r1. Since x /∈ B̃1 it follows that
B ∩ B1 = ∅. Hence, by the choice of B2 we have r ≤ r2. Since x /∈ B̃2 this
implies that B ∩ B2 = ∅. Continuing this way it follows that B is disjoint
with all balls B1, . . . , Bk and that r ≤ rk. This is clearly a contradiction,

which proves the claim. Since m
(
B̃j

)
= 3nm (Bj), we conclude that

m (K) ≤
k∑

j=1

m
(
B̃j

)
= 3n

k∑
j=1

m (Bj)

by which the lemma is proved.

1.5 Lebesgue’s differentiation theorem.

Using the covering lemma we can now give a weak type estimate for the
maximal function. For the case n = 1 this result is due to F. Riesz (1932);
the general case was proved by N. Wiener (1939).

Theorem 1.3 If f ∈ L1 (Rn) then

m {x ∈ Rn : Mf (x) > λ} ≤ Cn

λ
‖f‖1 (5)

for all λ > 0 (where Cn is a constant only depending on the dimension n).
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Proof. Take λ > 0 and put Eλ = {x ∈ Rn : Mf (x) > λ}. Let K ⊆ Eλ

be compact. For each x ∈ K there exists a ball B (x, rx) such that

1

m (Brx)

∫
B(x,rx)

|f (y)| dy > λ. (6)

Now apply Lemma 1.2 to the set K and B = {B (x, rx) : x ∈ K}. Hence
there exist disjoint balls B (x1, r1) , . . . , B (xk, rk) in B such that

m (K) ≤ 3n

k∑
j=1

m (B (xj, rj)) .

Hence it follows from (6) that

m (K) ≤ 3n

k∑
j=1

m
(
Brj

)
<

3n

λ

k∑
j=1

∫
B(xj ,rj)

|f (y)| dy

≤ 3n

λ

∫
Rn

|f (y)| dy =
3n

λ
‖f‖1 .

Since m (Eλ) = sup {m (K) : K is compact and K ⊆ Eλ}, this implies (5).

Using the above weak estimate on Mf we can prove the Lebesgue differ-
entiation theorem.

Theorem 1.4 If f ∈ L1 (Rn) then

lim
r↓0

1

m (Br)

∫
B(x,r)

|f (y)− f (x)| dy = 0 (7)

for almost all x ∈ Rn.

Proof. For f ∈ L1 (Rn)and x ∈ Rn we define

Nf (x) = lim sup
r↓0

1

m (Br)

∫
B(x,r)

|f (y)− f (x)| dy,

so Nf : Rn → [0,∞] and a moment’s reflection shows that Nf is measurable.
We have to show that Nf = 0 a.e. on Rn. First we show that Nf satisfies a
weak estimate. Take λ > 0. Since

Nf (x) ≤Mf (x) + |f (x)|
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for all x, it follows that

{x ∈ Rn : Nf (x) > λ} ⊆
{
x ∈ Rn : Mf (x) >

λ

2

}
∪

{
x ∈ Rn : |f (x)| > λ

2

}
and so via Theorem 1.3 and (1) we find

m {x ∈ Rn : Nf (x) > λ} ≤ m

{
x ∈ Rn : Mf (x) >

λ

2

}
+m

{
x ∈ Rn : |f (x)| > λ

2

}
(8)

≤ 2Cn

λ
‖f‖1 +

2

λ
‖f‖1 =

C

λ
‖f‖1 .

Now fix f ∈ L1 (Rn). For every g ∈ Cc (Rn) it follows via uniform continuity
that Ng = 0. Moreover it is clear that N is subadditive and so

Nf ≤ N (f − g) +Ng = N (f − g) .

Take λ > 0. Then it follows from (8)

m {x ∈ Rn : Nf (x) > λ} ≤ m {x ∈ Rn : N (f − g) (x) > λ}

≤ C

λ
‖f − g‖1 .

Since this holds for all g ∈ Cc (Rn) and since Cc (Rn) is dense in L1 (Rn) this
implies that m {x ∈ Rn : Nf (x) > λ} = 0 for all λ > 0, hence Nf = 0 a.e.
This completes the proof of the theorem.

Corollary 1.5 Let Ω be an open subset of Rn and f ∈ L1
loc (Ω). Then (7)

holds for almost all x ∈ Ω.

Proof. Let {Ωk}∞k=1 be a sequence of open subset of Ω such that Ω =⋃∞
k=1 Ωk, Ωk ⊆ Ωk+1 and Ωk is compact for all k. Define fk ∈ L1 (Rn) by

fk = f on Ωk and fk = 0 on Rn�Ωk. Applying theorem 1.4 to the function
fk we see that (7) holds a.e. on Ωk and we are done.

The following corollary is now clear.

Corollary 1.6 Let Ω be an open subset of Rn and f ∈ L1
loc (Ω). Then the

following statements hold.

1. For almost all x ∈ Ω we have

lim
r↓0

1

m (Br)

∫
B(x,r)

f (y) dy = f (x) . (9)
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2. |f (x)| ≤Mf (x) a.e. on Ω.

The above results motivate the following definition.

Definition 1.7 Suppose that Ω ⊆ Rn is open and that f ∈ L1
loc (Ω). The set

of all points x ∈ Ω for which

lim
r↓0

1

m (Br)

∫
B(x,r)

|f (y)− f (x)| dy = 0

is called the Lebesgue set of the function f . We denote this set by Lf .

If f ∈ L1
loc (Ω) and x ∈ Lf , then it is clear that (9) holds. In some

situations we will need a differentiation formula like (9), but with respect
to sets different from balls with center x, e.g. arbitrary balls containing the
point x or with respect to cubes. For this purpose we introduce the following
concept.

Definition 1.8 A non-empty family Q0 of measurable subsets of Rn is called
regular if

(i). m (Q) > 0 for all Q ∈ Q0;

(ii). for every ε > 0 there exists a set Q ∈ Q0 such that m (Q) < ε;

(iii). there exists a constant c > 0 such that for every Q ∈ Q0 there exists
an open ball Br = B (0, r) such that Q ⊆ Br and m (Br) ≤ cm (Q).

For x ∈ Rn we define Qx = {Q+ x : Q ∈ Q0}.

Observe that if Q0 is a regular family, then for every r > 0 there exists
δ > 0 such that Q ∈ Q0 and m (Q) < δ imply that Q ⊆ Br. Indeed it follows
from (iii) that given r > 0 we can take δ = c−1m (B1) r

n.

Example 1.9 The following families of subsets of Rn are regular families.

1. The collection of all open balls {B (0, r) : r > 0};

2. The collection of all open (or closed) balls containing the point 0;

3. The family of all open (or closed) cubes containing the point 0;

4. Take any bounded set Q1 ⊆ Rn with m (Q1) > 0 and define Q0 =
{αQ1 : 0 < α ∈ R}.
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The collection of all rectangles containing the point 0 is not a regular
family.

The following proposition indicates the importance of the Lebesgue set.

Proposition 1.10 Let Q0 be a regular family of subsets in Rn and Ω ⊆ Rn

an open subset. If f ∈ L1
loc (
) then for all x ∈ Lf we have

lim
m(Q)→0
Q∈Qx

1

m (Q)

∫
Q

|f (y)− f (x)| = 0.

Consequently,for all x ∈ Lf .

lim
m(Q)→0
Q∈Qx

1

m (Q)

∫
Q

f (y) = f (x)

Proof. Take x ∈ Lf . Given ε > 0 there exists r0 > 0 such that B (x, r) ⊆
Ω and

1

m (Br)

∫
B(x,r)

|f (y)− f (x)| dy < ε

for all 0 < r < r0. Define δ = c−1m (B1) r
n
0 and take Q ∈ Qx such that

m (Q) < δ. Then there exists r > 0 such that Q ⊆ B (x, r) and m (Br) ≤
cm (Q). By the choice of δ this implies that r < r0 and so

1

m (Q)

∫
Q

|f (y)− f (x)| dy ≤ 1

m (Q)

∫
B(x,r)

|f (y)− f (x)| dy

≤ c

m (Br)

∫
B(x,r)

|f (y)− f (x)| dy < cε.

This suffices to prove the proposition.

2 Riesz potentials.

It will be convenient to have some results concerning the so-called Riesz
potentials available. We will discuss only some of the elementary properties.

For 0 < α < n and measurable function f : Rn → C the Riesz potentials
are defined by

Iαf (x) =

∫
Rn

f (y)

|x− y|n−αdy (10)

whenever this integral is absolutely convergent for almost all x ∈ Rn.
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Remark 2.1 Frequently the Riesz potentials are defined by Îαf = γ (α)−1 Iαf
with

γ (α) =
π

n
2 2αΓ

(
α
2

)
Γ

(
n
2
− α

2

) .

The reason for this normalization is that we then have (at least for very
smooth functions)

Îα

(
Îβf

)
= Îα+βf

whenever 0 < α < n, 0 < β < n with α+ β < n.

In the proof of the next proposition we will use the following elementary
fact. For the sake of completeness we indicate the proof.

Lemma 2.2 1. If f ∈ L1 (Rn) and g ∈ Lp (Rn), 1 ≤ p ≤ ∞, then the
convolution integral

(f ∗ g) (x) =

∫
Rn

f (y) g (x− y) dy (11)

is absolutely convergent for almost all x.

2. If f ∈ Lq (Rn) and g ∈ Lp (Rn), with 1 ≤ p ≤ ∞ and p−1 + q−1 = 1,
then (11) is absolutely convergent for all x.

Proof.

1. If p = ∞ the statement is clear, so we assume that 1 ≤ p < ∞. Let
q be the conjugate exponent of p. It follows from Hölder’s inequality
that∫

Rn

|f (y) g (x− y)| dy =

∫
Rn

|f (y)|
1
q |f (y)|

1
p |g (x− y)| dy

≤ ‖f‖
1
q

1

(∫
Rn

|f (y)| |g (x− y)|p dy
) 1

p

.

By Fubini’s theorem we have∫
Rn

(∫
Rn

|f (y) g (x− y)| dy
)p

dx

≤ ‖f‖
p
q

1

∫
Rn

(∫
Rn

|f (y)| |g (x− y)|p dy
)
dx

= ‖f‖
p
q

1

∫
Rn

|f (y)|
(∫

Rn

|g (x− y)|p dx
)
dy

= ‖f‖
p
q

1

∫
Rn

|f (y)|
(∫

Rn

|g (x)|p dx
)
dy

= ‖f‖p
1 ‖g‖

p
p <∞.
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This shows that
∫

Rn |f (y) g (x− y)| dy < ∞ for almost all x ∈ Rn.
Observe that this proof also shows that f ∗ g ∈ Lp (Rn) and ‖f ∗ g‖p ≤
‖f‖1 ‖g‖p.

2. This is an immediate consequence of Hölder’s inequality.

Proposition 2.3 If 0 < α < n and 1 ≤ p < n
α
, then for every f ∈ Lp (Rn)

the integral (10) is absolutely convergent for almost all x ∈ Rn. Consequently,
for f ∈ Lp (Rn) the Riesz potential Iαf is a well defined measurable function.

Proof. Define

K (x) =
1

|x|n−α .

Then we can write

Iαf (x) =

∫
Rn

f (x− y)

|y|n−α dy = (K ∗ f) (x)

and we have to show the a.e. absolute convergence of this integral. We split
K in two parts defined by

K1 (y) =

{
K (y) if |y| ≤ 1
0 if |y| > 1

and

K2 (y) =

{
K (y) if |y| > 1
0 if |y| ≤ 1

.

Since K = K1+K2 it is sufficient to show that both integrals (K1 ∗ f) (x) and
(K2 ∗ f) (x) are absolutely convergent for almost all x ∈ Rn. Since n−α < n
it follows that K1 ∈ L1 (Rn), which implies that the integral (K1 ∗ f) (x) is
absolutely convergent a.e. for all f ∈ Lp (Rn).

Let q be the conjugate exponent of p, i.e., p−1 + q−1 = 1. We claim that
K2 ∈ Lq (Rn). Indeed, if p = 1 then q = ∞ and it is clear that K2 ∈ L∞ (Rn).
Now assume that p > 1. Then∫

Rn

K2 (y)q dy =

∫
|y|>1

1

|y|(n−α)q
dy = ωn

∫ ∞

1

1

r(n−α)q−n+1
dr.

Since q−1 = 1 − p−1 < 1 − α
n
, it follows that (n− α) q > n, which implies

that this integral is finite. Hence K2 ∈ Lq (Rn). Now we may conclude that
for every f ∈ Lp (Rn) the integral (K2 ∗ f) (x) is convergent for almost all x,
and the proof is complete.
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Remark 2.4 If 0 < α < n and 1 < p < q < ∞, with q−1 = p−1 − α
n

(which implies that p < n
α
), then it can be shown that Iαf ∈ Lq (Rn) for all

f ∈ Lp (Rn).

The following estimate will be useful.

Lemma 2.5 Let E ⊆ Rn be a measurable set with 0 < m (E) < ∞ and
suppose that 0 < α < n. There is a constant C (α, n) > 0 such that∫

E

1

|y − x|n−αdy ≤ C (α, n)m (E)
α
n

for all x ∈ Rn. Actually we can take

C (α, n) = α−1n
α
nω

1−α
n

n .

Proof. Fix x ∈ Rn. Take r > 0 such that m (Br) = m (E), i.e., rn =
nω−1

n m (E). Note that

m (E�B (x, r)) = m (B (x, r) �E) .

Now∫
E�B(x,r)

1

|y − x|n−αdy ≤ rα−nm (E�B (x, r)) = rα−nm (B (x, r) �E)

≤
∫

m(B(x,r)�E)

1

|y − x|n−αdy.

This implies that∫
E

1

|y − x|n−αdy =

∫
E�B(x,r)

1

|y − x|n−αdy +

∫
E∩B(x,r)

1

|y − x|n−αdy

≤
∫

m(B(x,r)�E)

1

|y − x|n−αdy +

∫
E∩B(x,r)

1

|y − x|n−αdy

=

∫
B(x,r)

1

|y − x|n−αdy = α−1ωnr
α

= α−1ωn

(
n−1ω−1

n m (E)
)α

n = C (α, n)m (E)
α
n .

If E is a measurable subset of Rn then any f ∈ Lp (E) can be considered
as an element of Lp (Rn), extending f identically equal to zero on the com-
plement of E. In particular if m (E) < ∞, then every f ∈ Lp (E) belongs
to L1 (E) and hence is an element of L1 (Rn). Therefore, by Proposition 2.3
the Riesz potential Iαf is an a.e. well defined measurable function (on Rn)
for all 0 < α < n. The following proposition is only of interest if n > 1.
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Proposition 2.6 Let E ⊆ Rn be measurable with 0 < m (E) < ∞. Then
there exists a constant Cn > 0, only depending on n, such that∫

E

|I1f |p dx ≤ Cp
nm (E)

p
n

∫
E

|f |p dx

for all f ∈ Lp (E) and all 1 ≤ p <∞.

Proof. First we assume that 1 < p <∞. Let q be the conjugate exponent
of p. For f ∈ Lp (E) it follows from Hölder’s inequality that

|I1f (x)| ≤
∫

E

|f (y)|
|x− y|n−1dy =

∫
E

|f (y)|
|x− y|

n−1
p

1

|x− y|
n−1

q

dy

≤
(∫

E

|f (y)|p

|x− y|n−1dy

) 1
p
(∫

E

1

|x− y|n−1dy

) 1
q

for almost every x ∈ Rn. By the above lemma we know that∫
E

1

|x− y|n−1dy ≤ Cnm (E)
1
n = C. (12)

Hence,

|I1f (x)| ≤ C
1
q

(∫
E

|f (y)|p

|x− y|n−1dy

) 1
p

(13)

a.e. on Rn. Note that this inequality trivially holds for p = 1. Using (12)
and (13) we find for all 1 ≤ p <∞ that∫

E

|I1f (x)|p dx ≤ C
p
q

∫
E

(∫
E

|f (y)|p

|x− y|n−1dy

)
dx

= Cp−1

∫
E

|f (y)|p
(∫

E

1

|x− y|n−1dx

)
dy

≤ Cp

∫
E

|f (y)|p dy

with C = Cnm (E)
1
n , which completes the proof.

3 Sobolev spaces.

In this section we will discuss some of the relevant properties of the Sobolev
spaces which we will need in the sequel.

13



3.1 Definitions.

By α we denote a multi-index, i.e., α = (α1, . . . , αn) with αk ∈ N. The length
of α is defined by |α| = α1 + · · · + αn. For such a multi-index α we define
the differential operator Dα by

Dα =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

=
∂|α|

∂xα1
1 · · · ∂xαn

n

.

Let Ω be an open subset of . If f ∈ L1
loc (
) and α is a multi-index and if

there exists g ∈ L1
loc (
) such that∫

Ω

fDαϕdx = (−1)|α|
∫

Ω

gϕdx

for all ϕ ∈ C∞
c (
), then we denote g = Dαf , and g is called the weak

(partial) derivative of f corresponding to the multi-index α. If Dαf exists, it
is uniquely determined up to sets of measure zero. If m ∈ N and f ∈ Cm (Ω),
then all weak derivativesDαf exist for |α| ≤ m and coincide with the classical
derivatives of f . In case |α| = 1 we denote the weak derivatives Dαf also by
Djf = ∂f

∂xj
.

Remark 3.1 1. Suppose that f ∈ L1
loc (
), where Ω ⊆ Rn is open. Now

consider the collection U of all open subsets U ⊆ Ω such that f = 0 a.e.
on U . Let O =

⋃
{U : U ∈ U}. Then f = 0 a.e. on O (since f = 0

a.e. on every compact subset of O). Hence O is the largest open subset
of Ω on which f = 0 a.e. The set Ω�U is called the (essential) support
of f and will be denoted by supp (f). If f has a weak derivative Dαf ,
then supp (Dαf) ⊆ supp (f). Indeed, if U ⊆ Ω is open and f = 0 on
U , then ∫

Ω

(Dαf)ϕdx = (−1)|α|
∫

Ω

fDαϕdx = 0

for all ϕ ∈ C∞
c (U), which implies that Dαf = 0 a.e. on U .

2. Suppose that f ∈ L1
loc (
), where Ω ⊆ Rn is open with weak derivative

Dαf . Suppose that U is an open subset of Ω. Then f|U has weak
derivative Dα

(
f|U

)
= (Dαf)|U .

3. If f ∈ L1
loc (
) has weak derivative ∂f

∂xj
and ϕ ∈ C∞

c (Ω), then fϕ has

weak derivative
∂

∂xj

(fϕ) =
∂f

∂xj

ϕ+ f
∂ϕ

∂xj

.

14



Definition 3.2 For 1 ≤ p ≤ ∞ and k ∈ N the Sobolev spaces W k,p (Ω) are
defined by

W k,p (Ω) = {u ∈ Lp (Ω) : Dαu ∈ Lp (Ω) for all |α| ≤ k} .

For u ∈ W k,p (Ω) the norm is defined by

‖u‖k,p =

 ∑
|α|≤k

‖Dαu‖p
p

 1
p

if 1 ≤ p <∞ and
‖u‖k,∞ = max

|α|≤k
‖Dαu‖∞ .

For all the values of p and k the space
(
W k,p (Ω) , ‖·‖k,p

)
is a Banach

space, as is easily verified. From now on we will only consider 1 ≤ p < ∞.
The Hilbert space W k,2 (Ω) is sometimes also denoted by Hk (Ω). It is clear
that C∞

c (Ω) is a linear subspace of W k,p (Ω).

Definition 3.3 For 1 ≤ p <∞ and k ∈ N the closure of C∞
c (Ω) in W k,p (Ω)

is denoted by W k,p
0 (Ω).

Furthermore we will denote by W k,p
c (Ω) the subspace of W k,p (Ω) consist-

ing of all u ∈ W k,p (Ω) for which supp (u) is compact.

Remark 3.4 In the spaces W k,p (Ω) there are several other possible natu-
ral norms which are equivalent with the above introduced norm ‖·‖k,p. For

example, in the space W 1,p (Ω) such an equivalent norm is given by

‖u‖ =
(
‖u‖p

p + ‖∇u‖p
p

) 1
p
.

Here we denote ∇u =
(

∂u
∂x1
, . . . , ∂u

∂xn

)
and

‖∇u‖p =

(∫
Ω

|∇u|p dx
) 1

p

,

where |∇u| is the euclidean length of the vector ∇u in Cn.
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3.2 Approximation.

Now we discuss the approximation of functions in W k,p (Ω) by smooth func-
tions. For sake of simplicity we will restrict the discussion to the case k = 1.
First we recall some facts concerning convolutions.

a. If ϕ ∈ C∞
c (Rn) and u ∈ L1

loc (Rn), then ϕ ∗ u ∈ C∞ (Rn) and

Dα (ϕ ∗ u) = (Dαϕ) ∗ u

for all multi-indices α.

b. If ϕ ∈ C∞
c (Rn) and u ∈ Lp (Rn), then ϕ ∗ u ∈ C∞ (Rn) ∩ Lp (Rn) for

all 1 ≤ p ≤ ∞.

c. Let ψ1 ∈ C∞
c (Rn) be such that supp (ψ1) ⊆ B (0, 1), ψ1 ≥ 0 and∫

Rn ψ1dx = 1. For ε > 0 define ψε ∈ C∞
c (Rn) by ψε (x) = ε−nψ1

(
x
ε

)
.

Then {ψε : ε > 0} is called a regularizer (or Dirac-system). Observe
that supp (ψε) ⊆ B (0, ε) and

∫
Rn ψεdx = 1 for all ε > 0.

d. Let {ψε}ε>0 be a regularizer. If u ∈ Cc (Rn) then ψε ∗ u ∈ C∞
c (Rn) for

all ε > 0 and ‖ψε ∗ u− u‖∞ → 0 as ε ↓ 0.

e. Let {ψε}ε>0 be a regularizer. If 1 ≤ p < ∞ and u ∈ Lp (Rn), then
‖ψε ∗ u− u‖p → 0 as ε ↓ 0.

The next proposition gives a local approximation of functions in W 1,p (Ω)
by functions in C∞ (Ω).

Proposition 3.5 Let Ω ⊆ Rn be open and 1 ≤ p < ∞. Suppose that Ω0 is
an open subset of Ω such that Ω0 ⊆ Ω and Ω0 is compact. Let {ψε}ε>0 be a
regularizer and put uε = ψε ∗ u for all u ∈ W 1,p (Ω) and all ε > 0. Then∥∥∥(uε)|Ω0

− u|Ω0

∥∥∥
1,p
→ 0 (14)

as ε ↓ 0.

Proof. It follows from b. above that uε ∈ C∞ (Rn)∩Lp (Rn) for all ε > 0
and from e. we know that ‖uε − u‖Lp(Rn) → 0 as ε ↓ 0. Since Ω0 is compact,

it is clear that (uε)|Ω0
∈ W 1,p (Ω0). Furthermore, it follows from a. that

∂uε

∂xj

(x) =

(
∂ψε

∂xj

∗ u
)

(x) =

∫
Ω

∂ψε

∂xj

(x− y)u (y) dy

= −
∫

Ω

∂

∂yj

ψε (x− y)u (y) dy

16



for all x ∈ Rn. Since Ω0 ⊆ Ω and Ω0 is compact it follows that there exists
ε0 > 0 such that dist (x, ∂Ω) > ε0 for all x ∈ Ω0. Hence, if x ∈ Ω0 and
0 < ε < ε0 then the function y 7−→ ψε (x− y) belongs to C∞

c (Ω). Now it
follows from the definition of the weak derivative that

−
∫

Ω

∂

∂yj

ψε (x− y)u (y) dy =

∫
Ω

ψε (x− y)
∂u

∂xj

(y) dy

and so
∂uε

∂xj

(x) =

(
ψε ∗

∂u

∂xj

)
(x)

for all x ∈ Ω0 and all 0 < ε < ε0. Hence∥∥∥∥∂uε

∂xj

− ∂u

∂xj

∥∥∥∥
Lp(Ω0)

=

∥∥∥∥ψε ∗
∂u

∂xj

− ∂u

∂xj

∥∥∥∥
Lp(Ω0)

≤
∥∥∥∥ψε ∗

∂u

∂xj

− ∂u

∂xj

∥∥∥∥
Lp(Rn)

→ 0

as ε ↓ 0. Therefore we may conclude that (14) holds.
The following proposition is proved by a similar argument.

Proposition 3.6 Let Ω ⊆ Rn be open. If u ∈ W 1,p (Ω) has compact support,
then there exists a sequence {vk}∞k=1 in C∞

c (Ω) such that ‖u− vk‖1,p → 0 as

k →∞. Equivalently, W 1,p
c (Ω) ⊆ W 1,p

0 (Ω).

Proof. Take u ∈ W 1,p
c (Ω) and put K = supp (u). Since K is compact,

there exists δ > 0 such that the compact set

K2δ = {x ∈ Rn : dist (x,K) ≤ 2δ}

is contained in Ω. Let {ψε}ε>0 be a regularizer and define uε = ψε ∗ u. We
take 0 < ε < δ. We claim that uε ∈ C∞

c (Ω). Indeed, x /∈ Kδ then

uε (x) =

∫
Rn

ψε (x− y)u (y) dy =

∫
K

ψε (x− y)u (y) dy = 0

since the support of the function y 7−→ ψε (x− y) is contained in B (x, ε)
and B (x, ε) ∩K = ∅. Hence supp (uε) ⊆ Kδ, which implies the claim.

Next we will show that

∂uε

∂xj

= ψε ∗
∂u

∂xj

. (15)
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Since supp (uε) ⊆ Kδ it follows that also ∂uε

∂xj
has its support in Kδ, and so

we only have to show that (15) holds on Kδ. Take x ∈ Kδ. As in the proof
of the previous proposition we have

∂uε

∂xj

(x) = −
∫

Ω

∂

∂yj

ψε (x− y)u (y) dy.

The function y 7−→ ψε (x− y) is supported in B (x, ε) ⊆ K2δ ⊆ Ω, so it
follows from the definition of the weak derivative that

∂uε

∂xj

(x) =

∫
Ω

ψε (x− y)
∂u

∂xj

(y) dy =

(
ψε ∗

∂u

∂xj

)
(x)

and the proof of (15) if finished.

Since ‖u− ψε ∗ u‖p → 0 and
∥∥∥ ∂u

∂xj
− ψε ∗ ∂u

∂xj

∥∥∥
p
→ 0 for all j = 1, . . . , n

as ε ↓ 0 and hence ‖u− uε‖1,p → 0 as ε ↓ 0. We are done.
To obtain smooth approximations on the whole open domain Ω we need

the following standard construction of a smooth partition of unity.

Lemma 3.7 Let Ω be an open subset of Rn and suppose that U is an open
covering of Ω. Then there exists an open covering {Vi}∞i=1 of Ω and a sequence
{ϕi}

∞
i=1 in C∞

c (Ω) such that 0 ≤ ϕi ≤ 1 for all i = 1, 2, . . . and:

1. for every Vi there exists a U ∈ U such that Vi ⊆ U ;

2. the open covering {Vi}∞i=1 is locally finite, i.e., for every compact subset
K ⊆ Ω we have K ∩ Vi 6= ∅ for only finitely many values of i;

3. supp (ϕi) ⊆ Vi for all i = 1, 2, . . .;

4.
∑∞

i=1 ϕi (x) = 1 for all x ∈ Ω;

5. for every compact K ⊆ Ω there exists an open set W such that K ⊆
W ⊆ Ω and there exists m ∈ N such that ϕ1 (x)+ · · ·ϕm (x) = 1 for all
x ∈ W .

Proof. Let {qk}∞k=1 be a sequence which is dense in Ω and let {rl}∞l=1 be
an enumeration of the positive rational numbers. Now consider the collection
of all open balls B (qk, rl) for which there exists a U ∈ U such that B (qk, rl) ⊆
U . We enumerate this collection of balls as {Bi}∞i=1. For each i we denote by
Oi the open ball with the same center and half the radius as Bi. It is clear
that Ω =

⋃∞
i=1Oi.
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For every i there exists a function ηi ∈ C∞
c (Ω) such that 0 ≤ ηi ≤ 1,

ηi (x) = 1 for all x ∈ Oi and supp (ηi) ⊆ Bi. Note that this implies that
for every ϕi there exists a U ∈ U such that supp (ηi) ⊆ U . Now define the
sequence {ϕi}

∞
i=1 in C∞

c (Ω) by ϕ1 = η1 and

ϕi+1 = (1− η1) · · · (1− ηi) ηi+1

for i ≥ 1. A simple induction argument shows that

ϕ1 + · · ·+ ϕm = 1− (1− η1) · · · (1− ηm)

for all m ≥ 1. This implies that ϕ1 (x) + · · · + ϕm (x) = 1 whenever x ∈ Oi

and 1 ≤ i ≤ m. Now it is clear that 4. holds. If K ⊆ Ω is compact, then
there exists m ∈ N such that K ⊆

⋃m
i=1Oi from which 5. now follows.

Define the open sets Vi = {x ∈ Ω : ϕi > 0}. Since 4. hold for the func-
tions {ϕi}

∞
i=1 it is clear that {Vi}∞i=1 is an open covering of Ω. Since Vi ⊆ Bi

and Bi is contained in some U ∈ U , it follows that 1. holds. Moreover,
it follows from 5. that {Vi}∞i=1 is locally finite. Now we repeat the above
construction with the covering U replaced by {Vi}∞i=1. This produces a new
sequence of functions in C∞

c (Ω), which we call {ϕi}
∞
i=1 again. So 4. and 5.

are satisfied. For each i there exists a Vki
such that supp (ϕi) ⊆ Vki

. Finally
replace the collection {Vi}∞i=1 by {Vki

}∞i=1. Then 3. is satisfied as well and
the other properties are preserved. By this the construction is finished.

In the situation of the above proposition we say that {ϕi}
∞
i=1 is a (locally

finite) smooth partition of unity subordinate to the open covering U of Ω.

Theorem 3.8 Let Ω be an open subset of Rn. Then C∞ (Ω)∩W 1,p (Ω) is a
dense subspace of W 1,p (Ω).

Proof. We apply the above lemma to U = {Ω}. So let {ϕi}
∞
i=1 be any

locally finite smooth partition of unity with corresponding open covering
{Vi}∞i=1 of Ω. Let u ∈ W 1,p (Ω) and ε > 0 be given. Then uϕi ∈ W 1,p (Ω) and
supp (uϕi) ⊆ supp (ϕi) ⊆ Vi, so uϕi ∈ W 1,p

c (Vi). It follows from Proposition
3.6 that exists gi ∈ C∞

c (Vi) such that

‖uϕi − gi‖1,p < 2−iε.

Define

g (x) =
∞∑
i=1

gi (x) (16)

for all x ∈ Ω. Since {Vi}∞i=1 is locally finite, any closed ball B̄ (y, r) ⊆ Ω has
a non-empty intersection with only a finite number of the Vi’s and so (16) is
a finite sum on B̄ (y, r). This implies that g ∈ C∞ (Ω).
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Now let Ω0 ⊆ Ω be open such that Ω0 is compact and Ω0 ⊆ Ω. Since
{Vi}∞i=1 is locally finite, there exists N ∈ N such that Vi ∩ Ω0 = ∅ for all

i > N . Hence for all x ∈ Ω0 we have
∑N

i=1 ϕi (x) = 1 and

g (x) =
N∑

i=1

gi (x) .

Moreover, u (x) =
∑N

i=1 u (x)ϕi (x) for all x ∈ Ω0. Consequently

∥∥u|Ω0 − g|Ω0

∥∥
1,p

≤
N∑

i=1

∥∥∥(uϕi)|Ω0
− (gi)|Ω0

∥∥∥
1,p

≤
N∑

i=1

‖uϕi − gi‖1,p <

N∑
i=1

2−iε < ε. (17)

Now let {Ωk}∞k=1 be an increasing sequence of open subsets of Ω with Ωk

compact and Ωk ⊆ Ω for all k. Then (17) applies to each of the Ωk, so it
follows from the monotone convergence theorem that ‖u− g‖1,p ≤ ε. Since

this also implies that g ∈ W 1,p (Ω), the proof is complete.

3.3 Some estimates.

The following inequality will be useful.

Proposition 3.9 Let Ω ⊆ Rn be an open bounded and convex set with di-
ameter d. Suppose that ϕ ∈ L∞ (Ω) such that

∫
Ω
ϕdx = 1. For u ∈ W 1,1 (Ω)

define

ūϕ =

∫
Ω

u (y)ϕ (y) dy.

Then for all u ∈ W 1,1 (Ω) we have

|u (x)− ūϕ| ≤ C

∫
Ω

|∇u (y)|
|x− y|n−1dy, (18)

for almost all x ∈ Ω, where C > 0 is a constant depending only on n, d and
‖ϕ‖∞ (actually we can take C = n−1dn ‖ϕ‖∞).

Proof. We denote by S the unit sphere in Rn, i.e.,

S = {z ∈ Rn : |z| = 1} ,
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and let σ be the normalized surface measure of S. Let x ∈ Ω be fixed. For
any z ∈ S we define

r (z) = sup {r > 0 : x+ rz ∈ Ω} .

It is easy to see that r is a measurable function and it is clear that r (z) ≤ d.
Since Ω is convex it follows that

Ω = {x+ rz : z ∈ S, 0 ≤ r < r (z)} .

Consequently, for every positive (or integrable) function f : Ω → R we have∫
Ω

f (y) dy =

∫
S

∫ r(z)

0

f (x+ rz) rn−1drdσ (z) .

First we assume that u ∈ W 1,1 (Ω) ∩ C∞ (Ω). Take y ∈ Ω and write
y = x+ tz with z ∈ S and 0 ≤ t ≤ r (z). Then

u (y)− u (x) =

∫ t

0

〈∇u (x+ rz) , z〉 dr

and so

|u (x)− u (y)| ≤
∫ t

0

|∇u (x+ rz)| dr ≤
∫ r(z)

0

|∇u (x+ rz)| dr.

Now it follows that

|u (x)− ūϕ| =

∣∣∣∣∫
Ω

[u (x)− u (y)]ϕ (y) dy

∣∣∣∣
≤ ‖ϕ‖∞

∫
Ω

|u (x)− u (y)| dy

= ‖ϕ‖∞
∫

S

∫ r(z)

0

|u (x)− u (x+ rz)| rn−1drdσ (z)

≤ ‖ϕ‖∞
∫

S

∫ r(z)

0

∫ r(z)

0

|∇u (x+ sz)| rn−1dsdrdσ (z)

≤ ‖ϕ‖∞
∫

S

∫ r(z)

0

(∫ d

0

rn−1dr

)
|∇u (x+ sz)| dsdσ (z)

=
‖ϕ‖∞ dn

n

∫
S

∫ r(z)

0

|∇u (x+ sz)| dsdσ (z)

= C

∫
S

∫ r(z)

0

|∇u (x+ sz)|
sn−1

sn−1dsdσ (z)

= C

∫
Ω

|∇u (y)|
|x− y|n−1dy.
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This proves (18) in the case that u ∈ W 1,1 (Ω) ∩ C∞ (Ω) and for all x ∈ Ω.
Note that (18) can also be written as

|u (x)− ūϕ| ≤ CI1 (|∇u|) (x)

where I1 (|∇u|) denotes the Riesz potential corresponding to α = 1.
Now let u ∈ W 1,1 (Ω) be given. It follows from Theorem 3.8 that there

exists a sequence {uk}∞k=1 in W 1,1 (Ω)∩C∞ (Ω) such that ‖uk − u‖1,1 → 0 as
k →∞. From the first part of the proof we know that∣∣∣uk (x)− (uk)ϕ

∣∣∣ ≤ CI1 (|∇uk|) (x)

for all x ∈ Ω and all k. Since ‖uk − u‖1 → 0, it follows that (uk)ϕ → ūϕ as
k → ∞. Furthermore, since ‖|∇uk| − |∇u|‖1 → 0 as k → ∞, Proposition
2.6 implies that

‖I1 (|∇uk|)− I1 (|∇u|)‖1 → 0

as k →∞. Passing to a subsequence we may assume that

I1 (|∇uk|) (x) → I1 (|∇u|) (x)

as well as uk (x) → u (x) a.e. on Ω as k → ∞, and from this the result
follows.

Given a bounded open subset Ω of Rn and u ∈ L1 (Ω) we will denote

ūΩ =
1

m (Ω)

∫
Ω

udx.

The result of the following theorem is sometimes referred to as Poincaré’s
inequality.

Theorem 3.10 Let Ω ⊆ Rn be open, convex and bounded. Let d = diam (Ω).
Suppose that 1 ≤ p <∞. Then∫

Ω

|u (x)− ūΩ|p dx ≤ Cpdp

∫
Ω

|∇u (x)|p dx

for all u ∈ W 1,p (Ω), where C > 0 is a constant depending only on n and the
ratio dn/m (Ω).

Proof. First note that

ūΩ =

∫
Ω

uϕdx,
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where ϕ = m (Ω)−1 χΩ. Since W 1,p (Ω) ⊆ W 1,1 (Ω), it follows from Proposi-
tion 3.9 that

|u (x)− ūΩ| ≤ C0I1 (|∇u|) (x)

a.e. on Ω, where C0 = n−1dnm (Ω)−1. Using Proposition 2.6 we find that∫
Ω

|u− ūΩ|p dx ≤ Cp
0

∫
Ω

I1 (|∇u|)p dx ≤ Cp
0C

p
1

∫
Ω

|∇u|p dx,

where C1 = Cnm (Ω)
1
n . Finally observe that

C0C1 =
(
n−1Cn

)
dnm (Ω)−1m (Ω)

1
n =

(
n−1Cn

) [
dn

m (Ω)

]1− 1
n

d.

Recall that

ūx,r =
1

m (Br)

∫
B(x,r)

u (y) dy

for u ∈ L1 (B (x, r)).

Corollary 3.11 For every n there exists a constant C > 0 such that for
every ball B (x, r) ⊆ Rn and all u ∈ W 1,p (B (x, r)), 1 ≤ p <∞, we have∫

B(x,r)

|u (y)− ūx,r|p dy ≤ Cprp

∫
B(x,r)

|∇u (y)|p dy.

Proof. Since d = diam (B (x, r)) = 2r and m (B (x, r)) = n−1ωnr
n, this

is an immediate consequence of the above theorem.

Remark 3.12 In the proof of the next theorem we will make use of the
following extension of the Hölder inequality. Suppose that (Ω,A, µ) is any
measure space and let 1 ≤ p1, . . . , pk <∞ be such that

1

p1

+ · · ·+ 1

pk

= 1.

Then ∫
Ω

|f1 · · · fk| dµ ≤
(∫

Ω

|f1|p1

) 1
p1

· · ·
(∫

Ω

|f1|pk

) 1
pk

for all measurable functions f1, . . . , fk on Ω. This follows via a simple in-
duction argument from the case k = 2. Note that this implies in particular
that ∫

Ω

k∏
j=1

|fj|
1
k dµ ≤

k∏
j=1

(∫
Ω

|fj| dµ
) 1

k

. (19)
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If 1 ≤ p < n we define p∗ by

1

p∗
=

1

p
− 1

n
.

The following inequality is sometimes called Sobolev’s inequality.

Theorem 3.13 Let Ω ⊆ Rn be open and 1 ≤ p < n. Then

‖u‖p∗ ≤
(n− 1) p

n− p
‖∇u‖p

for all u ∈ W 1,p
0 (Ω).

Proof. First we will consider the case that u ∈ C1
c (Ω) ⊆ C1

c (Rn) and
p = 1. Note that p∗ = n

n−1
in this case. For every x = (x1, . . . , xn) and all

j = 1, . . . , n we have

u (x) =

∫ xj

−∞

∂u

∂xj

(x1, . . . , tj, . . . , xn) dtj,

and so

|u (x)| ≤
∫ ∞

−∞

∣∣∣∣ ∂u∂xj

(x1, . . . , tj, . . . , xn)

∣∣∣∣ dtj (20)

≤
∫ ∞

−∞
|∇u (x1, . . . , tj, . . . , xn)| dtj.

For the sake of notation we will write∫ ∞

−∞
|∇u (x1, . . . , tj, . . . , xn)| dtj =

∫ ∞

−∞
|∇u| dtj.

It follows from (20) that

|u (x)|
n

n−1 ≤
(∫ ∞

−∞
|∇u| dt1

) 1
n−1

n∏
j=2

(∫ ∞

−∞
|∇u| dtj

) 1
n−1

and so, using (19) we find that∫ ∞

−∞
|u (x)|

n
n−1 dx1 ≤

(∫ ∞

−∞
|∇u| dt1

) 1
n−1

∫ ∞

−∞

n∏
j=2

(∫ ∞

−∞
|∇u| dtj

) 1
n−1

dx1

≤
(∫ ∞

−∞
|∇u| dt1

) 1
n−1

n∏
j=2

(∫ ∞

−∞

∫ ∞

−∞
|∇u| dtjdx1

) 1
n−1

=

(∫ ∞

−∞

∫ ∞

−∞
|∇u| dt2dx1

) 1
n−1

(∫ ∞

−∞
|∇u| dx1

) 1
n−1

.

n∏
j=3

(∫ ∞

−∞

∫ ∞

−∞
|∇u| dtjdx1

) 1
n−1

.
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Similarly, this implies that∫ ∞

−∞

∫ ∞

−∞
|u (x)|

n
n−1 dx1dx2

≤
(∫ ∞

−∞

∫ ∞

−∞
|∇u| dt2dx1

) 1
n−1

(∫ ∞

−∞

∫ ∞

−∞
|∇u| dx1dx2

) 1
n−1

.

n∏
j=3

(∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|∇u| dtjdx1dx2

) 1
n−1

=

(∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|∇u| dt3dx1dx2

) 1
n−1

(∫ ∞

−∞

∫ ∞

−∞
|∇u| dx1dx2

) 2
n−1

.

n∏
j=4

(∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|∇u| dtjdx1dx2

) 1
n−1

.

Repeating this argument we finally get∫
Rn

|u (x)|
n

n−1 dx ≤
n∏

j=1

(∫
Rn

|∇u (x)| dx
) 1

n−1

=

(∫
Rn

|∇u (x)| dx
) n

n−1

and so
‖u‖ n

n−1
≤ ‖∇u‖1 . (21)

This completes the proof in case p = 1 and u ∈ C1
c (Ω).

Now we consider the case in which 1 < p < n and u ∈ C1
c (Ω). Let

q = (n−1)p
n−p

. Note that q > 1 and that q n
n−1

= p∗. Denote by p′ the conjugate

exponent of p and observe that (q − 1) p′ = p∗. Define v = |u|q. Since q > 1
it follows that v ∈ C1

c (Ω) and ∇v = q sgn (u) |u|q−1∇u. Applying (21) to
the function v we find that

‖u‖q
p∗ =

(∫
Rn

|u|p
∗
dx

) q
p∗

=

(∫
Rn

v
n

n−1dx

)n−1
n

= ‖v‖ n
n−1

≤ ‖∇v‖1 = q

∫
Rn

|u|q−1 |∇u| dx

≤ q

(∫
Rn

|u|p
∗
dx

) 1
p′

(∫
Rn

|∇u|p dx
) 1

p

= q ‖u‖
p∗
p′
p∗ ‖∇u‖p = q ‖u‖q−1

p∗ ‖∇u‖p ,

and so ‖u‖p∗ ≤ q ‖∇u‖p. By this we have proved the theorem for u ∈ C1
c (Ω)

and all 1 ≤ p < n.
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Now take u ∈ W 1,p
0 (Ω), 1 ≤ p < n. By definition there exists a sequence

{uk}∞k=1 in C∞
c (Ω) such that ‖u− uk‖1,p → 0 , i.e., ‖u− uk‖p → 0 and

‖∇ (u− uk)‖p → 0 as k → ∞. From the first part of the present proof,
applied to the functions uk − ul, we know that

‖uk − ul‖p∗ ≤ q ‖∇ (uk − ul)‖p

for all k, l ≥ 1, so {uk}∞k=1 is a Cauchy sequence in Lp∗ (Ω). Now ‖u− uk‖p →
0 implies that ‖u− uk‖p∗ → 0 as k → ∞. Finally, since ‖uk‖p∗ ≤ q ‖∇uk‖p

for all k, uk → u in Lp∗ (Ω) and |∇uk| → |∇u| in Lp (Ω) we may conclude
that ‖u‖p∗ ≤ q ‖∇u‖p, which completes the proof of the theorem.

For sake of completeness we mention the following corollary.

Corollary 3.14 Let Ω ⊆ Rn be open with m (Ω) <∞. Suppose that p, r ≥ 1
are such that

1

r
− 1

p
+

1

n
= α ≥ 0.

Then
‖u‖r ≤ Cm (Ω)α ‖∇u‖p

for all u ∈ W 1,p
0 (Ω), where C > 0 is a constant only depending on n and r.

In particular, for p ≥ 1 there exists a constant C > 0 only depending on

n and p such that ‖u‖p ≤ Cm (Ω)
1
n ‖∇u‖p for all u ∈ W 1,p

0 (Ω).

Proof. First observe that the case n = 1 is easy. Indeed, it is sufficient
to consider u ∈ C∞

c (Ω) ⊆ C∞
c (R). Then u (x) =

∫ x

−∞ u′ (t) dt, so

|u (x)| ≤
∫ ∞

−∞
|u′ (t)| dt ≤ m (Ω)

1
p′ ‖u′‖p ,

for all x, hence ‖u‖∞ ≤ m (Ω)
1
p′ ‖u′‖p. This implies for all r ≥ 1 that

‖u‖r ≤ m (Ω)
1
r ‖u‖∞ ≤ m (Ω)

1
r
+ 1

p′ ‖u′‖p = m (Ω)α ‖u′‖p ,

without any additional restrictions on p and r.
Now we assume that n ≥ 2. Define s = nr

n+r
. It is easy to check that

1 ≤ s < n, s ≤ p (as α ≥ 0) and r = s∗. In particular W 1,p
0 (Ω) ⊆ W 1,s

0 (Ω).

Now, with C = (n−1)s
n−s

, it follows from the above theorem that

‖u‖r = ‖u‖s∗ ≤ C ‖∇u‖s

≤ Cm (Ω)
1
s
− 1

p ‖∇u‖p = Cm (Ω)α ‖∇u‖p

for all u ∈ W 1,p
0 (Ω).
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4 Hölder continuous functions.

In this section we discuss some characterizations of Hölder continuous func-
tions in terms of average values.

4.1 Definitions.

First we recall some of the relevant definitions. We assume that Ω is an open
subset of Rn and that 0 < α ≤ 1. A function u : Ω → C is called (uniformly)
Hölder continuous with exponent α if there exists a constant K > 0 such
that

|u (x)− u (y)| ≤ K |x− y|α (22)

for all x, y ∈ Ω. In the case that α = 1 the function u is called Lipschitz
continuous. It is clear that any Hölder continuous function u is uniformly
continuous on Ω and hence has a unique continuous extension (which we will
denote by u as well) to the closure Ω. It is clear that this extension satisfies
(22) for all x, y ∈ Ω. If a function u : Ω → C is bounded and if there exists
ε0 > 0 such that (22) holds for all x, y ∈ Ω satisfying |x− y| < ε0, then u is
uniformly Hölder continuous with exponent α.

The space of all bounded Hölder continuous functions with exponent α
on the open set Ω ⊆ Rn is denoted by C0,α

(
Ω

)
. It is easy to see that this

space is a Banach space equipped with the norm given by

‖u‖0,α = ‖u‖∞ + sup
x,y∈Ω
x 6=y

|u (x)− u (y)|
|x− y|α

for all u ∈ C0,α
(
Ω

)
.

A function u : Ω → C is called locally Hölder continuous with exponent
0 < α ≤ 1 if for every open Ω0 ⊆ Ω with Ω0 ⊆ Ω and Ω0 compact we have
u|Ω0 ∈ C0,α

(
Ω0

)
. The space of all locally Hölder continuous functions with

exponent α on Ω is denoted by C0,α (Ω). Although C0,α (Ω) is not a Banach
space, it has the obvious structure of a Fréchet space.

4.2 The oscillation of a function.

Let Ω ⊆ Rn be open. For any measurable function u : Ω → C we define the
oscillation of u over Ω by

osc (u; Ω) = inf {diam (D) : D ⊆ C such that u (x) ∈ D a.e. on Ω} .
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It is easy to see that the infimum is actually a minimum. In particular,
if ε > 0, then osc (u; Ω) ≤ ε if and only if |u (x)− u (y)| ≤ ε for almost all
x, y ∈ Ω. Obviously, if Ω0 is an open subset of Ω, then osc (u; Ω0) ≤ osc (u; Ω).

If u : Ω → C is measurable then for all x ∈ Ω and all r > 0 we define

ωu (x, r) = osc (u;B (x, r) ∩ Ω) .

The following observation will be useful.

Lemma 4.1 Let Ω ⊆ Rn be open and u : Ω → C measurable. Then there
exists a continuous function ū : Ω → C such that u = ū a.e. on Ω if and
only if limr↓0 ωu (x, r) = 0 for all x ∈ Ω.

Proof. If such a continuous function ū exists, then it is clear that
limr↓0 ωu (x, r) = limr↓0 ωū (x, r) = 0 for all x ∈ Ω.

Now assume that limr↓0 ωu (x, r) = 0 for all x ∈ Ω. Fix x0 ∈ Ω and
R0 > 0 such that B̄ (x0, R0) ⊆ Ω. We will show that there exists a null set
A such that u is uniformly continuous on B̄ (x0, R0) �A. To this end take
0 < k ∈ N fixed for the moment. For every x ∈ B̄ (x0, R0) there exists rx > 0
such that ωu (x, rx) <

1
k

and B (xi, ri) ⊆ Ω. Using that B̄ (x0, R0) is compact
it follows that there exist x1, . . . , xN ∈ B̄ (x0, R0) and r1, . . . , rN > 0 such
that

B̄ (x0, R0) ⊆
N⋃

i=1

B
(
xi,

ri

2

)
and ωu (xi, ri) <

1
k

for all i = 1, . . . , N . For every i there exists a null set
Fi such that |u (x)− u (y)| < 1

k
for all x, y ∈ B (xi, ri) �Fi. Define Ak =

F1 ∪ · · · ∪ FN and δk = 1
2
min {r1, . . . , rN}. We claim that |u (x)− u (y)| < 1

k

for all x, y ∈ B̄ (x0, R0) �Ak with |x− y| < δk. Indeed, there exists an i such
that x ∈ B

(
xi,

ri

2

)
and from the definition of δk it follows that B (x, δk) ⊆

B (xi, ri), so in particular y ∈ B (xi, ri). Consequently x, y ∈ B (xi, ri) �Fi

and so |u (x)− u (y)| < 1
k
, which proves that claim. Define A =

⋃∞
k=1Ak.

We claim that u is uniformly continuous on B̄ (x0, R0) �A. Indeed, let ε > 0
be given. Take 0 < k ∈ N such that 1

k
< ε. If x, y ∈ B̄ (x0, R0) �A are

such that |x− y| < δk, then in particular x, y ∈ B̄ (x0, R0) �Ak and so
|u (x)− u (y)| < 1

k
< ε, by which that claim is proved.

Since B̄ (x0, R0) �A is dense in B̄ (x0, R0) it follows that there exists a
unique continuous function ū0 : B̄ (x0, R0) → C such that u = ū0 a.e. on
B̄ (x0, R0). If B̄ (x1, R1) and B̄ (x2, R2) are closed balls contained in Ω and ū1

and ū2 are continuous functions on B̄ (x1, R1) and B̄ (x2, R2) respectively such
that u = ū1 and u = ū2 a.e., then ū1 = ū2 on B (x1, R1) ∩ B (x1, R1). From
this observation it follows now immediately that there exists a continuous
function ū : Ω → C such that u = ū a.e. on Ω.
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Remark 4.2 Let u : Ω → C be a measurable function. If x ∈ Ω and if there
exists a measurable function ūx : Ω → C which is continuous at x such that
u = ūx a.e. on Ω, then it follows that limr↓0 ωu (x, r) = 0. Therefore, if for
every x ∈ Ω there exists a measurable function ūx on Ω which is continuous
at x such that u = ūx a.e. on Ω, then limr↓0 ωu (x, r) = 0 for all x ∈ Ω and
so by the above lemma there exists a continuous function ū : Ω → C such
that u = ū a.e. on Ω.

For later reference we include the following simple observation.

Lemma 4.3 For any open set Ω ⊆ Rn and measurable function u : Ω → C
the following two statements are equivalent:

1. u ∈ C0,α
(
Ω

)
;

2. u is bounded and there exists a constant K > 0 and r0 > 0 such that
ωu (x, r) ≤ Krα for all 0 < r < r0 and all x ∈ Ω.

Proof. It is clear that 1. implies 2. Now assume that u satisfies 2.
First note that 2. implies that limr↓0 ωu (x, r) = 0 and so, by Lemma 4.1
we may assume that u is continuous. Suppose that x, y ∈ Ω are such that
|x− y| < r0 and take r such that |x− y| < r < r0. Then y ∈ B (x, r) and
so, since u is continuous it follows that |u (x)− u (y)| ≤ ωu (x, r) ≤ Krα.
Letting r ↓ |x− y| gives |u (x)− u (y)| ≤ K |x− y|α. As observed already in
Section 4.1, this suffices to show that u ∈ C0,α

(
Ω

)
.

The following lemma gives a sufficient condition for a function u to belong
to C0,α (Ω).

Lemma 4.4 Suppose that Ω ⊆ Rn is open and u : Ω → C is measurable
such that there exists a constant K > 0 such that ωu (x, r) ≤ Krα for all
x ∈ Ω and all r > 0 such that B̄ (x, 2r) ⊆ Ω. Then u ∈ C0,α (Ω).

Proof. The condition on u clearly imply that limr↓0 ωu (x, r) = 0 for all
x ∈ Ω. Hence, by Lemma 4.1 we may assume that u is continuous. Let
Ω0 ⊆ Ω be open such that Ω0 is compact and Ω0 ⊆ Ω. Then u is bounded
on Ω0. Since Ω0 is compact there exist r0 > 0 such that B̄ (x, 2r) ⊆ Ω for
all x ∈ Ω0 and all 0 < r < r0. Hence ωu (x, r) ≤ Krα for all x ∈ Ω0 and all
0 < r < r0. This clearly implies that u satisfies condition 2. of the above
lemma on Ω0, and so u ∈ C0,α

(
Ω0

)
.
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4.3 Characterizations of Hölder continuity.

Suppose that Ω is an open subset of Rn. Recall that if u ∈ L1
loc (Ω) and

B̄ (x, r) ⊆ Ω, then we denote

ūx,r =
1

m (Br)

∫
B(x,r)

u (y) dy.

The following result is due to S. Campanato (1963).

Theorem 4.5 Assume that u ∈ L1
loc (Ω) and 0 < α ≤ 1. If there exists a

constant M > 0 such that

1

m (Br)

∫
B(x,r)

|u (y)− ūx,r| dy ≤Mrα

for all balls with B̄ (x, r) ⊆ Ω, then

ωu (x, r) ≤ CMrα

for all x ∈ Ω and all r > 0 for which B̄ (x, 2r) ⊆ Ω, where C > 0 is a
constant only depending on n and α. In particular, u ∈ C0,α (Ω).

Proof. We start the proof with the following observation. Suppose that
z ∈ Ω and r > 0 are such that B̄ (z, r) ⊆ Ω. Now take x ∈ Ω such that
|x− z| < 1

2
r. We claim that∣∣ūx, r

2
− ūz,r

∣∣ ≤ 2nMrα. (23)

Indeed, using that B
(
x, r

2

)
⊆ B (z, r), we find that

∣∣ūx, r
2
− ūz,r

∣∣ =

∣∣∣∣∣ 1

m
(
B r

2

) ∫
B(x, r

2)
{u (y)− ūz,r} dy

∣∣∣∣∣
≤ 1

m
(
B r

2

) ∫
B(x, r

2)
|u (y)− ūz,r| dy

≤ 2n

m (Br)

∫
B(z,r)

|u (y)− ūz,r| dy ≤ 2nMrα,

which proves that claim.
As before we denote by Lu the Lebesgue points of the function u. Fix

x ∈ Lu and r > 0 such that B̄ (x, r) ⊆ Ω. It follows in particular from (23)
that ∣∣ūx,2−jr − ūx,2−j+1r

∣∣ ≤ 2nM2(−j+1)αrα
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for all j = 1, 2, . . . and so

∣∣ūx,2−k − ūx,r

∣∣ ≤
k∑

j=1

∣∣ūx,2−jr − ūx,2−j+1r

∣∣ ≤ 2nMrα

k∑
j=1

2(−j+1)α

= 2n 1− 2−kα

1− 2−α
Mrα ≤ 2n 1

1− 2−α
Mrα = C1Mrα

for all k = 1, 2, . . .. Since x ∈ Lu we have

lim
r↓0

ūx,2−k = u (x) ,

hence
|u (x)− ūx,r| ≤ C1Mrα.

Now take x ∈ Ω and r > 0 such that B̄ (x, 2r) ⊆ Ω. For any y ∈
B (x, r) ∩ Lu we find that

|u (y)− ūx,2r| ≤ |u (y)− ūy,r|+ |ūy,r − ūx,2r|
≤ C1Mrα + 2nM (2r)α = [C1 + 2n2α]Mrα.

This implies that
|u (y)− u (z)| ≤ CMrα

for all y, z ∈ B (x, r) ∩ Lu and hence ωu (x, r) ≤ CMrα. The last statement
of the theorem now follows from Lemma 4.4.

The following theorem goes back to C.B. Morrey.

Theorem 4.6 Let Ω be an open subset of Rn and let u ∈ W 1,1 (Ω). Suppose
that 0 < α ≤ 1 and that there exists a constant M > 0 such that

1

m (Br)

∫
B(x,r)

|∇u| dx ≤Mrα−1 (24)

for all open balls B (x, r) ⊆ Ω. Then

ωu (x, r) ≤ CMrα

for all x ∈ Ω and all r > 0 for which B (x, 2r) ⊆ Ω, where C > 0 is a
constant only depending on n and α. In particular, u ∈ C0,α (Ω).

Proof. It follows from Corollary 3.11 that there exists a constant C1 > 0,
only depending on n, such that∫

B(x,r)

|u− ūx,r| dy ≤ C1r

∫
B(x,r)

|∇u| dy
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for all x ∈ Ω and r > 0 such that B (x, r) ⊆ Ω. Hence it follows from (24)
that

1

m (Br)

∫
B(x,r)

|u− ūx,r| dy ≤ C1Mrα

for all balls B (x, r) ⊆ Ω. This shows that the conditions of Theorem 4.5 are
fulfilled, by which the result follows.

Corollary 4.7 Let Ω be an open subset of Rn and let u ∈ W 1,p (Ω), 1 ≤ p <
∞. Suppose that 0 < α ≤ 1 and that there exists a constant M > 0 such that

1

m (Br)

∫
B(x,r)

|∇u|p dx ≤Mprpα−p

for all open balls B (x, r) ⊆ Ω. Then

ωu (x, r) ≤ CMrα

for all x ∈ Ω and all r > 0 for which B (x, 2r) ⊆ Ω, where C > 0 is a
constant only depending on n and α. In particular, u ∈ C0,α (Ω).

Proof. For all B (x, r) ⊆ Ω we have

1

m (Br)

∫
B(x,r)

|∇u| dy ≤
(

1

m (Br)

∫
B(x,r)

|∇u|p dy
) 1

p

≤Mrα−1.

This shows that the assumptions of the previous theorem are satisfied and
the result follows.

5 Bounded mean oscillation.

In this section we discuss some of the basic properties of functions of bounded
mean oscillation. In particular we will present a proof of the John-Nirenberg
theorem.

5.1 Definitions.

Let Ω be an open subset of Rn. We will assume that Ω is connected. It will
be more convenient in this section to use closed cubes in Rn instead of balls.
The collection of all closed cubes in Rn will be denoted by Q. If f ∈ L1

loc (Ω)
and if Q is a closed cube such that Q ⊆ Ω then we will denote the mean
value of f on Q by fQ, i.e.,

fQ =
1

m (Q)

∫
Q

f (x) dx.
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Definition 5.1 We say that a function f ∈ L1
loc (Ω) is of bounded mean

oscillation on Ω if

‖f‖BMO = sup
Q∈Q
Q⊆Ω

1

m (Q)

∫
Q

|f (x)− fQ| dx <∞.

The collection of all such functions will be denoted by BMO (Ω).

It is clear that BMO (Ω) is a vector space and that ‖·‖BMO is a semi-
norm. If f ∈ L1

loc (Ω), then ‖f‖BMO = 0 if and only if f is a.e. con-
stant on Ω. Identifying functions which differ by a constant, i.e., replacing
BMO (Ω) by the quotient space BMO (Ω) �C1, we obtain the normed space
(BMO (Ω) �C1, ‖·‖BMO). In the sequel however we will consider BMO (Ω)
as a space of functions and not of such equivalence classes.

It is easy to see that L∞ (Ω) ⊆ BMO (Ω) and that ‖f‖BMO ≤ 2 ‖f‖∞ for
all f ∈ L∞ (Ω) (and actually ‖f‖BMO ≤ ‖f‖∞ for all f ∈ L∞ (Ω) ).

Lemma 5.2 1. If f ∈ L1
loc (Ω) and if there exists a constant A ≥ 0 such

that for every closed cube Q ⊆ Ω there is an αQ ∈ C with the property
that

1

m (Q)

∫
Q

|f (x)− αQ| dx ≤ A, (25)

then f ∈ BMO (Ω) and ‖f‖BMO ≤ 2A.

2. If f ∈ BMO (Ω) then |f | ∈ BMO (Ω) and ‖|f |‖BMO ≤ 2 ‖f‖BMO. In
particular BMO (Ω) is a lattice.

3. In the case that Ω = Rn, the space BMO (Rn) is invariant under trans-
lations and dilations. To be more precise, if f ∈ BMO (Rn) and if we
define for a ∈ Rn and δ > 0 the functions Taf and Dδf by (Taf) (x) =
f (x+ a) and (Dδf) (x) = f (δx) respectively for all x ∈ Rn, then
Taf,Dδf ∈ BMO (Rn) and ‖Taf‖BMO = ‖Dδf‖BMO = ‖f‖BMO.

Proof.

1. First note that (25) implies that

|fQ − αQ| =

∣∣∣∣ 1

m (Q)

∫
Q

(f (x)− αQ) dx

∣∣∣∣
≤ 1

m (Q)

∫
Q

|f (x)− αQ| dx ≤ A.

33



Hence

1

m (Q)

∫
Q

|f (x)− fQ| dx (26)

≤ 1

m (Q)

∫
Q

|f (x)− αQ| dx+ |fQ − αQ| ≤ 2A.

2. For any closed cube Q ⊆ Ω we have

1

m (Q)

∫
Q

||f (x)| − |fQ|| dx ≤
1

m (Q)

∫
Q

|f (x)− fQ| dx ≤ ‖f‖BMO

and so the result follows immediately from 1. (applied with αQ = |fQ|).

3. For Taf the statement follows immediately from the translation invari-
ance of the Lebesgue measure in Rn. We indicate the proof for Dδf .
Let Q be any closed cube in Rn. We denote δQ = {δx : x ∈ Q}. Then

(Dδf)Q =
1

m (Q)

∫
Q

f (δx) dx =
1

δnm (Q)

∫
δQ

f (y) dy

=
1

m (δQ)

∫
δQ

f (y) dy = fδQ.

Hence

1

m (Q)

∫
Q

∣∣∣Dδf (x)− (Dδf)Q

∣∣∣ dx =
1

m (δQ)

∫
δQ

|f (y)− fδQ| dy, (27)

from which the claim follows.

Remark 5.3 We consider the case Ω = Rn. It is easy to see that a function
f ∈ L1

loc (Rn) belongs to BMO (Rn) if and only if there exists a constant
A > 0 such that

1

m (B)

∫
B

|f (x)− fB| dx ≤ A

for all open (or closed) balls B ⊆ Rn. It is clear that (27) and (26) also hold
if we replace the cube Q by a ball B.

Example 5.4 Take Ω = Rn and define f (x) = log |x|. Then f ∈ BMO (Rn).
To verify this statement first observe that it follows from (27) that for any
open ball B ⊆ Rn and all δ > 0 we have

1

m (B)

∫
B

|f (x)− fB| dx =
1

m
(
δ−1B

) ∫
δ−1B

|Dδf (x)− (Dδf)δ−1B| dx

=
1

m
(
δ−1B

) ∫
δ−1B

|f (x)− fδ−1B| dx,
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as Dδf (x) = log (|δx|) = log |x|+log (δ). Therefore it is sufficient to consider
balls B with radius equal to 1 only. Now we consider two cases:

(i). B = B (x0, 1) with |x0| ≤ 2. Then B ⊆ B (0, 3) and so

1

m (B)

∫
B

|f (x)| dx ≤ 1

m (B)

∫
B(0,3)

|log |x|| dx <∞.

(ii). B = B (x0, 1) with |x0| > 2. In this case we have

1

m (B)

∫
B

|f (x)− f (x0)| dx =
1

m (B)

∫
B

∣∣∣∣log
|x|
|x0|

∣∣∣∣ dx ≤ log 2,

since
1

2
≤ |x|
|x0|

≤ 2

for all x ∈ B.

Via (26) we may now conclude that f ∈ BMO (Rn). It should be observed
that (in case n = 1) the function f (x) = log |x|χ(0,∞) (x) does not belong to
BMO (R) (although it belongs to BMO (0,∞)).

Proposition 5.5 (BMO (Ω) �C1, ‖·‖BMO) is a Banach space.

Proof. We start with the following observation. Suppose that Q1, Q2 ∈
Q such that Q1 ⊆ Q2 ⊆ Ω. For any f ∈ BMO (Ω) we then have

|fQ1 − fQ2| =

∣∣∣∣ 1

m (Q1)

∫
Q1

(f (x)− fQ2) dx

∣∣∣∣
≤ 1

m (Q1)

∫
Q1

|f (x)− fQ2| dx

≤
(
m (Q2)

m (Q1)

)
1

m (Q2)

∫
Q2

|f (x)− fQ2| dx (28)

≤
(
m (Q2)

m (Q1)

)
‖f‖BMO .

¿From this observation it follows that for any two closed cubes Q1, Q2 ⊆ Ω
such that int (Q1 ∩Q2) 6= ∅ there exists a constant c (Q1, Q2) > 0 such that

|fQ1 − fQ2| ≤ c (Q1, Q2) ‖f‖BMO (29)
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for all f ∈ BMO (Ω). Indeed, take a closed cube Q3 ⊆ Q1 ∩ Q2. Then it
follows from (28) that

|fQ1 − fQ2| ≤ |fQ1 − fQ3|+ |fQ3 − fQ2|

≤
(
m (Q1)

m (Q3)
+
m (Q2)

m (Q3)

)
‖f‖BMO

for all f ∈ BMO (Ω).
Now assume that {fk}∞k=1 in BMO (Ω) is such that ‖fk − fl‖BMO → 0

as k, l → ∞. We have to prove that there exists f ∈ BMO (Ω) such that
‖fk − f‖BMO → 0 as k → ∞. Take a fixed closed cube Q0 ⊆ Ω. Replacing
fk by fk− (fk)Q0

we may assume that (fk)Q0
= 0 for all k. Now let Qc be the

collection of all closed cubes Q ⊆ Ω with the property that
{

(fk)Q

}∞

k=1
is

convergent in C and put Ωc =
⋃
{int (Q) : Q ∈ Qc}. We claim that Ω�Ωc is

open. Indeed, let Q1 be any closed cube such that Q1 ⊆ Ω and Q1 ∩Ωc 6= ∅.
Then there exists Q2 ∈ Qc such that int (Q1 ∩Q2) 6= ∅ and so it follows from
(29) that ∣∣∣{(fk)Q1

− (fl)Q1

}
−

{
(fk)Q2

− (fl)Q2

}∣∣∣
=

∣∣∣(fk − fl)Q1
− (fk − fl)Q2

∣∣∣ ≤ c (Q1, Q2) ‖fk − fl‖BMO .

Since
{

(fk)Q2

}∞

k=1
is convergent, this implies that

{
(fk)Q1

}∞

k=1
is convergent

and hence Q1 ∈ Qc. Hence Q1 ⊆ Ωc, from which the claim follows. Since Ω is
assumed to be connected this shows that Ω = Ωc. We thus have shown that

for any closed cube Q ⊆ Ω the sequence
{

(fk)Q

}∞

k=1
is convergent. ¿From

this it follows that

1

m (Q)

∫
Q

|fk − fl| dx

≤ 1

m (Q)

∫
Q

∣∣∣(fk − fl)− (fk − fl)Q

∣∣∣ dx+
∣∣∣(fk)Q − (fl)Q

∣∣∣
≤ ‖fk − fl‖BMO +

∣∣∣(fk)Q − (fl)Q

∣∣∣ .

Therefore, the restrictions of {fk} to Q are a Cauchy sequence in L1 (Q)
and so there exists fQ ∈ L1 (Q) such that

∥∥fk − fQ
∥∥

L1(Q)
→ 0 as k → ∞.

If Q1 and Q2 are two such closed cubes, then it is clear that fQ1 = fQ2

a.e. on Q1 ∩ Q2. Hence there exists f ∈ L1
loc (Ω) such that f|Q = fQ for

every closed cube Q ⊆ Ω. It remains to show that f ∈ BMO (Ω) and that
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‖fk − f‖BMO → 0 as k → ∞. To this end let ε > 0 be given. Then there
exists N ∈ N such that ‖fk − fl‖ ≤ ε for all k, l ≥ N . Take a closed cube
Q ⊆ Ω. Then

1

m (Q)

∫
Q

∣∣∣fk − fl − (fk)Q − (fl)Q

∣∣∣ dx ≤ ε

for all k, l ≥ N . Since (fl)|Q → f|Q in L1 (Q) implies that (fl)Q → fQ, it
follows via Fatou’s lemma that

1

m (Q)

∫
Q

∣∣∣(fk − f)− (fk − f)Q

∣∣∣ dx ≤ ε

for all k ≥ N . This shows that

sup
Q∈Q
Q⊆Ω

1

m (Q)

∫
Q

∣∣∣(fk − f)− (fk − f)Q

∣∣∣ dx ≤ ε

for all k ≥ N . Consequently fk − f ∈ BMO (Ω), so f ∈ BMO (Ω), and

‖fk − f‖BMO ≤ ε

for all k ≥ N , which completes the proof of the proposition.

5.2 The John-Nirenberg theorem.

For the proof of this theorem we will use the following form of the so-called
Calderón-Zygmund decomposition. For sake of convenience we will say that
two closed cubes in Rn are disjoint if their interiors are disjoint.

Proposition 5.6 Let Q0 be a closed cube in Rn and suppose that u ∈ L1 (Q0).
Let α be a constant such that

1

m (Q0)

∫
Q0

|u| dx < α.

Then there exists an at most countable collection {Qj} of mutually disjoint
subcubes of Q0 such that

1. |u| ≤ α a.e. on Q0�
(⋃

j Qj

)
;

2. for all j we have

α ≤ 1

m (Qj)

∫
Qj

|u| dx < 2nα;
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3.
∑

j m (Qj) ≤ α−1
∫

Q0
|u| dx.

Proof. Without loss of generality we may assume that Q0 = [0, 1]n. The
following terminology will be convenient. If Q ⊆ Q0 is a subcube, then we
will say that:

• Q is a case I cube if m (Q)−1 ∫
Q
|u| dx < α;

• Q is a case II cube if m (Q)−1 ∫
Q
|u| dx ≥ α.

By hypothesis, Q0 is a case I cube. Now we partition Q0 in 2n equal
disjoint cubes. If one of these subcubes is a case II cube, then we put this
cube in the collection {Qj}. On the remaining case I cubes we repeat the
above procedure.

We claim that the in this way constructed collection {Qj} has the desired
properties. Indeed, it is clear that the collection {Qj} is pairwise disjoint.

Now take x ∈ Q0�
(⋃

j Qj

)
. Then any dyadic cube ∆ ⊆ Q0 with x ∈ ∆

must be case I and so
1

m (∆)

∫
∆

|u| dx < α.

Now assume in addition that x is a Lebesgue point of |u| and take a sequence
{∆k}∞k=1 of dyadic cubes in Q0 such that x ∈ ∆k for all k and m (∆k) → 0
as k →∞. Then

1

m (∆k)

∫
∆k

|u| dx→ |u (x)| as k →∞

and so |u (x)| ≤ α. This shows that {Qj} satisfies (i).
To prove property (ii), take any of the cubes Qj. Let Q∗

j be the dyadic
ancestor of Qj (i.e., Qj was obtained by subdivision of Q∗

j). Since Q∗
j was

not selected, it must be a case I cube. Hence,

α >
1

m
(
Q∗

j

) ∫
Q∗

j

|u| dx ≥ 1

2nm (Qj)

∫
Qj

|u| dx ≥ 2−nα

and this is (ii).
Finally, since the cubes {Qj} are mutually disjoint, it follows immediately

from (ii) that ∑
j

m (Qj) ≤
∑

j

1

α

∫
Qj

|u| dx ≤ 1

α

∫
Q0

|u| dx,

which is (iii).
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Theorem 5.7 (John-Nirenberg) Let Q0 be a closed cube in Rn and sup-
pose that f ∈ BMO (Q0). Then for every cube Q ⊆ Q0 and all λ > 0 we
have

m ({x ∈ Q : |f (x)− fQ| > λ}) ≤ Cm (Q) exp

(
−cλ

‖f‖BMO

)
,

where C, c > 0 are constants only depending on n.

Proof. We may assume that ‖f‖BMO ≤ 1, i.e., that

1

m (Q)

∫
Q

|f (x)− fQ| dx ≤ 1

for all cubes Q ⊆ Q0.
Now let Q be a fixed cube in Q0. We apply Proposition 5.6 to the func-

tion u = |f − fQ| with α = 3
2
. This yields a collection

{
Q1

j

}∞
j=1

of disjoint

subcubes of Q such that

(i). |f − fQ| ≤ 3
2

a.e. on Q�
(⋃

j Q
1
j

)
;

(ii). for all j we have∣∣∣fQ1
j
− fQ

∣∣∣ ≤ 1

m
(
Q1

j

) ∫
Q1

j

|f (x)− fQ| dx < 3.2n−1;

(iii). ∑
j

m
(
Q1

j

)
≤ 2

3

∫
Q

|f − fQ| dx ≤
2

3
m (Q) .

Note that the first inequality in (ii) follows from

∣∣∣fQ1
j
− fQ

∣∣∣ =

∣∣∣∣∣ 1

m
(
Q1

j

) ∫
Q1

j

(f (x)− fQ) dx

∣∣∣∣∣ ≤ 1

m
(
Q1

j

) ∫
Q1

j

|f (x)− fQ| dx.

Now apply Proposition 5.6 to each cube Q1
j and the function

∣∣∣f − fQ1
j

∣∣∣, again

with α = 3
2
. This gives a collection

{
Q2

j

}
of disjoint cubes (each Q2

j is

contained in some Q1
j). For almost all x ∈

(⋃
Q1

j

)
�

(⋃
Q2

j

)
we have

|f (x)− fQ| ≤
∣∣∣f (x)− fQ1

j

∣∣∣ +
∣∣∣fQ1

j
− fQ

∣∣∣ < 3

2
+ 3.2n−1 < 2.3.2n−1.
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This inequality certainly holds for x ∈ Q�
(⋃

Q1
j

)
. Hence

|f (x)− fQ| < 2.3.2n−1

for all x ∈ Q�
(⋃

Q2
j

)
. Furthermore,∣∣∣fQ2

j
− fQ1

j

∣∣∣ ≤ 1

m
(
Q2

j

) ∫
Q2

j

∣∣∣f (x)− fQ1
j

∣∣∣ dx < 3.2n−1

whenever Q2
j ⊆ Q1

j and so∣∣∣fQ2
j
− fQ

∣∣∣ ≤ ∣∣∣fQ2
j
− fQ1

j

∣∣∣ +
∣∣∣fQ1

j
− fQ

∣∣∣ < 2.3.2n−1.

Moreover, ∑
j

m
(
Q2

j

)
≤ 2

3

∑
j

m
(
Q1

j

)
≤

(
2

3

)2

m (Q) .

Continuing this process we obtain at stage k a collection
{
Qk

j

}
of mutually

disjoint cubes such that{
|f (x)− fQ| < 3k2n−1 a.e. on Q�

(⋃
j Q

k
j

)
∑

j m
(
Qk

j

)
≤

(
2
3

)k
m (Q)

.

Now take λ > 0 and suppose that 3k2n−1 < λ ≤ 3 (k + 1) 2n−1 for some
k ≥ 1. Then

{x ∈ Q : |f (x)− fQ| > λ} ⊆
⋃
j

Qk
j

and so

m ({x ∈ Q : |f (x)− fQ| > λ}) ≤
∑

j

m
(
Qk

j

)
≤

(
2

3

)k

m (Q)

≤ e−cλm (Q)

with e.g. c = 3−12−n log
(

3
2

)
. If 0 < λ ≤ 3.2n−1, then

m ({x ∈ Q : |f (x)− fQ| > λ}) ≤ m (Q) ≤ e3.2n−1ce−cλm (Q)

and so we can take C = exp (3.2n−1c).
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5.3 Some consequences.

Next we will discuss some consequences of the John-Nirenberg theorem. First
we recall some useful formulas from general integration theory.

Suppose that (Ω,A, µ) is a measure space. Let f : Ω → C be a measurable
function. The distribution function d|f | : [0,∞) → [0, µ (Ω)] of |f | is then
defined by

d|f | (λ) = µ {x ∈ Ω : |f (x)| > λ} .

Note that d|f | is decreasing, left continuous and if there exists λ0 such that
d|f | (λ0) <∞, then d|f | (λ) → 0 as λ→∞.

Lemma 5.8 Let ϕ : [0,∞) → [0,∞) be measurable and define Φ (t) =∫ t

0
ϕ (s) ds for all t ≥ 0. For every measurable function f : Ω → C we

have ∫
Ω

Φ (|f |) dµ =

∫ ∞

0

ϕ (s) d|f | (s) ds.

Proof. Using Fubini’s theorem it follows that∫
Ω

Φ (|f |) dµ (x) =

∫
Ω

∫ |f(x)|

0

ϕ (s) dsdµ (x)

=

∫ ∞

0

∫
Ω

χ{|f |>s}ϕ (s) dµ (x) ds

=

∫ ∞

0

ϕ (s)µ {x ∈ Ω : |f (x)| > s} ds

=

∫ ∞

0

ϕ (s) d|f | (s) ds.

Applying the above lemma to the functions ϕ (s) = psp−1 and ϕ (s) = keks

respectively we immediately get the following corollary.

Corollary 5.9 For every measurable function f : Ω → C we have:

1. ∫
Ω

|f |p dµ = p

∫ ∞

0

sp−1d|f | (s) ds (30)

for all 1 ≤ p <∞;

2. ∫
Ω

(
ek|f | − 1

)
dµ = k

∫ ∞

0

eksd|f | (s) ds (31)

for all k ∈ R.
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Now we return to BMO-functions on Rn. Suppose that Q is a cube
in Rn and that f ∈ BMO (Q). For notational convenience we denote the
distribution function of |f − fQ| on Q simply by d. By the John-Nirenberg
theorem, this distribution function d satisfies

d (λ) ≤ Cm (Q) exp

(
−cλ

‖f‖BMO

)
(32)

for all λ > 0, where c, C > 0 are two constants depending only on n.

Proposition 5.10 There exist constants c1, c2 > 0, only depending on n,
such that for all k < c2 and all f ∈ BMO (Q) we have

1

m (Q)

∫
Q

exp

(
k

‖f‖BMO

|f − fQ|
)
dx ≤ c1.

Proof. Let c > 0 denote the same constant as in (32) and take c2 = c
2
.

Fix a function f ∈ BMO (Q) and denote the distribution function of |f − fQ|
by d. Take k < c2. Using (31) and the estimate (32) we find that∫

Q

[
exp

(
k

‖f‖BMO

|f − fQ|
)
− 1

]
dx

=
k

‖f‖BMO

∫ ∞

0

exp

(
k

‖f‖BMO

s

)
d (s) ds

≤ k

‖f‖BMO

Cm (Q)

∫ ∞

0

exp

(
k

‖f‖BMO

s

)
exp

(
−c

‖f‖BMO

s

)
ds

≤ k

‖f‖BMO

Cm (Q)

∫ ∞

0

exp

(
−c

2 ‖f‖BMO

s

)
ds

=
k

‖f‖BMO

Cm (Q)
2 ‖f‖BMO

c
≤ Cm (Q) .

This implies that∫
Q

exp

(
k

‖f‖BMO

|f − fQ|
)
dx ≤ (C + 1)m (Q)

and so we can take c1 = C + 1.
Another consequence of the John-Nirenberg theorem is the following

proposition.
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Proposition 5.11 For every 1 ≤ p < ∞ there exists a constant Cp, only
depending on n and p, such that for any closed cube Q ⊆ Rn and all f ∈
BMO (Q) we have(

1

m (Q)

∫
Q

|f − fQ|p dx
) 1

p

≤ Cp ‖f‖BMO .

Proof. Take f ∈ BMO (Q) and let d be the distribution function of
|f − fQ| on Q. Then it follows from (30) and (32) that∫

Q

|f − fQ|p dx = p

∫ ∞

0

sp−1d (s) ds

≤ pCm (Q)

∫ ∞

0

sp−1 exp

(
−cs

‖f‖BMO

)
ds

= pCm (Q)
‖f‖p

BMO

cp

∫ ∞

0

sp−1e−sds

= Cp
pm (Q) ‖f‖p

BMO ,

which implies the result of the proposition.

Corollary 5.12 Let Ω ⊆ Rn be open and f ∈ L1
loc (Ω). The following state-

ments are equivalent:

1. f ∈ BMO (Ω);

2. for all (some) 1 ≤ p <∞ we have

sup
Q∈Q
Q⊆Ω

(
1

m (Q)

∫
Q

|f − fQ|p dx
) 1

p

<∞ (33)

Moreover, (33) defines an equivalent norm on BMO (Ω).

Proof. First assume that f ∈ BMO (Ω) and let 1 ≤ p < ∞ be given.
Then it is clear from the definition that f ∈ BMO (Q) for any closed cube
Q ⊆ Ω with ‖f‖BMO(Q) ≤ ‖f‖BMO(Ω). Now it follows from Proposition 5.11
that (

1

m (Q)

∫
Q

|f − fQ|p dx
) 1

p

≤ Cp ‖f‖BMO(Q) ≤ Cp ‖f‖BMO(Ω) ,

which implies 2.
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Now assume that f ∈ L1
loc (Ω) is such that (33) is satisfied for some

1 ≤ p <∞. Since

1

m (Q)

∫
Q

|f − fQ| dx ≤
(

1

m (Q)

∫
Q

|f − fQ|p dx
) 1

p

for any closed cube Q ⊆ Ω, it follows immediately that f ∈ BMO (Ω). The
final statement of the corollary is now also clear form the proof.

Before formulating the next result we recall the following definition. Let
(Ω,A, µ) be a measure space and suppose that f : Ω → C is a measurable
function such that d|f | (λ) < ∞ for some λ > 0. The decreasing rearrange-
ment f ∗ : (0,∞) → [0,∞) of |f | is then defined by

f ∗ (t) = inf
{
λ > 0 : d|f | (λ) < t

}
for all t > 0. The function f ∗ is decreasing, left-continuous and equi-
measurable with |f | (i.e., the functions f ∗ and |f | have the same distribution
function).

Proposition 5.13 Let Q ⊆ Rn be a closed cube and f ∈ BMO (Q). Then

(f − fQ)∗ (t) ≤ ‖f‖BMO

c
log+

(
Cm (Q)

t

)
for all t > 0, where c, C > 0 are constants depending only on n.

Proof. Take f ∈ BMO (Q) and denote the distribution function of
|f − fQ| by d (λ). Using (32) it follows that

(f − fQ)∗ (t) = inf {λ > 0 : d (λ) < t}

≤ inf

{
λ > 0 : Cm (Q) exp

(
−cλ

‖f‖BMO

)
< t

}
= inf

{
λ > 0 : − cλ

‖f‖BMO

< log

(
t

Cm (Q)

)}
= inf

{
λ > 0 : λ >

‖f‖BMO

c
log

(
Cm (Q)

t

)}
=

‖f‖BMO

c
log+

(
Cm (Q)

t

)
,

and we are done.
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