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1 Averages and the theorem of Lebesgue.

1.1 Notation.

We consider the space R" with Lebesgue measure m and we also write
dm (x) = dx. For z € R™ and r > 0 we define

B(z,r)={yeR": |z —y| <r}

and B, = B(0,7); so m (B (x,r)) = m(B;). The closure of B(z,r) is
B (z,r). We denote by w,, the (n — 1)-dimensional surface area of the unit
sphere OBy; so m (B,) = n~lw,r". For F C R" and z € R™ we denote by

dist (z, F) the distance of z to F, i.e.,
dist (z, F) =inf{|lx —y| :y € F}.
Furthermore, for any non-empty D C R" we denote the diameter by
diam (D) = sup{|z —y| : z,y € D}.

If O C R" is an open subset, then we denote by L} (Q) the space of
all locally integrable functions on Q, i.e., Li . (€) consists of all measurable
functions f : R” — C for which [, |f|dz < oo for all compact subsets K C
(with identification of functions which are equal a.e.). We denote by C. (2)
the space of all continuous functions on €2 with compact support in €2 and
C () is the subspace of all C*°-functions in C. (2).

Suppose that f: R" — [0, o0] is a measurable function. The distribution

function dy : [0, 00) — [0, 00| is defined by
di(AN) =m{z eR": f(z) > A}.

It is clear that dy is decreasing and right-continuous. Moreover, if df (Ag) <
oo for some A\g > 0, then d; (A) — 0 as A — oo. If f € L' (R") then

1
din () < 5 £l (1)

for all A > 0. Indeed, with F\ = {z € R" : |f (z)| > A} we have

1l > / (@) dr > Am (Ey) = Ay ().



1.2 Averages.
Let f € Lj.(R") be given. For x € R" and r > 0 we define

loc

- 1
Jor = W /B(x,r) f(y)dy. (2)

Remark 1.1 1. For fized r > 0, the function x — f,, is continuous.
This follows immediately from the dominated convergence theorem.

2. Suppose that @ C R™ is open and f € L},.(R™), then fio € C(Q) if

loc
and only if f.,r — f(x) as r | 0 uniformly (a.e.) on every compact

subset of ). Indeed, first suppose that fio € C(2) and let K C € be
compact. There exists 6 > 0 such that the set

Ks ={x e R": dist (z, K) < 6}

1s contained in ). For 0 < r < & we have

. 1
2g£}fx,r—f(ﬂf)\ < SUp /B(m)lf(y)—f(ﬂﬁ)ldy
< sup sup |f(y)— f ()|

€K yeB(xz,r)

sup{|f (y) — f (2)| : v,y € K5, |y — x| <71},

IA

which converges to zero as r | 0 since [ is uniformly continuous on
the compact set Ks. The converse statement is clear from the above
observation.

3. Now assume f € L' (R") that and write f. (v) = f,,. We claim that
Ifr = fll, = 0 asr | 0. Indeed,

@)= F@)lde < m(lBT)/n </B($7T)|f(y)—f(x)]dy>dx
e L ([ rera-r@ia) e

- i L ([raro-s@ia) i

< sup [ |f(y+z)— f(z)|de
yEB; JR"

= sup ||IT,f = fll;-
yeB,



If f € C.(R™) then it follows by uniform continuity that

sup [|7yf = fll; =0 asr 0. (3)

yeEB,

Since C. (R™) is dense in L' (R") this implies that (3) holds for all
f € LY (R™), which proves the claim.

It follows in particular from this last remark that for every f € L' (R"™)
there exists some sequence 7, | 0 such that f,, — f(z) for almost all
x € R™. This is however not enough to conclude that f,, — f(x)asr | 0
for almost all z € R”, which is Lebesgue’s theorem. For the proof of this we
need some preparations.

1.3 The maximal function.

For f € L} . (R™) we define the maximal function M f : R® — [0, oc] by

loc

Vi@ = [ el ()

The mapping M : f —— M f is called the Hardy-Littlewood maximal opera-
tor. Since M f is the pointwise supremum of continuous functions it follows
that M f is lower semi-continuous. In particular M f is a measurable func-
tion. The following simple properties of the operator M are easily verified:

1. M(f+g) < Mf+Mgand M (\f) = |\|Mf for all f,g € L}, (R")
and all A € C;

2. if |f| < |g| a.e. in L}

loc

(R™) then M f < Myg;
3. 1Ml < 1]l for all f € L (R,

Observe that M f € L' (R") implies that f = 0 a.e. Indeed, if 0 # f €
L. (R™) then there exists a constant ¢ > 0 such that M f (z) > c|z| ™" as
|z] — o0, 80 M f ¢ L' (R"). Furthermore, M f need not be locally integrable
in general.

1.4 A covering lemma.

Our next objective is to estimate the size of the maximal function. For this
we need a Vitali type covering lemma.



Lemma 1.2 Suppose that K is a compact subset of R" and that B is a
collection of open balls such that K C |J{B: B € B}. Then there exist
finitely many disjoint balls By, ..., By € B such that

m(K)g?)”Zm(Bj).

Proof. Since K is compact we may assume without loss of generality
that B is finite. Let B; be a ball in B with largest radius ;. Then take
By € B disjoint from B; with largest radius ry. Let Bs be the largest ball
with radius r3 in B disjoint from B; and Bs, etc. Since B is finite this process
stops after finitely many, say k steps. By construction the balls By, ..., By
are disjoint. Let Bj be the ball with the same center as B; and with radius
3rj. We claim that

k
K c|JB;.
j=1

Indeed, suppose not. Then there exists € K such that x ¢ Bj for all
j=1,..., k. Since B covers K, there exists B € B with radius r such that
x € B. By the choice of B; we have r < ry. Since z ¢ Bl it follows that
BN By = (. Hence, by the choice of By we have r < ry. Since z ¢ BQ this
implies that B N B, = (). Continuing this way it follows that B is disjoint
with all balls By, ..., By and that » < ri. This is clearly a contradiction,

which proves the claim. Since m <B]> = 3"m (B;), we conclude that
) k
m(K) <Y m(B;) =3 m(B)
j=1 j=1

by which the lemma is proved. m

1.5 Lebesgue’s differentiation theorem.

Using the covering lemma we can now give a weak type estimate for the
maximal function. For the case n = 1 this result is due to F. Riesz (1932);
the general case was proved by N. Wiener (1939).

Theorem 1.3 If f € L' (R") then
Cy
m{z €R": Mf(z) > A} < = Ifll; (5)
for all A > 0 (where C,, is a constant only depending on the dimension n).
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Proof. Take A > 0 and put E\ = {zx € R": M f (z) > A\}. Let K C E)
be compact. For each x € K there exists a ball B (z,r,) such that

7,
[f ()l dy > X (6)
m (BTCE) B(z,rz)
Now apply Lemma 1.2 to the set K and B = {B(x,r,) : x € K}. Hence
there exist disjoint balls B (z1,71),..., B (zx, ) in B such that

<3”Zm (xj,7))

Hence it follows from (6) that

m(K) < S”Zm( Z/ y)l dy

37L
< dy = — :
< 5[ el =15,
Since m (E)) = sup{m (K) : K is compact and K C F,}, this implies (5).
]
Using the above weak estimate on M f we can prove the Lebesgue differ-
entiation theorem.

Theorem 1.4 If f € L' (R") then

, 1
i o 0= Py =0 )

for almost all x € R™.

Proof. For f € L' (R")and z € R" we define

. 1
NS ) =timsw s [ 1fw) =Sl

so Nf :R" — [0, 00] and a moment’s reflection shows that N f is measurable.
We have to show that N f =0 a.e. on R". First we show that N f satisfies a
weak estimate. Take A\ > 0. Since

Nf(z) < Mf(z)+|f ()]



for all z, it follows that
{z eR":Nf(z) >} CqzeR Mf(a:)>§ UszeR":|f(z)| > =
and so via Theorem 1.3 and (1) we find

m{x e R": Nf(z) >} < m{xER“:Mf(m)>é}

imfoerlf@i>5)  ©

20, 2 C
< S+ 5 0= 5 -

Now fix f € L' (R"). For every g € C.. (R") it follows via uniform continuity
that Ng = 0. Moreover it is clear that N is subadditive and so

Nf<N(f-g9)+Ng=N(f-g).
Take A > 0. Then it follows from (8)
m{r eR": Nf(x) >} < m{xeR":N(f—g)(x)> A}
C
< Syr—l,.

Since this holds for all g € C,. (R") and since C.. (R™) is dense in L* (R™) this
implies that m {x € R" : Nf (x) > A} = 0 for all A > 0, hence Nf = 0 a.e.
This completes the proof of the theorem. m

Corollary 1.5 Let Q2 be an open subset of R™ and f € L}, (Q). Then (7)
holds for almost all x € €.

Proof. Let {Q};~, be a sequence of open subset of 2 such that Q =
Une; Q, Qi € Wy and € is compact for all k. Define f, € L' (R") by
fr = f on Q and fi, = 0 on R™\ 2. Applying theorem 1.4 to the function
fr we see that (7) holds a.e. on €} and we are done. m

The following corollary is now clear.

Corollary 1.6 Let Q be an open subset of R™ and f € L. (). Then the
following statements hold.

1. For almost all x € Q2 we have

1
lim

rl0 m (Br) /B(x,r) f <y> dy = f (CL’) : (9)




2. |f(x)] < Mf(x) a.e. on Q.
The above results motivate the following definition.

Definition 1.7 Suppose that Q@ C R™ is open and that f € L} (Q). The set
of all points x € Q0 for which

) 1 -
lrlff)l m (B,) /B(w) If (y) — f(2)|dy =0

is called the Lebesgue set of the function f. We denote this set by Ly.

If f e L. () and x € Ly, then it is clear that (9) holds. In some

loc
situations we will need a differentiation formula like (9), but with respect

to sets different from balls with center z, e.g. arbitrary balls containing the
point x or with respect to cubes. For this purpose we introduce the following
concept.

Definition 1.8 A non-empty family Qo of measurable subsets of R™ is called
reqular if

(i). m(Q) >0 for all Q € Qy;
(ii). for every e > 0 there exists a set Q) € Qy such that m (Q) < €;

(iii). there exists a constant ¢ > 0 such that for every Q € Qq there exists
an open ball B, = B (0,r) such that Q C B, and m (B,) < cm (Q).

For x € R" we define Q, = {Q +x:Q € Qo}.

Observe that if Qg is a regular family, then for every r > 0 there exists
d > 0 such that @ € Qp and m (Q)) < ¢ imply that @ C B,. Indeed it follows
from (iii) that given r > 0 we can take § = ¢~tm (By) r™.

Example 1.9 The following families of subsets of R™ are reqular families.

1. The collection of all open balls {B (0,7) : r > 0};
2. The collection of all open (or closed) balls containing the point 0;

3. The family of all open (or closed) cubes containing the point 0;

4. Take any bounded set 1 C R™ with m(Q1) > 0 and define Qy =
{aQ; : 0 < a € R}.



The collection of all rectangles containing the point 0 is not a reqular
family.

The following proposition indicates the importance of the Lebesgue set.

Proposition 1.10 Let Qg be a reqular family of subsets in R™ and 2 C R™
an open subset. If f € L (§é) then for all x € Ly we have

li 0.
g)nﬂom (Q) /'f )l =

Consequently,for all x € Ly.

hm / fy
—»0 m (

Proof. Take x € L;. Given ¢ > 0 there exists 1o > 0 such that B (z,r) C

Q) and
1

m (B,) /B(x,r) 1f(y) = f(2)|dy < e

for all 0 < r < ry. Define § = ¢™'m (By)ry and take Q € Q, such that
m(Q) < 0. Then there exists r > 0 such that @ C B (z,r) and m (B,) <
cm (Q). By the choice of § this implies that » < ry and so

1

Q /If oldy < 75 /B(xvr)’f(y)—f(x)]dy

This suffices to prove the proposition. m

<

2 Riesz potentials.

It will be convenient to have some results concerning the so-called Riesz
potentials available. We will discuss only some of the elementary properties.
For 0 < a < n and measurable function f : R® — C the Riesz potentials
are defined by
AR R =0 (10)
re |z —yl"
whenever this integral is absolutely convergent for almost all x € R™.

9



Remark 2.1 Frequently the Riesz potentials are defined by faf =7 (04)_1 I.f
with .

w12 (3)

r-3)

The reason for this normalization is that we then have (at least for very

smooth functions)

v (o) =

ja (fﬁf> - Aa—l-ﬁf
whenever 0 < a<n, 0 < <n witha+ 8 <n.

In the proof of the next proposition we will use the following elementary
fact. For the sake of completeness we indicate the proof.

Lemma 2.2 1. If f € L' (R") and g € L? (R"), 1 < p < oo, then the
convolution integral

(fxg) (@)= | fyglz—y)dy (11)
Rn
is absolutely convergent for almost all x.

2. If f € LY(R") and g € LP (R"), with 1 < p<oocandp ' +q ' =1,
then (11) is absolutely convergent for all x.

Proof.

1. If p = oo the statement is clear, so we assume that 1 < p < co. Let
q be the conjugate exponent of p. It follows from Hoélder’s inequality
that

. lf (W) g(r—y)ldy = . 1F @7 1 @) g (x — y)| dy

< Wi ([ 1 @lloG-wrar)”

By Fubini’s theorem we have

/( Rn|f(y)9($—y)’dy)pd:c
15 ([ lete = i) ao

= 07 [ 1wl ([ et orc) ay

=1l [ 1wl ([ larac) a

= [I£1Illgll; < oo

IN

10



This shows that [, [f (y)g(z —y)|dy < oo for almost all z € R".
Observe that this proof also shows that f*g € L? (R") and [|f * g||, <

1£1ly gl

2. This is an immediate consequence of Holder’s inequality.
|

Proposition 2.3 I[f0 <a <n and 1 < p < 2, then for every f € L? (R")
the integral (10) is absolutely convergent for almost all z € R™. Consequently,
for f € LP (R™) the Riesz potential 1, f is a well defined measurable function.

Proof. Define

K(2) = ——
2]
Then we can write
i@ = [ Ty~ ey @)
R |yl

and we have to show the a.e. absolute convergence of this integral. We split
K in two parts defined by

) K(y) if [yl <1
Kl(y)_{o if |y > 1

. () it Iy
) K(y) if |y >1
KQ@){O if Jy <1

Since K = K;+ K3 it is sufficient to show that both integrals (K7 * f) (x) and
(K3 * f) (x) are absolutely convergent for almost all z € R". Since n—a <n
it follows that K; € L' (R™), which implies that the integral (K * f) (x) is
absolutely convergent a.e. for all f € LP (R").

Let g be the conjugate exponent of p, i.e., p~' + ¢! = 1. We claim that
Ky € L7 (R"). Indeed, if p = 1 then ¢ = oo and it is clear that Ky € L™ (R").
Now assume that p > 1. Then

1 o 1
Ko (y)qdy:/ - dy:wn/l mdr.

wi>1 [y

]Rn

[0

Since ¢! =1 —p~! < 1— 2, it follows that (n —a)g > n, which implies
that this integral is finite. Hence Ky € L? (R™). Now we may conclude that
for every f € LP (R™) the integral (K3 * f) (x) is convergent for almost all x,
and the proof is complete. ®

11



Remark 2.4 If0 < a <nand 1l < p < q < oo, with ¢! :p—l_%
(which implies that p < ), then it can be shown that I f € L4 (R") for all
feLrR").

The following estimate will be useful.

Lemma 2.5 Let E C R"™ be a measurable set with 0 < m(E) < oo and
suppose that 0 < a < n. There is a constant C (a,n) > 0 such that

39

/%dygcm,n)mw)
Ely— 2|

for all x € R". Actually we can take
C(a,n) = a niwn ",

Proof. Fix x € R". Take r > 0 such that m (B,) = m(FE), i.e., ™ =
nw,'m (E). Note that

m (ENDB (z,r)) =m (B (x,r)\F).

Now

[ty < T ENB ) = (B ) \E)
E

\B(zr) |y — 7|
1
m(B(z)\E) |y — T|

IN

This implies that

1 1 1
/ —— ey = / —ady +/ —ady
Ely— x| ENB(xr) [y — T BBz |Y — 7]
1 1
< / ﬁdy_'_/ —dy
m(Br\E) |y — 7| EnBzr) |y — |

1
= / —dy = a tw,r®
Bla) |y — 2]

= o 'w, (n'wy,'m (E))% =C(a,n)m(E)

3e

|

If E is a measurable subset of R” then any f € LP (F) can be considered
as an element of L? (R"), extending f identically equal to zero on the com-
plement of E. In particular if m (E) < oo, then every f € LP(E) belongs
to L' (F) and hence is an element of L' (R™). Therefore, by Proposition 2.3
the Riesz potential I, f is an a.e. well defined measurable function (on R™)
for all 0 < a < n. The following proposition is only of interest if n > 1.

12



Proposition 2.6 Let E C R" be measurable with 0 < m (E) < oco. Then
there exists a constant C,, > 0, only depending on n, such that

/ L de < CPm (E): / P de
E E

forall f € LP(F) and all 1 < p < co.

Proof. First we assume that 1 < p < oo. Let ¢ be the conjugate exponent
of p. For f € L? (F) it follows from Hoélder’s inequality that

L) < |f(y>|_1dy:/ Wl

B lr =y Ele—y|7 -y T

( !:zclf—ylnly> (/ \x—y\”1y>

for almost every x € R". By the above lemma we know that

Q| .Q

IN

/ ;_ldy < Com (E)" = C. (12)
el —yl"
Hence, 1
nre) <ot ([ L0 (13
Elr—yl"

a.e. on R"™. Note that this inequality trivially holds for p = 1. Using (12)
and (13) we find for all 1 < p < oo that

/|11 )P de < C‘é/E( lx‘f_(yf‘p dy) dx
- o [irwr ( / ﬁdw} day
<o [ rwr

with C' = C,ym (E)%, which completes the proof. m

3 Sobolev spaces.

In this section we will discuss some of the relevant properties of the Sobolev
spaces which we will need in the sequel.

13



3.1 Definitions.

By « we denote a multi-index, i.e., « = (o, ..., a,) with ax € N. The length
of «v is defined by |a] = a3 + -+ + «,. For such a multi-index « we define
the differential operator D% by

o an ol
pe_ (9N . (9N __ 9%
o0xq oz, Ox(* - - 0xon

Let © be an open subset of . If f € L},.(£) and « is a multi-index and if
there exists g € L}, (£) such that

/QfDo‘gpd:c:(—l)o‘|/Qggpd:c'

for all ¢ € CX (L), then we denote g = D*f, and g is called the weak
(partial) derivative of f corresponding to the multi-index «.. If D®f exists, it
is uniquely determined up to sets of measure zero. If m € N and f € C™ (Q),
then all weak derivatives D f exist for |a| < m and coincide with the classical
derivatives of f. In case |a] = 1 we denote the weak derivatives D f also by
D;f = 4%.

Remark 3.1 1. Suppose that f € L, (%), where Q@ C R™ is open. Now
consider the collection U of all open subsets U C €2 such that f =0 a.e.
onU. Let O =J{U:U eU}. Then f =0 a.e. on O (since f =0
a.e. on every compact subset of O). Hence O is the largest open subset
of Q on which f =0 a.e. The set Q\U 1is called the (essential) support
of f and will be denoted by supp (f). If f has a weak derivative D*f,
then supp (D*f) C supp (f). Indeed, if U C Q) is open and f = 0 on
U, then

[ @0 )gdn = (1) [ sDrgds—0
Q Q
for all p € C° (U), which implies that D*f =0 a.e. on U.

2. Suppose that f € L, (L), where @ C R™ is open with weak deriative

loc

D f. Suppose that U is an open subset of . Then fiy has weak
derivative D* (fiy) = (DS

3. If f € Li,. (%) has weak derivative g—{j and p € C*° (), then fy has

9 of Dy
a—xj(fw)— 8xj90+faa:»'

J

weak derivative

14



Definition 3.2 For 1 < p < oo and k € N the Sobolev spaces WP (Q) are
defined by

Wk (Q) = {u € LP (Q) : D*u € LP(Q) for all |a| < k}.

For uw € WP (Q) the norm is defined by

lully, = D 1Dl

lal<k

if 1 <p<ooand

ful oo = mise D7,

For all the values of p and k the space (Wk’p (Q), ||||kp> is a Banach

space, as is easily verified. From now on we will only consider 1 < p < oo.
The Hilbert space W*2 (Q) is sometimes also denoted by H* (). It is clear
that C° (Q) is a linear subspace of W*? (Q).

Definition 3.3 For1 < p < oo and k € N the closure of C=° () in W*P (Q)
is denoted by Wi (Q).

Furthermore we will denote by W*? (Q) the subspace of W*? () consist-
ing of all u € W*? () for which supp (u) is compact.

Remark 3.4 In the spaces WHP (Q) there are several other possible natu-
ral morms which are equivalent with the above introduced norm |-, ,. For
example, in the space WP (Q) such an equivalent norm is given by

1

el = (Mullp + I 9u2) "

Here we denote Vu = <‘9“ L, ) and

oz’ ) Oxp

1Vu, = ( [ 1w d:c)” ,

where |Vul| is the euclidean length of the vector Vu in C™.

15



3.2 Approximation.

Now we discuss the approximation of functions in W*? (Q) by smooth func-
tions. For sake of simplicity we will restrict the discussion to the case k = 1.
First we recall some facts concerning convolutions.

a. If p € C* (R") and u € L}, (R"), then ¢ * u € C* (R") and

loc
D (p*u) = (D) *u
for all multi-indices .

b. If ¢ € C° (R") and w € L? (R"), then ¢ xu € C* (R") N LP (R™) for
all 1 < p < o0.

c. Let ¢, € C®(R"™) be such that supp (¢;) € B(0,1), ¢»; > 0 and
Jgn h1dz = 1. For £ > 0 define ¢, € C° (R") by ¢, (z) = e, (£).
Then {¢, :e > 0} is called a regularizer (or Dirac-system). Observe
that supp (¢.) € B(0,¢) and [, ¢.dx =1 for all € > 0.

d. Let {¢.}.., be a regularizer. If u € C, (R") then ¢, x u € C° (R™) for
all e >0 and |[¢, *u —ul||,, —0ase 0.

e. Let {¢.}.., be a regularizer. If 1 < p < oo and v € L? (R"), then
[t *xu—ull, > 0ase | 0.

The next proposition gives a local approximation of functions in W17 (Q)
by functions in C'* (Q).

Proposition 3.5 Let 2 C R" be open and 1 < p < co. Suppose that €y is
an open subset of Q such that Qo C € and Q is compact. Let {1_}_., be a
reqularizer and put u. = . x u for allu € W' (Q) and all € > 0. Then

— 0 (14)

‘(ue)mo ~ Yo

ase | 0.

Proof. It follows from b. above that u. € C* (R")NLP (R") for alle > 0

and from e. we know that |lue — ul| .y — 0 as e | 0. Since € is compact,
it is clear that (u.)q, € WP (). Furthermore, it follows from a. that

@) = ()@= [ FEe-numay

0
= —/Qa—yj%(w—y)U(y)dy

16



for all z € R™. Since Qy C Q and Qg is compact it follows that there exists
g0 > 0 such that dist (z,09Q) > ¢q for all x € Qq. Hence, if x € Qq and
0 < € < go then the function y — 1, (z — y) belongs to C° (). Now it
follows from the definition of the weak derivative that

0
- [ grvee == [ v -0 3 @y

o (@)= () (@

for all x € Q) and all 0 < € < 3. Hence

and so

‘ ou. Ou B , Ou ou ou
0z; 81] Lp(52) ° Oz am] LP(52)
< ‘ b x 28 ou ou 0
Ox; 835] LP(R")

as € | 0. Therefore we may conclude that (14) holds. m
The following proposition is proved by a similar argument.

Proposition 3.6 Let Q C R" be open. If u € WP (Q) has compact support,
then there exists a sequence {vy}—, in C° () such that ||u —vl|, , — 0 as

k — co. Equivalently, W' (Q) C Wy (Q).

Proof. Take u € W}?(Q) and put K = supp (u). Since K is compact,
there exists 0 > 0 such that the compact set

Kys ={z € R" : dist (z, K) < 20}

is contained in €2. Let {1_}.., be a regularizer and define u. = ¢, x u. We
take 0 < € < . We claim that u. € C° (Q2). Indeed, z ¢ K; then

wlo) = [ va-nudy= [ v.w=pu)dy=o

since the support of the function y —— 1, (z —y) is contained in B (z,¢)
and B (x,e) N K = (). Hence supp (u.) C K, which implies the claim.
Next we will show that
ou, ou

=1 % —. 1
6’@ ¢€ * 8xj ( 5)
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Since supp (u.) € K, it follows that also % has its support in Ks, and so

we only have to show that (15) holds on K. Take z € K. As in the proof
of the previous proposition we have

gzj (2) =~ /Q a%j% (x —y)u(y)dy.

The function y —— ¢ (z —y) is supported in B(x,e) C Kys C , so it
follows from the definition of the weak derivative that

)= [t 2 = (v 2 0

and the proof of (15) if finished.

Since |lu — 9. *ul|,

)
_wf:*%
as € | 0 and hence |lu —ul|; , — 0 as e | 0. We are done. m

To obtain smooth approximations on the whole open domain 2 we need
the following standard construction of a smooth partition of unity.

—Oforall j=1,...,n
p

Lemma 3.7 Let Q be an open subset of R™ and suppose that U is an open
covering of Q0. Then there exists an open covering {V;}.=, of Q@ and a sequence
{pi}io) in C(Q) such that 0 < ¢, <1 foralli=1,2,... and:

1. for every V; there exists a U € U such that V; C U;

2. the open covering {V;};=, is locally finite, i.e., for every compact subset
K C Q we have K N'V; # (0 for only finitely many values of i;

3. supp (¢;) CV; foralli=1,2,...;

4o > i (x) =1 for all x € Q;

5. for every compact K C ) there exists an open set W such that K C
W C Q and there exists m € N such that @, (z)+---p,, () =1 for all
xeW.

Proof. Let {q;},—, be a sequence which is dense in  and let {r;};°, be
an enumeration of the positive rational numbers. Now consider the collection
of all open balls B (g, ;) for which there exists a U € U such that B (g, 1) C
U. We enumerate this collection of balls as { B;};-,. For each ¢ we denote by
O; the open ball with the same center and half the radius as B;. It is clear
that Q = J;2, O
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For every i there exists a function 7, € C°(€) such that 0 < n, < 1,
n; (x) = 1 for all x € O; and supp (n;) C B;. Note that this implies that
for every ¢, there exists a U € U such that supp (n;,) € U. Now define the
sequence {¢;},%; in C () by ¢, = n; and

Pir1 = (1- 771) T (1 - 777;) Ni+1

for i > 1. A simple induction argument shows that

o+t e, =1—=(1-=n)-(1-n,)

for all m > 1. This implies that ¢, (x) +--- + ¢,, () = 1 whenever z € O;
and 1 <7 < m. Now it is clear that 4. holds. If K C () is compact, then
there exists m € N such that K C U’;ll O; from which 5. now follows.
Define the open sets V; = {x € Q: ¢, > 0}. Since 4. hold for the func-
tions {p; }—, it is clear that {V;};°, is an open covering of §2. Since V; C B;
and B; is contained in some U € U, it follows that 1. holds. Moreover,
it follows from 5. that {V;};°, is locally finite. Now we repeat the above
construction with the covering U replaced by {V;};-,. This produces a new
sequence of functions in C2° (), which we call {¢,};-, again. So 4. and 5.
are satisfied. For each i there exists a V, such that supp (¢;) C Vj,. Finally
replace the collection {V;}.2, by {Vi,};~,. Then 3. is satisfied as well and
the other properties are preserved. By this the construction is finished. m
In the situation of the above proposition we say that {¢;}:;, is a (locally
finite) smooth partition of unity subordinate to the open covering U of €.

Theorem 3.8 Let Q2 be an open subset of R™. Then C* (Q)NWLP (Q) is a
dense subspace of WP (Q).

Proof. We apply the above lemma to U = {Q}. So let {¢,;};~, be any
locally finite smooth partition of unity with corresponding open covering
{Vi}2, of Q. Let u € W'?(Q) and € > 0 be given. Then up;, € W (Q2) and
supp (ugp;) C supp (¢;) C Vi, so up, € Wh? (V;). Tt follows from Proposition
3.6 that exists g; € C2° (V;) such that

|up; — gz‘“l,p <27%.
Define o
g(@) =) g () (16)
i=1
for all z € Q. Since {V;};°, is locally finite, any closed ball B (y,r) C £ has

a non-empty intersection with only a finite number of the V;’s and so (16) is
a finite sum on B (y, 7). This implies that g € C* ().

19



Now let €, € Q be open such that € is compact and ﬁ_o C Q. Since
{Vi}:2, is locally finite, there exists N € N such that V; N Qy = 0 for all
i > N. Hence for all z € Q¢ we have 32, ¢, () =1 and

9(@)=> g ().

Moreover, u (z) = S0 u (x) @; (x) for all z € Q. Consequently

N
e = ool < 3 |we, — (@),
=1 ’

N N
< Z Jup; — 9i||1,p < Z 2% <e. (17)
i=1 i=1

Now let {Qx},—, be an increasing sequence of open subsets of Q with €,
compact and Q; C € for all k. Then (17) applies to each of the €, so it
follows from the monotone convergence theorem that [|u —gl|, , < e. Since
this also implies that g € WP (Q), the proof is complete. =

3.3 Some estimates.

The following inequality will be useful.

Proposition 3.9 Let Q2 C R™ be an open bounded and convex set with di-
ameter d. Suppose that p € L™ (Q) such that [, pdx = 1. For u e Wh (Q)
define

%:/Qu@)go(y)dy.

Then for all w € Wh (Q) we have
_ Vu(y
jute) —ul < [ LW, (19
o |z =y

for almost all x € ), where C' > 0 is a constant depending only on n,d and
el (actually we can take C' =n=1d" ||o|| . )-

Proof. We denote by S the unit sphere in R”, i.e.,

S={zeR":|z| =1},
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and let o be the normalized surface measure of S. Let z € ) be fixed. For
any z € S we define

r(z)=sup{r>0:z+rzeQ}.

It is easy to see that r is a measurable function and it is clear that r (z) < d.
Since (2 is convex it follows that

Q={zx+rz:2€5,0<r<r(z)}.

Consequently, for every positive (or integrable) function f : 2 — R we have

/f dy—//r(z f(z+rz)r"tdrdo ().

First we assume that « € W1 (Q) N C>® (Q). Take y € Q and write
y=x+tzwith z€ Sand 0 <t <r(z). Then

t
u(y) — u(z) :/ (Vu (x4 12) , 2) dr
0
and so
t r(z)
() — u ()] < / IV (& + r2)| dr < / V(& + r2)| dr.
0 0
Now it follows that

o) — | =

@ - ule <>dy\
< uson /|u u(y)| dy

= el // ) — (x4 r2)| " tdrdo (2)
(2)
||90||Oo// / |Vu (x4 s2)| " tdsdrdo (2)
sJo 0
r(z) d
HSDHOO// (/ r”_ldr) |Vu (z + sz)| dsdo (2)
sJo 0
n r(z)
= M// |Vu (x4 sz)| dsdo (2)
r(z)
= // |VU :E_‘l_sz)| n_ldeO'(Z)
Sn

_ C’/ Vu(y)l
va—yl

VAN

IN
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This proves (18) in the case that u € W (Q) N C> (Q) and for all z € Q.
Note that (18) can also be written as

u () = ag| < CL(|Vul) (2)

where I; (]JVul) denotes the Riesz potential corresponding to aw = 1.

Now let u € W (Q) be given. It follows from Theorem 3.8 that there
exists a sequence {uy},_; in W (Q)NC> (Q) such that [luy, — ull; ; — 0 as
k — oo. From the first part of the proof we know that

uk (2) = (W), | < CL ([Vug]) (2)

for all € Q and all k. Since |luj, — ul|, — 0, it follows that (ux), — 1, as
k — oo. Furthermore, since |||Vuy| — |Vul||; — 0 as k — oo, Proposition
2.6 implies that

12 ([Vug]) = L (IVul)]l; — 0

as k — oo. Passing to a subsequence we may assume that
I ([Vug]) (x) = L (IVul) ()

as well as ug () — u(z) a.e. on Q as k — oo, and from this the result
follows. m
Given a bounded open subset Q of R” and u € L* (Q) we will denote

U —;/udx
. m(2) Ja .

The result of the following theorem is sometimes referred to as Poincaré’s
inequality.

Theorem 3.10 Let 2 C R™ be open, conver and bounded. Let d = diam (€2).
Suppose that 1 < p < oo. Then

/|u(:c) — ol de < cpdp/ IV ()P dz
Q Q

for all uw € WP (Q), where C > 0 is a constant depending only on n and the
ratio d"/m (2).

Proof. First note that

g :/ugoda:,
Q
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where ¢ = m ()™ xq. Since W (Q) € W1 (Q), it follows from Proposi-
tion 3.9 that
[u () — | < Coly (|Vul) (z)

a.e. on ), where Cy = n~'d"m (Q)~". Using Proposition 2.6 we find that
/ = Gl dz < cg/ L (V] de < chf/ IVl dz,
Q 0 Q

where C; = C,,m (Q)% Finally observe that

CoCy = (n7'C) d"m () m ()7 = (n7'C,,) [ dn ]l_n d.

Recall that ]

ﬂx,r = 5 Uu (y) dy
m (BT) /B(x,r)
for u € L' (B (z,7)).

Corollary 3.11 For every n there exists a constant C' > 0 such that for
every ball B (z,r) CR" and allu € W' (B (z,r)), 1 < p < oo, we have

[ w-arasonw [ vul
B(z,r) B(z,r)

Proof. Since d = diam (B (z,r)) = 2r and m (B (z,r)) = n~'w,r", this
is an immediate consequence of the above theorem. m

Remark 3.12 In the proof of the next theorem we will make use of the
following extension of the Hélder inequality. Suppose that (2, A, ) is any
measure space and let 1 < pq,...,pr < 00 be such that

1 1
— 44— =1.
D1 Pk

Then

1

[ s () ()’

for all measurable functions fi,..., fr on Q. This follows via a simple in-
duction argument from the case k = 2. Note that this implies in particular

that
k ) k %
/ngkdﬂgg(/gwdﬂ) : (19)
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If 1 < p < n we define p* by
1

1

1
P p n
The following inequality is sometimes called Sobolev’s inequality.

Theorem 3.13 Let Q C R™ be open and 1 < p <n. Then

i

p*_

n—1)p
<=2 gy,
p

for all u € W, (Q).
Proof. First we will consider the case that u € C! () C C! (R") and

p = 1. Note that p* = "< in this case. For every x = (x1,...,2,) and all

1
7 =1,...,n we have

u(x) = g;i (1, .ty ., xy) di,
and so
u(z) < / O a b a)| dt (20)
< B, (W1 tine o) i

S / |VU(I1,...,tj,...,.l’n)|dtj.

[e.9]

For the sake of notation we will write

/ |Vu(x1,...,tj,...,xn)|dtj:/ V| dt.

—00 o0

It follows from (20) that

1 1

[u (2)|7 < (/Z |Vu|dt1>"l ﬁ (/Z |Vu]dtj)n1

j=2
and so, using (19) we find that

/_(:\u(x)z < (/ IVu!dtl) /Oof[(/ |Vu|dt>l1d:c1

Jj=2

( |Vu]dt1) fg(/ / |Vu|dtjdx1)nll
(

IN

1

/ / \Vu\dtgdxl) . (/ ]Vu|dx1>n_ .
(/ / |VU| dt]dl’l) ! .
—3 —oo0 J —o0o

II

J



Similarly, this implies that

/ / n- 1 dl’ldlEQ
< (/ |Vu\ dt2da:1) " (/ / |Vul d$1dI2) - .
I1 (/ / / V| dt; dxldxg) o
=3
— (/ / / |Vul dtgdxldx2> - (/ / |Vul dxldacg) " .
11 (/ / / V| dt; dq:lda:Q) o

4

<.

<.

Repeating this argument we finally get

lu (x r < H ( |Vu (x |dx> = ( |Vu (x)| dx) o
: R"L Rn

lull o < Vel (21)

R

and so

This completes the proof in case p =1 and u € C! (Q2).

Now we consider the case in which 1 < p < n and u € C!(Q). Let
q= %. Note that ¢ > 1 and that ¢-"5 = p*. Denote by p’ the conjugate
exponent of p and observe that (¢ — 1) p’ = p*. Define v = |u|?. Since ¢ > 1
it follows that v € C! (Q) and Vv = gsgn (u)|u|*"' Vu. Applying (21) to
the function v we find that

4

= ( |u’p*dx>p = (/ vnnlda:> '
Rn n

= ol <90l = [ ol [uldo

q (/ Ju|”” da:)p </ |Vu]pda:>p
n Rn

vl

IN

p*
7
= {q HU| p*

and so [[ull. < ¢|[[Vul|,- By this we have proved the theorem for u € C; ()
and all 1 < p < n.
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Now take u € Wy” (), 1 < p < n. By definition there exists a sequence
{ur}pe, in O (Q) such that [lu—wull,, — 0, ie, [lu—wul, — 0 and
|V (u—ug)ll, — 0 as k — oo. From the first part of the present proof,
applied to the functions u; — u;, we know that

Juk = will,e < gV (ur —w)l],

for all k,1 > 1, so {us.},—, is a Cauchy sequence in L?" (). Now ||u — ugll, —
0 implies that [lu — ug||,. — 0 as k — oo. Finally, since [lug|l,. < ¢ [[Vugl],
for all k, u;, — w in L? (Q) and |Vui| — |Vu| in LP (Q) we may conclude
that [|ull,. < q[[Vul,, which completes the proof of the theorem. m

For sake of completeness we mention the following corollary.

Corollary 3.14 Let Q2 C R"™ be open with m (2) < co. Suppose that p,r > 1

are such that
1 1 1
-———+—-—=a>0.
r o p o n

Then

[ull, < Cm Q)% [|Vul,

for all u € Wol’p (Q), where C > 0 is a constant only depending on n and r.
In particular, for p > 1 there exists a constant C' > 0 only depending on

n and p such that |lull, < Cm (Q)% IVull, for all u € Wy ().

Proof. First observe that the case n = 1 is easy. Indeed, it is sufficient
to consider u € C° () C C° (R). Then u (z) = [* ' (¢)dt, so

u@) < [ T (0] de < m ()7 ],

o0

for all z, hence ||u|| ., < m (Q)i [[w[|,,- This implies for all 7 > 1 that

1 1,1 o
ull, < m(Q)7 lull o < m () ||, = m () |||,

without any additional restrictions on p and r.

Now we assume that n > 2. Define s = & It is easy to check that

1<s<mn,s<p(asa>0)and r = s*. In particular W,” (Q) C W, (Q).

Now, with C' = %, it follows from the above theorem that

lull, = llully. < ClVul,
< Cm(Q) 7 [ Vul, = Cm ()" [Vul|,

for all u € Wy” (Q). =

26



4 Holder continuous functions.

In this section we discuss some characterizations of Holder continuous func-
tions in terms of average values.

4.1 Definitions.

First we recall some of the relevant definitions. We assume that €) is an open
subset of R™ and that 0 < o < 1. A function u :  — C is called (uniformly)
Holder continuous with exponent « if there exists a constant K > 0 such
that

u(@) —u(y) < K|z -yl (22)

for all z,y € ). In the case that & = 1 the function u is called Lipschitz
continuous. It is clear that any Holder continuous function u is uniformly
continuous on €2 and hence has a unique continuous extension (which we will
denote by u as well) to the closure Q. It is clear that this extension satisfies
(22) for all z,y € Q. If a function u :  — C is bounded and if there exists
g0 > 0 such that (22) holds for all z,y € 2 satisfying |z — y| < €¢, then u is
uniformly Hoélder continuous with exponent «.

The space of all bounded Hoélder continuous functions with exponent «
on the open set Q C R" is denoted by C%° (ﬁ) It is easy to see that this
space is a Banach space equipped with the norm given by

ju () — u(y)]
[ullg o = [lullo + sup g

x,yel | -y
TFy
for all w € C%° (ﬁ)
A function u : 2 — C is called locally Holder continuous with exponent
0 < o < 1 if for every open Qy C Q with Qy € Q and Q compact we have
ujg, € C (ﬁo). The space of all locally Holder continuous functions with
exponent a on § is denoted by C%* (Q2). Although C%* () is not a Banach
space, it has the obvious structure of a Fréchet space.

4.2 The oscillation of a function.

Let €2 C R™ be open. For any measurable function u : 2 — C we define the
oscillation of u over €2 by

osc (u; Q) = inf {diam (D) : D C C such that u (x) € D a.e. on Q}.
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It is easy to see that the infimum is actually a minimum. In particular,

if € > 0, then osc (u; ) < € if and only if |u(x) —u(y)| < e for almost all

x,y € 2. Obviously, if {2y is an open subset of €2, then osc (u; Q) < osc (u; ).
If u: Q2 — C is measurable then for all z € 2 and all » > 0 we define

wy (z,7) = o0sc (u; B (z,7) N Q).
The following observation will be useful.

Lemma 4.1 Let 2 C R" be open and u : 2 — C measurable. Then there
exrists a continuous function u : 2 — C such that uw = u a.e. on € if and
only if lim, g w, (z,7) = 0 for all x € Q.

Proof. If such a continuous function u exists, then it is clear that
lim, o wy, (2, 7) = lim,|gwy (x,r) = 0 for all z € Q.

Now assume that lim, ow, (z,7) = 0 for all z € Q. Fix 27 € Q and
Ry > 0 such that B (zg, Ry) C €. We will show that there exists a null set
A such that u is uniformly continuous on B (zg, Ro) \A. To this end take
0 < k € N fixed for the moment. For every x € B (z9, Ry) there exists r, > 0
such that w, (z,7,) < ¢ and B (2;,7;) € Q. Using that B (z¢, Ry) is compact
it follows that there exist z1,...,xy € B (xo, Ry) and ry,...,ry > 0 such
that

N

T
B (2, Ro) C L:J1 B (a; 5)
and wy (z;,1;) < % for all = 1,...,N. For every ¢ there exists a null set
F; such that |u(z) —u(y)| < ¢ for all 2,y € B(x;,r;)\F;. Define Ay =
FiU---UFy and 0 = 3min{ry,...,ry}. We claim that |u (z) —u (y)] < 3
for all z,y € B (x¢, Ro) \ A with |z — y| < dx. Indeed, there exists an i such
that z € B (xi, %) and from the definition of &y it follows that B (z,d;) C
B (z;,1;), so in particular y € B (x;,r;). Consequently x,y € B (z;, ;) \F;
and so |u(z) —u(y)| < 1, which proves that claim. Define A = (J;2, Ay.
We claim that w is uniformly continuous on B (zg, Ry) \ A. Indeed, let € > 0
be given. Take 0 < k € N such that % < e If v,y € B(x9, Ro)\A are
such that |z —y| < 0k, then in particular z,y € B (xo, Ro) \Ax and so
lu(z) —u(y)| < 1+ <e, by which that claim is proved.

Since B (zg, Ry) \A is dense in B (zg, Ry) it follows that there exists a
unique continuous function @, : B (0, Rg) — C such that u = 1y a.e. on
B (20, Ro). If B (w1, Ry) and B (x4, Ry) are closed balls contained in © and @,
and iy are continuous functions on B (x1, R;) and B (x4, R,) respectively such
that u = @; and u = @y a.e., then @, = @y on B (z1, Ry) N B (21, Ry). From
this observation it follows now immediately that there exists a continuous
function u :  — C such that v = w a.e. on ). =
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Remark 4.2 Let u: Q) — C be a measurable function. If x € Q and if there
exists a measurable function u, : £ — C which is continuous at x such that
u = Uy a.e. on €, then it follows that lim, ow, (z,r7) = 0. Therefore, if for
every x € §) there exists a measurable function u, on €2 which is continuous
at x such that w = u, a.e. on Q, then lim, gw, (z,7) =0 for all x € ) and
so by the above lemma there exists a continuous function u : 0 — C such
that w = u a.e. on ).

For later reference we include the following simple observation.

Lemma 4.3 For any open set 2 C R™ and measurable function u : Q — C
the following two statements are equivalent:

1w 0o (Q);

2. u s bounded and there exists a constant K > 0 and ro > 0 such that
wy (z,7) < Kr® for all0 <r <19 and all x € Q).

Proof. It is clear that 1. implies 2. Now assume that u satisfies 2.
First note that 2. implies that lim, ow, (z,7) = 0 and so, by Lemma 4.1
we may assume that u is continuous. Suppose that x,y € € are such that
|z —y| < 1o and take r such that |z —y| < r < ro. Then y € B(z,r) and
so, since u is continuous it follows that |u (z) —u (y)] < wy (z,7) < Kre.
Letting r | |z — y| gives |u(x) —u (y)] < K |x —y|”. As observed already in
Section 4.1, this suffices to show that u € C%¢ (ﬁ) [

The following lemma gives a sufficient condition for a function u to belong
to C% ().

Lemma 4.4 Suppose that 2 C R™ is open and u : 2 — C is measurable
such that there exists a constant K > 0 such that w, (x,r) < Kr® for all
r € Q and all v > 0 such that B (z,2r) C Q. Then u € C%(Q).

Proof. The condition on u clearly imply that lim, | ow, (z,r) = 0 for all
x € . Hence, by Lemma 4.1 we may assume that w is continuous. Let
Qy C Q be open such that Qg is compact and Qy € Q. Then wu is bounded
on . Since € is compact there exist ry > 0 such that B (z,2r) C Q for
all x € Qg and all 0 < r < ryg. Hence w, (x,r) < Kr® for all x € Qy and all
0 < r < rg. This clearly implies that u satisfies condition 2. of the above
lemma on €, and so u € C%¢ (ﬁo). [ ]
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4.3 Characterizations of Holder continuity.

Suppose that Q is an open subset of R". Recall that if u € L}, (Q) and
B (z,7) C Q, then we denote

1

The following result is due to S. Campanato (1963).

u(E,’I’ =

Theorem 4.5 Assume that v € L, () and 0 < a < 1. If there exists a
constant M > 0 such that

1
m (B,)

/ 0 () — | dy < My
B(z,r)

for all balls with B (z,r) C Q, then
wy (,r) < CMr®

for all x € Q and all v > 0 for which B (x,2r) C Q, where C > 0 is a
constant only depending on n and o. In particular, u € C%* ().

Proof. We start the proof with the following observation. Suppose that
z € Q and r > 0 are such that B(z,7) C . Now take z € Q such that
|z — z| < 3r. We claim that

|5 — U | < 2"M1° (23)

Indeed, using that B (Jc, %) C B(z,r), we find that

1
gy = Usy| = ‘ )/B( {u(y) —u.p}dy

m (B;) Ji(es)
< [ ) -l
-~ u ?/ _uz,’r‘ y
m (Bg) B(m,%)
AR /
< lu(y) — Uy, | dy < 2"Mre®,
m(BT> B(z,r)

which proves that claim.
As before we denote by L, the Lebesgue points of the function u. Fix
x € L, and 7 > 0 such that B (z,r) C Q. It follows in particular from (23)
that
‘ax,Q_jr - az,2—3'+1r| < 2nM2(—j+1)ocra
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for all 7 =1,2,... and so

k
lyo-t — Upy| < < 2" My ) 207t
Uy 2-k Uy, >~ x2 ir — UIIQ i1y r

J=1 j=1
= 21 2ka]\fa<2” = CiMr®
I T e T
for all K =1,2,.... Since x € L, we have

lq}%lumz r=u(x),

hence
|u(x) — Uyp] < CLMTE.

Now take z € Q and r > 0 such that B (z,2r) C Q. For any y €
B (z,r)N L, we find that
”U, (y) - am,2r| S ’u (y) - ﬂy,r| + |ﬂy,r - ﬂx,2r|
< CyMr® +2"M (2r)* = [Cy + 2™2%] Mr®.
This implies that
u(y) —u(z)] < CMr®

for all y,z € B (x,r)N L, and hence w, (z,7) < CMr®. The last statement
of the theorem now follows from Lemma 4.4. m
The following theorem goes back to C.B. Morrey.

Theorem 4.6 Let Q be an open subset of R™ and let u € W (Q). Suppose
that 0 < o <1 and that there exists a constant M > 0 such that

1
_ de < Mro! 24
m (BT) /B(x,r) ’vu’ v " ( )
for all open balls B (xz,r) C Q. Then
wy (z,7) < CM7re

for all x € Q and all v > 0 for which B (x,2r) C Q, where C > 0 is a
constant only depending on n and «. In particular, u € C%* (Q).

Proof. It follows from Corollary 3.11 that there exists a constant C; > 0,
only depending on n, such that

/ U — Uy, | dy < C’lr/ \Vu| dy
B(z,r) B(z,r)
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for all z € Q2 and r > 0 such that B (z,7) C Q. Hence it follows from (24)

that
1

—_— |u — Uy | dy < CLM7T®
m(BT) /B(z,r)

for all balls B (x,r) C . This shows that the conditions of Theorem 4.5 are
fulfilled, by which the result follows. =

Corollary 4.7 Let Q2 be an open subset of R™ and let u € W (Q), 1 <p <
00. Suppose that 0 < a < 1 and that there exists a constant M > 0 such that

b
m (B,)

for all open balls B (xz,r) C Q. Then
wy (z,1) < CMr®

/ |Vul? de < MPrPe—P
B(z,r)

for all x € Q and all > 0 for which B (z,2r) C Q, where C > 0 is a
constant only depending on n and «. In particular, u € C%* (Q).

Proof. For all B (z,r) C Q we have

1 / 1 v »
|Vu|dy < ( / |Vul? dy) < Mre .
m (B,) B(z,r) m (B;) B(z,r)

This shows that the assumptions of the previous theorem are satisfied and
the result follows. m

5 Bounded mean oscillation.

In this section we discuss some of the basic properties of functions of bounded
mean oscillation. In particular we will present a proof of the John-Nirenberg
theorem.

5.1 Definitions.

Let 2 be an open subset of R". We will assume that €2 is connected. It will
be more convenient in this section to use closed cubes in R™ instead of balls.
The collection of all closed cubes in R" will be denoted by Q. If f € L} . (Q)
and if () is a closed cube such that ) C 2 then we will denote the mean
value of f on @ by fo, i.e.,

1
fQ:W/Qf(ﬁ)dx-
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Definition 5.1 We say that a function f € Lj,.(Q) is of bounded mean
oscillation on ) if

1
Ifll Baro = Zlellg m Q) /Q |f (x) — foldr < oco.

QCQ
The collection of all such functions will be denoted by BMO (£2).

It is clear that BMO (Q) is a vector space and that [|-|| 5,,o is & semi-
norm. If f € L. (), then | f|lz10 = 0 if and only if f is a.e. con-
stant on 2. Identifying functions which differ by a constant, i.e., replacing
BMO (R2) by the quotient space BMO (£2) /C1, we obtain the normed space
(BMO () /C1, ||| garo)- In the sequel however we will consider BMO (€2)
as a space of functions and not of such equivalence classes.

It is easy to see that L () C BMO (2) and that || f|| 51,0 < 2]l for
all f e L>(Q) (and actually || f]|zp0 < 1]l for all f e L (Q) ).

Lemma 5.2 1. If f € L}, () and if there exists a constant A > 0 such

loc

that for every closed cube QQ C Q) there is an ag € C with the property
that

@) |17 —ocldr <4 (25)
then f € BMO () and || f| g0 < 24.

2. If f € BMO(Q) then |f| € BMO () and |||flllgao < 2I1fll gao- In
particular BMO (§2) is a lattice.

3. In the case that @ = R™, the space BMO (R") is invariant under trans-
lations and dilations. To be more precise, if f € BMO (R") and if we
define for a € R™ and 6 > 0 the functions T,f and Dsf by (T, f) (z) =
f(x+a) and (Dsf)(x) = f(dx) respectively for all x € R", then
T.f, Dsf € BMO (R") and ||Tofl grro = 1Dsflpro = 1/l uo-

Proof.

1. First note that (25) implies that

fo—aal = | gy L (@) - aq)a
—ag| = |—— x) —ag)dr
Q Q m(Q) o Q

1
< W/Qu(x)—a@mxw.
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Hence

1
W/Q\f(w)—fcz\dx (26)
< @/@|f($)—0&c2‘d&?+’f@—a@|§2A.

2. For any closed cube ) C ) we have

1 1
m(Q)/QHf(m)l—\fQdeS—m(Q)/QU(x)—nydxg 1l a0

and so the result follows immediately from 1. (applied with ag = | fol)-

3. For T, f the statement follows immediately from the translation invari-
ance of the Lebesgue measure in R”. We indicate the proof for Dsf.
Let @ be any closed cube in R™. We denote §Q = {dz : z € Q}. Then

1 1
(Dsf)g = W/Qf((sx)dngnm—@/mf(y)dy

1
= m/é@f(y)dysz‘

Hence

_ 1
T /Q D5F (2) = (Dsf)g e = s /m F W) = froldy, (27)
from which the claim follows.

Remark 5.3 We consider the case 2 = R". It is easy to see that a function
f € L}, (R™) belongs to BMO (R™) if and only if there exists a constant
A >0 such that

1
W/B|f($)—f3|d$§z4

for all open (or closed) balls B C R™. It is clear that (27) and (26) also hold
if we replace the cube @) by a ball B.

Example 5.4 Toke 2 = R"™ and define f (x) = log |x|. Then f € BMO (R").
To verify this statement first observe that it follows from (27) that for any
open ball B C R™ and all 6 > 0 we have

1 1
m(B)/B|f(l')_fB|de' = m/é_lB|D§f (%)—(D5f)6,1B|dx
1

~ m (5B /5-13 74@) = Jom sl 4,

34



as Dsf (x) = log (|0x]) = log |z|+1og (8). Therefore it is sufficient to consider
balls B with radius equal to 1 only. Now we consider two cases:

(1). B = B (xg,1) with |zo| <2. Then B C B(0,3) and so

1 1

(i1). B = B (xg,1) with |zo| > 2. In this case we have

/|f $0|d$_ﬁ/3

dx <log?2,
|z o\

log —

since

| —

for all z € B.

Via (26) we may now conclude that f € BMO (R™). It should be observed
that (in case n = 1) the function f (x) =log|z| X (g (¥) does not belong to
BMO (R) (although it belongs to BMO (0,00)).

Proposition 5.5 (BMO () /C1, |- 500) i a Banach space.

Proof. We start with the following observation. Suppose that Q)q, Q2 €
Q such that @ € @y C Q. For any f € BMO () we then have

‘m(lQl)
1

for — fou) /Q (f (2) — fou) de

< (@) Jo |f () = fQu| dx

0
m(Q)) 1 o

( (Q) NCEY LD
m(Q

)) (@)
< () 1w

JFrom this observation it follows that for any two closed cubes Q1,2 C 2
such that int (Q1 N @Q2) # O there exists a constant ¢ (Q1, Q2) > 0 such that

[far = fa.] < c(Q1,Q2) HfHBMO (29)

35



for all f € BMO (). Indeed, take a closed cube Q3 C (1 N Q2. Then it
follows from (28) that

[for — faul < fan — fasl + 1 fas — fal
m(Qz)  m(Q3) BMO

IN

for all f € BMO ().

Now assume that {f,},—, in BMO () is such that ||fx — fill g0 — O
as k,l — oo. We have to prove that there exists f € BMO (£2) such that
\fi — fllgmo — 0 as k — oo. Take a fixed closed cube @y C €. Replacing
fi by fir.— (f) g, We may assume that (f’f)Qo = 0 for all k. Now let Q. be the

o0

collection of all closed cubes @ C 2 with the property that {( fk)Q} is
k=1

convergent in C and put Q. = [J{int (Q) : @ € Q.}. We claim that O\ €2, is
open. Indeed, let @Q; be any closed cube such that Q; C Q and Q; N Q. # 0.
Then there exists @ € Q. such that int (Q; N Q2) # () and so it follows from
(29) that

{1, ~ o, } = {(a. — (o, }]
— ‘(fk — g, = (e = Mg, | < ¢(@Q1,Q2) 1fx = fill paso -

o o
Since {( fi)g, }k—l is convergent, this implies that {( f)o, }k—l is convergent

and hence ), € Q.. Hence Q1 C €, from which the claim follows. Since Q is
assumed to be connected this shows that €2 = .. O\iVe thus have shown that

for any closed cube ) C € the sequence {( fk)Q} is convergent. ;From
k=1
this it follows that

ﬁ/@’fk—fﬂdf’?
< @y o 0= 00 = G o] e+ g = g

< |fe = fillaro + ‘(fk)Q - (fl)Q‘ '

Therefore, the restrictions of {f;} to @ are a Cauchy sequence in L' (Q)
and so there exists f¢ € L' (Q) such that ka - fQHLl(Q) — 0 as k — oo.

If Q; and Q. are two such closed cubes, then it is clear that f@ = f@2
a.e. on Q1 N Qy. Hence there exists f € L, () such that fio = f@ for

loc

every closed cube @ C Q. It remains to show that f € BMO (2) and that
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| fx = fllgmo — 0 as k — oo. To this end let ¢ > 0 be given. Then there
exists N € N such that ||fy — fi|| < € for all k,l > N. Take a closed cube
Q C Q. Then

ﬁ/cg ’fk —fi—(fi)g — (fz)Q’dI <e

for all k,l > N. Since (fi)q — fio In L' (Q) implies that (f;), — fo, it
follows via Fatou’s lemma that

/‘fk — (fi — )Q‘dl’ﬁé‘

for all K > N. This shows that
su dr <e
Qegm /‘ f)Q’ N

for all &k > N. Consequently fr, — f € BMO (), so f € BMO (), and

1fx = Fllparo < €

for all £ > N, which completes the proof of the proposition. m

5.2 The John-Nirenberg theorem.

For the proof of this theorem we will use the following form of the so-called
Calderon-Zygmund decomposition. For sake of convenience we will say that
two closed cubes in R™ are disjoint if their interiors are disjoint.

Proposition 5.6 Let Qq be a closed cube in R"™ and suppose thatu € L' (Qy).
Let v be a constant such that

b
m (QO) Qo

Then there exists an at most countable collection {Q;} of mutually disjoint
subcubes of Qo such that

lul dx < a.

1. |ul < a a.e. on Qp\ (UJ Qj),'

2. for all j we have

o
a< ——— lu| dx < 2"a;
m(QJ) Qj
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3. 3;m(Q) <at [, uldz.

Proof. Without loss of generality we may assume that Qg = [0, 1]". The
following terminology will be convenient. If () C @)y is a subcube, then we
will say that:

e Qis a case I cube if m (Q) ™" Jo luldz < o
e Qis a case II cube if m (Q)~" Jo luldz > a.

By hypothesis, ()g is a case I cube. Now we partition )y in 2" equal
disjoint cubes. If one of these subcubes is a case II cube, then we put this
cube in the collection {@;}. On the remaining case I cubes we repeat the
above procedure.

We claim that the in this way constructed collection {();} has the desired
properties. Indeed, it is clear that the collection {Q;} is pairwise disjoint.

Now take z € Qo \, (U] Qj). Then any dyadic cube A C Qg with z € A

must be case I and so .
_ uldx < a.
i o

Now assume in addition that x is a Lebesgue point of |u| and take a sequence
{Ag}2, of dyadic cubes in Qg such that z € A, for all k& and m (Ag) — 0
as k — oo. Then

1

_ uldr — |u(z)| as k — o0
T L = @)

and so |u (x)| < a. This shows that {Q;} satisfies (i).

To prove property (ii), take any of the cubes Q;. Let Q} be the dyadic
ancestor of Q; (i.e., Q; was obtained by subdivision of Q). Since Q} was
not selected, it must be a case I cube. Hence,

> 1/||d> L /||d>2‘”
a>——— ulde > ——— uldr > a
m (Q%) Q@ 2'm (Q;) Jo,

and this is (ii).
Finally, since the cubes {@;} are mutually disjoint, it follows immediately
from (ii) that

1 1
m(Q;) < —/was— u da,
which is (iii). m
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Theorem 5.7 (John-Nirenberg) Let Qy be a closed cube in R™ and sup-
pose that f € BMO (Qq). Then for every cube Q C Qo and all A > 0 we

have

m({z € Q: |f (2) — fal > A}) < Cm (Q)exp (‘—A) ,

1l zaso

where C ¢ > 0 are constants only depending on n.

Proof. We may assume that || f||5,,0 < 1, i.e., that

1
W/@U(I)-fcﬂdxgl

for all cubes Q C Q.
Now let @) be a fixed cube in @)g. We apply Proposition 5.6 to the func-
tion u = |f — fo| with a = 2. This yields a collection {le };i of disjoint

2 1
subcubes of () such that

(). 1f = fol <3 ae. on O\ (U, Q)5

(ii). for all 7 we have

Ty~ fa| < m/@ 1 (@) - foldz < 3277,

(ii).
Yo (@) < g/QIf—fQ\dwé “m(Q)

Note that the first inequality in (ii) follows from

1
< @] oy Sl

Now apply Proposition 5.6 to each cube le and the function ‘ f— fQ}

with o = 3. This gives a collection {Q?} of disjoint cubes (each Q? is

contained in some Q}). For almost all z € (JQ})\ (UQ?) we have

for = fo| = 'ﬁ/@) (f () = fo)dr

, again

3
+ ‘fQ; — fQ) <5+ 3.2" 1 <2321

f (@) = fol < | (@) = fp
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This inequality certainly holds for z € @\ (U Q}). Hence

1 (@) — fol < 2327

for all z € Q\ (U Q?) Furthermore,

S#Q?)/Q?’f(«%)—fcy;

whenever Q% C Q7 and so

dr < 3.2" 1

‘ng. - fo

‘fcgg - fQ’ < ’fQ§ —fa)

+ ‘fle, — fQ’ <2327
Moreover,

> (@) £33 m(@) < (2) ma.

Continuing this process we obtain at stage k a collection {Qf} of mutually
disjoint cubes such that

{ £ (2) = fol < 362" ae. on QN (U; @))
Zm (@) < (3)'m(@)

Now take A > 0 and suppose that 3k2"! < X\ < 3(k+1)2"! for some
k > 1. Then

{freq:1f ()~ fol >N U

and so

m{zeQ:[f(x)=fol >A}) < Zm(Qﬁ) < <—>km(Q)
< eidm (Q)
with e.g. ¢ =3712""log (3). If 0 < A <3.2"7!, then
m({z €Q:|f(2) = fol > A}) Sm(Q) < ¥ e m (Q)

and so we can take C' = exp (3.2" 'c). m
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5.3 Some consequences.

Next we will discuss some consequences of the John-Nirenberg theorem. First
we recall some useful formulas from general integration theory.

Suppose that (€2, A, p) is a measure space. Let f : 2 — C be a measurable
function. The distribution function djz : [0,00) — [0, ()] of |f] is then
defined by

digg(A) = p{z € Q:|f(2)] > A}
Note that d|g is decreasing, left continuous and if there exists A¢ such that
dif (Ao) < 00, then djf (A\) — 0 as A — oo.

Lemma 5.8 Let ¢ : [0,00) — [0,00) be measurable and define ® (t) =
fotgo(s) ds for all t > 0. For every measurable function f : Q — C we
have

L@ﬂﬂMM:Awwwmw@m&

Proof. Using Fubini’s theorem it follows that

[ounmw = [ [ e

= /OOO/QX{f|>s}90(3) du (z) ds
- Aww@nwxeawfun>shk

- 4m¢@ﬁMM$d&

[
Applying the above lemma to the functions ¢ (s) = ps?~! and ¢ (s) = ke
respectively we immediately get the following corollary.

ks

Corollary 5.9 For every measurable function f : 2 — C we have:

/Qlfl duzp/o S (s) ds (30)

forall1 <p < oo;

/Q (ek‘fl —1)dp= k/o e djy (s)ds (31)
for all k € R.
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Now we return to BMO-functions on R"™. Suppose that () is a cube
in R" and that f € BMO (Q). For notational convenience we denote the
distribution function of |f — fg| on @ simply by d. By the John-Nirenberg
theorem, this distribution function d satisfies

10 < Cm(@ e () (3)

[nalrsyee

for all A > 0, where ¢,C' > 0 are two constants depending only on n.

Proposition 5.10 There exist constants cy,co > 0, only depending on n,
such that for all k < ¢y and all f € BMO (Q) we have

1
_ X dr < cq.
m<@>/Qe p(HfHBMO 7= fQ') TS

Proof. Let ¢ > 0 denote the same constant as in (32) and take c; = §.

Fix a function f € BMO (@) and denote the distribution function of |f — fg|
by d. Take k < ¢o. Using (31) and the estimate (32) we find that

/Q[eXp<r\fuBMo 7= fQ') }
k R k
= — X —5s]d d
||fuBMo/o ep(HfHBMoS) (5) ds
k & k —c
—C - — s |d
S oo m(Q)/o e"p(nanMos) eXp(nanMoS) ;

k R —c
— - C xp | o755 ) d
1 lomro m@ [ e p(zuanMoS) ;

= —em (@ WMo < ¢y ).

1l zaro

This implies that

Jew (e~ fal) < €+ mi@

and so we can take ¢y =C +1. m
Another consequence of the John-Nirenberg theorem is the following
proposition.
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Proposition 5.11 For every 1 < p < oo there exists a constant C,, only
depending on n and p, such that for any closed cube ) C R™ and all f €
BMO (Q) we have

1 P v
(W/Q’f—fc)] dx) < Gy [l fllparo -

Proof. Take f € BMO (Q) and let d be the distribution function of
|f — fol on Q. Then it follows from (30) and (32) that

/Q!f—fQ!pd:v = p [T
< pCm(Q) /OOO sP~exp <_—CS) ds

1l zaro

P [ee}
_ pCm (Q) “fHBMO/ P13 ds
cP 0

= Com(Q) I o

which implies the result of the proposition. m

Corollary 5.12 Let Q C R™ be open and f € L. (2). The following state-
ments are equivalent:

1. f € BMO(9Q);

2. for all (some) 1 < p < oo we have
] 1
sup —/ f—f|pdx) < 0 33)
QeQ (m (@) Jo | ¢ (
QEQ
Moreover, (33) defines an equivalent norm on BMO ().

Proof. First assume that f € BMO (2) and let 1 < p < oo be given.
Then it is clear from the definition that f € BMO (Q) for any closed cube
Q C Qwith || fll prro) < I1flsaroy- Now it follows from Proposition 5.11
that

1 g
(m(Q) /Q 1 = Jol’ dx) < Gyl flsarow@) < Co lflsarogey

which implies 2.
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Now assume that f € L} () is such that (33) is satisfied for some
1 < p < o0. Since

1 1 L \7
—Q)/Qlf—fcgldrcﬁ (W/Qu—fm dx)

for any closed cube @ C €, it follows immediately that f € BMO (£2). The
final statement of the corollary is now also clear form the proof. m

Before formulating the next result we recall the following definition. Let
(2, A, ;1) be a measure space and suppose that f : @ — C is a measurable

function such that djs (A) < oo for some A > 0. The decreasing rearrange-
ment f*:(0,00) — [0,00) of |f] is then defined by

f* (t) = inf{)\ >0: dm (/\) < t}

for all ¢ > 0. The function f* is decreasing, left-continuous and equi-
measurable with |f| (i.e., the functions f* and | f| have the same distribution
function).

Proposition 5.13 Let Q C R"™ be a closed cube and f € BMO (Q). Then

(F — foy (1) < oo 10, (CmT@))

for allt > 0, where c,C > 0 are constants depending only on n.

Proof. Take f € BMO (Q) and denote the distribution function of
|f — fol| by d(X). Using (32) it follows that

(f= o) () = mf{A>0:d(\) <1}
inf{/\>0:0m(Q)exp< —c )<t}

11l saso

A\
:inf{/\>0:— ¢ <log<
11| 5aso

IA

(Q))}
= inf{)\>0:>\>||fHTBMolog< (Q))}

and we are done. ®m
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