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Preface

This book is based on notes compiled during the many years I taught the course “Ap-
plied Functional Analysis” in the first year of the master’s programme at Delft Uni-
versity of Technology, for students with prior exposure to the basics of Real Analysis
and the theory of Lebesgue integration. Starting with the basic results of the subject
covered in a typical Functional Analysis course, the text progresses towards a treatment
of several advanced topics, including Fredholm theory, boundary value problems, form
methods, semigroup theory, trace formulas, and some mathematical aspects of Quantum
Mechanics. With a few exceptions in the later chapters, complete and detailed proofs
are given throughout. This makes the text ideally suited for students wishing to enter
the field.

Great care has been taken to present the various topics in a connected and integrated
way, and to illustrate abstract results with concrete (and sometimes nontrivial) appli-
cations. For example, after introducing Banach spaces and discussing some of their
abstract properties, a substantial chapter is devoted to the study of the classical Banach
spaces C(K), Lp(Ω), M(Ω), with some emphasis on compactness, density, and approxi-
mation techniques. The abstract material in the chapter on duality is complemented by a
number of nontrivial applications, such as a characterisation of translation-invariant sub-
spaces of L1(Rd) and Prokhorov’s theorem about weak convergence of probability mea-
sures. The chapter on bounded operators contains a discussion of the Fourier transform
and the Hilbert transform, and includes proofs of the Riesz–Thorin and Marcinkiewicz
interpolation theorems. After the introduction of the Laplace operator as a closable op-
erator in Lp, its closure ∆ is revisited in later chapters from different points of view: as
the operator arising from a suitable sesquilinear form, as the operator −∇⋆∇ with its
natural domain, and as the generator of the heat semigroup. In parallel, the theory of its
Gaussian analogue, the Ornstein–Uhlenbeck operator, is developed and the connection
with orthogonal polynomials and the quantum harmonic oscillator is established. The
chapter on semigroup theory, besides developing the general theory, includes a detailed
treatment of some important examples such as the heat semigroup, the Poisson semi-

ix
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x Preface

group, the Schrödinger group, and the wave group. By presenting the material in this
integrated manner, it is hoped that the reader will appreciate Functional Analysis as a
subject that, besides having its own depth and beauty, is deeply connected with other
areas of Mathematics and Mathematical Physics.

In order to contain this already lengthy text within reasonable bounds, some choices
had to be made. Relatively abstract subjects such as topological vector spaces, Banach
algebras, and C⋆-algebras are not covered. Weak topologies are introduced ad hoc, the
use of distributions in the treatment of weak derivatives is avoided, and the theory of
Sobolev spaces is developed only to the extent needed for the treatment of boundary
value problems, form methods, and semigroups. The chapter on states and observables
in Quantum Mechanics is phrased in the language of Hilbert space operators.

A work like this makes no claim to originality and most of the results presented here
belong to the core of the subject. Not just the statements, but often their proofs too, are
part of the established canon. Most are taken from, or represent minor variations of,
proofs in the many excellent Functional Analysis textbooks in print.

Special thanks go to my students, to whom I dedicate this work. Teaching them
has always been a great source of inspiration. Arjan Cornelissen, Bart van Gisbergen,
Sigur Gouwens, Tom van Groeningen, Sean Harris, Sasha Ivlev, Rik Ledoux, Yuchen
Liao, Eva Maquelin, Garazi Muguruza, Christopher Reichling, Floris Roodenburg, Max
Sauerbrey, Cynthia Slotboom, Joop Vermeulen, Matthijs Vernooij, Anouk Wisse, and
Timo Wortelboer pointed out many misprints and more serious errors in earlier ver-
sions of this manuscript. The responsibility for any remaining ones is of course with
me. A list with errata will be maintained on my personal webpage. I thank Emiel Lorist,
Lukas Miaskiwskyi, and Ivan Yaroslavtsev for suggesting some interesting problems,
Jock Annelle and Jay Kangel for typographical comments, and Francesca Arici, Martijn
Caspers, Tom ter Elst, Markus Haase, Bas Janssens, Kristin Kirchner, Klaas Landsman,
Ben de Pagter, Pierre Portal, Fedor Sukochev, Walter van Suijlekom, and Mark Veraar
for helpful discussions and valuable suggestions.

A significant portion of this book was written in the extraordinary circumstances of
the global pandemic. The sudden decrease in overhead and the opportunity of work-
ing from home created the time and serenity needed for this project. Paraphrasing the
epilogue of W. F. Hermans’s novel Onder Professoren (Among Professors), the book
was written entirely in the hours otherwise spent on departmental meetings, committee
meetings, evaluations, accreditations, visitations, midterms, reviews, previews, etcetera,
and so forth. All that precious time has been spent in a very useful way by the author.

Delft, April 2022
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Preface xi

In the present corrected version we have fixed numerous small misprints, a few misfor-
mulations and editing errors, as well as a small number of mathematical oversights. In
some proofs, additional details have been written out, and some arguments have been
streamlined. I thank Jan Maas for some valuable suggestions in this direction.

Delft, May 2023

In the present version we have fixed further misprints, most of which were kindly
pointed out by Quinten Donker, Niels Goedegebure, Norman Goldstein, Robert Spek-
snijder, and Chris van Vliet. Some paragraphs underwent minor polishing, a few proofs
have been simplified, and several new problems have been added.

Delft, October 2024
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Notation and Conventions

We write N = {0,1,2, . . .} for the set of nonnegative integers, and Z, Q, R, and C for
the sets of integer, rational, real, and complex numbers. Whenever a statement is valid
both over the real and complex scalar field we use the symbol K to denote either R or C.
Given a complex number z = a+bi with a,b ∈ R, we denote by z = a−bi its complex
conjugate and by Rez = a and Imz = b its real and imaginary parts. We use the symbols
D and T for the open unit disc and the unit circle in the complex plane, respectively.
The indicator function of a set A is denoted by 1A. In the context of metric and normed
spaces, B(x;r) denotes the open ball with radius r centred at x. The interior and closure
of a set S are denoted by S◦ and S, respectively. We write S′ ⊆ S to express that S′ is a
subset of S. The complement of a set S is denoted by ∁S when the larger ambient set,
of which S is a subset, is understood. We write |x| both for the absolute value of a real
number x ∈ R, the modulus of a complex number x ∈ C, and the euclidean norm of an
element x = (x1, . . . ,xd) ∈Kd. When dealing with functions f defined on some domain
D, we write f ≡ c on S ⊆ D if f (x) = c for all x ∈ S. The null space and range of a
linear operator A are denoted by N(A) and R(A) respectively. When A is unbounded, its
domain is denoted by D(A). A comprehensive list of symbols is contained in the index.

Unless explicitly otherwise stated, the symbols X and Y denote Banach spaces and H
and K Hilbert spaces. In order to avoid frequent repetitions in the statements of results,
these spaces are always thought of as being given and fixed. Conventions with this re-
gard are usually stated at the beginning of a chapter or, in some cases, at the beginning
of a section. The same pertains to the choice of scalar field. In Chapters 1–5, the scalar
field K can be either R or C, with a small number of exceptions where this is explicitly
stated, such as in our treatment of the Hahn–Banach theorem, the Fourier transform, and
the Hilbert transform. From Chapter 6 onwards, spectral theory and Fourier transforms
are used extensively and the default choice of scalar field is C. In many cases, however,
statements not explicitly involving complex numbers or constructions involving them
admit counterparts over the real scalars which can be obtained by simple complexifica-
tion arguments. We leave it to the interested reader to check this in particular instances.

xii
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1
Banach Spaces

The foundations of modern Analysis were laid in the early decades of the twentieth
century, through the work of Maurice Fréchet, Ivar Fredholm, David Hilbert, Henri
Lebesgue, Frigyes Riesz, and many others. These authors realised that it is fruitful to
study linear operations in a setting of abstract spaces endowed with further structure to
accommodate the notions of convergence and continuity. This led to the introduction of
abstract topological and metric spaces and, when combined with linearity, of topological
vector spaces, Hilbert spaces, and Banach spaces. Since then, these spaces have played
a prominent role in all branches of Analysis.

Stefan Banach, 1898–1945

The main impetus came from the study of or-
dinary and partial differential equations where
linearity is an essential ingredient, as evidenced
by the linearity of the main operations involved:
point evaluations, integrals, and derivatives. It
was discovered that many theorems known at
the time, such as existence and uniqueness re-
sults for ordinary differential equations and the
Fredholm alternative for integral equations, can
be conveniently abstracted into general theorems
about linear operators in infinite-dimensional
spaces of functions.

A second source of inspiration was the discov-
ery, in the 1920s by John von Neumann, that the
– at that time brand new – theory of Quantum Mechanics can be put on a solid math-

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven

1



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
2 Banach Spaces

ematical foundation by means of the spectral theory of selfadjoint operators on Hilbert
spaces. It was not until the 1930s that these two lines of mathematical thinking were
brought together in the theory of Banach spaces, named after its creator Stefan Banach
(although this class of spaces was also discovered, independently and about the same
time, by Norbert Wiener). This theory provides a unified perspective on Hilbert spaces
and the various spaces of functions encountered in Analysis, including the spaces C(K)

of continuous functions and the spaces Lp(Ω) of Lebesgue integrable functions.

1.1 Banach Spaces

The aim of the present chapter is to introduce the class of Banach spaces and dis-
cuss some elementary properties of these spaces. The main classical examples are only
briefly mentioned here; a more detailed treatment is deferred to the next two chapters.
Much of the general theory applies to both the real and complex scalar fields. Whenever
this applies, the symbol K is used to denote the scalar field, which is R in the case of
real vector spaces and C in the case of complex vector spaces.

1.1.a Definition and General Properties

Definition 1.1 (Norms). A normed space is a pair (X ,∥ · ∥), where X is a vector space
over K and ∥ ·∥ : X → [0,∞) is a norm, that is, a mapping with the following properties:

(i) ∥x∥= 0 implies x = 0;
(ii) ∥cx∥= |c|∥x∥ for all c ∈K and x ∈ X ;

(iii) ∥x+ x′∥⩽ ∥x∥+∥x′∥ for all x,x′ ∈ X .

When the norm ∥ · ∥ is understood we simply write X instead of (X ,∥ · ∥). If we wish
to emphasise the role of X we write ∥ · ∥X instead of ∥ · ∥.

The properties (ii) and (iii) are referred to as scalar homogeneity and the triangle
inequality. The triangle inequality implies that every normed space is a metric space,
with distance function

d(x,y) := ∥x− y∥.

This observation allows us to introduce notions such as openness, closedness, com-
pactness, denseness, limits, convergence, completeness, and continuity in the context of
normed spaces by carrying them over from the theory of metric spaces. For instance,
a sequence (xn)n⩾1 in X is said to converge if there exists an element x ∈ X such that
limn→∞ ∥xn− x∥ = 0. This element, if it exists, is unique and is called the limit of the
sequence (xn)n⩾1. We then write limn→∞ xn = x or simply ‘xn→ x as n→ ∞’.

The triangle inequality (iii) implies both ∥x∥ − ∥x′∥ ⩽ ∥x− x′∥ and ∥x′∥ − ∥x∥ ⩽
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5
1.1 Banach Spaces 3

∥x′−x∥. Since ∥x′−x∥= ∥(−1) ·(x−x′)∥= ∥x−x′∥ by scalar homogeneity, we obtain
the reverse triangle inequality ∣∣∥x∥−∥x′∥∣∣⩽ ∥x− x′∥.

It shows that taking norms x 7→ ∥x∥ is a continuous operation.
If limn→∞ xn = x and limn→∞ x′n = x′ in X and c ∈ K is a scalar, then ∥cxn− cx∥ =
∥c(xn− x)∥= |c|∥xn− x∥ implies

lim
n→∞
∥cxn− cx∥= 0.

Likewise, ∥(xn +x′n)− (x+x′)∥= ∥(xn−x)+(x′n−x′)∥⩽ ∥xn−x∥+∥x′n−x′∥ implies

lim
n→∞
∥(xn + x′n)− (x+ x′)∥= 0.

This proves sequential continuity, and hence continuity, of the vector space operations.
Throughout this work we use the notation

B(x0;r) := {x ∈ X : ∥x− x0∥< r}

for the open ball centred at x0 ∈ X with radius r > 0, and

B(x0;r) := {x ∈ X : ∥x− x0∥⩽ r}

for the corresponding closed ball. The open unit ball and closed unit ball are the balls

BX := B(0;1) = {x ∈ X : ∥x∥< 1}, BX := B(0;1) = {x ∈ X : ∥x∥⩽ 1}.

Definition 1.2 (Banach spaces). A Banach space is a complete normed space.

Thus a Banach space is a normed space X in which every Cauchy sequence is con-
vergent, that is, limm,n→∞ ∥xn− xm∥ = 0 implies the existence of an x ∈ X such that
limn→∞ ∥xn− x∥= 0.

The following proposition gives a necessary and sufficient condition for a normed
space to be a Banach space. We need the following terminology. Given a sequence
(xn)n⩾1 in a normed space X , the sum ∑n⩾1 xn is said to be convergent if there exists
x ∈ X such that

lim
N→∞

∥∥∥x−
N

∑
n=1

xn

∥∥∥= 0.

The sum ∑n⩾1 xn is said to be absolutely convergent if ∑n⩾1 ∥xn∥< ∞.

Proposition 1.3. A normed space X is a Banach space if and only if every absolutely
convergent sum in X converges in X.
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5
4 Banach Spaces

Proof ‘Only if’: Suppose that X is complete and let ∑n⩾1 xn be absolutely convergent.
Then the sequence of partial sums (∑n

j=1 x j)n⩾1 is a Cauchy sequence, for if n > m the
triangle inequality implies∥∥∥ n

∑
j=1

x j−
m

∑
j=1

x j

∥∥∥= ∥∥∥ n

∑
j=m+1

x j

∥∥∥⩽ n

∑
j=m+1

∥x j∥,

which tends to 0 as m,n→ ∞. Hence, by completeness, the sum ∑n⩾1 xn converges.

‘If’: Suppose that every absolutely convergent sum in X converges in X , and let
(xn)n⩾1 be a Cauchy sequence in X . We must prove that (xn)n⩾1 converges in X .

Choose indices n1 < n2 < .. . in such a way that ∥xi − x j∥ < 1
2k for all i, j ⩾ nk,

k = 1,2, . . . The sum xn1 +∑k⩾1(xnk+1 − xnk) is absolutely convergent since

∑
k⩾1
∥xnk+1 − xnk∥⩽ ∑

k⩾1

1
2k < ∞.

By assumption it converges to some x ∈ X . Then, by cancellation,

x = lim
m→∞

(
xn1 +

m

∑
k=1

(xnk+1 − xnk)
)
= lim

m→∞
xnm+1 ,

and therefore the subsequence (xnm)m⩾1 is convergent, with limit x. To see that (xn)n⩾1

converges to x, we note that

∥xm− x∥⩽ ∥xm− xnm∥+∥xnm − x∥→ 0

as m→ ∞ (the first term since we started from a Cauchy sequence and the second term
by what we just proved).

The next theorem asserts that every normed space can be completed to a Banach
space. For the rigorous formulation of this result we need the following terminology.

Definition 1.4 (Isometries). A linear mapping T from a normed space X into a normed
space Y is said to be an isometry if it preserves norms. A normed space X is isometrically
contained in a normed space Y if there exists an isometry from X into Y .

Theorem 1.5 (Completion). Let X be a normed space. Then:

(1) there exists a Banach space X containing X isometrically as a dense subspace;
(2) the space X is unique up to isometry in the following sense: If X is isometrically

contained as a dense subspace in the Banach spaces X and X, then the identity
mapping on X has a unique extension to an isometry from X onto X.

Proof As a metric space, X = (X ,d) has a completion X = (X ,d) by Theorem D.6. We
prove that X is a Banach space in a natural way, with a norm ∥ · ∥X such that d(x,x′) =
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5
1.1 Banach Spaces 5

∥x− x′∥X . The properties (1) and (2) then follow from the corresponding assertions for
metric spaces.

Recall that the completion X of X , as a metric space, is defined as the set of all
equivalence classes of Cauchy sequences in X , declaring the Cauchy sequences (xn)n⩾1

and (x′n)n⩾1 to be equivalent if limn→∞ d(xn,x′n) = limn→∞ ∥xn− x′n∥ = 0. The space X
is a vector space under the scalar multiplication

c[(xn)n⩾1] := [c(xn)n⩾1]

and addition

[(xn)n⩾1]+ [(x′n)n⩾1] := [(xn + x′n)n⩾1],

where the brackets denote the equivalence class.
If (xn)n⩾1 is a Cauchy sequence in X , the reverse triangle inequality implies that the

nonnegative sequence (∥xn∥)n⩾1 is Cauchy, and hence convergent by the completeness
of the real numbers. We now define a norm on X by

∥[(xn)n⩾1]∥X := lim
n→∞
∥xn∥.

Denoting by d the metric on X given by d(x,x′) := limn→∞ d(xn,x′n), where x = (xn)n⩾1

and x′ = (x′n)n⩾1, it is clear that d(x,x′) = ∥x− x′∥X .

1.1.b Subspaces, Quotients, and Direct Sums

Several abstract constructions enable us to create new Banach spaces from given ones.
We take a brief look at the three most basic constructions, namely, passing to closed
subspaces and quotients and taking direct sums.

Subspaces A subspace Y of a normed space X is a normed space with respect to the
norm inherited from X . A subspace Y of a Banach space X is a Banach space with
respect to the norm inherited from X if and only if Y is closed in X .

To prove the ‘if’ part, suppose that (yn)n⩾1 is a Cauchy sequence in the closed sub-
space Y of a Banach space X . Then it has a limit in X , by the completeness of X , and
this limit belongs to Y , by the closedness of Y . The proof of the ‘only if’ part is equally
simple and does not require X to be complete. If (yn)n⩾1 is a sequence in the complete
subspace Y such that yn→ x in X , then (yn)n⩾1 is a Cauchy sequence in X , hence also
in Y , and therefore it has a limit y in Y , by the completeness of Y . Since (yn)n⩾1 also
converges to y in X , it follows that y = x and therefore x ∈ Y .



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
6 Banach Spaces

Quotients If Y is a closed subspace of a Banach space X , the quotient space X/Y can
be endowed with a norm by

∥[x]∥ := inf
y∈Y
∥x− y∥,

where for brevity we write [x] := x+Y for the equivalence class of x modulo Y . Let us
check that this indeed defines a norm. If ∥[x]∥ = 0, then there is a sequence (yn)n⩾1 in
Y such that ∥x− yn∥< 1

n for all n ⩾ 1. Then

∥yn− ym∥⩽ ∥yn− x∥+∥x− ym∥<
1
n
+

1
m
,

so (yn)n⩾1 is a Cauchy sequence in X . It has a limit y ∈ X since X is complete, and we
have y∈Y since Y is closed. Then ∥x−y∥= limn→∞ ∥x−yn∥= 0, so x = y. This implies
that [x] = [y] = [0], the zero element of X/Y . The identity ∥c[x]∥ = |c|∥[x]∥ is trivially
verified, and so is the triangle inequality.

To see that the normed space X/Y is complete we use the completeness of X and
Proposition 1.3. If ∑n⩾1 ∥[xn]∥< ∞ and the yn ∈Y are such that ∥xn−yn∥⩽ ∥[xn]∥+ 1

n2 ,
the proposition implies that ∑n⩾1(yn−xn) converges in X , say to x. Then, for all N ⩾ 1,∥∥∥[x]− N

∑
n=1

[xn]
∥∥∥= ∥∥∥[x− N

∑
n=1

xn

]∥∥∥⩽ ∥∥∥x−
N

∑
n=1

xn +
N

∑
n=1

yn

∥∥∥= ∥∥∥x−
( N

∑
n=1

xn− yn

)∥∥∥.
As N→ ∞, the right-hand side tends to 0 and therefore limN→∞ ∑

N
n=1[xn] = [x] in X/Y .

Direct Sums A product norm on a finite cartesian product X = X1×·· ·×XN of normed
spaces is a norm ∥ · ∥ satisfying

∥(0, . . . ,0, xn︸︷︷︸
n−th

,0, . . . ,0)
∥∥= ∥xn∥⩽ ∥(x1, . . . ,xN)∥

for all x = (x1, . . . ,xN)∈ X and n = 1, . . . ,N. For instance, every norm | · | on KN assign-
ing norm one to the standard unit vectors induces a product norm on X by the formula

∥(x1, . . . ,xN)∥ :=
∣∣(∥x1∥, . . . ,∥xN∥)

∣∣. (1.1)

As a normed space endowed with a product norm, the cartesian product will be denoted

X = X1⊕·· ·⊕XN

and called a direct sum of X1, . . . ,XN . If every Xn is a Banach space, then the normed
space X is a Banach space. Indeed, from

∥x∥=
∥∥∥ N

∑
n=1

(0, . . . ,0,xn,0, . . . ,0)
∥∥∥⩽ N

∑
n=1
∥xn∥⩽ N∥x∥ (1.2)
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1.1 Banach Spaces 7

1

1

1

1

1

1

Figure 1.1 The open unit balls of R2 with respect to the norms ∥ · ∥1, ∥ · ∥2, ∥ · ∥∞.

we see that a sequence (x(k))k⩾1 in X is Cauchy if and only if all its coordinate sequences
(x(k)n )k⩾1 are Cauchy. If the spaces Xn are complete, these coordinate sequences have
limits xn in Xn, and these limits serve as the coordinates of an element x = (x1, . . . ,xN)

in X which is the limit of the sequence (x(k))k⩾1.

1.1.c First Examples

The purpose of this brief section is to present a first catalogue of Banach spaces. The
presentation is not self-contained; the examples will be revisited in more detail in the
next chapter, where the relevant terminology is introduced and proofs are given.

Example 1.6 (Euclidean spaces). On Kd we may consider the euclidean norm

∥a∥2 :=
( d

∑
j=1
|a j|2

)1/2
,

and more generally the p-norms

∥a∥p :=
( d

∑
j=1
|a j|p

)1/p
, 1 ⩽ p < ∞,

as well as the supremum norm

∥a∥∞ := sup
1⩽ j⩽d

|a j|.

It is not immediately obvious that the p-norms are indeed norms; the triangle inequal-
ity ∥a+ b∥p ⩽ ∥a∥p + ∥b∥p will be proved in the next chapter. It is an easy matter to
check that the above norms are all equivalent in the sense defined in Section 1.3. In
what follows the euclidean norm of an element x ∈ Kd is denoted by |x| instead of the
more cumbersome ∥x∥2.

Example 1.7 (Sequence spaces). Thinking of elements of Kd as finite sequences, the
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8 Banach Spaces

0.5 1

1

2

3

4

5

f (x)

x

y

Figure 1.2 The open ball B( f ;1) in C[0,1] consists of all functions in C[0,1] whose graph
lies inside the shaded area.

preceding example may be generalised to infinite sequences as follows. For 1 ⩽ p < ∞

the space ℓp is defined as the space of all scalar sequences a = (ak)k⩾1 satisfying

∥a∥p :=
(

∑
k⩾1
|ak|p

)1/p
< ∞.

The mapping a 7→ ∥a∥p is a norm which turns ℓp into a Banach space. The space ℓ∞ of
all bounded scalar sequences a = (ak)k⩾1 is a Banach space with respect to the norm

∥a∥∞ := sup
k⩾1
|ak|< ∞.

The space c0 consisting of all bounded scalar sequences a = (ak)k⩾1 satisfying

lim
k→∞

ak = 0

is a closed subspace of ℓ∞. As such it is a Banach space in its own right.

Example 1.8 (Spaces of continuous functions). Let K be a compact topological space.
The space C(K) of all continuous functions f : K→ K is a Banach space with respect
to the supremum norm

∥ f∥∞ := sup
x∈K
| f (x)|.

This norm captures the notion of uniform convergence: for functions in C(K) we have
limn→∞ ∥ fn− f∥∞ = 0 if and only if limn→∞ fn = f uniformly.
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5
1.1 Banach Spaces 9

Example 1.9 (Spaces of integrable functions). Let (Ω,F,µ) be a measure space. For
1 ⩽ p < ∞, the space Lp(Ω) consisting of all measurable functions f : Ω→K such that

∥ f∥p :=
(∫

Ω

| f |p dµ

)1/p
< ∞,

identifying functions that are equal µ-almost everywhere, is a Banach space with respect
to the norm ∥ · ∥p. The space L∞(Ω) consisting of all measurable and µ-essentially
bounded functions f : Ω→K, identifying functions that are equal µ-almost everywhere,
is a Banach space with respect to the norm given by the µ-essential supremum

∥ f∥∞ := µ-esssup
ω∈Ω

| f (ω)| := inf
{

r > 0 : | f |⩽ r µ-almost everywhere
}
.

Example 1.10 (Spaces of measures). Let (Ω,F ) be a measurable space. The space
M(Ω) consisting of all K-valued measures of bounded variation on (Ω,F ) is a Banach
space with respect to the variation norm

∥µ∥ := |µ|(Ω) := sup
A ∈F

∑
A∈A

|µ(A)|,

where F denotes the set of all finite collections of pairwise disjoint sets in F .

Example 1.11 (Hilbert spaces). A Hilbert space is an inner product space (H,(·|·)) that
is complete with respect to the norm

∥h∥ := (h|h)1/2.

Examples include the spaces Kd with the euclidean norm, ℓ2, and the spaces L2(Ω).
Precise definitions and further examples will be given in later chapters.

1.1.d Separability

Most Banach spaces of interest in Analysis are infinite-dimensional in the sense that
they do not have a finite spanning set. In this context the following definition is often
useful.

Definition 1.12 (Separability). A normed space is called separable if it contains a
countable set whose linear span is dense.

Proposition 1.13. A normed space X is separable if and only if X contains a countable
dense set.

Proof The ‘if’ part is trivial. To prove the ‘only if’ part, let (xn)n⩾1 have dense span
in X . Let Q be a countable dense set in K (for example, one could take Q =Q if K=R
and Q =Q+ iQ if K= C). Then the set of all Q-linear combinations of the xn, that is,
all linear combinations involving coefficients from Q, is dense in X .
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5
10 Banach Spaces

Finite-dimensional spaces, the sequence spaces c0 and ℓp with 1 ⩽ p < ∞, the spaces
C(K) with K compact metric, and Lp(D) with 1 ⩽ p < ∞ and D ⊆ Rd open, are sepa-
rable. The separability of C(K) and Lp(D) follows from the results proved in the next
chapter.

1.2 Bounded Operators

Having introduced normed spaces and Banach spaces, we now introduce a class of linear
operators acting between them which interact with the norm in a meaningful way.

1.2.a Definition and General Properties

Let X and Y be normed spaces.

Definition 1.14 (Bounded operators). A linear operator T : X → Y is bounded if there
exists a finite constant C ⩾ 0 such that

∥T x∥⩽C∥x∥, x ∈ X .

Here, and in the rest of this work, we write T x instead of the more cumbersome T (x).
A bounded operator is a linear operator that is bounded.

The infimum CT of all admissible constants C in Definition 1.14 is itself admissible.
Thus CT is the least admissible constant. We claim that it equals the number

∥T∥ := sup
∥x∥⩽1

∥T x∥.

To see this, let C be an admissible constant in Definition 1.14, that is, we assume that
∥T x∥ ⩽ C∥x∥ for all x ∈ X . Then ∥T∥ = sup∥x∥⩽1 ∥T x∥ ⩽ C. This being true for all
admissible constants C, it follows that ∥T∥ ⩽ CT . The opposite inequality CT ⩽ ∥T∥
follows by observing that for all x ∈ X we have

∥T x∥⩽ ∥T∥∥x∥,

which means that ∥T∥ an admissible constant. This inequality is trivial for x = 0, and
for x ̸= 0 it follows from scalar homogeneity, the linearity of T and the definition of the
number ∥T∥:

∥T x∥=
∥∥∥ 1
∥x∥

T x
∥∥∥∥x∥= ∥∥∥T

x
∥x∥

∥∥∥∥x∥⩽ ∥T∥∥x∥.
Proposition 1.15. For a linear operator T : X → Y the following assertions are equiv-
alent:
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5
1.2 Bounded Operators 11

(1) T is bounded;
(2) T is continuous;
(3) T is continuous at some point x0 ∈ X.

Proof The implication (1)⇒(2) follows from

∥T x−T x′∥= ∥T (x− x′)∥⩽ ∥T∥∥x− x′∥

and the implication (2)⇒(3) is trivial. To prove the implication (3)⇒(1), suppose that
T is continuous at x0. Then there exists a δ > 0 such that ∥x0− y∥< δ implies ∥T x0−
Ty∥ < 1. Since every x ∈ X with ∥x∥ < δ is of the form x = x0− y with ∥x0− y∥ < δ

(take y = x0− x) and T is linear, it follows that ∥x∥ < δ implies ∥T x∥ < 1. By scalar
homogeneity and the linearity of T we may scale both sides with a factor δ , and obtain
that ∥x∥ < 1 implies ∥T x∥ < 1/δ . From this, and the continuity of x 7→ ∥x∥, it follows
that ∥x∥⩽ 1 implies ∥T x∥⩽ 1/δ , that is, T is bounded and ∥T∥⩽ 1/δ .

Easy manipulations involving the properties of norms and linear operators, such as
those used in the above proofs, will henceforth be omitted.

The set of all bounded operators from X to Y is a vector space in a natural way with
respect to pointwise scalar multiplication and addition by putting

(cT )x := c(T x), (T +T ′)x := T x+T ′x.

This vector space will be denoted by L (X ,Y ). We further write L (X) := L (X ,X).
For all T,T ′ ∈L (X ,Y ) and c ∈K we have

∥cT∥= |c|∥T∥, ∥T +T ′∥⩽ ∥T∥+∥T ′∥.

Let us prove the second assertion; the proof of the first is similar. For all x ∈ X , the
triangle inequality gives

∥(T +T ′)x∥⩽ ∥T x∥+∥T ′x∥⩽ (∥T∥+∥T ′∥)∥x∥,

and the result follows by taking the supremum over all x ∈ X with ∥x∥⩽ 1.
Noting that ∥T∥ = 0 implies T = 0, it follows that T 7→ ∥T∥ is a norm on L (X ,Y ).

Endowed with this norm, L (X ,Y ) is a normed space. If T : X → Y and S : Y → Z are
bounded, then so is their composition ST and we have

∥ST∥⩽ ∥S∥∥T∥.

Indeed, for all x ∈ X we have

∥ST x∥⩽ ∥S∥∥T x∥⩽ ∥S∥∥T∥∥x∥

and the result follows by taking the supremum over all x ∈ X .

Proposition 1.16. If Y is complete, then L (X ,Y ) is complete.
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12 Banach Spaces

Proof Let (Tn)n⩾1 be a Cauchy sequence in L (X ,Y ). From ∥Tnx− Tmx∥ ⩽ ∥Tn −
Tm∥∥x∥ we see that (Tnx)n⩾1 is a Cauchy sequence in Y for every x ∈ X . Let T x denote
its limit. The linearity of each of the operators Tn implies that the mapping T : x 7→
T x is linear and we have ∥T x∥ = limn→∞ ∥Tnx∥ ⩽ M∥x∥, where M := supn⩾1 ∥Tn∥ is
finite since Cauchy sequences in normed spaces are bounded. This shows that the linear
operator T is bounded, so it is an element of L (X ,Y ). To prove that limn→∞ ∥Tn−T∥=
0, fix ε > 0 and let N ⩾ 1 be so large that ∥Tn− Tm∥ < ε for all m,n ⩾ N. Then, for
m,n ⩾ N, from

∥Tnx−Tmx∥⩽ ε∥x∥

it follows, upon letting m→ ∞, that

∥Tnx−T x∥⩽ ε∥x∥.

This being true for all x ∈ X and n ⩾ N, it follows that ∥Tn−T∥⩽ ε for all n ⩾ N.

The important special case Y =K leads to the following definition.

Definition 1.17. The dual space of a normed space X is the Banach space

X∗ := L (X ,K).

For x ∈ X and x∗ ∈ X∗ one usually writes ⟨x,x∗⟩ := x∗(x). The elements of the dual
space X∗ are often referred to as bounded functionals or simply functionals. Duality is
a subject in its own right which will be taken up in Chapter 4. In that chapter, explicit
representations of duals of several classical Banach spaces are given. For Hilbert spaces,
this duality takes a particularly simple form, described by the Riesz representation the-
orem, to be proved in Chapter 3.

It often happens that a linear operator can be shown to be well defined and bounded on
a dense subspace. In such cases, a density argument can be used to extend the operator
to the whole space.

Proposition 1.18 (Density argument – extending operators). Let X be a normed space
and Y be a Banach space, and let X0 be a dense subspace of X. If T0 : X0 → Y is a
bounded operator, there exists a unique bounded operator T : X →Y extending T0. The
norm of this extension satisfies ∥T∥= ∥T0∥.

Proof Fix x ∈ X , and suppose that limn→∞ xn = x with xn ∈ X0 for all n ⩾ 1. The
boundedness of T0 implies that ∥T0xn−T0xm∥ ⩽ ∥T0∥∥xn− xm∥ → 0 as m,n→ ∞, so
(T0xn)n⩾1 is a Cauchy sequence in Y . Since Y is complete, we have T0xn→ y for some
y ∈ Y .

If also x′n→ x, the same argument shows that T0x′n→ y′ for some (possibly different)
y′ ∈ Y . From

∥T0x′n−T0xn∥⩽ ∥T0∥∥x′n− xn∥⩽ ∥T0∥(∥x′n− x∥+∥x− xn∥)
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1.2 Bounded Operators 13

it follows that

∥y′− y∥= lim
n→∞
∥T0x′n−T0xn∥= 0

and therefore y′ = y.
Denoting the common limit y = y′ by T x, we thus obtain a well-defined mapping

x 7→ T x. It is evident that this mapping extends T0, for if x ∈ X0 we may take xn = x and
then T x = limn→∞ T0xn = T0x.

It is easily checked that T is linear. To show that it is bounded, with ∥T∥⩽ ∥T0∥, we
just note that

∥T x∥= lim
n→∞
∥T0xn∥⩽ ∥T0∥ lim

n→∞
∥xn∥= ∥T0∥∥x∥.

The converse inequality ∥T∥⩾ ∥T0∥ trivially holds since T extends T0.
Finally, if the bounded operators T and T ′ both extend T0, then the bounded operator

T −T ′ equals 0 on the dense subspace X0 and hence, by continuity, on all of X .

Under a uniform boundedness assumption, a similar density argument can be used to
extend the existence of limits from a dense subspace to the whole space.

Proposition 1.19 (Density argument – extending convergence of operators). Let X be
a normed space and Y a Banach space, and let X0 be a dense subspace of X. Let
(Tn)n⩾1 be a sequence of operators in L (X ,Y ) satisfying supn⩾1 ∥Tn∥< ∞. If the limit
limn→∞ Tnx0 exists in Y for all x0 ∈ X0, then the limit T x := limn→∞ Tnx exists in Y for
all x ∈ X. Moreover, the operator T : x 7→ T x is linear and bounded from X to Y , and

∥T∥⩽ liminf
n→∞

∥Tn∥.

Proof We will show that the sequence (Tnx)n⩾1 is Cauchy for every x∈X . Fix arbitrary
x ∈ X and ε > 0 and choose x0 ∈ X0 in such a way that ∥x− x0∥ < ε/M, where M :=
supn⩾1 ∥Tn∥. Since (Tnx0)n⩾1 is a Cauchy sequence, there is an N ⩾ 1 such that ∥Tnx0−
Tmx0∥< ε for all m,n ⩾ N. Then, for all m,n ⩾ N,

∥Tnx−Tmx∥⩽ ∥Tnx−Tnx0∥+∥Tnx0−Tmx0∥+∥Tmx0−Tmx∥
⩽ M∥x− x0∥+ ε +M∥x0− x∥< 3ε.

The sequence (Tnx)n⩾1 is thus Cauchy. Since Y is complete this sequence has a limit,
which we denote by T x. Linearity of T : x 7→ T x is clear, and boundedness along with
the estimate for the norm follow from

∥T x∥= lim
n→∞
∥Tnx∥= liminf

n→∞
∥Tnx∥⩽ liminf

n→∞
∥Tn∥∥x∥.

This proposition should be compared with Proposition 5.3, which provides the fol-
lowing partial converse: if X is a Banach space, Y is a normed space, and (Tn)n⩾1
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14 Banach Spaces

is a sequence in L (X ,Y ) such that T x := limn→∞ Tnx exists in Y for all x ∈ X , then
supn⩾1 ∥Tn∥< ∞.

Definition 1.20 (Null space and range). The null space of a bounded operator T ∈
L (X ,Y ) is the subspace

N(T ) := {x ∈ X : T x = 0}.

The range of T is the subspace

R(T ) := {T x : x ∈ X}.

By linearity, both the null space N(T ) and the range R(T ) are subspaces. By continu-
ity, the null space of a bounded operator is closed. The following result gives a useful
sufficient criterion for the range of a bounded operator to be closed.

Proposition 1.21. Let X be a Banach space and Y be a normed space. If T ∈L (X ,Y )
satisfies ∥T x∥⩾C∥x∥ for some C > 0 and all x ∈ X, then T is injective and has closed
range.

Proof Injectivity is clear. Suppose that T xn → y in Y ; we must prove that y ∈ R(T ).
From ∥xn− xm∥ ⩽ C−1∥T xn−T xm∥ it follows that (xn)n⩾1 is a Cauchy sequence in X
and therefore converges to some x ∈ X . Then y = limn→∞ T xn = T x.

We conclude by introducing some terminology that will be used throughout this work.
In the next four definitions, X and Y are normed spaces.

Definition 1.22 (Isomorphisms). An isomorphism is a bijective operator T ∈L (X ,Y )
whose inverse is bounded as well. An isometric isomorphism is an isomorphism that is
also isometric. The spaces X and Y are called (isometrically) isomorphic if there exists
an (isometric) isomorphism from X to Y .

Definition 1.23 (Contractions). A contraction is an operator T ∈ L (X ,Y ) satisfying
∥T∥⩽ 1.

Definition 1.24 (Uniform boundedness). A subset T of L (X ,Y ) is said to be uniformly
bounded if it is a bounded subset of L (X ,Y ), i.e., if supT∈T ∥T∥< ∞.

Definition 1.25 (Uniform, strong, and weak convergence of operators). A sequence
(Tn)n⩾1 in L (X ,Y ) is said to:

(1) converge uniformly to an operator T ∈L (X ,Y ) if

lim
n→∞
∥Tn−T∥= 0;

(2) converge strongly to an operator T ∈L (X ,Y ) if

lim
n→∞
∥Tnx−T x∥= 0, x ∈ X ;
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1.2 Bounded Operators 15

(3) converge weakly to an operator T ∈L (X ,Y ) if

lim
n→∞
⟨Tnx−T x,y∗⟩= 0, x ∈ X , y∗ ∈ Y ∗,

where Y ∗ is the dual of Y and ⟨y,y∗⟩ := y∗(y) for y ∈ Y . In these situations we call
T the uniform limit, respectively the strong limit, respectively the weak limit, of the
sequence (Tn)n⩾1. Uniqueness of weak limits is assured by the Hahn–Banach theorem
(see Corollary 4.11).

Uniform convergence implies strong convergence and strong convergence implies
weak convergence, but the converses generally fail. For instance, the projections onto
the first n coordinates in ℓp, 1⩽ p<∞, converge strongly to the identity operator, but not
uniformly; and the operators T n, where T is the right shift in ℓp, 1 < p < ∞, converges
weakly to the zero operator but not strongly (for the case p = 1 see Problem 4.35).

1.2.b Subspaces, Quotients, and Direct Sums

Restrictions If T is a bounded operator from a normed space X into a normed space Y ,
then the restriction of T to a subspace X0 of X defines a bounded operator T |X0 from X0

into Y of norm ∥T |X0∥⩽ ∥T∥.

Quotients Let Y be a closed subspace of a Banach space X . By the definition of the
quotient norm, the quotient map q : x 7→ x +Y is bounded from X to X/Y of norm
∥q∥⩽ 1.

Let Z be a normed space and let T ∈L (X ,Z) be a bounded operator with the property
that Y is contained in the null space N(T ). We claim that

T/Y (x+Y ) := T x, x ∈ X ,

defines a well-defined and bounded quotient operator T/Y : X/Y → Z of norm ∥T/Y∥=
∥T∥. Well-definedness of T/Y is clear, and for all x ∈ X and y ∈ Y we have ∥T x∥ =
∥T (x+ y)∥⩽ ∥T∥∥x+ y∥. Taking the infimum over all y ∈ Y gives the bound

∥T/Y (x+Y )∥= ∥T x∥⩽ ∥T∥ inf
y∈Y
∥x+ y∥= ∥T∥∥x+Y∥.

Hence T/Y is bounded and ∥T/Y∥⩽ ∥T∥. For the converse inequality we note that

∥T x∥= ∥T/Y (x+Y )∥⩽ ∥T/Y∥∥x+Y∥= ∥T/Y∥ inf
y∈Y
∥x− y∥⩽ ∥T/Y∥∥x∥.

Direct Sums If Xn is a normed space and Tn ∈L (Xn) for n = 1, . . . ,N, then the direct
sum operator

T =
N⊕

n=1

Tn : (x1, . . . ,xN) 7→ (T1x1, . . . ,TNxN)
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16 Banach Spaces

is bounded on X =
⊕N

n=1 Xn with respect to any product norm; this follows from (1.2).
If the product norm is of the form (1.1), then ∥T∥= max1⩽n⩽N ∥Tn∥.

1.2.c First Examples

We revisit the examples of Section 1.1.c and discuss how various natural operations
used in Analysis give rise to bounded operators.

Example 1.26 (Matrices). Every m×n matrix A= (ai j)
m,n
i, j=1 defines a bounded operator

in L (Kn,Km) and its norm satisfies

∥A∥2 = sup
|x|⩽1
|Ax|2 = sup

|x|⩽1

m

∑
i=1

∣∣∣ n

∑
j=1

ai jx j

∣∣∣2 ⩽ m

∑
i=1

n

∑
j=1
|ai j|2, (1.3)

where the last step follows from the Cauchy–Schwarz inequality. More generally, every
linear operator from a finite-dimensional normed space X into a normed space Y is
bounded; this will be shown in Corollary 1.37.

The upper bound (1.3) for the norm of a matrix A is not sharp. An explicit method to
determine the operator norm of a matrix is described in Problem 8.7.

Example 1.27 (Point evaluations). Let K be a compact topological space. For each
x0 ∈ K the point evaluation Ex0 : f 7→ f (x0) is bounded as an operator from C(K) into
K with norm ∥Ex0∥= 1. Boundedness with norm ∥Ex0∥⩽ 1 follows from

|Ex0 f |= | f (x0)|⩽ sup
x∈K
| f (x)|= ∥ f∥∞.

By considering f = 1, the constant-one function on K, it is seen that ∥Ex0∥= 1.

Example 1.28 (Integration). Let (Ω,F,µ) be a measure space. The mapping Iµ : f 7→∫
Ω

f dµ is bounded from L1(Ω) to K with norm ∥Iµ∥ = 1. Boundedness with norm
∥Iµ∥⩽ 1 follows from

|Iµ f |=
∣∣∣∫

Ω

f dµ

∣∣∣⩽ ∫
Ω

| f |dµ = ∥ f∥1.

By considering nonnegative functions it is seen that ∥Iµ∥= 1.

Example 1.29 (Pointwise multipliers). Let (Ω,F,µ) be a measure space and fix 1 ⩽
p ⩽ ∞. For any m ∈ L∞(Ω), the pointwise multiplier Tm : f 7→ m f defines a bounded
operator on Lp(Ω) with norm ∥Tm∥= ∥m∥∞. Indeed, for µ-almost all ω ∈Ω we have

|(m f )(ω)|= |m(ω)|| f (ω)|⩽ ∥m∥∞| f (ω)|.

For 1 ⩽ p < ∞, upon integration we obtain

∥Tm f∥p
p =

∫
Ω

|m f |p dµ ⩽ ∥m∥p
∞

∫
Ω

| f |p dµ = ∥m∥p
∞∥ f∥p

p,
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1.2 Bounded Operators 17

Tm is bounded on Lp(Ω) and ∥Tm∥ ⩽ ∥m∥∞. For p = ∞ the analogous bound follows
by taking essential suprema. Equality ∥Tm∥ = ∥m∥∞ is obtained by considering, for
0 < ε < 1, functions supported on measurable sets Fε ∈F where |m| ⩾ (1− ε)∥m∥∞

µ-almost everywhere.

Example 1.30 (Integral operators). Let µ be a finite Borel measure on a compact metric
space K. With respect to the product metric d((s, t),(s′, t ′)) := d(s,s′)+d(t, t ′), K×K
is a compact metric space (see Proposition D.13). Let k ∈ C(K ×K) and define, for
f ∈C(K), the function T f : K→K by

T f (s) :=
∫

K
k(s, t) f (t)dµ(t), s ∈ K.

Using the uniform continuity of k (see Theorem D.12), it is easy to see that T f is a
continuous function. Indeed, given ε > 0, choose δ > 0 so small that d((s, t),(s′, t ′))< δ

implies |k(s, t)− k(s′, t ′)|< ε . Then d(s,s′)< δ implies

|T f (s)−T f (s′)|⩽ ε

∫
K
| f (t)|dµ(t)⩽ εµ(K)∥ f∥∞.

As a result, T acts as a linear operator on C(K). To prove boundedness, we estimate

|T f (s)|⩽
∫

K
|k(s, t)|| f (t)|dµ(t)⩽ µ(K)∥k∥∞∥ f∥∞.

Taking the supremum over s ∈ K, this results in

∥T f∥∞ ⩽ µ(K)∥k∥∞∥ f∥∞.

It follows that T is bounded and ∥T∥⩽ µ(K)∥k∥∞.
For kernels k ∈ L∞(K×K,µ × µ) the same prescription defines a bounded opera-

tor on L∞(K,µ) satisfying the same estimate. If one takes k ∈ L2(K×K,µ × µ), this
prescription gives a bounded operator T on L2(K,µ) satisfying

∥T∥⩽ ∥k∥2. (1.4)

Indeed, by the Cauchy–Schwarz inequality (its abstract version for Hilbert spaces will
be proved in Chapter 3) and Fubini’s theorem we obtain∫

K

∣∣∣∫
K

k(s, t) f (t)dµ(t)
∣∣∣2 dµ(s)

⩽
∫

K

(∫
K
|k(s, t)|2 dµ(t)

)(∫
K
| f (t)|2 dµ(t)

)
dµ(s) = ∥k∥2

2∥ f∥2
2

and the claim follows. This inequality generalises the one of Example 1.26.

Example 1.31 (Volterra operator). For all f ∈ L2(0,1), the Cauchy–Schwarz inequality
implies that the indefinite integral

T f (s) :=
∫ s

0
f (t)dt, s ∈ [0,1],
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is well defined and that |T f (s)−T f (s′)|⩽ |s− s′|1/2∥ f∥2 for all s,s′ ∈ [0,1]. From this
we infer that T f ∈C[0,1] and, by taking s′ = 0, that ∥T f∥∞ ⩽ ∥ f∥2. This implies that
T is bounded from L2(0,1) into C[0,1] with norm ∥T∥⩽ 1.

Composing T with the natural inclusion mapping from C[0,1] into L2(0,1), the in-
definite integral can be viewed as a bounded operator on L2(0,1) of norm at most 1.
A sharper bound is obtained by applying the last part of the preceding example (with
k(s, t) = 1(0,s)(t)). This gives that T is bounded as an operator on L2(0,1) with norm

∥T∥⩽ ∥k∥2 = 1/
√

2≈ 0.7071 . . . .

Interestingly, this norm bound is not sharp; it can be shown that the norm of this operator
equals

∥T∥= 2/π ≈ 0.6366 . . .

This will be proved using the spectral theory of selfadjoint operators in Chapter 8.

As demonstrated by this brief list of examples, operators that naturally occur in Anal-
ysis tend to be bounded. This raises the natural question whether linear operators acting
between Banach spaces X and Y are always bounded. If one is willing to accept the
Axiom of Choice the answer is negative, even for separable Hilbert spaces X and Y =K
(see Problem 3.25). In Zermelo–Fraenkel Set Theory without the Axiom of Choice, it
is consistent that every linear operator acting between Banach spaces is bounded. The
reader is referred to the Notes to Chapter 3 for a further discussion of this topic.

1.3 Finite-Dimensional Spaces

The aim of this section is to prove that every finite-dimensional normed space is a
Banach space. This will be deduced as an easy consequence of the fact that every two
norms on a finite-dimensional normed space are equivalent, in the sense made precise
in the next definition.

Definition 1.32 (Equivalent norms). Two norms ∥ · ∥ and ||| · ||| on a vector space X are
equivalent if there exist constants 0 < c ⩽C < ∞ such that for all x ∈ X we have

c∥x∥⩽ |||x|||⩽C∥x∥.

Example 1.33. Any two product norms on the product X = X1× ·· ·×XN of normed
spaces are equivalent. Indeed, (1.2) shows that every product norm on X is equivalent
to the product norm ∥x∥1 := ∑

N
n=1 ∥xn∥ on X .

In the above situation we have the inclusions of open balls

B∥·∥(x;r/C)⊆ B|||·|||(x;r)⊆ B∥·∥(x;r/c).
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1.3 Finite-Dimensional Spaces 19

Hence if two norms on a given vector space are equivalent the resulting normed spaces
have the same open sets. This implies that topological notions such as openness, closed-
ness, compactness, convergence, and so forth, are preserved under passing to an equiv-
alent norm.

Theorem 1.34 (Equivalence of norms in finite dimensions). Every two norms on a
finite-dimensional vector space are equivalent.

Proof Let (X ,∥ · ∥) be a finite-dimensional normed space, say of dimension d, and let
(x j)

d
j=1 be a basis for X . Relative to this basis, every x ∈ X admits a unique representa-

tion x = ∑
d
j=1 c jx j. We may use this to define a norm ∥ · ∥2 on X by∥∥∥ d

∑
j=1

c jx j

∥∥∥
2

:=
( d

∑
j=1
|c j|2

)1/2
.

The theorem follows once we have shown that the norms ∥ · ∥ and ∥ · ∥2 are equivalent.
Let M := max1⩽ j⩽d ∥x j∥. Applying the triangle and Cauchy–Schwarz inequalities,

we find that for any x = ∑
d
j=1 c jx j we have

∥x∥⩽
d

∑
j=1
|c j|∥x j∥⩽ M

d

∑
j=1
|c j|⩽ Md1/2

( d

∑
j=1
|c j|2

)1/2
= Md1/2∥x∥2. (1.5)

This gives one of the two inequalities in the definition of equivalence of norms.
To prove that a similar inequality holds in the opposite direction, let S2 denote the

unit sphere in (X ,∥ ·∥2). Since (c1, . . . ,cd) 7→∑
d
j=1 c jx j maps the unit sphere of Kd iso-

metrically (hence continuously) onto S2, S2 is compact. Consider the identity mapping
I : x 7→ x, viewed as a mapping from (X ,∥ ·∥2) to (X ,∥ ·∥). The inequality (1.5) implies
that I is bounded and therefore continuous. Since taking norms is continuous as well
and S2 is compact, the mapping x 7→ ∥Ix∥ is continuous from S2 to [0,∞) and takes a
minimum at some point x0 ∈ S2.

Denoting this minimum by m, we claim that m > 0. It is clear that m ⩾ 0. Reasoning
by contradiction, if we had m = ∥Ix0∥ = 0, then Ix0 = 0 in X , hence x0 = 0 as an
element of S2. Then ∥x0∥2 = 0, while at the same time ∥x0∥2 = 1 because x0 ∈ S2. This
contradiction proves the claim.

For any nonzero x ∈ X we have x
∥x∥2
∈ S2 and therefore ∥I x

∥x∥2
∥ ⩾ m. This gives the

estimate

m∥x∥2 ⩽ ∥Ix∥= ∥x∥

for nonzero x ∈ X ; for trivial reasons it also holds for x = 0.

Corollary 1.35. Every d-dimensional normed space is isomorphic to Kd. In particular,
every finite-dimensional normed space is a Banach space.
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Proof The first assertion has been proved in the course of the proof of Theorem 1.34,
and the second assertion follows from it since Kd is complete.

Corollary 1.36. Every finite-dimensional subspace of a normed space is closed.

Proof By Corollary 1.35, every finite-dimensional subspace of a normed space is com-
plete, and it has been shown in the first paragraph of Section 1.1.b that every complete
subspace of a normed space is closed.

Corollary 1.37. Every linear operator from a finite-dimensional normed space X into
a normed space Y is bounded.

Proof Let (x j)
d
j=1 be a basis for X . If T : X →Y is linear, for x = ∑

d
j=1 c jx j we obtain,

by the Cauchy–Schwarz inequality,

∥T x∥=
∥∥∥ d

∑
j=1

c jT x j

∥∥∥⩽ d

∑
j=1
|c j|∥T x j∥⩽ Md1/2∥x∥2,

where ∥x∥2 := (∑d
j=1 |c j|2)1/2 as in Theorem 1.34 and M := max1⩽n⩽d ∥T xn∥. By The-

orem 1.34 there exists a constant K ⩾ 0 such that ∥x∥2 ⩽ K∥x∥ for all x∈ X . Combining
this with the preceding estimate we obtain

∥T x∥⩽ Md1/2∥x∥2 ⩽ KMd1/2∥x∥.

This means that T is bounded with norm at most KMd1/2.

Every bounded subset of a finite-dimensional normed space X is relatively compact;
this follows from the corresponding result for Kd and the fact that X is isomorphic to
Kd for some d ⩾ 1 by Corollary 1.35. Conversely, a normed space with the property
that every bounded subset is relatively compact is finite-dimensional:

Theorem 1.38 (Finite-dimensional Banach spaces). The unit ball of a normed space X
is relatively compact if and only if X is finite-dimensional.

The proof depends on the following lemma:

Lemma 1.39 (Riesz). If Y is a proper closed subspace of a normed space X, then for
every ε > 0 there exists a norm one vector x ∈ X with d(x,Y )⩾ 1− ε .

Here, d(x,Y ) = infy∈Y ∥x− y∥ is the distance from x to Y .

Proof Fix any x0 ∈ X \Y . Note that d(x0,Y )> 0: otherwise, we could select elements
yn ∈Y such that limn→∞ yn = x0; the closedness of Y would then imply x0 ∈Y . Fix ε > 0
and choose y0 ∈Y such that ∥x0−y0∥⩽ (1+ε)d(x0,Y ). The vector (x0−y0)/∥x0−y0∥
has norm one, and for all y ∈ Y we have∥∥∥ x0− y0

∥x0− y0∥
− y
∥∥∥= ∥∥∥x0− y0− y∥x0− y0∥

∥x0− y0∥

∥∥∥⩾ d(x0,Y )
(1+ ε)d(x0,Y )

=
1

1+ ε
.
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1.4 Compactness 21

It follows that

d
( x0− y0

∥x0− y0∥
,Y
)
⩾

1
1+ ε

.

Since (1+ ε)−1→ 1 as ε ↓ 0, this completes the proof.

Proof of Theorem 1.38 It remains to prove the ‘only if’ part. Suppose that X is infinite-
dimensional and pick an arbitrary norm one vector x1 ∈ X . Proceeding by induction,
suppose that norm one vectors x1, . . . ,xn ∈ X have been chosen such that ∥xk− x j∥⩾ 1

2
for all 1 ⩽ j ̸= k ⩽ n. Choose a norm one vector xn+1 ∈ X by applying Riesz’s lemma
to the proper closed subspace Yn = span{x1, . . . ,xn} and ε = 1

2 (that Yn is closed follows
from Corollary 1.36). Then ∥xn+1− x j∥⩾ 1

2 for all 1 ⩽ j ⩽ n.
The resulting sequence (xn)n⩾1 is contained in the closed unit ball of X and satisfies
∥x j− xk∥ ⩾ 1

2 for all j ̸= k ⩾ 1, so (xn)n⩾1 has no convergent subsequence. It follows
that the closed unit ball of X is not compact.

1.4 Compactness

Let X be a normed space. By Theorem 1.38, the collections of bounded subsets of X
and relatively compact subsets of X coincide if and only if X is finite-dimensional. Thus,
in infinite-dimensional spaces, relative compactness is a stronger property than bound-
edness. The purpose of the present section is to record some easy but useful general
results on compactness that will be frequently used. Compactness in the spaces C(K)

and Lp(Ω) will be studied in the next chapter, and compact operators, that is, operators
which map bounded sets into relatively compact sets, are studied in Chapter 7.

By a general result in the theory of metric spaces (Theorem D.10), every relatively
compact set in a normed space is totally bounded, and the converse holds in Banach
spaces. This fact is used in the proof of the following necessary and sufficient condition
for compactness. For sets A and B in a vector space V we write

A+B := {u+ v : u ∈ A, v ∈ B}.

Proposition 1.40. A subset S of a Banach space X is relatively compact if and only if
for all ε > 0 there exists a relatively compact set Kε ⊆ X such that S⊆ Kε +B(0;ε).

Proof ‘If’: The existence of the sets Kε implies that S is totally bounded and hence
relatively compact, for if the balls B(x1,ε ;ε), . . . ,B(xnε ,ε ;ε) cover Kε , then the balls
B(x1,ε ;2ε), . . . ,B(xnε ,ε ;2ε) cover S.

‘Only if’: This is trivial (take Kε = S for all ε > 0).

The convex hull of a subset F of a vector space V is the smallest convex set in V
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containing F . This set is denoted by co(F). When F is a subset of a normed space, the
closure of co(F) is denoted by co(F) and is referred to as the closed convex hull of F .

As a first application of Proposition 1.40 we have the following result.

Proposition 1.41. The closed convex hull of a compact set in a Banach space is com-
pact.

Proof Let K be a compact subset of the Banach space X . For every N ⩾ 1 the set

coN(K) :=
{ N

∑
n=1

λnxn : xn ∈ K and 0 ⩽ λn ⩽ 1 for all n = 1, . . . ,N,
N

∑
n=1

λn = 1
}

is contained in the image of the compact set [0,1]N×KN under the continuous mapping
that sends ((λ1, . . . ,λN),(x1, . . . ,xN)) to ∑

N
n=1 λnxn.

Let ε > 0 be arbitrary, let the open balls B(ξ1;ε), . . . ,B(ξM;ε) cover K, and consider
an element x ∈ co(K), say ∑

k
j=1 λ jx j. For each j = 1, . . . ,k let 1 ⩽ m j ⩽ M be an index

such that

∥x j−ξm j∥= min
m=1,...,M

∥x j−ξm∥.

Then ∥∥∥x−
k

∑
j=1

λ jξm j

∥∥∥⩽ k

∑
j=1

λ j∥x j−ξm j∥<
k

∑
j=1

λ jε = ε.

Since ∑
k
j=1 λ jξm j = ∑

M
m=1(∑ j:m j=m λ j)ξm ∈ coM(K), this implies that x ∈ coM(K) +

B(0;ε). This shows that co(K) ⊆ coM(K)+B(0;ε). It now follows from Proposition
1.40 that co(K) is relatively compact.

The second result asserts that strong convergence implies uniform convergence on
relatively compact sets.

Proposition 1.42. Let X and Y be normed spaces, let the operators Tn ∈ L (X ,Y ),
n ⩾ 1, be uniformly bounded, and let T ∈L (X ,Y ). If limn→∞ Tn = T strongly, then for
all relatively compact subsets K of X we have

lim
n→∞

sup
x∈K
∥Tnx−T x∥= 0.

It will be shown in Proposition 5.3 that if X is a Banach space, strong convergence
Tn→ T already implies uniform boundedness of the operators Tn.

Proof Let K be a relatively compact subset of X , let ε > 0 be arbitrary, and select
finitely many open balls B(x1;ε), . . . ,B(xk;ε) covering K. Choose N ⩾ 1 so large that
∥Tnx j−T x j∥ < ε for all n ⩾ N and j = 1, . . . ,k. Let M := supn⩾1 ∥Tn∥; this number is
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1.5 Integration in Banach Spaces 23

finite by assumption. Fixing an arbitrary x ∈ K, choose 1 ⩽ j0 ⩽ k such that ∥x−x j0∥<
ε . Then, for n ⩾ N,

∥Tnx−T x∥⩽ ∥Tnx−Tnx j0∥+∥Tnx j0 −T x j0∥+∥T x j0 −T x∥
⩽ Mε + ε +Mε = (2M+1)ε.

Taking the supremum over x ∈ K, it follows that if n ⩾ N, then

sup
x∈K
∥Tnx−T x∥⩽ (2M+1)ε.

Since ε > 0 was arbitrary, this proves the final assertion.

1.5 Integration in Banach Spaces

In a variety of circumstances, some of which will be encountered in later chapters, one
wishes to integrate X-valued functions, where X is a Banach space. In order to have
the tools available when they are needed, we insert a brief discussion of the X-valued
counterparts of the Riemann and Lebesgue integrals.

1.5.a The Riemann Integral

Bernhard Riemann, 1826–1866

Let K be a compact metric space and let µ be
a finite Borel measure on K. We will set up the
Riemann integral with respect to µ for continu-
ous functions f : K→ X . To this end we need the
following terminology. A partition of K is a fi-
nite collection of pairwise disjoint Borel subsets
of K whose union equals K. The mesh of a par-
tition is the diameter of the largest subset in the
partition.

Proposition 1.43 (Riemann integral). Let µ be a
finite Borel measure on a compact metric space
K, let X be a Banach space, and let f : K → X
be a continuous function. There exists a unique
element in X, denoted by

∫
K f dµ , with the fol-

lowing property: for every ε > 0 there exists a δ > 0 such that whenever (Kn)
N
n=1 is a

partition of K of mesh less than δ and (tn)N
n=1 is a collection of points in K with tn ∈ Kn

for all n = 1, . . . ,N, then ∥∥∥∫
K

f dµ−
N

∑
n=1

µ(Kn) f (tn)
∥∥∥< ε.
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The proof of this theorem follows the undergraduate construction of the Riemann
integral for continuous functions f : [0,1]→ K step-by-step and is therefore omitted.
The element

∫
K f dµ is called the Riemann integral of f with respect to µ . Whenever

this is convenient we use the more elaborate notation
∫

K f (t)dµ(t).

Proposition 1.44. Let µ be a finite Borel measure on a compact metric space K, let X
be a Banach space, and let f : K→ X be a continuous function. Then∥∥∥∫

K
f dµ

∥∥∥⩽ ∫
K
∥ f∥dµ.

Proof For any partition (Kn)
N
n=1 of K and any collection of points (tn)N

n=1 in K with
tn ∈ Kn for all n = 1, . . . ,N we have∥∥∥ N

∑
n=1

µ(Kn) f (tn)
∥∥∥⩽ N

∑
n=1

µ(Kn)∥ f (tn)∥

by the triangle inequality. The result follows by taking the limit along any sequence of
partitions whose meshes tend to zero.

In the special case where K = [0,1] and µ is the Lebesgue measure, the usual calculus
rules apply (defining differentiability of an X-valued function in the obvious way):

Proposition 1.45. Let X be a Banach space and let f : [0,1]→ X be a function. Then:

(1) if f is differentiable at the point t0 ∈ [0,1], then f is continuous at t0;
(2) if f is differentiable on (0,1) and f ′ ≡ 0 on (0,1), then f is constant on (0,1);
(3) if f is continuously differentiable on [0,1], then∫ 1

0
f ′(t)dt = f (1)− f (0).

Proof (1): Fix an arbitrary ε > 0. The assumption implies there exists δ > 0 such that
if t ∈ [0,1] with |t− t0|< δ , then∥∥∥ f (t)− f (t0)

t− t0
− f ′(t0)

∥∥∥< ε.

Then ∥ f (t)− f (t0)∥< (ε +∥ f ′(t0)∥)|t− t0| and continuity at t0 follows.

(2): The usual calculus proof via Rolle’s theorem does not extend to the present
setting, as it uses the order structure of the real numbers.

Fix an arbitrary ε > 0. For each t ∈ (0,1), the assumption f ′(t) = 0 implies that there
exists h(t)> 0 such that the interval It := (t−h(t), t +h(t)) is contained in (0,1) and

∥ f (t)− f (s)∥⩽ ε|t− s|, s ∈ It .

Fix a closed subinterval [a,b]⊆ (0,1). The intervals It , t ∈ [a,b], cover the compact set
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[a,b] and therefore this set is contained in the union of finitely many intervals It1 , . . . , ItN .
By adding the intervals Ia and Ib and relabelling (and perhaps discarding some of the
intervals), we may assume that a = t1, b = tN , and Itn ∩ Itn+1 ̸= ∅ for n = 1, . . . ,N− 1.
Choosing sn ∈ Itn ∩ Itn+1 we have

∥ f (tn+1)− f (tn)∥⩽ ∥ f (tn+1)− f (sn)∥+∥ f (sn)− f (tn)∥
⩽ ε(tn+1− sn)+ ε(sn− tn) = ε(tn+1− tn).

Now let t ∈ [a,b], say t ∈ Itk . Then

∥ f (t)− f (a)∥⩽ ∥ f (t)− f (tk)∥+∥ f (tk)− f (tk−1)∥+ · · ·+∥ f (t2)− f (t1)∥
⩽ ε(t− tk)+ ε(tk− tk−1)+ · · ·+ ε(t2− t1) = ε(t−a).

This being true for all ε > 0 it follows that f (t) = f (a) for all t ∈ [a,b]. This proves that
f is constant on every subinterval [a,b]⊆ (0,1) and therefore on (0,1).

(3): For the function g : [0,1]→ X , g(t) := f (t)−
∫ t

0 f ′(s)ds, we have

lim
h→0

1
h
(g(t +h)−g(t)) = f ′(t)− lim

h→0

1
h

∫ t+h

t
f ′(s)ds = 0

by continuity, and therefore g is continuously differentiable on [0,1] with derivative
g′ = 0. It follows from (2) that g is constant on (0,1), hence on [0,1] by continuity, and
then g(0) = f (0) implies

f (t)−
∫ t

0
f ′(s)ds = g(t) = g(0) = f (0), t ∈ [0,1].

Taking t = 1 gives the result.

In Chapter 4 we will sketch a different proof using duality.

1.5.b The Bochner Integral

We turn next to the more delicate problem of generalising the Lebesgue integral to
functions taking values in a Banach space X . The results of this section will be needed
only in Chapter 13.

In what follows we fix a measure space (Ω,F ). It is a matter of experience that
if one attempts to define the measurability of a function f : Ω→ X by imposing that
f−1(B) be in F for all Borel (equivalently, for all open) subsets of X , one arrives at
a notion of measurability that is not very practical, the problem being that it does not
connect well with approximation theorems such as the dominated convergence theorem.
It turns out that it is better to start from the following necessary and sufficient condition
for measurability in the scalar-valued setting: A scalar-valued function is measurable if
and only if it is the pointwise limit of a sequence of simple functions.
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For a function f : Ω→K and x ∈ X we define f ⊗ x : Ω→ X by

( f ⊗ x)(ω) := f (ω)x. (1.6)

Definition 1.46 (Simple functions, strong measurability). A function f : Ω → X is
called simple if it is a finite linear combination of functions of the form 1F ⊗ x with
F ∈F and x ∈ X , and strongly measurable if it is the pointwise limit of a sequence of
simple functions.

A scalar-valued function is strongly measurable if and only if it is measurable, and
for such functions we omit the adjective ‘strongly’.

Theorem 1.47 (Pettis measurability theorem, first version). A function f : Ω→ X is
strongly measurable if and only if f takes its values in a separable closed subspace X0

of X and the nonnegative functions ∥ f (·)− x0∥ are measurable for all x0 ∈ X0.

A second version of this theorem will be proved in Chapter 4 (see Theorem 4.19).

Proof ‘If’: Let (xn)n⩾1 be dense in X0 and define the functions φn : X0→{x1, . . . ,xn}
as follows. For each y ∈ X0 let k(n,y) be the least integer 1 ⩽ k ⩽ n such that

∥y− xk∥= min
1⩽ j⩽n

∥y− x j∥,

and put φn(y) := xk(n,y). Since (xn)n⩾1 is dense in X0 we have

lim
n→∞
∥φn(y)− y∥= 0, y ∈ X0.

Now define ψn : Ω→ X by

ψn(ω) := φn( f (ω)), ω ∈Ω.

We have

{ω ∈Ω : ψn(ω) = x1}=
{

ω ∈Ω : ∥ f (ω)− x1∥= min
1⩽ j⩽n

∥ f (ω)− x j∥
}

and, for 2 ⩽ k ⩽ n,

{ω ∈Ω : ψn(ω) = xk}

=
{

ω ∈Ω : ∥ f (ω)− xk∥= min
1⩽ j⩽n

∥ f (ω)− x j∥< min
1⩽ j<k−1

∥ f (ω)− x j∥
}
.

In both identities, the set on the right-hand side is in F. Hence each ψn is simple, takes
values in X0, and for all ω ∈Ω we have

lim
n→∞
∥ψn(ω)− f (ω)∥= lim

n→∞
∥φn( f (ω))− f (ω)∥= 0.

‘Only if’: Let fn→ f pointwise with each fn simple. Let X0 be the closed linear span
of the ranges of the functions fn. Then X0 is separable and f takes its values in X0.
Moreover, ω 7→ ∥ f (ω)− x0∥= limn→∞ ∥ fn(ω)− x0∥ is measurable.
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1.5 Integration in Banach Spaces 27

Corollary 1.48. If limn→∞ fn = f pointwise, with each fn strongly measurable, then f
is strongly measurable.

Proof We check the conditions of the Pettis measurability theorem. Every function fn :
Ω→ X is the pointwise limit of a sequence of simple functions fnm : Ω→ X , and every
fnm takes at most finitely many different values. It follows that f takes its values in the
closed linear span of these countably many finite sets, which is a separable subspace of
X . The measurability of the functions ∥ fn−x0∥ implies that ∥ f −x0∥ is measurable.

Definition 1.49 (µ-Simple functions). A simple function f = ∑
N
n=1 1Fn ⊗ xn is called

µ-simple if µ(Fn)< ∞ for all n = 1, . . . ,N. For such functions we define∫
Ω

f dµ :=
N

∑
n=1

µ(Fn)xn.

We leave it as a simple exercise to verify that
∫

Ω
f dµ is well defined in the sense

that it does not depend on the representation of f as a linear combination of functions
1Fn ⊗ xn with µ(Fn)< ∞. If f is µ-simple, the triangle inequality implies∥∥∥∫

Ω

f dµ

∥∥∥⩽ ∫
Ω

∥ f∥dµ. (1.7)

Definition 1.50 (Bochner integral). A strongly measurable function f : Ω→ X is said
to be Bochner integrable with respect to µ if there is a sequence of µ-simple functions
fn : Ω→ X such that

lim
n→∞

∫
Ω

∥ f − fn∥dµ = 0. (1.8)

In that case we define the Bochner integral of f by∫
Ω

f dµ := lim
n→∞

∫
Ω

fn dµ. (1.9)

The nonnegative functions ∥ f − fn∥ are measurable by the Pettis measurability theo-
rem, so the integral in (1.8) is well defined. The limit in (1.9) exists since the assumption
together with (1.7) (applied to fn− fm) implies that (

∫
Ω

fn dµ)n⩾1 is a Cauchy sequence
in X . We leave it as another simple exercise to verify that

∫
Ω

f dµ is well defined in
the sense that it does not depend on the sequence of approximating functions fn. It is
equally elementary to verify that if Ω = K is a compact metric space and F is its Borel
σ -algebra, then every continuous function f : K→ X is Bochner integrable with respect
to µ and the Bochner integral coincides with the Riemann integral.

Proposition 1.51. A strongly measurable function f : Ω→ X is Bochner integrable
with respect to µ if and only if ∫

Ω

∥ f∥dµ < ∞.
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In this situation we have ∥∥∥∫
Ω

f dµ

∥∥∥⩽ ∫
Ω

∥ f∥dµ.

Proof ‘If’: Let f be a strongly measurable function satisfying
∫

Ω
∥ f∥dµ < ∞. Let gn

be simple functions such that limn→∞ gn = f pointwise and define

fn := 1{∥gn∥⩽2∥ f∥}gn.

Then each fn is simple and we have limn→∞ fn = f pointwise. Since ∥ fn∥⩽ 2∥ f∥ point-
wise and

∫
Ω
∥ f∥dµ < ∞, each fn is µ-simple and by dominated convergence we obtain

lim
n→∞

∫
Ω

∥ f − fn∥dµ = 0.

‘Only if’: If f is Bochner integrable and the µ-simple function g : Ω→ X is such that∫
Ω
∥ f −g∥dµ ⩽ 1, then ∫

Ω

∥ f∥dµ ⩽ 1+
∫

Ω

∥g∥dµ < ∞.

The final assertion follows from (1.7) by approximation.

Problems

1.1 Show that in any normed space X , for all x0 ∈X and r > 0 the following assertions
hold:

(a) B(x0;r) = {x ∈ X : ∥x− x0∥< r} is an open set.
(b) B(x0;r) = {x ∈ X : ∥x− x0∥⩽ r} is a closed set.
(c) B(x0;r) = B(x0;r), that is, B(x0;r) is the closure of B(x0;r).

1.2 Let X be a normed space.

(a) Show that if x,y ∈ X satisfy ∥x− y∥< ε with 0 < ε < ∥x∥, then y ̸= 0 and∥∥∥x− ∥x∥
∥y∥

y
∥∥∥< 2ε.

(b) Show that the constant 2 in part (a) is the best possible.

1.3 Show that a norm ∥ · ∥ on the product X = X1× ·· ·×XN of normed spaces is a
product norm if and only if ∥x∥∞ ⩽ ∥x∥⩽ ∥x∥1 for all x = (x1, . . . ,xN)∈ X , where

∥x∥∞ := max
1⩽n⩽N

∥xn∥, ∥x∥1 :=
N

∑
n=1
∥xn∥.

1.4 Show that if X = X1⊕·· ·⊕XN is a direct sum of normed spaces, then each sum-
mand Xn is closed as a subspace of X .
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1.5 Prove that if T ∈L (X ,Y ) is bounded, then

∥T∥= sup
∥x∥=1

∥T x∥= sup
∥x∥<1

∥T x∥.

1.6 Let X and Y be normed spaces and let T ∈L (X ,Y ). Prove that for all x ∈ X and
r > 0 we have

sup
y∈B(x;r)

∥Ty∥⩾ r∥T∥.

1.7 Let X0 := C1
c (0,1) be the vector space of all C1-functions f : (0,1)→ K with

compact support in (0,1).

(a) Show that X := { f ∈C[0,1] : f (0) = f (1) = 0} is a Banach space and that
X0 can be naturally identified with a dense subspace in X .

(b) Show that for each f ∈ X0 the limit limn→∞ Tn f exists with respect to the
norm of X and equals f ′, where

Tn f (t) =
f (t +1/n)− f (t)

1/n
.

(c) Show that there are functions f ∈ X for which the limit limn→∞ Tn f does not
exist in X .

This example shows that the uniform boundedness assumption cannot be omitted
in Proposition 1.19.

1.8 Show that two finite-dimensional normed spaces are isomorphic if and only if
they have the same dimension.

1.9 Show that if two norms ∥ · ∥ and ∥ · ∥′ on a normed space X are equivalent, then
the norms of the completions of (X ,∥ · ∥) and (X ,∥ · ∥′) are equivalent.

1.10 Let ∥ · ∥ and ∥ · ∥′ be two norms on a vector space X . Show that the following
assertions are equivalent:

(1) there exists a constant C ⩾ 0 such that ∥x∥⩽C∥x∥′ for all x ∈ X ;
(2) every open set in (X ,∥ · ∥) is open in (X ,∥ · ∥′);
(3) every convergent sequence in (X ,∥ · ∥′) is convergent in (X ,∥ · ∥);
(4) every Cauchy sequence in (X ,∥ · ∥′) is Cauchy in (X ,∥ · ∥).

1.11 Let X be a Banach space with respect to the norms ∥ · ∥ and ∥ · ∥′. Suppose that
∥ ·∥ and ∥ ·∥′ agree on a subspace Y that is dense in X with respect to both norms.
We ask whether the norms agree on all of X .

(a) Comment on the following attempt to prove this: Apply Proposition 1.18
to the identity mapping on Y , viewed as a mapping from the normed space
(Y,∥ · ∥) to the normed (Y,∥ · ∥′) and as a mapping in the opposite direction.
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(b) Comment on the following attempt to prove this: Let x ∈ X be fixed and,
using density, choose a sequence xn → x with xn ∈ Y for all n ⩾ 1. Then
∥x∥= limn→∞ ∥xn∥= limn→∞ ∥xn∥′ = ∥x∥′.

(c) Comment on Problem 2.8 as an attempt to disprove this.
(d) Prove that the answer is affirmative if we make the additional assumption

that ∥ · ∥⩽C∥ · ∥′ for some constant 0 <C < ∞.

1.12 Provide the details to the ‘if’ part of the proof of Proposition 1.13.
1.13 Let X be a normed space.

(a) Show that if X is separable, then the completion of X is separable.
(b) Show that if X is a Banach space and Y is a closed subspace of X , then X is

separable if and only if both Y and X/Y are separable.

1.14 Determine whether the following sets are open and/or closed in C[0,1]:

(a) { f ∈C[0,1] : f (t)⩾ 0 for all t ∈ [0,1]};
(b) { f ∈C[0,1] : f (t)> 0 for all t ∈ [0,1]}.

1.15 Determine whether the following sets are open and/or closed in ℓ1:

(a) {a ∈ ℓ1 : an ⩾ 0 for all n ⩾ 1};
(b) {a ∈ ℓ1 : an > 0 for all n ⩾ 1}.

1.16 For 1 ⩽ p ⩽ ∞ and integers n0 ⩾ 1, show that the linear mapping En0 : ℓp → K
defined by

En0(a) := an0 , a = (an)n⩾1 ∈ ℓp,

is bounded, and find its norm.
1.17 Let 1 ⩽ p < ∞.

(a) Show that ℓp is a dense subspace of c0.
(b) Show that the inclusion mapping of ℓp into c0 is bounded, and find its norm.

1.18 This problem gives an example of a bounded operator that does not attain its norm.
Let X be the space of continuous functions f : [0,1]→K satisfying f (0) = 0.

(a) Show that X is a closed subspace of C[0,1].

Thus, with the norm inherited from C[0,1], X is a Banach space.

(b) Show that the operator T : X →K,

T f :=
∫ 1

0
f (t)dt,

is bounded and has norm ∥T∥= 1.
(c) Prove that |T f |< 1 for all f ∈ X with ∥ f∥∞ ⩽ 1.
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1.19 This problem gives an example of a bounded operator whose range is not closed.
Consider the linear operator T on C[0,1] given by the indefinite integral

T f (t) =
∫ t

0
f (s)ds, t ∈ [0,1].

(a) Show that T is bounded, and find its norm.
(b) Show that R(T ) is not closed in C[0,1].

1.20 Let V be a vector space, X a normed space, and T : V → X an injective linear
mapping.

(a) Show that ∥v∥V := ∥T v∥ defines a norm on V .
(b) Show that T : (V,∥ · ∥V )→ X is an isometry.

1.21 For each pair of integers m,n ⩾ 1, find an isomorphism from L (Kn,Km) to Kmn.
1.22 Let X and Y be normed spaces. Show that if T ∈L (X ,Y ) is an isomorphism, then

T−1 ∈L (Y,X) is an isomorphism and ∥T−1∥⩾ ∥T∥−1.

1.23 For 1 ⩽ p ⩽ ∞ and integers d ⩾ 1 let ℓp
d := (Kd ,∥ · ∥p) as in Example 1.6.

(a) Show that if T ∈L (ℓ1
d , ℓ

2
d) is an isomorphism, then ∥T∥∥T−1∥⩾

√
d.

(b) Show that if T ∈L (ℓ2
d , ℓ

∞
d ) is an isomorphism, then ∥T∥∥T−1∥⩾

√
d.

(c) Show that if T ∈L (ℓ1
d , ℓ

∞
d ) is an isomorphism, then ∥T∥∥T−1∥⩾ d.

1.24 Show that ℓ1 and ℓ2 are not isomorphic.
1.25 Let X be a Banach space and Y be a normed space. Show that if T : X → Y is a

bounded operator satisfying ∥T x∥ ⩾C∥x∥ for some C > 0 and all x ∈ X , then its
range R(T ) is complete and T is an isomorphism from X to R(T ).

1.26 Let X and Y be finite-dimensional normed spaces. Prove that if Tn,T ∈L (X ,Y ),
then the following assertions are equivalent:

(1) limn→∞ Tn = T uniformly;
(2) limn→∞ Tn = T strongly;
(3) limn→∞ Tn = T weakly.

1.27 Show that a normed space X and its completion X have the same dual. More pre-
cisely, show that the restriction mapping x∗ 7→ x∗|X is an isometric isomorphism
from X∗ onto X∗.

1.28 Let X be a real vector space. The product X ×X can be given the structure of a
complex vector space by introducing a complex scalar multiplication as follows:

(a+ ib)(x,y) := (ax−by,bx+ay).

The idea is to think of the pair (x,y) ∈ X×X as “x+ iy”.

(a) Check that this formula for the scalar multiplication does indeed turn X ×X
into a complex vector space.
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The resulting complex vector space is denoted by XC.
Suppose now that X is a real normed space.

(b) Prove that the formula

∥(x,y)∥ := sup
θ∈[0,2π]

∥(cosθ)x+(sinθ)y∥

defines a norm on XC which turns XC into a complex normed space. Show
that XC is a Banach space if and only if X is a Banach space.

(c) Show that this norm on XC extends the norm of X in the sense that ∥(x,0)∥=
∥(0,x)∥= ∥x∥ for all x ∈ X .

(d) Show that ∥(x,y)∥= ∥(x,−y)∥ for all x,y ∈ X .

(e) Show that any two norms on XC which satisfy the identities in parts (c) and
(d) are equivalent.

1.29 Let X be a real Banach space and let XC be the complex Banach space constructed
in Problem 1.28.

(a) Show that if T is a (real-)linear bounded operator on X , then T extends to a
bounded (complex-)linear operator TC on XC by putting TC(x,y) := (T x,Ty).

(b) Show that ∥TC∥= ∥T∥.
1.30 Let X be a separable Banach space and let D be a dense subset of the open unit

ball BX .

(a) Prove that if x∈X satisfies ∥x∥⩽ 1, then for every ε > 0 there exist sequences
(xn)n⩾1 in D and (cn)n⩾1 in K such that ∑n⩾1 |cn|⩽ 1+ε and ∑n⩾1 cnxn = x.
Hint: Fix a large enough r > 1 and use induction to find a sequence (xn)n⩾1

in D such that ∥x− x1∥< 1
2r and, for each k = 2,3, . . . ,∥∥rk−1(x− x1)− rk−2x2− . . .− rxk−1− xk

∥∥< 1
2r

.

(b) Prove that if x ∈ X satisfies ∥x∥< 1, then there exist sequences (xn)n⩾1 in D
and (cn)n⩾1 in K such that ∑n⩾1 |cn|< 1 and ∑n⩾1 cnxn = x.

1.31 Let X and Y be normed spaces. A mapping φ : X → Y is said to be distance
preserving if for all x1,x2 ∈ X we have

∥φ(x1)−φ(x2)∥= ∥x1− x2∥,

and affine if it preserves convex combinations, i.e., for all x1,x2 ∈ X and real
numbers 0 < λ < 1 we have

φ((1−λ )x1 +λx2) = (1−λ )φ(x1)+λφ(x2).

The aim of this problem is to prove the Ulam–Mazur theorem: Every bijective
distance preserving mapping φ : X → Y between normed spaces is affine.
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For any mapping φ : X → Y , define the “affine defect” relative to the pair
(x1,x2) ∈ X×X by

def(x1,x2)(φ) :=
∥∥∥φ

(x1 + x2

2

)
− φ(x1)+φ(x2)

2

∥∥∥.
We now fix a bijective distance preserving mapping φ : X → Y .

(a) Show that for all x1,x2 ∈ X we have

def(x1,x2)(φ)⩽
1
2
∥x1− x2∥.

Let ρ : Y → Y be the reflection with respect to the point 1
2 (φ(x1)+φ(x2)), i.e.,

ρ(y) = φ(x1)+φ(x2)− y, y ∈ Y.

(b) Show that ψ := φ−1ρφ : X → X is a bijective distance preserving mapping
which satisfies

def(x1,x2)(ψ) = 2def(x1,x2)(φ).

(c) By iterating part (b), conclude from part (a) that def(x1,x2)(φ) = 0.
(d) Deduce from part (c) that φ is affine.

1.32 Show if K is a compact subset of a Banach space X , then K is contained in a
separable closed subspace of X .

1.33 Show that if K and K′ are compact subsets of a Banach space X , then the set
K +K′ := {x+ x′ : x ∈ K, x′ ∈ K′} is compact.

1.34 Let K and F be disjoint subsets of a Banach space X , with K compact and F
closed. Show that d(K,F)> 0, where

d(K,F) := inf{∥x− y∥ : x ∈ K, y ∈ F}.

1.35 As a variation on Proposition 1.40, show that a bounded subset S of a Banach
space X is relatively compact if and only if for every ε > 0 there exists a finite-
dimensional subspace Xε of X such that

S⊆ Xε +B(0;ε).

1.36 Show that a subset K of a Banach space X is relatively compact if and only if
K is contained in the closed convex hull of a sequence (xn)n⩾1 in X satisfying
limn→∞ xn = 0.
Hint: For the ‘only if’ part, cover K with finitely many balls of radius 3−n and let
Cn be the set of their centres; n = 1,2, . . . Let D1 :=C1 and, for n ⩾ 2,

Dn :=
{

cn− cn−1 : cn ∈Cn, cn−1 ∈Cn−1, ∥cn− cn−1∥< 3−n+1}.
Check that each x ∈ K can be represented as an absolutely convergent sum x =

∑n⩾1 dn with dn ∈ Dn. Consider the sequence (xn)n⩾1 given by xn := 2ndn.
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1.37 Using Riesz’s lemma, show that there exists a real number δ ∈ (0,1) with the
property that the open unit ball of any infinite-dimensional normed space contains
infinitely many disjoint open balls of radius δ .

1.38 Using the result of the preceding problem, show that if X is a normed space sup-
porting a translation-invariant Borel measure µ such that 0 < µ(B)< ∞ for some
open ball B in X , then X is finite-dimensional.

1.39 Let (Ω,F ) be a measurable space. Adapting the proof of Theorem 1.47, show
that if f : Ω→ X is strongly measurable, there are simple functions fn : Ω→ X
such that fn→ f and ∥ fn∥⩽ ∥ f∥ pointwise.

1.40 Let K be a compact metric space, let µ a finite Borel measure on K, and let X be
a Banach space. Prove that every continuous function f : K→ X is Bochner inte-
grable with respect to µ and that its Bochner integral equals its Riemann integral.

1.41 Let (Ω,F,µ) be a measure space and let X0 be a closed subspace of the Banach
space X . Let f : Ω→ X satisfy f (ω) ∈ X0 for all ω ∈Ω.

(a) Show that if f is strongly measurable as an X-valued function, then f is
strongly measurable as an X0-valued function.

(b) Show that if f is Bochner integrable as an X-valued function, then f is
Bochner integrable as an X0-valued function.

1.42 Let (Ω,F,µ) be a measure space. Show that if T : X → Y is a bounded opera-
tor and f : Ω→ X is Bochner integrable with respect to µ , then T f : Ω→ Y is
Bochner integrable with respect to µ and

T
∫

Ω

f dµ =
∫

Ω

T f dµ.

1.43 Let (Ω,F,µ) be a measure space and let (Ω′,F ′) be a measurable space. Let
φ : Ω→ Ω′ be measurable and let f : Ω′ → X be strongly measurable. Let ν =

µ ◦φ−1 be the image measure of µ under φ .

(a) Show that f ◦φ is strongly measurable.
(b) Show that f ◦ φ is Bochner integrable with respect to µ if and only if f is

Bochner integrable with respect to ν , and that in this situation we have∫
Ω

f ◦φ dµ =
∫

Ω′
f dν .

1.44 Let (Ω,F,µ) be a probability space. Prove that if f : Ω→ X is Bochner inte-
grable, then

∫
Ω

f dµ is contained in the closed convex hull of { f (ω) : ω ∈Ω}.
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2
The Classical Banach Spaces

Before proceeding any further we pause to undertake a detailed study of the classical
Banach spaces introduced in the previous chapter.

2.1 Sequence Spaces

Besides the finite-dimensional spaces Kd, perhaps the simplest examples of Banach
spaces are provided by the class of sequence spaces. By definition, these are spaces
of sequences which, endowed with a suitable norm, turn into Banach spaces. Here we
introduce the most important sequence spaces, namely, c0 and ℓp, 1 ⩽ p ⩽ ∞.

The Spaces c0 and ℓ∞ The space c0 consisting of all scalar sequences a = (ak)k⩾1

satisfying limk→∞ ak = 0 is a Banach space with respect to the supremum norm

∥a∥∞ := sup
k⩾1
|ak|.

A justification of this notation is given in the next paragraph. That this is indeed a norm
is left as an exercise; the proof of completeness runs as follows. Suppose (a(n))n⩾1 is
a Cauchy sequence in c0. Then each coordinate sequence (a(n)k )n⩾1 is Cauchy in K
and therefore has a limit which we denote by ak. We wish to prove that the sequence
a := (ak)k⩾1 belongs to c0 and that limn→∞ ∥a(n)−a∥∞ = 0.

Fix ε > 0 and choose N so large that ∥a(n)−a(m)∥∞ < ε for all m,n ⩾ N. Choose N′

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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36 The Classical Banach Spaces

so large that |a(N)
k |< ε for all k ⩾ N′. Then, for k ⩾ N′,

|ak|⩽ |ak−a(N)
k |+ |a

(N)
k |= lim

m→∞
|a(m)

k −a(N)
k |+ |a

(N)
k |⩽ ε + ε = 2ε.

It follows that limk→∞ ak = 0, so a ∈ c0.
Finally, for all k ⩾ 1 and m,n ⩾ N we have |a(n)k − a(m)

k | < ε. Letting m→ ∞ while
keeping n fixed, for all k ⩾ 1 we obtain

|a(n)k −ak|⩽ ε.

Taking the supremum over k ⩾ 1 we infer that ∥a(n)− a∥∞ ⩽ ε for all n ⩾ N, and the
convergence a(n)→ a in c0 follows.

In the same way one proves that the space ℓ∞ consisting of all bounded scalar se-
quences a = (ak)k⩾1 is a Banach space with respect to the supremum norm. This space
contains c0 isometrically as a closed subspace.

The Spaces ℓp For 1 ⩽ p < ∞, the space ℓp of scalar sequences a = (ak)k⩾1 satisfying

∥a∥p :=
(

∑
k⩾1
|ak|p

)1/p

is finite is a Banach space with respect to the norm ∥ · ∥p. That this is indeed a norm on
ℓp is nontrivial; the validity of the triangle inequality ∥a+ b∥p ⩽ ∥a∥p + ∥b∥p can be
proved by following the line of proof of Proposition 2.19. Completeness of ℓp can be
proved as in Theorem 2.20. Alternatively, these facts can be deduced as special cases
of Proposition 2.19 and Theorem 2.20 by taking Ω = {1,2,3, . . .} with the counting
measure, that is, the measure which assigns mass 1 to every element of Ω.

It is easy to see (see Problem 2.1) that 1 ⩽ p ⩽ q ⩽ ∞ implies ℓp ⊆ ℓq and

∥a∥q ⩽ ∥a∥p

for all a ∈ ℓp, and that if a ∈ ℓp for some 1 ⩽ p < ∞, then

lim
q→∞

q⩾p

∥a∥q = ∥a∥∞.

This justifies the notation ∥ · ∥∞ for the supremum norm.

Remark 2.1. In some applications it is useful to use countable index sets I other than
the positive integers. We then define

∥a∥ℓp(I) :=
(

∑
n⩾1
|ain |p

)1/p
,

where (in)n⩾1 is an enumeration of I. This definition is independent of the choice of the
enumeration, and the space ℓp(I) of all mappings a : I→K for which this expression is
finite is again a Banach space.
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2.2 Spaces of Continuous Functions 37

2.2 Spaces of Continuous Functions

In this section we study some properties of the space C(K) of continuous functions
defined on a compact topological space K.

2.2.a Completeness

It is a standard result in any introductory course in Analysis that the uniform limit of
a sequence of continuous functions is continuous. The following theorem recasts this
result as a completeness result.

Theorem 2.2 (Completeness). Let K be a compact topological space. The space C(K)

is a Banach space with respect to the supremum norm

∥ f∥∞ := sup
x∈K
| f (x)|.

The elementary verification that this is indeed a norm is left to the reader. The above
supremum is finite (and actually a maximum) since K is compact.

Proof Suppose that ( fn)n⩾1 is a Cauchy sequence in C(K). Then for each x ∈ K,
( fn(x))n⩾1 is a Cauchy sequence in K and therefore convergent to some limit in K
which we denote by f (x). We will prove that the function f thus defined is continuous
and that limn→∞ ∥ fn− f∥∞ = 0.

Fix ε > 0 and choose N ⩾ 1 so large that ∥ fn− fm∥∞ < ε for all m,n ⩾ N. Then in
particular for all m,n ⩾ N and all x∈K we have | fn(x)− fm(x)|< ε. Passing to the limit
m→ ∞ while keeping n fixed we obtain

| fn(x)− f (x)|⩽ ε. (2.1)

Now fix x ∈ K arbitrary and let U ⊆ K be an open set containing x such that | fN(x)−
fN(x′)|< ε whenever x′ ∈U . Then, for x′ ∈U ,

| f (x)− f (x′)|⩽ | f (x)− fN(x)|+ | fN(x)− fN(x′)|+ | fN(x′)− f (x′)|⩽ ε + ε + ε = 3ε,

where we applied (2.1) to n = N and the points x and x′. An argument of this type is
called a 3ε-argument. This proves the continuity of f at the point x. Since x ∈ K was
arbitrary, f is continuous and therefore belongs to C(K). Finally, since (2.1) holds for
all x ∈ K it follows that

∥ fn− f∥∞ = sup
x∈K
| fn(x)− f (x)|⩽ ε

for all n ⩾ N. This proves that limn→∞ ∥ fn− f∥∞ = 0.

We give three more examples of spaces of functions that are Banach spaces with
respect to the supremum norm. The proofs that these spaces are complete are similar to
the ones for c0, ℓ∞, and C(K), and are left as an exercise.
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38 The Classical Banach Spaces

• The space Bb(X) of bounded Borel measurable functions on a topological space X .
• The space Cb(X) of bounded continuous functions on a topological space X .
• The space C0(X) of continuous functions on a locally compact topological space X

which vanish at infinity (the precise definitions are given in Section 4.1.c).

2.2.b The Stone–Weierstrass Approximation Theorem

The Stone–Weierstrass theorem provides a useful density criterion for the spaces C(K).
We begin with the more elementary Weierstrass approximation theorem for K = [a,b].

Theorem 2.3 (Weierstrass approximation theorem). The polynomials with coefficients
in K are dense in C[a,b].

Proof By translation and scaling it suffices to prove the theorem for the space C[0,1].
Our proof is constructive in that it produces an actual sequence of polynomials approx-
imating a given function. Let f ∈C[0,1] be arbitrary and fixed and define the Bernstein
polynomials associated with f by

B( f )
n (x) :=

n

∑
k=0

(
n
k

)
f (

k
n
)xk(1− x)n−k, x ∈ [0,1], n ∈ N.

We will show that limn→∞ ∥B( f )
n − f∥∞ = 0. To begin with, the binomial identity

n

∑
k=0

(
n
k

)
xk(1− x)n−k = [x+(1− x)]n = 1 (2.2)

implies

B( f )
n (x)− f (x) =

n

∑
k=0

(
n
k

)
xk(1− x)n−k( f (

k
n
)− f (x)

)
.

Fix an arbitrary ε > 0. Since f is uniformly continuous there is a real number 0 < δ < 1
such that | f (x)− f (x′)|< ε whenever x,x′ ∈ [0,1] satisfy |x−x′|< δ . Fix x ∈ [0,1] and
set I := {0 ⩽ k ⩽ n : | kn −x|< δ} and I′ = {0 ⩽ k ⩽ n : k ̸∈ I}. The sum over the indices
k ∈ I can be estimated by

∑
k∈I

(
n
k

)
xk(1− x)n−k∣∣ f ( k

n
)− f (x)

∣∣⩽ ε

n

∑
k=0

(
n
k

)
xk(1− x)n−k = ε,

while for k ∈ I′ we have δ 2 ⩽ ( k
n − x)2 and therefore

δ
2
∑
k∈I′

(
n
k

)
xk(1− x)n−k∣∣ f ( k

n
)− f (x)

∣∣⩽ ∑
k∈I′

(
k
n
− x)2

(
n
k

)
xk(1− x)n−k∣∣ f ( k

n
)− f (x)

∣∣
⩽ 2∥ f∥∞

n

∑
k=0

(
k
n
− x)2

(
n
k

)
xk(1− x)n−k
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2.2 Spaces of Continuous Functions 39

(∗)
= 2∥ f∥∞

x(1− x)
n

⩽
2
n
∥ f∥∞,

where in (∗) we used the binomial identity (2.2) in combination with the identities
(which are proved by induction on n)

n

∑
k=0

k
n

(
n
k

)
xk(1− x)n−k = x,

n

∑
k=0

(
k
n
)2
(

n
k

)
xk(1− x)n−k =

n−1
n

x2 +
1
n

x,

to see that
n

∑
k=0

(
k
n
− x)2

(
n
k

)
xk(1− x)n−k =

n−1
n

x2 +
1
n

x−2x · x+ x2 ·1 =
x(1− x)

n
.

Combining things, we obtain

|B( f )
n (x)− f (x)|⩽ ε +

2
δ 2n
∥ f∥∞.

Taking the supremum over x ∈ [0,1] and letting n→ ∞, it follows that

limsup
n→∞

∥B( f )
n − f∥∞ ⩽ ε.

This shows that f can be approximated arbitrarily well by polynomials.

Remark 2.4. The same argument shows that if f : [0,1]→K is any bounded function
which is continuous at a point x0 ∈ [0,1], then limn→∞ B( f )

n (x0) = f (x0).

The proof of Theorem 2.3 has an interesting connection with the law of large num-
bers. Suppose ξ1,ξ2,ξ3, . . . are independent identically distributed random variables
taking the values 0 and 1 with probability 1− p and p, respectively. Let

Sn :=
1
n

n

∑
k=1

ξk.

Suppose that f : [0,1]→K is continuous at a point x0 ∈ [0,1]. Denoting expectation and
probability by E and P respectively,

E f (Sn) =
n

∑
k=0

f (
k
n
) ·P
(

Sn =
k
n

)
and

P
(

Sn =
k
n

)
=

(
n
k

)
pk(1− p)n−k.

From Remark 2.4 we therefore obtain

lim
n→∞

E f (Sn) = lim
n→∞

n

∑
k=0

(
n
k

)
f (

k
n
)pk(1− p)n−k = lim

n→∞
B( f )

n (p) = f (p).
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40 The Classical Banach Spaces

In particular we recover the weak law of large numbers, which is the assertion that this
convergence holds for all f ∈C[0,1].

The proof of the Weierstrass theorem using Bernstein polynomials offers little room
for generalisation, but the theorem itself does admit a far-reaching generalisation:

Theorem 2.5 (Stone–Weierstrass theorem, algebra version). Let K be a compact Haus-
dorff space and suppose that Y is a subspace of C(K) with the following properties:

(i) 1 ∈ Y ;
(ii) g ∈ Y implies g ∈ Y ;

(iii) g ∈ Y and h ∈ Y implies gh ∈ Y ;
(iv) Y separates the points of K.

Then Y is dense in C(K).

Karl Weierstrass, 1815–1897

By definition, condition (iv) means that for
any two distinct points x,y ∈ K there exists a
function g ∈ Y such that g(x) ̸= g(y).

As a preliminary observation we note that
it suffices to prove the theorem for real-valued
functions. Indeed, the complex version of the
theorem follows from the real version as follows.
If g ∈ Y , then the real-valued functions Reg =
1
2 (g+g) and Img = 1

2i (g−g) belong to Y . From
this it is easy to see that the real-linear space YR
of all real-valued functions contained in Y satis-
fies (i)–(iv) again. Now if f = u+ iv ∈C(K) we
may use the real version of the theorem, with Y
replaced by YR, to approximate u and v by functions un,vn ∈ YR. Then the functions
un + ivn approximate f .

The real version of the theorem will be deduced from its companion where condition
(iii) is replaced by closedness under taking pointwise absolute values:

Theorem 2.6 (Stone–Weierstrass theorem, lattice version). Let K be a compact Haus-
dorff space and suppose that Y is a subspace of C(K) with the following properties:

(i) 1 ∈ Y ;
(ii) g ∈ Y implies g ∈ Y ;

(iii) g ∈ Y implies |g| ∈ Y ;
(iv) Y separates the points of K.

Then Y is dense in C(K).
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2.2 Spaces of Continuous Functions 41

Proof Reasoning as before, it suffices to prove the theorem over the real scalars.
For the minimum a∧b := min{a,b} and maximum a∨b := max{a,b} we have the

formulas

a∧b =
1
2
(
(a+b)−|a−b|

)
, a∨b =

1
2
(
(a+b)+ |a−b|

)
.

They imply that Y is closed under taking pointwise maxima and minima.
Fix f ∈C(K) and ε > 0.

Step 1 – We prove that for each x ∈ K there exists a function gx ∈Y such that gx(x) =
f (x) and gx < f + ε pointwise.

Since Y is a subspace containing the constant functions and separating the points of
K, for all y∈K there exists a function gxy ∈Y such that gxy(x) = f (x) and gxy(y) = f (y).
The set Uxy = {z ∈ K : gxy(z)< f (z)+ ε} is open and contains both x and y. Since K is
compact, the open cover {Uxy : y ∈ K} has a finite subcover, say {Uxyn : n = 1, . . . ,Nx}.
The function gx := gxy1 ∧·· ·∧gxyNx

has the required properties.

Step 2 – We prove that there exists a function g ∈ Y such that f − ε < g < f + ε; this
implies ∥ f −g∥∞ ⩽ ε and concludes the proof.

For each x∈K the set Ux = {z∈K : f (z)−ε < gx(z)} is open and contains x. Since K
is compact, the open cover {Ux : x ∈ K} has a finite subcover, say {Uxn : n = 1, . . . ,N}.
The function g := gx1 ∨·· ·∨gxN has the required properties.

Proof of Theorem 2.5 As has already been noted that it suffices to prove the theorem
over the real scalar field. Let Y be a subspace of C(K) with the properties (i)–(iv) stated
in Theorem 2.5. If we can approximate any f ∈C(K) with functions from the closure Y ,
we can also approximate with functions from Y . Since Y also satisfies the properties (i)–
(iv) of Theorem 2.5, we may assume that Y is closed. The strategy of the proof is then
to show, under this additional closedness assumption, that Y satisfies the assumptions
of Theorem 2.6. For this we need to show that if f ∈ Y , then also | f | ∈ Y .

Fix a function g ∈ Y and let ε > 0. Since K is compact, the range of g is contained in
some compact interval [a,b]. By Theorem 2.3 there exists a polynomial p : [a,b]→ R
such that ∥p− q∥∞ < ε , where q(t) := |t| is the absolute value function. Since Y is
an algebra containing the constant functions, p ◦ g belongs to Y and satisfies ∥p ◦ g−
|g|∥C(K) < ε . Since ε > 0 was arbitrary and Y is closed, it follows that |g| ∈ Y = Y .

Remark 2.7. Theorems 2.5 and 2.6 are stated for compact Hausdorff spaces, but the
Hausdorff property was not used in the proofs. Note, however, that the separation-of-
points assumptions in these theorems already imply the Hausdorff property.

As a first application of Theorem 2.5 we have the following separability result.

Proposition 2.8. If K is a compact metric space, then C(K) is separable.
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42 The Classical Banach Spaces

Proof We must find a countable set in C(K) with dense span. Let (xn)n⩾1 be a count-
able dense set in K (such a sequence can be realised by covering K, for each integer
k ⩾ 1, with finitely many open balls of radius 1/k using compactness and collecting
their centres). We may assume that all points in this sequence are distinct. For all pairs
m ̸= n the open balls Bmn = B(xm; 1

3 d(xm,xn)) and Bnm = B(xn; 1
3 d(xn,xm)) have dis-

joint closures. The collection B = {Bmn : m ̸= n} is countable and has the property
that whenever x,y ∈ K are two distinct points, they can be separated by two balls con-
tained in B with disjoint closures. By Urysohn’s lemma (Proposition C.11), for any two
balls B0 := Bm0,n0 and B1 := Bm1,n1 in B with disjoint closures there exists a function
f ∈C(K) such that f ≡ 0 on B0 and f ≡ 1 on B1. The subspace Y spanned by the count-
able set of all finite products of functions of this form and the constant-one function 1
satisfies the assumptions of Theorem 2.5 and is therefore dense in C(K).

The next two examples give further illustrations of the Stone–Weierstrass theorem.

Example 2.9. The trigonometric polynomials, that is, linear combinations of the func-
tions

en(θ) := exp(inθ), n ∈ Z,

are dense as functions in C(T), where T denotes the unit circle, which we think of as
parametrised with (−π,π]. Indeed, they satisfy the requirements of Theorem 2.5. An
explicit procedure to approximate functions in C(T) with trigonometric polynomials is
described in Section 3.5.a.

Example 2.10. Let K1, . . . ,Kk be compact topological spaces. The linear combinations
of functions of the form

f (x) = f1(x1) · · · fk(xk), x = (x1, . . . ,xk) ∈ K1×·· ·×Kk,

with f j ∈C(K j) for all j = 1, . . . ,k, are dense in C(K1×·· ·×Kk). Indeed, they satisfy
the requirements of Theorem 2.5.

2.2.c The Arzelà–Ascoli Compactness Theorem

The next theorem gives a necessary and sufficient condition for relative compactness in
C(K). We need the following terminology. A subset S ⊆C(K) is said to be equicontin-
uous at the point x ∈ K if for all ε > 0 there exists an open set U in K such that for all
x′ ∈U and f ∈ S we have | f (x)− f (x′)| < ε , and it is said to be equicontinuous if it is
equicontinuous at every point of K. The set S is said to be pointwise bounded if for all
x ∈ K we have sup f∈S | f (x)|< ∞.

Theorem 2.11 (Arzelà–Ascoli). Let K be a compact topological space. For any subset
S of C(K), the following assertions are equivalent:



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
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(1) S is relatively compact;
(2) S is bounded and equicontinuous;
(3) S is pointwise bounded and equicontinuous.

An equivalent way of formulating the theorem is that a subset of C(K) is compact if
and only if it is closed, (pointwise) bounded, and equicontinuous.

Proof (1)⇒(2): Suppose that S ⊆ C(K) is relatively compact. Then obviously S is
bounded, so all we need to do is to prove that S is equicontinuous. To this end let
x0 ∈ K and ε > 0 be arbitrary and fixed. We can cover the compact set S with finitely
many (say, n) open balls of radius ε . Let f1, . . . , fn be their centres. Using the continuity
of these (finitely many) functions we can find an open set U containing x0 such that
| f j(x)− f j(x0)| < ε for all x ∈ U and j = 1, . . . ,n. Now consider an arbitrary f ∈ S.
Choose j0 ∈ {1, . . . ,n} such that ∥ f − f j0∥∞ < ε; this is possible by the choice of the
functions f1, . . . , fn. Then for all x ∈U we have

| f (x)− f (x0)|⩽ | f (x)− f j0(x)|+ | f j0(x)− f j0(x0)|+ | f j0(x0)− f (x0)|< 3ε.

This verifies the equicontinuity condition.

(2)⇒(3): This implication is trivial.

(3)⇒(1): Let S⊆C(K) be pointwise bounded and equicontinuous, and fix ε > 0. By
equicontinuity, for every x ∈ K there is an open set Ux in K such that | f (x)− f (x′)|< ε

for all x′ ∈Ux and f ∈ S. By compactness, finitely many of these open sets cover K, say
Ux1 , . . . ,Uxk . By pointwise boundedness, for each j = 1, . . . ,k the set { f (x j) : f ∈ S} is
bounded. It follows that we can find c1, . . . ,cN ∈K such that for all f ∈ S and j = 1, . . . ,k
we have min1⩽n⩽N | f (x j)− cn| < ε . Let N = {n = (n1, . . . ,nk) : 1 ⩽ n j ⩽ N for all
j = 1, . . . ,k}. For n ∈N let

Bn = { f ∈ S : | f (x j)− cn j |< ε for all j = 1, . . . ,k}.

By what we just observed,

S =
⋃

n∈N

Bn.

Suppose that f ,g ∈ Bn and let x ∈ K be arbitrary. Then x belongs to at least one of the
sets Ux j . Then,

| f (x)−g(x)|⩽ | f (x)− f (x j)|+ | f (x j)−g(x j)|+ |g(x j)−g(x)|
⩽ ε + | f (x j)− cn j |+ |cn j −g(x j)|+ ε < 4ε,

where the last inequality holds uniformly with respect to x ∈ K. It follows that ∥ f −
g∥∞ < 4ε . If, for each n ∈N for which Bn is nonempty, we pick a function fn ∈ Bn

and consider the open balls B( fn;4ε), we obtain a finite cover of S with 4ε-balls. Since
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ε > 0 was arbitrary this means that S is totally bounded and hence relatively compact,
by Theorem D.10.

2.2.d Applications to Differential Equations

As an interlude to the main development of the theory, in this section we apply the
completeness result of Theorem 2.2 and the compactness result of Theorem 2.11 to
study the following initial value problem:{

u′(t) = f (t,u(t)), t ∈ [0,T ],

u(0) = u0,
(IVP)

where f : [0,T ]×Kd →Kd is continuous and u0 ∈Kd is given.

Global Existence and Uniqueness A global solution is a continuously differentiable
function u : [0,T ]→Kd satisfying u(0) = u0 and u′(t) = f (t,u(t)) for all t ∈ [0,T ].

Theorem 2.12 (Existence & uniqueness, Picard–Lindelöf). If f : [0,T ]×Kd → Kd is
continuous and there is a constant L ⩾ 0 such that for all t ∈ [0,T ] and x,x′ ∈ Kd we
have

| f (t,x)− f (t,x′)|⩽ L|x− x′|,

then (IVP) admits a unique global solution.

The condition on f is often summarised by saying that f is Lipschitz continuous in
its second variable, uniformly with respect to its first variable.

The proof of Theorem 2.12 is based on the following abstract fixed point theorem.

Theorem 2.13 (Banach fixed point theorem). Let X be a complete metric space and let
f : X → X be uniformly contractive, that is, there exists a constant 0 ⩽ c < 1 such that

d( f (x), f (x′))⩽ cd(x,x′), x,x′ ∈ X .

Then f has a unique fixed point, that is, there exists a unique element x ∈ X with the
property that f (x) = x.

Proof If x and x′ are both fixed points, then d(x,x′) = d( f (x), f (x′))⩽ cd(x,x′), which
is only possible if d(x,x′) = 0, that is, if x = x′. It follows that a fixed point, if it exists,
is unique.

To prove that a fixed point exists, choose an arbitrary x0 ∈ X and define the sequence
(xn)n⩾0 by xn+1 := f (xn) for n ⩾ 0. We claim that this is a Cauchy sequence. Indeed,
for all n ⩾ 1 we have

d(xn+1,xn) = d( f (xn), f (xn−1))⩽ cd(xn,xn−1),
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and therefore by induction one sees that d(xn+1,xn) ⩽ cn−1 d(x2,x1) for all n ⩾ 1. For
all m ⩾ n ⩾ N we have

d(xm,xn)⩽ d(xm,xm−1)+ · · ·+d(xn+1,xn)

⩽ (cm−2 + · · ·+ cn−1) ·d(x2,x1)⩽
( ∞

∑
k=N−1

ck
)
·d(x2,x1) =

cN−1

1− c
·d(x2,x1),

and the right-hand side can be made small by taking N large. This proves the claim.
Since X was assumed to be complete, the sequence (xn)n⩾1 converges in X . Let x

be its limit. Then the continuity of f implies f (x) = limn→∞ f (xn) = limn→∞ xn+1 = x,
which shows that x is a fixed point for f .

By C([0,T ];Kd) we denote the space of all continuous functions f : [0,T ]→ Kd.
Endowed with the supremum norm, this space is a Banach space. Indeed, suppose that
( f (n))n⩾1 is a Cauchy sequence in C([0,T ];Kd). Then the d sequences of coordinate
functions ( f (n)j )n⩾1 are Cauchy in C[0,T ] and therefore converge to limits f j in C[0,T ].
This easily implies that the sequence ( f (n))n⩾1 converges in C([0,T ];Kd) to the function
f with coordinate functions f j.

We will use the Banach fixed point theorem to prove that the (nonlinear) mapping
IT : C([0,T ];Kd)→C([0,T ];Kd) defined by

(IT u)(t) := u0 +
∫ t

0
f (s,u(s))ds, t ∈ [0,T ],

where the integral is interpreted as a Kd-valued Riemann integral, has a fixed point.
This will prove the theorem in view of the next lemma.

Lemma 2.14. A function u ∈C([0,T ];Kd) satisfies (IVP) for all t ∈ [0,T ] if and only if
u is a fixed point of IT .

Proof Indeed, u is a fixed point of IT if and only if u(t) = u0 +
∫ t

0 f (s,u(s))ds for
all t ∈ [0,T ]. By integration, this identity holds if u is a solution, and conversely if the
identity holds, then u is continuously differentiable (since the right-hand side is) and by
differentiation we obtain that u is a solution.

Proof of Theorem 2.12 Let us start with a preliminary estimate that will be refined
shortly. For all u,v ∈C([0,T ];Kd) and all t ∈ [0,T ] we have

|(IT (u))(t)− (IT (v))(t)|=
∣∣∣∫ t

0
f (s,u(s))− f (s,v(s))ds

∣∣∣
⩽
∫ t

0
L|u(s)− v(s)|ds ⩽

∫ t

0
L∥u− v∥ds ⩽ LT∥u− v∥.

Taking the supremum over t ∈ [0,T ] we find that

∥IT (u)− IT (v)∥⩽ LT∥u− v∥.
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If LT < 1, then IT is uniformly contractive and the Banach fixed point theorem guaran-
tees the existence of a unique fixed point. This proves Theorem 2.12 in the special case
that the smallness condition LT < 1 is satisfied.

To get around this condition we modify the norm of C([0,T ];Kd). Fix real number
λ > 0 (in a moment we will see that we need λ > L), and define

∥ f∥λ := sup
t∈[0,T ]

e−λ t | f (t)|.

It is clear that this defines a norm on C([0,T ];Kd) and we have

e−λT∥ f∥⩽ ∥ f∥λ ⩽ ∥ f∥.

This implies that a sequence in C([0,T ];Kd) is Cauchy with respect to the norm ∥ ·∥λ if
and only if it is Cauchy with respect to the norm ∥·∥, and since C([0,T ];Kd) is complete
with respect to the latter, we conclude that C([0,T ];Kd) is a Banach space with respect
to the norm ∥ · ∥λ . Using this norm, we redo the above computations and find

∥IT (u)− IT (v)∥λ = sup
t∈[0,T ]

e−λ t |(IT (u))(t)− (IT (v))(t)|

⩽ sup
t∈[0,T ]

e−λ t
∫ t

0
Leλ se−λ s|u(s)− v(s)|ds

⩽ sup
t∈[0,T ]

e−λ t∥u− v∥λ

∫ t

0
Leλ s ds

= sup
t∈[0,T ]

e−λ t∥u− v∥λ ·
L
λ
(eλ t −1)⩽

L
λ
∥u− v∥λ .

Hence if we choose λ > L, then IT is uniformly contractive on C([0,T ];Kd) with respect
to the norm ∥ · ∥λ . Now an application of the Banach fixed point theorem produces a
unique fixed point for IT .

Remark 2.15. Theorem 2.12 remains true if we replace the interval [0,T ] by [0,∞) and
assume that f : [0,∞)×Kd →Kd satisfies

| f (t,x)− f (t,x′)|⩽ L|x− x′|

for all t ∈ [0,∞) and x,x′ ∈Kd. Indeed, the preceding argument produces a solution uT

on every interval [0,T ]. We may now define u : [0,∞)→ Kd by setting u := uT on the
interval [0,T ]. Since by uniqueness we have uT = uS on [0,S∧T ], this is well defined.
The resulting function is continuously differentiable and satisfies (IVP) on every interval
[0,T ], hence on all of [0,∞), and is therefore a global solution on [0,∞).

Remark 2.16. All that has been said extends to the case where Kd is replaced by a
Banach space X . This equally pertains to the results of the next paragraph.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
2.2 Spaces of Continuous Functions 47

Local Existence As an application of Theorem 2.11 we present a local existence result
for differential equations with continuous right-hand side. In contrast to the situation
in Theorem 2.12, where a Lipschitz continuity assumption was made, we do not get
uniqueness of the solution.

The problem (IVP) admits a local solution if there exists 0 < δ ⩽ T and a continu-
ously differentiable function u : [0,δ ]→ Kd satisfying u(0) = u0 and u′(t) = f (t,u(t))
for all t ∈ [0,δ ].

Theorem 2.17 (Local existence, Peano). If f : [0,T ]×Kd→Kd is continuous, then the
problem (IVP) admits a local solution.

Giuseppe Peano, 1858–1932

A global solution need not always exist. In-
deed, u(t) = 1/(1− t), t ∈ [0,δ ] with 0 < δ < 1,
is a local solution of the problem{

u′(t) = (u(t))2, t ∈ [0,1],

u(0) = 1,

but this problem does not have a global solution.
This follows from the fact that a local solution
on a subinterval [0,δ ], if one exists, is unique.
To see this, suppose that u1 and u2 are two solu-
tions on [0,δ ]. Both u1 and u2 are continuous,
hence bounded, let us say by the constant M.
Consider now the function φ̃(x) := min{x2,M}.
This function is globally Lipschitz continuous on
[0,δ ]×R, and therefore the problem{

u′(t) = φ̃(u(t)), t ∈ [0,δ ],

u(0) = 1

has a unique solution on [0,δ ], say u. On the other hand u1 and u2 are solutions on [0,δ ],
because φ̃(u1(t)) = (u1(t))2 and φ̃(u2(t)) = (u2(t))2 for all t ∈ [0,δ ], and therefore we
must have u1 = u = u2 on [0,δ ]. The upshot of all this is that if a global solution exists,
it must be equal to 1/(1− t) on every subinterval [0,δ ], hence on the interval [0,1); but
the function 1/(1− t) cannot be extended to a continuous function on [0,1].

The above uniqueness proof for local solutions made use of the fact that the right-
hand side was locally Lipschitz continuous in the second variable in a neighbourhood
of the initial value. In general, however, a local solution need not be unique. Indeed,
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both u1(t) = 0 and u2(t) = t3/2 are solutions of the problemu′(t) =
3
2
(u(t))1/3, t ∈ [0,1],

u(0) = 0.

The function φ(t,x) := 3
2 x1/3 fails to be locally Lipschitz continuous in the second vari-

able in a neighbourhood of the initial value 0.

As a first step towards the proof of Theorem 2.17 we show that the problem (IVP)
is equivalent to an integrated version of it. For the remainder of this section we assume
that f is continuous.

Lemma 2.18. A function u ∈C([0,δ ];Kd) is a local solution of (IVP) if and only if for
all t ∈ [0,δ ] we have

u(t) = u0 +
∫ t

0
f (s,u(s))ds. (2.3)

The function s 7→ f (s,u(s)) is continuous on [0,δ ], so the integral is well defined as
a Riemann integral with values in Kd.

Proof If u ∈C([0,δ ];Kd) is a local solution, then for all t ∈ [0,δ ] we have

u(t)−u0 = u(t)−u(0) =
∫ t

0
u′(s)ds =

∫ t

0
f (s,u(s))ds

and (2.3) holds for all t ∈ [0,δ ]. Conversely, if u ∈C([0,δ ];Kd) satisfies (2.3) for all t ∈
[0,δ ], then u is continuously differentiable on [0,δ ]. Using u(0)= u0 and differentiating,
we find

u′(t) =
d
dt

∫ t

0
f (s,u(s))ds = f (t,u(t))

for all t ∈ [0,δ ], that is, (IVP) holds.

Now we are ready for the proof of Theorem 2.17. It relies on a compactness argu-
ment. The idea is to construct, for small enough δ ∈ (0,T ], a sequence of approxi-
mate solutions (un)n⩾1 in C([0,δ ];Kd) and show its equicontinuity (the definition of
which extends to vector-valued functions in the obvious way). An appeal to the Arzelà–
Ascoli theorem (which extends to the vector-valued case as well, without change in the
proof) then produces a subsequence (unk)k⩾1 that converges in C([0,δ ];Kd). The limit
u ∈C([0,δ ];Kd) will be shown to solve (IVP) on the interval [0,δ ].

Proof of Theorem 2.17 Let M := sup(t,x)∈[0,T ]×B(u0;1) | f (t,x)| and δ := min{T,1/M}.
For n = 1,2, . . . we equipartition the interval [0,δ ] using the partition points t j,n := jhn

for j = 0, . . . ,2n, where hn := 2−nδ , and define inductively

un(0) := u0, un(t j+1,n) := un(t j,n)+hn f (t j,n,u(t j,n)), j = 0, . . . ,2n−1. (2.4)
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For the remaining values of t ∈ [0,δ ] we define un(t) by piecewise linear interpolation.
Since each un is piecewise continuously differentiable with derivatives bounded by M
(by an inductive argument based on (2.4), each u(t j,n) belongs to B(u0;1)), we have

|un(t)−un(s)|⩽ M|t− s|, s, t ∈ [0,δ ].

This implies that the functions un are equicontinuous. The estimate

|un(t)|⩽ |un(t)−un(0)|+ |un(0)|⩽ Mδ + |u0|⩽ 1+ |u0|, t ∈ [0,δ ],

shows that they are also uniformly bounded. By the Arzelà–Ascoli theorem, some sub-
sequence (unk)k⩾1 converges to a limiting function u in C([0,δ ];Kd).

Since f is uniformly continuous on [0,T ]×B(u0;1) we have limn→∞ Cn = 0, where

Cn := sup
|t−s|⩽hn

sup
|x−y|⩽hnM

| f (t,x)− f (s,y)|.

Writing

un(t) = u0 +
2n−1

∑
j=0

∫ t j+1,n

t j,n

1[0,t](s) f (t j,n,un(t j,n))ds, t ∈ [0,δ ],

we see that ∣∣∣un(t)−
(

u0 +
∫ t

0
f (s,un(s))ds

)∣∣∣
⩽

2n−1

∑
j=0

∫ t j+1,n

t j,n

1[0,t](s)| f (t j,n,un(t j,n))− f (s,un(s))|ds

⩽Cn

2n−1

∑
j=0

∫ t j+1,n

t j,n

1[0,t](s)ds ⩽Cn2nhn =Cnδ .

The right-hand side tends to 0 as n→ ∞. Taking limits, it follows that

u(t) = lim
k→∞

unk(t) = u0 + lim
k→∞

∫ t

0
f (s,unk(s))ds = u0 +

∫ t

0
f (s,u(s))ds,

and therefore u solves the integrated version of (IVP) on [0,δ ]. By Lemma 2.18, u then
solves (IVP) on the interval [0,δ ].

2.3 Spaces of Integrable Functions

Let (Ω,F,µ) be a measure space and fix 1 ⩽ p < ∞. We define L p(Ω) as the set of all
measurable functions f : Ω→K such that∫

Ω

| f |p dµ < ∞.
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For such functions we set

∥ f∥p :=
(∫

Ω

| f |p dµ

)1/p
.

For p = ∞ we define L ∞(Ω) as the set of all measurable functions f : Ω→K that are
µ-essentially bounded, meaning that there exists a set N ∈F of µ-measure 0 such that
f is bounded on ∁N. For such functions we define ∥ f∥∞ as the µ-essential supremum
of f ,

∥ f∥∞ := µ-esssup
ω∈Ω

| f (ω)| := inf
{

r > 0 : | f |⩽ r µ-almost everywhere
}
.

When there is no risk of confusion, the measure µ is omitted from this notation.

Henri Lebesgue, 1875–1941

The spaces L p(Ω) are vector spaces:

Proposition 2.19 (Minkowski inequality). Let
1 ⩽ p ⩽ ∞. For all functions f ,g ∈ L p(Ω) we
have f +g ∈L p(Ω) and

∥ f +g∥p ⩽ ∥ f∥p +∥g∥p.

Proof The result is trivial for p=∞, so we only
consider the case 1 ⩽ p < ∞.

By elementary calculus it is checked that for
all nonnegative real numbers a and b one has

(a+b)p = inf
t∈(0,1)

t1−pap +(1− t)1−pbp.

Applying this identity to | f (ω)| and |g(ω)| with ω ∈Ω and integrating with respect to
µ , for all fixed t ∈ (0,1) we obtain∫

Ω

| f +g|p dµ ⩽
∫

Ω

(| f |+ |g|)p dµ ⩽ t1−p
∫

Ω

| f |p dµ +(1− t)1−p
∫

Ω

|g|p dµ.

Stated differently, this says that

∥ f +g∥p
p ⩽ t1−p∥ f∥p

p +(1− t)1−p∥g∥p
p.

Taking the infimum over all t ∈ (0,1) gives the result.

In spite of this result, ∥ · ∥p is not a norm on L p(Ω), because ∥ f∥p = 0 only implies
that f = 0 µ-almost everywhere. In order to get around this imperfection, we define an
equivalence relation ∼ on L p(Ω) by

f ∼ g⇔ f = g µ-almost everywhere.

The equivalence class of a function f modulo∼ is denoted by [ f ]. On the quotient space

Lp(Ω) := L p(Ω)/∼,
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whose elements are the equivalence classes [ f ] of functions f ∈ L p(Ω), we define a
scalar multiplication and addition in the natural way:

c[ f ] := [c f ], [ f ]+ [g] := [ f +g].

We leave it as an exercise to check that both operations are well defined. With these
operations, Lp(Ω) is a normed vector space with respect to the norm

∥[ f ]∥p := ∥ f∥p.

When we explicitly wish to express the dependence on F or µ we write Lp(Ω,F )

or Lp(Ω,µ). Following common practice we make no distinction between functions in
L p(Ω) and their equivalence classes in Lp(Ω), and call the latter “functions” as well.
In the same vein, we will not hesitate to talk about the “sets”

{ω ∈Ω : f (ω) ∈ B}

when B⊆K is a Borel set and f is an element of Lp(Ω). The rigorous interpretation is
that {ω ∈Ω : f (ω) ∈ B} defines an equivalence class of sets in F , the representatives
of which are obtained by selecting pointwise defined measurable representatives for f .

2.3.a Completeness

For the remainder of this section we fix a measure space (Ω,F,µ). The main result of
this section is the following completeness result for the spaces Lp(Ω).

Theorem 2.20 (Completeness). For all 1⩽ p⩽∞ the normed space Lp(Ω) is complete.

Proof First let 1 ⩽ p < ∞, and let ( fn)n⩾1 be a Cauchy sequence with respect to the
norm ∥ · ∥p of Lp(Ω). By passing to a subsequence we may assume that

∥ fn+1− fn∥p ⩽
1
2n , n = 1,2, . . .

Define the nonnegative measurable functions

gN :=
N−1

∑
n=0
| fn+1− fn|, g :=

∞

∑
n=0
| fn+1− fn|,

with the convention that f0 = 0. By the monotone convergence theorem,∫
Ω

gp dµ = lim
N→∞

∫
Ω

gp
N dµ.

Taking pth roots and using Minkowski’s inequality we obtain

∥g∥p = lim
N→∞
∥gN∥p ⩽ lim

N→∞

N−1

∑
n=0
∥ fn+1− fn∥p =

∞

∑
n=0
∥ fn+1− fn∥p ⩽ 1+∥ f1∥p.
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It follows that g is finitely valued µ-almost everywhere, which means that the sum
defining g converges absolutely µ-almost everywhere. As a result, the sum

f :=
∞

∑
n=0

( fn+1− fn)

converges on the set {g < ∞}. On this set we have

f = lim
N→∞

N−1

∑
n=0

( fn+1− fn) = lim
N→∞

fN .

Defining f to be identically zero on the null set {g = ∞}, the resulting function f is
measurable. From

| fN |p =
∣∣∣N−1

∑
n=0

( fn+1− fn)
∣∣∣p ⩽ (N−1

∑
n=0
| fn+1− fn|

)p
⩽ |g|p

it follows | f |p ⩽ |g|p and hence

| f − fN |p ⩽ 2p( 1
2 (| f |+ | fN |))p ⩽ 2p · 1

2 (| f |
p + | fN |p)⩽ 2p|g|p,

using the convexity of t 7→ t p (recall that a function f : I → R, where I is an interval,
is called convex if for all x0,x1 ∈ I and 0 ⩽ λ ⩽ 1 we have f ((1−λ )x0 +λx1) ⩽ (1−
λ ) f (x0)+λ f (x1)). From the dominated convergence theorem we conclude that

lim
N→∞
∥ f − fN∥p = 0.

We have proved that a subsequence of the original Cauchy sequence converges to f
in Lp(Ω). As is easily verified, this implies that the original Cauchy sequence converges
to f as well. This completes the proof for exponents 1 ⩽ p < ∞.

It remains to establish the result for p = ∞. Let ( fn)n⩾1 be a Cauchy sequence with
respect to the norm ∥ · ∥∞ of L∞(Ω). By passing to a subsequence we may assume that

∥ fn+1− fn∥∞ ⩽
1
2n , n = 1,2, . . .

Choose µ-null sets Fn such that | fn+1(ω)− fn(ω)| ⩽ 1
2n for all ω ∈ ∁Fn. Defining the

functions gN and g as before, we note that outside the µ-null set F :=
⋃

n⩾1 Fn we have
uniform convergence gn→ g. Defining the function f as before, this implies that fN→ f
uniformly outside F . This, in turn, means that fN → f in L∞(Ω).

In the course of the proof we obtained the following result:

Corollary 2.21. Every convergent sequence ( fn)n⩾1 in Lp(Ω), with 1 ⩽ p ⩽ ∞, has a
µ-almost everywhere convergent subsequence ( fnk)k⩾1, and this subsequence may be
chosen to satisfy | fnk |⩽ g almost everywhere for some fixed 0 ⩽ g ∈ Lp(Ω).
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In the majority of applications the first part of this corollary suffices, but the sec-
ond part is sometimes helpful in setting the stage for an application of the dominated
convergence theorem.

Remark 2.22. Except when p = ∞, in the setting of Corollary 2.21 it need not be the
case that the sequence ( fn)n⩾1 itself is µ-almost everywhere convergent to its Lp(Ω)-
limit f (see Problems 2.13 and 2.14).

The inequality in the next result is known as Hölder’s inequality. For p = q = 2 and
r = 1 it reduces to a special case of the Cauchy–Schwarz inequality (see Proposition
3.3).

Proposition 2.23 (Hölder’s inequality). Let 1 ⩽ p,q,r ⩽ ∞ satisfy 1
p +

1
q = 1

r . If f ∈
Lp(Ω) and g ∈ Lq(Ω), then f g ∈ Lr(Ω) and

∥ f g∥r ⩽ ∥ f∥p∥g∥q.

For r = 1 the condition on p and q reads 1
p +

1
q = 1; we call such p and q conjugate

exponents.

Proof It suffices to prove the inequality for r = 1; the general case follows by applying
this special case to the functions | f |r and |g|r.

For p= 1, q=∞ and for p=∞, q= 1, the first inequality follows by a direct estimate.
Thus we may assume from now on that 1 < p,q < ∞. The inequality is then proved in
the same way as Minkowski’s inequality, this time using the identity

ab = inf
t>0

( t pap

p
+

bq

qtq

)
.

Remark 2.24. Let 1 ⩽ p1, . . . , pN ,r ⩽ ∞ satisfy 1
p1
+ · · ·+ 1

pN
= 1

r . If fn ∈ Lpn(Ω) for
n = 1, . . . ,N, then ∏

N
n=1 fn ∈ Lr(Ω) and∥∥∥ N

∏
n=1

fn

∥∥∥
r
⩽

N

∏
n=1
∥ fn∥pn .

This more general version of Hölder’s inequality follows from Proposition 2.23 by an
easy induction argument.

As an immediate corollary of Hölder’s inequality we have the following result.

Corollary 2.25. Let 1 ⩽ p,q,r ⩽ ∞ satisfy 1
p +

1
q = 1

r . Then the mapping

( f ,g) 7→ f g
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is jointly continuous from Lp(Ω)× Lq(Ω) into Lr(Ω). In particular, if 1 ⩽ p,q ⩽ ∞

satisfy 1
p +

1
q = 1 and fn→ f in Lp(Ω), then for all g ∈ Lq(Ω) we have

lim
n→∞

∫
Ω

fngdµ =
∫

Ω

f gdµ.

Proof If fn→ f in Lp(Ω) and gn→ g in Lq(Ω), then Hölder’s inequality implies that
fngn, fng, f gn, f g belong to Lr(Ω) and

∥ fngn− f g∥r ⩽ ∥( fn− f )g∥r +∥ fn(gn−g)∥r

⩽ ∥ fn− f∥p∥g∥q +M∥gn−g∥q→ 0 as n→ ∞,

where M := supn⩾1 ∥ fn∥p. By Proposition D.8, this proves the asserted continuity.

A useful special case of Hölder’s inequality concerns the case of a finite measure. If
µ(Ω)< ∞ and 1 ⩽ r ⩽ p ⩽ ∞, then Hölder’s inequality implies that if f ∈ Lp(Ω), then
f ∈ Lr(Ω) and

∥ f∥r ⩽ µ(Ω)
1
r−

1
p ∥ f∥p.

In the case of a probability measure µ this takes the simpler form ∥ f∥r ⩽ ∥ f∥p.
The following result provides a converse to Hölder’s inequality. We formulate it for

exponents 1
p +

1
q = 1; as in the proof of Hölder’s inequality, this implies a more general

version for exponents 1
p +

1
q = 1

r . A further variation will be given in Proposition 5.13.

Proposition 2.26. Let 1 ⩽ p,q ⩽ ∞ satisfy 1
p +

1
q = 1. Let (Ω,µ) be a measure space,

which is assumed to be σ -finite if p = ∞. A measurable function f belongs to Lp(Ω) if
and only if

f g ∈ L1(Ω) and ∥ f g∥1 ⩽ M∥g∥q

for some constant M ⩾ 0 and all g ∈ Y , where Y is a dense subspace of Lq(Ω). In that
case we have ∥ f∥p ⩽ M.

Proof The ‘only if’ part is immediate from Hölder’s inequality. To prove the ‘if’ part
we may assume that f is not identically 0.

Step 1 – By assumption, the mapping g 7→ f g is bounded, of norm at most M, as a
mapping from the dense subspace Y of Lq(Ω) to L1(Ω). Hence by Proposition 1.18 it
admits a unique extension to a bounded operator, of norm at most M, from Lq(Ω) to
L1(Ω). Denote this operator by T . If gn → g in Lq(Ω) with each gn in Y , then T g =

limn→∞ T gn = limn→∞ f gn with convergence in L1(Ω). Using Corollary 2.21 we may
pass to a subsequence such that gnk → g and f gnk → T g µ-almost everywhere, and
therefore

T g = lim
n→∞

f gn = f g µ-almost everywhere.
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This also implies that f g ∈ L1(Ω) for all g ∈ Lq(Ω) and

∥ f g∥1 ⩽ M∥g∥q, g ∈ Lq(Ω). (2.5)

Step 2 – In this step we prove the proposition for 1 ⩽ p < ∞ by showing that∫
Ω

| f |p dµ ⩽ Mp. (2.6)

To this end let φ be a µ-simple function satisfying 0⩽ φ ⩽ | f | µ-almost everywhere, say
φ = ∑

k
j=1 c j1Fj with coefficients c j ∈ K and the sets Fj disjoint and of finite measure.

We first prove that ∫
Ω

|φ |p dµ ⩽ Mp. (2.7)

If
∫

Ω
|φ |p dµ = 0 this inequality trivially holds, so we may assume that

∫
Ω
|φ |p dµ > 0.

To prove (2.7) in this case, set g := |φ |p−1 (with g := 1 if p = 1). Then∫
Ω

|φ |p dµ =
∫

Ω

|φ |gdµ ⩽
∫

Ω

| f |gdµ = ∥ f g∥1 ⩽ M∥g∥q. (2.8)

For p = 1 we have ∥g∥q = ∥1∥∞ = 1 and (2.7) follows from (2.8). For 1 < p < ∞ we
have 1 < q < ∞ and

∥g∥q
q =

k

∑
j=1
|c j|(p−1)q

µ(Fj) =
k

∑
j=1
|c j|pµ(Fj) =

∫
Ω

|φ |p dµ.

Taking qth roots on both sides and substituting the result into (2.8), we obtain∫
Ω

|φ |p dµ ⩽ M
(∫

Ω

|φ |p dµ

)1/q
,

which is the same as saying that (2.7) holds.
Now let 0 ⩽ φn ↑ | f | µ-almost everywhere in (2.7), with each φn a µ-simple function.

Applying the previous inequality to φn, the monotone convergence theorem gives (2.6).
This proves that f ∈ Lp(Ω) and ∥ f∥p ⩽ M. This completes the proof for 1 ⩽ p < ∞.

Step 3 – Suppose next that p = ∞ and (Ω,F,µ) is σ -finite. Suppose, for a contradic-
tion, that f does not belong to L∞(Ω). Then for all n = 1,2, . . . the set An := {| f |⩾ n}
has strictly positive measure. If Ω =

⋃
j⩾1 B j with µ(B j) < ∞ for all j (such sets exist

by σ -finiteness), then for each n there must be an index j = jn such that An ∩B jn has
strictly positive (and finite) measure µn. Then gn := 1

µn
1An∩B jn

belongs to L1(Ω) and
has norm one, and we have

∥ f gn∥1 =
1
µn

∫
An∩B jn

| f |dµ ⩾ n = n∥gn∥1.

This contradicts (2.5).
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Remark 2.27. The argument of Step 3 proves, more generally, that if (Ω,F ,µ) is a
σ -finite measure space and 1 ⩽ p ⩽ ∞, then a measurable function f belongs to L∞(Ω)

if and only if f g ∈ Lp(Ω) and ∥ f g∥p ⩽ M∥g∥p for some constant M ⩾ 0 and all g ∈ Y ,
where Y is a dense subspace of Lp(Ω); in that case we have ∥ f∥∞ ⩽ M.

2.3.b Approximation by Mollification

It is generally difficult to handle Lp-functions directly. There are two ways of dealing
with this problem: by approximation it often suffices to consider functions that are easier
to deal with, and by interpolation one can reduce matters to exponents that are easier to
deal with. The present section is devoted to approximation techniques; interpolation is
treated in Section 5.7.

We begin by proving that the µ-simple functions are dense in Lp(Ω) for 1 ⩽ p < ∞.
Recall from Definition 1.49 that a µ-simple function is a simple function supported on
sets of finite µ-measure.

Proposition 2.28 (Approximation by µ-simple functions). For 1⩽ p<∞, the µ-simple
functions are dense in Lp(Ω). The same result holds for L∞(Ω) if µ(Ω)< ∞.

Proof Fix a function f ∈ Lp(Ω).
First let 1 ⩽ p < ∞. By dominated convergence we have

lim
n→∞

1{ 1
n⩽| f |⩽n} f = f

in Lp(Ω). Moreover,

µ{| f |⩾ 1/n}=
∫

Ω

1{| f |⩾ 1
n }

dµ ⩽
∫

Ω

1{| f |⩾ 1
n }
|n f |p dµ ⩽ np∥ f∥p

p < ∞.

We may therefore assume that f is bounded and µ is a finite measure. By considering
real and imaginary parts separately we may also assume that f is real-valued. Under
these assumptions we have fk→ f in Lp(Ω), where

fk := ∑
j∈Z

1{ j2−k⩽ f<( j+1)2−k} j2−k

are µ-simple functions (by the boundedness of f these sums have only finitely many
nonzero contributions).

If f ∈ L∞(Ω) with µ(Ω) < ∞, the functions fk defined above are µ-simple and ap-
proximate f uniformly.

More interesting is the fact that if D is an open subset of Rd, then the vector space
C∞

c (D) of all compactly supported smooth functions f : D→ K is dense in Lp(D) for
every 1 ⩽ p < ∞. Here, and in what follows, the support supp( f ) of a continuous func-
tion f : D→ K is defined as the complement of the largest open set U such that f ≡ 0
on D∩U or, equivalently, as the closure of the set {x ∈ D : f (x) ̸= 0}.
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Proposition 2.29 (Approximation by compactly supported smooth functions). Let 1 ⩽
p < ∞ and let D⊆ Rd be open. Then C∞

c (D) is dense in Lp(D).

Proof For f ∈ Lp(D) we have limn→∞ ∥ f −1B(0;n) f∥p = 0 by dominated convergence,
so there is no loss of generality in assuming that D is bounded. Also, by Proposition
2.28, every f ∈ Lp(D) can be approximated by simple functions supported on D. Hence
it suffices to prove that every simple function supported on a bounded open set D can be
approximated in Lp(D) by functions in C∞

c (D). By linearity and the triangle inequality,
it even suffices to approximate indicator functions of the form 1B for Borel sets B⊆ D.

Given ε > 0, choose an open set U ⊆ D and a closed set F ⊆ D such that F ⊆ B⊆U
and |U \F |< ε; this is possible by the regularity of the Lebesgue measure on D (Propo-
sition E.16). Let φ ∈C∞

c (D) satisfy 0 ⩽ φ ⩽ 1 pointwise, φ ≡ 1 on F , and φ ≡ 0 outside
U . As outlined in Problem 2.9, the existence of such functions can be demonstrated by
elementary calculus arguments. Then

∥φ −1B∥p
Lp(D)

=
∫

D

∣∣φ |U\F ∣∣p dx ⩽ |U \F |< ε.

Since the choice of ε > 0 was arbitrary, this completes the proof.

The corresponding result for p = ∞ is wrong: if D is nonempty and open, then Cc(D),
the vector space of all compactly supported continuous functions f : D→ K, fails to
be dense in L∞(D). Indeed, if D′ is a nonempty open set properly contained in D, then
∥ f −1D′∥L∞(D) ⩾

1
2 for every f ∈Cc(D).

The separability of the spaces C(B(0;n)) implies:

Corollary 2.30. Let 1 ⩽ p < ∞ and let D⊆ Rd be open. Then Lp(D) is separable.

Remark 2.31. Since finite Borel measures on metric spaces are regular (Proposition
E.16), using Urysohn’s lemma (Proposition C.11) the same argument proves that if µ is
a finite Borel measure on a compact metric space K, then C(K) is dense in Lp(K,µ) for
all 1 ⩽ p < ∞.

Combining this observation with Proposition 2.8, as a corollary we obtain that, under
these assumptions, Lp(K,µ) is separable for all 1 ⩽ p < ∞.

As an application of Proposition 2.29 we prove an Lp-continuity result for translation.

Proposition 2.32 (Continuity of translation). Let f ∈ Lp(Rd) with 1 ⩽ p < ∞. Then

lim
|h|→0

∥ f (·+h)− f (·)∥p = 0.

Proof Define, for h ∈ Rd and x ∈ Rd, (τh f )(x) := f (x+h), that is, τh f is the translate
of f over h. Clearly, ∥τh f∥p = ∥ f∥p.

First consider a function f ∈ Cc(Rd). Such a function is uniformly continuous, so
given an ε > 0, we may choose δ > 0 such that |x− x′|< δ implies | f (x)− f (x′)|< ε .
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Hence if |h| < δ , then for all x ∈ Rd we have |τh f (x)− f (x)| < ε . Choose r > 0 large
enough such that the support of f is contained in the rectangle (−r,r)d. If |h|< δ is so
small that the support of τh f is also contained in (−r,r)d, then

∥τh f − f∥p
p =

∫
(−r,r)d

| f (x+h)− f (x)|p dx ⩽ ε
p
∫
(−r,r)d

dx = ε
p(2r)d.

This proves that lim|h|→0 ∥τh f − f∥p = 0 for all f ∈Cc(Rd).
Now let f ∈ Lp(Rd) be arbitrary. Since Cc(Rd) is dense in Lp(Rd) by Proposition

2.29, we can find g∈Cc(Rd) such that ∥ f −g∥p < ε . Choose η > 0 so small that |h|< η

implies ∥τhg−g∥p < ε; this is possible by what we just proved. Then, for |h|< η ,

∥τh f − f∥p ⩽ ∥τh f − τhg∥p +∥τhg−g∥p +∥g− f∥p < ε + ε + ε = 3ε,

noting that ∥τh f − τhg∥p = ∥τh( f −g)∥p = ∥ f −g∥p < ε .

We now turn to an approximation technique based on convolution. It relies on the
following fundamental inequality.

Proposition 2.33 (Young’s inequality). Let 1 ⩽ p,q,r ⩽ ∞ satisfy 1
p +

1
q = 1+ 1

r , and
let f ∈ Lp(Rd) and g ∈ Lq(Rd). Then:

(1) for almost all x ∈ Rd the function y 7→ f (x− y)g(y) is integrable;
(2) the function f ∗g : Rd →K, defined for almost all x ∈ Rd by

( f ∗g)(x) :=
∫
Rd

f (x− y)g(y)dy,

belongs to Lr(Rd) and we have

∥ f ∗g∥r ⩽ ∥ f∥p∥g∥q.

Moreover we have f ∗g = g∗ f in Lr(Rd); and if 1
r +

1
s = 1+ 1

t and 1
q +

1
s = 1+ 1

u , then
1
p +

1
u = 1+ 1

t and for all h ∈ Ls(Rd) we have ( f ∗g)∗h = f ∗ (g∗h) in Lt(Rd).

The most important special case corresponds to the choices q = 1 and r = p, for
which the proof below simplifies considerably.

Proof The identity 1
p +

1
q = 1+ 1

r implies 1
r +

r−p
pr + r−q

qr = 1 with r ⩾ p,q. Hence, by
elementary rewriting and Hölder’s inequality (for three functions, see Remark 2.24), for
all x ∈ Rd we have∫

Rd
| f (x− y)g(y)|dy

=
∫
Rd
(| f (x− y)|p|g(y)|q)1/r · | f (x− y)|(r−p)/r · |g(y)|(r−q)/r dy

⩽
∥∥∥(| f (x−·)|p|g(·)|q)1/r

∥∥∥
r

∥∥∥| f (x−·)|(r−p)/r
∥∥∥ pr

r−p

∥∥∥|g(·)|(r−q)/r
∥∥∥ qr

r−q
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= (I) · (II) · (III).

Now

(I) =
(∫

Rd
| f (x− y)|p|g(y)|q dy

)1/r
,

(II) =
(∫

Rd
| f (x− y)|p dy

)(r−p)/pr
= ∥ f∥(r−p)/r

p ,

(III) =
(∫

Rd
|g(y)|q dy

)(r−q)/qr
= ∥g∥(r−q)/r

q .

Putting things together and using Fubini’s theorem, it follows that∫
Rd
|( f ∗g)(x)|r dx ⩽ ∥ f∥r−p

p ∥g∥r−q
p

∫
Rd

∫
Rd
| f (x− y)|p|g(y)|q dydx

= ∥ f∥r−p
p ∥g∥r−q

q

∫
Rd
|g(y)|q

∫
Rd
| f (x− y)|p dxdy = ∥ f∥r

p∥g∥r
q.

This implies the first assertion as well as the second.
The identity f ∗g = g∗ f follows by a change of variables and ( f ∗g)∗h = f ∗ (g∗h)

by Fubini’s theorem.

Maurice Fréchet, 1878–1973

The function f ∗g is called the convolution of
f and g.

Proposition 2.34 (Approximation by mollifica-
tion). Let f ∈ Lp(Rd) with 1 ⩽ p < ∞. Let φ ∈
L1(Rd) satisfy

∫
Rd φ(x)dx = 1. For ε > 0 define

φε(x) := ε
−d

φ(ε−1x), x ∈ Rd.

Then

lim
ε↓0
∥φε ∗ f − f∥p = 0.

Proof We proceed in three steps.

Step 1 – First assume that φ and f belong to
Cc(Rd). Since

∫
Rd φε(y)dy = 1, for all x∈Rd we

have

φε ∗ f (x)− f (x) =
∫
Rd

φε(y)[ f (x− y)− f (x)]dy =
∫
Rd

φ(y)[ f (x− εy)− f (x)]dy.

Taking Lp(Rd) norms on both sides and using that the Lp(Rd)-valued function y 7→
φ(y)[ f (· − εy)− f (·)], which is continuous by Proposition 2.32 and compactly sup-
ported (and hence supported on some large enough closed cube), is Riemann integrable,
by Proposition 1.44 we obtain

∥φε ∗ f − f∥p =
∥∥∥∫

Rd
φ(y)[ f (·− εy)− f (·)]dy

∥∥∥
p
⩽
∫
Rd
|φ(y)|∥ f (·− εy)− f (·)∥p dy.
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Since ∥ f (·− εy)− f (·)∥p ⩽ 2∥ f∥p uniformly in ε and y, and since φ ∈ L1(Rd), by
dominated convergence it suffices to show that f (·−εy)→ f (·) in Lp(Rd) for each fixed
y. This again follows from Proposition 2.32. This completes the proof for functions f
and φ in Cc(Rd).

Step 2 – Still assuming that φ ∈ Cc(Rd), we next extend the result to general f ∈
Lp(Rd). Fix ε > 0 and choose g ∈Cc(Rd) such that ∥ f − g∥p < ε . This is possible by
Proposition 2.29. By Young’s inequality and the identity ∥φδ∥1 = ∥φ∥1, for any δ > 0
we have

∥φδ ∗ f − f∥p ⩽ ∥φδ ∗ f −φδ ∗g∥p +∥φδ ∗g−g∥p +∥g− f∥p

⩽ ∥φδ∥1∥ f −g∥p +∥φδ ∗g−g∥p + ε ⩽ ε∥φ∥1 +∥φδ ∗g−g∥p + ε.

Letting δ ↓ 0, the result of Step 1 implies that

limsup
δ↓0

∥φδ ∗ f − f∥p ⩽ ε(∥φ∥1 +1).

Since ε > 0 was arbitrary, this proves that limδ↓0 ∥φδ ∗ f − f∥p = 0. Step 3 – We now

pass to the general case where φ ∈ L1(Rd) satisfies
∫
Rd φ(x)dx= 1. In order to apply the

result of the preceding step, choose a function ψ ∈Cc(Rd) such that ∥φ −ψ∥1 < ε and∫
Rd ψ(y)dy= 1. Such a function exists by Proposition 2.29. Then, by Young’s inequality

and the result of Step 2 applied to ψ ,

∥φδ ∗ f − f∥p ⩽ ∥φδ ∗ f −ψδ ∗ f∥p +∥ψδ ∗ f − f∥p

⩽ ∥φδ −ψδ∥1∥ f∥p +∥ψδ ∗ f − f∥p ⩽ ε∥ f∥p +∥ψδ ∗ f − f∥p.

Letting δ ↓ 0 using the result of Step 2, it follows that

limsup
δ↓0

∥φδ ∗ f − f∥p ⩽ ε∥ f∥p.

Since ε > 0 was arbitrary, this proves that limδ↓0 ∥φδ ∗ f − f∥p = 0.

2.3.c The Fréchet–Kolmogorov Compactness Theorem

In this section we prove a characterisation of relatively compact sets in Lp(Rd). It will be
used in Chapter 11 to prove the Rellich–Kondrachov theorem on compact embeddings
of Sobolev spaces.

Recall the notation τh f for the translate of a function f over h,

τh f (x) = f (x+h).

Theorem 2.35 (Fréchet–Kolmogorov). Let 1⩽ p<∞. A subset S of Lp(Rd) is relatively
compact if and only if it satisfies the following two conditions:
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(i) lim
|h|→0

sup
f∈S
∥τh f − f∥p = 0;

(ii) lim
ρ→∞

sup
f∈S

∫
∁B(0;ρ)

| f (x)|p dx = 0.

Proof ‘If’: Let us begin by proving that (i) and (ii) together imply that the set S is
bounded in Lp(Rd). Choose r > 0 such that sup f∈S ∥τh f − f∥p ⩽ 1 for all h ∈ Rd with
|h|⩽ r, and choose R> 0 such that sup f∈S

∫
∁B(0;R) | f (x)|p dx⩽ 1. Fix h∈Rd with |h|= r.

For all f ∈ S and x ∈ Rd we have

∥1B(x;R) f∥p ⩽ ∥1B(x;R)( f − τh f )∥p +∥1B(x;R)τh f∥p

= ∥1B(x;R)( f − τh f )∥p +∥1B(x+h;R) f∥p ⩽ 1+∥1B(x+h;R) f∥p.

Hence, by induction,

∥1B(0;R) f∥p ⩽ N +∥1B(Nh;R) f∥p.

Choose N ⩾ 1 such that Nr = N|h|> 2R. Then B(Nh;R)⊆ ∁B(0;R) and

∥ f∥p = ∥1B(0;R) f∥p +∥1∁B(0;R) f∥p ⩽ N +∥1B(Nh;R) f∥p +∥1∁B(0;R) f∥p ⩽ N +2.
(2.9)

This proves that S is bounded in Lp(Rd).
Let us now prove that if S satisfies (i) and (ii), then it is relatively compact. Fix ε > 0

and choose Rε > 0 such that sup f∈S
∫
∁B(0;Rε )

| f (x)|p dx < ε p. Set Bε := B(0;Rε) and

Sε := {1Bε
f : f ∈ S}.

If f ∈ S, then

∥ f −1Bε
f∥p = ∥1∁Bε

f∥p < ε (2.10)

and therefore S ⊆ Sε +Bp(0;ε), where Bp(0;ε) is the open ball in Lp(Rd) with radius
ε centred at 0.

Choose rε > 0 such that sup f∈S ∥τh f − f∥p ⩽ ε for all f ∈ S and h∈Rd with |h|⩽ rε .
For such h, (2.10) implies that for all f ∈ S we have

∥τh(1Bε
f )−1Bε

f∥p ⩽ ∥τh(1Bε
f − f )∥p +∥τh f − f∥p +∥ f −1Bε

f∥p ⩽ 3ε. (2.11)

Let 0 ⩽ φ ∈Cc(B(0;rε)) satisfy
∫
Rd φ(x)dx = 1 and set

Sε := {φ ∗g : g ∈ Sε}.

For g ∈ Sε , the estimate (2.11) implies

∥φ ∗g−g∥p =
∥∥∥∫

Rd
φ(y)(g(·− y)−g(·))dy

∥∥∥
p

⩽
∫
Rd

φ(y)∥g(·− y)−g(·)∥p dy =
∫

B(0;rε )
φ(y)∥g(·− y)−g(·)∥p dy ⩽ 3ε,
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where we used Proposition 1.44 (which can be applied in view of Proposition 2.32).
This shows that Sε ⊆ Sε +Bp(0;3ε) and hence

S⊆ Sε +Bp(0;ε)⊆ Sε +Bp(0;4ε).

If we can prove that Sε is relatively compact, it follows from Proposition 1.40 that S is
relatively compact.

Every h ∈ Sε is supported in B(0;Rε + rε). We claim that every h ∈ Sε is continuous
and that the set Sε , as a subset of C(B(0;Rε + rε)), is equicontinuous and bounded.

Let h∈ Sε , say h = φ ∗g with g∈ Sε , say g = 1Bε
f with f ∈ S. By uniform continuity,

given η > 0 there exists 0 < δ < 1 such that for all x,x′ ∈ Rd with |x− x′|< δ we have
|φ(x)−φ(x′)|< η . Hence, for all x,x′ ∈ Rd with |x− x′|< δ ,

|h(x)−h(x′)|⩽
∫
Rd
|φ(x− y)−φ(x′− y)||g(y)|dy

=
∫

Bε

|φ(x− y)−φ(x′− y)||g(y)|dy

⩽ η

∫
Bε

|g(y)|dy = η

∫
Bε

| f (y)|dy ⩽ η |Bε |1/q(N +2),

applying Hölder’s inequality and (2.9) in the last step. This proves the continuity of h.
The estimate being uniform with respect toh∈ Sε, it also proves the equicontinuity of Sε.

Boundedness of Sε in C(B(0;Rε + rε)) follows from the boundedness of S. Indeed, if
h = φ ∗g ∈ Sε with g ∈ Sε , then by Hölder’s inequality with 1

p +
1
p′ = 1,

|h(x)|⩽
∫
Rd

φ(y)|g(x− y)|dy ⩽ ∥φ∥p′∥g∥p.

By the Arzelà–Ascoli theorem, Sε is relatively compact in C(B(0;Rε +rε)). Since the
natural inclusion mapping from C(B(0;Rε + rε)) into Lp(Rd) is bounded by Hölder’s
inequality, Sε is relatively compact as a subset of Lp(Rd).

‘Only if’: If S is relatively compact in Lp(Rd), then (i) and (ii) follows from Propo-
sition 1.42 applied to the operators f 7→ τh f for |h| ↓ 0 and f 7→ 1∁B(0;ρ) f for ρ → ∞,
respectively.

We have the following immediate corollary for bounded domains.

Corollary 2.36. Let 1 ⩽ p < ∞ and let D be a bounded open subset of Rd. A subset S
of Lp(D) is relatively compact if and only if

lim
|h|→0

sup
f∈S
∥τh f − f∥p = 0.

Here we identify functions in Lp(D) with their zero extensions in Lp(Rd).
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2.3.d The Lebesgue Differentiation Theorem

By L1
loc(Rd) we denote the vector space of functions f : Rd → K that are locally in-

tegrable, that is, integrable on every compact subset of Rd, identifying two such func-
tions when they are equal almost everywhere. The aim of this section is to prove the
Lebesgue differentiation theorem, which says that if f ∈ L1

loc(Rd), then at almost every
point x ∈ Rd one has

lim
B∋x
|B|→0

1
|B|

∫
B
| f (y)− f (x)|dy = 0,

the limit being taken along the balls B in Rd containing x, letting |B| denote the Lebesgue
measure of a measurable set B. The proof of this theorem is based on the following
lemma. For balls B = B(x;r) in Rd and real numbers λ > 0 we set λB := B(x;λ r).

Lemma 2.37 (Vitali covering lemma). Every finite collection B of open balls in Rd has
a subcollection B0 of pairwise disjoint balls such that each ball B ∈B is contained in
3B0 for some ball B0 ∈B0.

Proof We proceed by induction on the number n of balls in B. For n = 1 the lemma is
trivial, for we can take B0 =B. Suppose the claim has been verified for every collection
of n balls, and let B be a collection of n+1 balls. Let B′ :=B\{B0}, where B0 is a ball
in B of minimal radius. By the induction assumption there is a subcollection B′0 ⊆B′

of pairwise disjoint balls such that each ball B ∈B′ is contained in 3B′ for some ball
B′ ∈B′0. We now distinguish two cases.

Case 1. If B0 is disjoint from each ball B′ ∈B′0, then the subcollection B0 := B′0∪
{B0} has the required properties.

Case 2. If B0 intersects a ball B′ ∈B′0, then the radius of B′ is at least as large as that
of B0, from which it follows that B0 ⊆ 3B′. The subcollection B0 := B′0 then has the
required properties.

For f ∈ L1
loc(Rd) we define the Hardy–Littlewood maximal function M f :Rd→ [0,∞]

by

M f (x) := sup
B∋x

1
|B|

∫
B
| f (y)|dy,

where the supremum is taken over all balls B containing x. Since the supremum in the
definition of M f (x) can be realised by using only a fixed countable collection of balls,
M f is a measurable function.

Theorem 2.38 (Hardy–Littlewood maximal theorem). For all f ∈ L1(Rd) and t > 0 we
have the weak L1-bound

t|{M f > t}|⩽ 3d∥ f∥1.
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Moreover, for all 1 < p ⩽ ∞ there exists a constant Cd,p ⩾ 0 such that for all f ∈ Lp(Rd)

we have M f ∈ Lp(Rd) and

∥M f∥p ⩽Cd,p∥ f∥p.

Proof We begin with the proof of the first assertion. By the definition of M f , for every
x ∈ {M f > t} there exists a ball B containing x such that 1

|B|
∫

B | f |> t. If K ⊆ {M f > t}
is a compact subset, it can be covered by a finite collection B of such balls. Let B0 be
a disjoint subcollection of this cover provided by the Vitali covering lemma. Then,

|K|⩽
∣∣∣ ⋃

B∈B

B
∣∣∣⩽ ∣∣∣ ⋃

B∈B0

3B
∣∣∣= ∑

B∈B0

3d |B|⩽ ∑
B∈B0

3d

t

∫
B
| f (y)|dy ⩽

3d

t
∥ f∥1.

This being true for all compact sets K contained in the open set {M f > t}, the first
assertion follows.

For 1 < p < ∞ the second assertion follows from the first by using the integration by
parts identity ∫

Rd
|g(x)|p dx = p

∫
∞

0
t p−1|{|g|> t}|dt (2.12)

for g∈ Lp(Rd) as follows. For any f ∈ Lp(Rd) and t > 0 the function ft(x) := 1{| f |⩾t/2} f
belongs to Lp(Rd) and satisfies the pointwise bound

M f ⩽ sup
B∋x

1
|B|

∫
B
| ft(y)|dy+ sup

B∋x

1
|B|

∫
B
|1{| f |<t/2} f (y)|dy ⩽ M ft + t/2,

which implies

{M f > t} ⊆ {M ft > t/2}.

Hence, by the first part of the theorem,

|{M f > t}|⩽ |{M ft > t/2}|⩽ 2 ·3d

t
∥ ft∥1 =

2 ·3d

t

∫
{| f |⩾t/2}

| f (x)|dx. (2.13)

By (2.12), (2.13), and Fubini’s theorem,∫
Rd
|M f (x)|p dx ⩽ p

∫
∞

0
t p−1

(2 ·3d

t

∫
{| f |⩾t/2}

| f (x)|dx
)

dt

= 3d ·2p
∫
Rd
| f (x)|

∫ 2| f (x)|

0
t p−2 dt dx

=
3d ·2p
p−1

∫
Rd
| f (x)|(2| f (x)|)p−1 dx =Cp

d,p

∫
Rd
| f (x)|p dx,

where Cd,p = 2( 3d p
p−1 )

1/p.
For p = ∞ the second assertion follows trivially from the pointwise inequality M f ⩽

∥ f∥∞, with constant Cd,∞ = 1.
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Inspection of this proof reveals that the derivation of the Lp-bound for M f in the
second part of the theorem does not use any properties of this function other than the
weak L1-bound contained in the first part of the theorem. This observation lies at the
basis of the Marcinkiewicz interpolation theorem in Chapter 5 (see Theorem 5.46).

As a corollary to Theorem 2.38 we have the following fundamental result.

Theorem 2.39 (Lebesgue differentiation theorem). If f ∈ L1
loc(Rd), then for almost all

x ∈ Rd we have

lim
B∋x
|B|→0

1
|B|

∫
B
| f (y)− f (x)|dy = 0. (2.14)

The correct way of interpreting this theorem is as follows. For every pointwise defined
locally integrable function f̃ on Rd, the limit in (2.14) (with f replaced by f̃ ) exists for
almost all x ∈R, say on a Borel set Ω⊆Rd such that |Rd \Ω|= 0. If both f̃1 and f̃2 are
pointwise representatives, the symmetric difference of corresponding sets Ω1 and Ω2

has measure 0.
The set of all points x∈Rd for which (2.14) holds is called the set of Lebesgue points

of f . As just explained, this set is uniquely determined only up to a set of measure 0
(see also Problem 2.30).

Proof A point x ∈ Rd is a Lebesgue point of f if and only if it is a Lebesgue point
of 1U f , for any bounded open set U containing x. Hence, upon replacing f by 1U f if
necessary, it suffices to prove the theorem under the stronger assumption f ∈ L1(Rd).

Fixing a pointwise defined representative of f , for all x ∈ Rd let

N f (x) := limsup
B∋x
|B|→0

1
|B|

∫
B
| f (y)− f (x)|dy.

We wish to prove that N f (x) = 0 for almost all x ∈ Rd. For this purpose it suffices to
show that |{N f > ε}|= 0 for any fixed ε > 0.

For any fixed δ > 0, Proposition 2.29 provides us with a function g ∈ Cc(Rd) such
that ∥ f −g∥1 < δ . Then,

N f ⩽ N( f −g)+Ng ⩽ M( f −g)+ | f −g|+0,

using the pointwise inequality Nh(x) ⩽ Mh(x)+ |h(x)| and the continuity of g, which
implies Ng(x) = 0. Therefore, by Theorem 2.38,

|{N f > ε}|⩽ |{M( f −g)> ε/2}|+ |{| f −g|> ε/2}|

⩽
2 ·3d

ε
∥ f −g∥1 +

2
ε
∥ f −g∥1 ⩽

2
ε
(3d +1)δ .

Since δ > 0 was arbitrary it follows that |{N f > ε}|= 0.
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2.4 Spaces of Measures

In this section we introduce the space M(Ω) of K-valued measures on a given measur-
able space (Ω,F ) and discuss some of its properties. From the functional analytic point
of view, the importance of this space resides in the fact that M(Ω) is a vector space in a
natural way by setting

(cµ)(F) := cµ(F), (µ +ν)(F) := µ(F)+ν(F), F ∈F,

and that it is a Banach space with respect to the variation norm introduced in Definition
2.42 (see Theorem 2.44).

2.4.a The Banach Space M(Ω)

In what follows we fix a measurable space (Ω,F ).

Definition 2.40 (K-valued measures). A K-valued measure on (Ω,F ) is a mapping
µ : F →K with the following properties:

(i) µ(∅) = 0;
(ii) for all disjoint F -measurable sets F1,F2, . . . we have

µ
(⋃

n⩾1

Fn
)
= ∑

n⩾1
µ(Fn).

Remark 2.41. An ordinary measure (in the sense of Definition E.3) is a real-valued
measure if and only if it is finite.

The terms ‘real-valued measure’ and ‘complex-valued measure’ are often abbreviated
to ‘real measure’ and ‘complex measure’.

Definition 2.42 (Variation). Let µ be a K-valued measure on (Ω,F ). The variation of
µ on the set F ∈F is defined by

|µ|(F) := sup
A ∈FF

∑
A∈A

|µ(A)|,

where FF denotes the set of all finite collections of pairwise disjoint F -measurable
subsets of F .

It is immediate to verify that |µ(F)|⩽ |µ|(F) and |µ|(F)⩽ |µ|(F ′) whenever F,F ′ ∈
F and F ⊆ F ′. Also, |cµ|= |c||µ| for all c ∈ K and |µ +ν |(F)⩽ |µ|(F)+ |ν |(F) for
all F ∈F. If µ takes values in [0,∞), then |µ|= µ .

Proposition 2.43. If µ is a K-valued measure, then |µ| is a finite measure.
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Proof We proceed in two steps.

Step 1 – We prove that |µ| is a measure. It is clear that |µ|(∅) = 0. Let (Fn)n⩾1 be a
sequence of pairwise disjoint measurable sets and let F be their union. We must prove
that |µ|(F) = ∑n⩾1 |µ|(Fn).

If An ∈ FFn is a finite collection of pairwise disjoint measurable subsets of Fn, then
for every N ⩾ 1 the union

⋃N
n=1 An is a finite collection of pairwise disjoint measurable

subsets of F and therefore

N

∑
n=1

∑
A∈An

|µ(A)|⩽ |µ|(F).

Taking the supremum over all An ∈ FFn , it follows that ∑
N
n=1 |µ|(Fn) ⩽ |µ|(F). This

being true for all N ⩾ 1 we conclude that

∑
n⩾1
|µ|(Fn)⩽ |µ|(F).

In the converse direction, suppose that the measurable subsets A1, . . . ,Ak of F are dis-
joint. With Fj,n := A j ∩Fn we have

k

∑
j=1
|µ(A j)|⩽

k

∑
j=1

∑
n⩾1
|µ(Fj,n)|= ∑

n⩾1

k

∑
j=1
|µ(Fj,n)|⩽ ∑

n⩾1
|µ|(Fn).

Taking the supremum over all finite families of pairwise disjoint measurable subsets of
F , we obtain

|µ|(F)⩽ ∑
n⩾1
|µ|(Fn).

Step 2 – We prove that the measure |µ| is finite, that is, |µ|(Ω)< ∞. By considering
real and imaginary parts, it suffices to do this in the real-valued case.

If a finite set {r1, . . . ,rN} of real numbers is given, then either the positive or the
negative numbers in this set (or both) contribute at least half to the sum ∑

N
n=1 |rn|. Enu-

merating this set (or one of them) as rn1 , . . . ,rnk , we thus have

∣∣∣ k

∑
j=1

rn j

∣∣∣⩾ 1
2

N

∑
n=1
|rn|. (2.15)

Suppose, for a contradiction, that some measurable set F satisfies |µ|(F)=∞. Choose
disjoint measurable subsets F1, . . . ,FN of F such that

N

∑
n=1
|µ(Fn)|⩾ 2(1+ |µ(F)|).
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By (2.15) the union F ′ of a suitable subcollection of the Fj satisfies

|µ(F ′)|⩾ 1
2

N

∑
n=1
|µ(Fj)|⩾ 1+ |µ(F)|.

For F ′′ := F \F ′ we then have

|µ(F ′′)|⩾
∣∣|µ(F)|− |µ(F ′)|

∣∣⩾ 1.

Thus if a set F ∈F satisfies |µ|(F) = ∞, there is a disjoint decomposition F = F ′∪F ′′

with µ(F ′) ⩾ 1 and µ(F ′′) ⩾ 1. Since |µ| is a measure, at least one of the numbers
|µ|(F ′) and |µ|(F ′′) equals ∞. We take one of them and continue applying what we
just proved inductively. This produces a sequence of pairwise disjoint measurable sets
G1,G2, . . . , each of which satisfies µ(Gk) ⩾ 1. Let G be their union. Since µ is a K-
valued measure we have µ(G) = ∑k⩾1 µ(Gk). This sum cannot converge since its terms
fail to converge to 0. This is the required contradiction.

Theorem 2.44 (Completeness). Endowed with the variation norm

∥µ∥ := |µ|(Ω),

M(Ω) is a Banach space.

Proof We leave it as an exercise to prove that |µ|(Ω) defines a norm.
To prove completeness, let (µn)n⩾1 be a Cauchy sequence in M(Ω). For all F ∈F ,

|µn(F)−µm(F)|= |(µn−µm)(F)|⩽ |µn−µm|(F)⩽ ∥µn−µm∥,

proving that the sequence (µn(F))n⩾1 is Cauchy in K. Let µ(F) denote its limit. We
wish to show that the resulting mapping µ : F → K is a K-valued measure and that
limn→∞ µn = µ with respect to the norm of M(Ω).

It is clear that µ(∅) = limn→∞ µn(∅) = 0. Suppose now that (Fm)m⩾1 is a sequence of
pairwise disjoint measurable sets and let F :=

⋃
m⩾1 Fm. Given ε > 0, choose N ⩾ 1 so

large that ∥µ j−µk∥< ε for all j,k ⩾ N. Since µN is countably additive we may choose
N′ ⩾ 1 so large that |µN(F)−∑

M
m=1 µN(Fm)|< ε for all M ⩾ N′. Then, for M ⩾ N′,∣∣∣µ(F)−

M

∑
m=1

µ(Fm)
∣∣∣= lim

n→∞

∣∣∣µn(F)−
M

∑
m=1

µn(Fm)
∣∣∣

⩽
∣∣∣µN(F)−

M

∑
m=1

µN(Fm)
∣∣∣+ sup

n⩾N+1

∣∣∣(µn−µN)(
⋃

m⩾M+1

Fm)
∣∣∣

⩽
∣∣∣µN(F)−

M

∑
m=1

µN(Fm)
∣∣∣+ sup

n⩾N+1
∥µn−µN∥⩽ 2ε.

Since ε > 0 was arbitrary, this proves that ∑m⩾1 µ(Fm) = µ(F).
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Finally, if F1, . . . ,Fk are disjoint and measurable, then for all m ⩾ N we have

k

∑
j=1
|(µ−µm)(Fj)|= lim

n→∞

k

∑
j=1
|(µn−µm)(Fj)|

⩽ limsup
n→∞

|µn−µm|(Ω) = limsup
n→∞

∥µn−µm∥⩽ ε.

Taking the supremum over finite disjoint families of measurable sets, we find that ∥µ−
µm∥⩽ ε for all m ⩾ N. This proves the required convergence.

If µ is a complex measure on (Ω,F ), then

(Re µ)(F) := Re(µ(F)), (Im µ)(F) := Im(µ(F)),

define real measures on (Ω,F ) and we have µ = Re µ + i Im µ. The next result shows
that real measures allow decompositions into positive and negative parts:

Theorem 2.45 (Hahn–Jordan decomposition). If µ is a real measure on a measurable
space (Ω,F ), then

µ
+(F) := sup

{
µ(A) : A ∈F, A⊆ F

}
,

µ
−(F) :=− inf

{
µ(A) : A ∈F, A⊆ F

}
are finite measures on (Ω,F ) and

µ = µ
+−µ

−, |µ|= µ
++µ

−.

The measures µ+ and µ− are supported on disjoint sets, in the sense that there exists a
disjoint decomposition Ω = Ω+∪Ω− with Ω± ∈F such that for all F ∈F we have

µ
+(F) = µ(F ∩Ω

+), µ
−(F) =−µ(F ∩Ω

−).

If ν1 and ν2 are finite measures on (Ω,F ) such that µ = ν1−ν2, then for all F ∈F

we have

ν1(F)⩾ µ
+(F), ν2(F)⩾ µ

−(F).

The decomposition µ = µ+−µ− for real measures µ is called the Jordan decompo-
sition; the existence of a corresponding decomposition Ω = Ω+∪Ω− for their supports
is often referred to as the Hahn decomposition theorem.

Proof We begin with the construction of the sets Ω+ and Ω−. Let us call a set F ∈F

positive (resp. negative) if for all A∈F with A⊆ F we have µ(A)⩾ 0 (resp. µ(A)⩽ 0).
We use the notation F ⩾ 0 (resp. F ⩽ 0) to express that F ∈F and F is positive (resp.
negative).

Finite and countable unions of positive sets are positive. Indeed, suppose that the sets
Fn, n ⩾ 1, are positive. Set G1 := F1 and Gn := Fn \

⋃n−1
j=1 Fj for n ⩾ 2. Then

⋃
n⩾1 Fn =
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n⩾1 Gn. If A ∈ F is contained in this union, the countable additivity of µ implies
µ(A) = ∑n⩾1 µ(Gn∩A)⩾ 0, keeping in mind that Gn∩A⊆ Fn and Fn ⩾ 0.

Let

M := sup
F⩾0

µ(F)

and note M < ∞. Choose positive sets Fn, n ⩾ 1, such that limn→∞ µ(Fn) = M. By the
observation just made we may assume that F1 ⊆ F2 ⊆ . . . By the same observation,
Ω+ :=

⋃
n⩾1 Fn is positive and therefore µ(Ω+) ⩽ M. The positivity of Ω+ also im-

plies µ(Fn)⩽ µ(Ω+), and therefore M = limn→∞ µ(Fn)⩽ µ(Ω+). We have shown that
µ(Ω+) = M.

We show next that Ω− := ∁Ω+ is a negative set. Suppose, for a contradiction, that this
is false. Then Ω− contains a subset A0 ∈F with µ(A0) > 0. If A0 were positive, then
so would be Ω+ ∪A0, but then µ(Ω+ ∪A0) = M + µ(A0) > M contradicts the choice
of M. It follows that there exists a smallest integer k1 with the property that A0 contains
a subset A1 ∈ F with µ(A1) ⩽ − 1

k1
. Since µ(A0 \A1) = µ(A0)− µ(A1) > 0 we can

repeat this construction to find the smallest integer k2 with the property that A0 \A1

contains a subset A2 ∈F with µ(A2)⩽− 1
k2

. Continuing this way we obtain a sequence
of pairwise disjoint sets (An)n⩾1, all contained in A0, such that µ(An) ⩽ − 1

kn
for all

n ⩾ 1. We must have limn→∞ kn = ∞, since otherwise the union A =
⋃

n⩾1 An would
satisfy µ(A) =−∞.

Let B := A0 \A. Then µ(B) = µ(A0)−µ(A)> 0 and B ⩾ 0: for if we had C ∈F with
C ⊆ B and µ(C) < 0, then µ(C) < 1

k for some integer k. The existence of such a set C
contradicts the maximality of the kn for large enough n. The set Ω+∪B is positive and
satisfies µ(Ω+∪B) = M+µ(B)> M, contradicting the choice of M. We conclude that
Ω− is negative.

We have shown that for all F ∈F we have

µ(F ∩Ω
+)⩾ 0, µ(F ∩Ω

−)⩽ 0.

We may thus define measures µ± by

µ+(F) := µ(F ∩Ω
+), µ−(F) :=−µ(F ∩Ω

−).

It is clear that µ = µ+−µ−.
Since µ(A) = µ+(A)−µ−(A)⩽ µ+(A) = µ(A∩Ω+) we see that

µ
+(F) = sup

{
µ(A) : A ∈F, A⊆ F

}
⩽ sup

{
µ(A∩Ω

+) : A ∈F, A⊆ F
}
.

The converse inequality trivially holds, for A⊆ F implies A∩Ω+ ⊆ F . Hence we have
equality, and then µ+(A) = µ(A∩Ω+) implies

µ
+(F) = sup

{
µ(A∩Ω

+) : A ∈F, A⊆ F
}

= sup
{

µ+(A) : A ∈F, A⊆ F
}
= µ+(F).
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The identity µ− = µ− is proved in the same way. The countable additivity of µ+ and
µ− is an immediate consequence.

Next, |µ|(F) = |µ+−µ−|(F)⩽ |µ+|(F)+ |µ−|(F) = µ+(F)+µ−(F). In the con-
verse direction, write F = F+∪F− with F± := F ∩Ω±. Then the positivity of F+ and
the negativity of F− imply

|µ|(F)⩾ |µ(F+)|+ |µ(F−)|= µ(F+)−µ(F−) = µ
+(F)+µ

−(F).

Finally, if ν1 and ν2 are finite measures such that µ = ν1−ν2,

ν1(F)⩾ ν1(F ∩Ω
+)⩾ ν1(F ∩Ω

+)−ν2(F ∩Ω
+) = µ(F ∩Ω

+) = µ
+(F).

The proof that ν2(F)⩾ µ−(F) is similar.

2.4.b The Radon–Nikodým Theorem

If f : Ω→K is integrable with respect to the measure µ , by dominated convergence the
formula

ν(F) :=
∫

F
f dµ, F ∈F,

defines a K-valued measure ν . This measure is absolutely continuous with respect to µ ,
that is, µ(F) = 0 implies ν(F) = 0. The following theorem provides a converse under
a σ -finiteness assumption.

Theorem 2.46 (Radon–Nikodým). Let (Ω,F,µ) be a σ -finite measure space. If the
measure ν : F → K is absolutely continuous with respect to µ , then there exists a
unique g ∈ L1(Ω,µ) such that

ν(F) =
∫

F
gdµ, F ∈F.

Proof Uniqueness being clear, the proof is devoted to proving existence. By consid-
ering real and imaginary parts separately it suffices to consider the case of real scalars.
Then, decomposing ν into positive and negative parts via the Hahn–Jordan decomposi-
tion, it suffices to consider the case where ν is a finite nonnegative measure.

Consider the set

S :=
{

f ∈ L1(Ω,µ) : f ⩾ 0,
∫

F
f dµ ⩽ ν(F) for all F ∈F

}
.

Then 0 ∈ S, so S is nonempty. Let

M := sup
f∈S

∫
Ω

f dµ.

For all f ∈ S we have
∫

Ω
f dµ ⩽ ν(Ω) and therefore M ⩽ ν(Ω)< ∞.
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Step 1 – In this step we prove that there exists a function g ∈ S for which the supre-
mum in the definition of M is attained. Let ( fn)n⩾1 be a sequence in S with the property
that limn→∞

∫
Ω

fn dµ = M. Set gn := f1 ∨ ·· · ∨ fn. Any set F ∈F can be written as a
disjoint union of sets F(n)

1 , . . . ,F(n)
n ∈F such that g j = f j on F(n)

j and therefore∫
F

gn dµ =
n

∑
j=1

∫
F(n)

j

f j dµ ⩽
n

∑
j=1

ν(F(n)
j ) = ν(F).

It follows that gn ∈ S. The sequence (gn)n⩾1 is nondecreasing and therefore its point-
wise limit g := limn→∞ gn is well defined as a [0,∞]-valued function. By the monotone
convergence theorem, for all F ∈F we have∫

F
gdµ = lim

n→∞

∫
F

gn dµ ⩽ ν(F) (2.16)

and therefore g takes finite values µ-almost everywhere and belongs to S. Moreover,

M = lim
n→∞

∫
Ω

fn dµ ⩽ lim
n→∞

∫
Ω

gn dµ =
∫

Ω

gdµ ⩽ M

and therefore equality holds at all places. This proves that the supremum in the definition
of M is attained by the function g ∈ S.

Step 2 – Under the additional assumption that µ is a finite measure, we show next
that g has the required properties. To this end we must show that η = 0, where the finite
measure η is defined by

η(F) := ν(F)−
∫

F
gdµ, F ∈F.

Assume, for a contradiction, that η(Ω)> 0. Consider the real-valued measures

ηn := η− 1
n

µ, n ⩾ 1.

(It is here that we use the assumption that µ is finite; without this assumption ηn would
not be a real-valued measure.) For each n⩾ 1 we decompose Ω=Ω+

n ∪Ω−n with respect
to ηn as in Theorem 2.45, and set Ω− :=

⋂
n⩾1 Ω−n . If we had η(Ω−)> 0, then for large

enough n ⩾ 1 we have

0 ⩽ η(Ω−)− 1
n

µ(Ω−) = ηn(Ω
−)⩽ 0

and therefore, upon letting n→∞, we obtain η(Ω−) = 0. This contradiction proves that
η(Ω−) = 0. If we had η(Ω+

n ) = 0 for all n ⩾ 1 it would follow that η(Ω) = η(Ω−n )

for all n ⩾ 1, and therefore η(Ω) = η(Ω−) = 0. Having assumed that η(Ω) > 0, we
conclude that η(Ω+

n )> 0 for some n ⩾ 1. If F ∈F is a subset of Ω+
n , then

η(F)− 1
n

µ(F) = ηn(F) = ηn(F ∩Ω
+
n ) = η

+
n (F)⩾ 0
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2.4 Spaces of Measures 73

and therefore η(F)⩾ 1
n µ(F). Letting h := g+ 1

n 1
Ω
+
n

we obtain, for arbitrary F ∈F,∫
F

hdµ =
∫

F
gdµ +

1
n

µ(F ∩Ω
+
n )⩽

∫
F

gdµ +η(F ∩Ω
+
n )

=
∫

F∩Ω
−
n

gdµ +ν(F ∩Ω
+
n )

⩽ ν(F ∩Ω
−
n )+ν(F ∩Ω

+
n ) = ν(F),

using (2.16) in the last inequality. This proves that h ∈ S. Then, by the definition of M,

M ⩾
∫

Ω

hdµ =
∫

Ω

gdµ +
1
n

µ(Ω∩Ω
+
n ) = M+

1
n

µ(Ω+
n ).

Since M < ∞, this is only possible if µ(Ω+
n ) = 0. By (2.16) and absolute continuity

this would imply
∫

Ω
+
n

gdµ ⩽ ν(Ω+
n ) = 0 and therefore, by the definition of η and the

nonnegativity of g,

0 < η(Ω+
n ) =−

∫
Ω
+
n

gdµ ⩽ 0.

This contradiction concludes the proof that η(Ω) = 0.

Step 3 – For finite measures µ the theorem has now been proved. It remains to extend
the result to the σ -finite case. Again it suffices to consider the case where ν is a finite
nonnegative measure.

Write Ω =
⋃

n⩾1 Ωn, where the sets Ωn ∈ F are disjoint and satisfy µ(Ωn) < ∞.
Define the nonnegative function g on Ω by

g(ω) := gn(ω) for ω ∈Ωn, n ⩾ 1,

where the nonnegative functions gn ∈ L1(Ωn,µ|Ωn) are given by Step 2 applied to Ωn,
that is,

ν(F ∩Ωn) =
∫

F∩Ωn

gn dµ =
∫

F∩Ωn

gdµ, F ∈F.

By additivity, this implies

ν

(
F ∩

N⋃
n=1

Ωn

)
=
∫

F∩
⋃N

n=1 Ωn

gdµ, F ∈F.

Letting N→ ∞, by monotone convergence we obtain

ν(F) =
∫

F
gdµ, F ∈F.

Taking F = Ω and using that ν is finite, we see that g is integrable with respect to ν ,
that is, we have g ∈ L1(Ω,ν). The function g has the required properties.
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An alternative proof of the Radon–Nikodým theorem, based on Hilbert space meth-
ods, is outlined in Problem 3.24.

Example 2.47. If f : Ω→K is integrable with respect to µ , then

ν(F) :=
∫

F
f dµ, F ∈F,

defines a K-valued measure and for all F ∈F we have

|ν |(F) =
∫

F
| f |dµ.

If f is real-valued, then ν is a real measure and

ν
±(F) =

∫
F

f± dµ.

To prove the first assertion, let A1, . . . ,An ∈F be disjoint subsets of F . Then
n

∑
j=1
|ν(A j)|⩽

n

∑
j=1

∫
A j

| f |dµ ⩽
∫

F
| f |dµ,

which gives the upper bound ‘⩽’. To prove the lower bound ‘⩾’, we use Proposition F.1
to choose simple functions gn : Ω→ K such that gn → 1F f and 0 ⩽ |gn| ⩽ 1F | f |, say
gn = ∑

Nn
j=1 c(n)j 1

A(n)
j

with A(n)
1 , . . . ,A(n)

Nn
∈F disjoint subsets of F . Then

∫
F
| f |dµ = lim

n→∞

Nn

∑
j=1
|c(n)j |µ(A

(n)
j )⩽ limsup

n→∞

Nn

∑
j=1
|ν(A(n)

j )|⩽ |ν |(F).

To prove the second assertion we note that the sets Ω+ = { f ⩾ 0} and Ω− = { f < 0}
satisfy the requirements of the second part of Theorem 2.45, and the second part of
the proof of the theorem shows that the decomposition µ = µ+−µ− is obtained from
any such decomposition of Ω. For real scalars this also gives a second proof of the first
assertion:

|ν |(F) = ν
+(F)+ν

−(F) =
∫

F
f++ f− dµ =

∫
F
| f |dµ.

Example 2.48. If µ is a K-valued measure, then µ is absolutely continuous with respect
to its variation |µ|. By the Radon–Nikodým theorem, there exists h ∈ L1(Ω, |µ|) such
that

µ(F) =
∫

F
hd|µ|, F ∈F.

By the result of Example 2.47,

|µ|(F) =
∫

F
|h|d|µ|, F ∈F,

so |h|= 1 µ-almost everywhere.
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2.4.c Integration with Respect to K-Valued Measures

A measurable function f is said to be integrable with respect to a K-valued measure
µ if it is integrable with respect to |µ|. The function f is integrable with respect to a
real measure µ if and only if it is integrable with respect to the measures µ+ and µ−,
where µ = µ+−µ− is the Jordan decomposition, and f is integrable with respect to a
complex measure µ if and only if f is integrable with respect to the real and imaginary
parts of µ .

The integral of an integrable function f with respect to a real measure µ is defined by∫
Ω

f dµ :=
∫

Ω

f dµ
+−

∫
Ω

f dµ
−,

and the integral of an integrable function f with respect to a complex measure µ by∫
Ω

f dµ :=
∫

Ω

f dRe µ + i
∫

Ω

f dIm µ.

Proposition 2.49. If f is integrable with respect to a K-valued measure µ , then∣∣∣∫
Ω

f dµ

∣∣∣⩽ ∫
Ω

| f |d|µ|.

Proof First let f = ∑
N
n=1 cn1Fn be a simple function, with the sets Fn ∈ F disjoint.

Then ∣∣∣∫
Ω

f dµ

∣∣∣= ∣∣∣ N

∑
n=1

cnµ(Fn)
∣∣∣⩽ N

∑
n=1
|cn||µ(Fn)|⩽

N

∑
n=1
|cn||µ|(Fn) =

∫
Ω

| f |d|µ|.

The general case follows from this by observing that the simple functions are dense
in L1(Ω, |µ|) and that fn → f in L1(Ω, |µ|) implies

∫
Ω
| fn− f |dν → 0 for each of the

measures ν ∈ {Re µ, Im µ,µ+,µ−}.

A more elegant, but less elementary, alternative definition of the integral
∫

Ω
f dµ can

be given with the help of the Radon–Nikodým theorem. Indeed, defining
∫

Ω
f dµ as

above, by the result of Example 2.48 for functions f ∈ L1(Ω, |µ|) we have the identity∫
Ω

f dµ =
∫

Ω

f hd|µ|,

where dµ = hd|µ| as in the example (note that f h ∈ L1(Ω, |µ|) since |h|= 1 µ-almost
everywhere). This identity could be taken as an alternative definition for the integral∫

Ω
f dµ .

2.5 Banach Lattices

Over the real scalar field, all Banach spaces discussed in this chapter are examples of
Banach lattices, a class of Banach spaces that will be briefly discussed in this section.
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The main result, Theorem 2.57, shows that any complete norm on a Banach lattice X
which is monotone with respect to the partial order of X is equivalent to the given norm
of X .

Let (S,⩽) be a partially ordered set and let S′ be a subset of S. An element x ∈ S is
said to be a lower bound for S′ if we have x ⩽ x′ for all x′ ∈ S′. Such an element is called
a greatest lower bound for S′ if y ⩽ x holds for every lower bound y for S′. Similarly an
element x ∈ S is said to be an upper bound for S′ if we have x′ ⩽ x for all x′ ∈ S′, and
such an element is called a least upper bound for S′ if x ⩽ y holds for every upper bound
y for S′. Greatest lower bounds and least upper bounds, if they exist, are unique.

Definition 2.50 (Lattices). A partially ordered set (S,⩽) is called a lattice if every pair
of elements has a greatest lower bound and a least upper bound.

The greatest lower bound and the least upper bound of the pair {x,y}⊆ S in a partially
ordered set S will be denoted by x∧ y and x∨ y, respectively.

Definition 2.51 (Vector lattices). A vector lattice is a partially ordered real vector space
(V,⩽) with the following properties:

(i) (V,⩽) is a lattice;
(ii) for all 0 ⩽ c ∈ R and u,v ∈V we have u ⩽ v⇒ cu ⩽ cv;

(iii) for all u,v,w ∈V we have u ⩽ v⇒ u+w ⩽ v+w.

Let (V,⩽) be a vector lattice. If u,u′,v′v′ ∈V satisfy u ⩽ v and u′ ⩽ v′, then u+u′ ⩽
v+u′ and v+u′ ⩽ v+ v′. Thus,

[u ⩽ v and u′ ⩽ v′]⇒ u+u′ ⩽ v+ v′

by transitivity. Also, if u ⩽ v, then −v = u+(−u− v) ⩽ v+(−u− v) = −u, and the
converse inequality is obtained similarly. Thus,

u ⩽ v⇔ (−v)⩽ (−u). (2.17)

For v ∈V we define

v+ := v∨0, v− := (−v)∨0, |v| := v∨ (−v).

If 0 ⩽ c ∈ R, then (cv)± = cv±, and if c ∈ R, then |cv|= |c||v|; the easy proofs are left
to the reader. Furthermore, from ±(u+ v)⩽ |u|+ |v| it follows that

|u+ v|⩽ |u|+ |v|. (2.18)

The next proposition lists some slightly less trivial identities.

Proposition 2.52. Let (V,⩽) be a vector lattice. Then for all u,v,w ∈V we have:

(1) (−u)∧ (−v) =−(u∨ v);



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
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(2) u+(v∨w) = (u+ v)∨ (u+w);
(3) u+ v = u∧ v+u∨ v;
(4) v = v+− v−;
(5) |v|= v++ v−.

The representation of v as the difference of two positive elements in (4) is minimal in
a sense explained in Problem 2.42.

Proof Let u,v,w ∈V .

(1): We have u ⩽ u∨ v, so −(u∨ v) ⩽ −u by (2.17). In the same way we obtain
−(u∨v)⩽−v. If follows that−(u∨v) is a lower bound for {−u,−v}. To prove that it is
the greatest lower bound, we must show that if w ⩽−u and w ⩽−v, then w ⩽−(u∨v).
This follows by noting that u ⩽ −w and v ⩽ −w, so −w is an upper bound for {u,v}
and therefore u∨ v ⩽−w. By (2.17) this implies w ⩽−(u∨ v) as required.

(2): We have u+ v ⩽ u+(v∨w) and u+w ⩽ u+(v∨w), so u+(v∨w) is an upper
bound for {u+ v,u+w}. To prove that is the least upper bound we must show that
if u+ v ⩽ x and u+w ⩽ x, then u+(v∨w) ⩽ x. But v ⩽ x− u and w ⩽ x− u imply
v∨w ⩽ x−u and therefore u+(v∨w)⩽ x as desired.

(3): In view of (1) we must show that u+ v+(−u)∧ (−v) = u∧ v.
We have u+v+(−u)∧(−v)⩽ u+v+(−v) = u and similarly u+v+(−u)∧(−v)⩽

v. It follows that u+ v+(−u)∧ (−v) is a lower bound for {u,v}. To prove that it is
the greatest lower bound we must show that if w ⩽ u and w ⩽ v, then w ⩽ u+ v+
(−u)∧ (−v), or equivalently w− u− v ⩽ (−u)∧ (−v). By (2.17) and (1), this in turn
is equivalent to u∨ v ⩽ u+ v−w. To prove this inequality we note that w ⩽ u implies
0 ⩽ u−w and hence v ⩽ u+ v−w. In the same way we obtain u ⩽ u+ v−w, and
together these inequalities imply u∨ v ⩽ u+ v−w as desired.

(4): Taking u = 0 in (3) and using (1) we obtain v = 0∧v+0∨v = v+− (0∧ (−v)) =
v+− v−.

(5): By (2), |v|= v∨ (−v) implies |v|− v = 0∨ (−2v) = (2v)− = 2v−. It follows that
|v|= v+2v− = v+− v1 +2v− = v++ v−.

Definition 2.53 (Normed vector lattices). A normed vector lattice is a triple (X ,∥·∥,⩽)

with the following properties:

(i) the pair (X ,∥ · ∥) is a real normed space;
(ii) the pair (X ,⩽) is vector lattice;

(iii) for all x,y ∈ X we have |x|⩽ |y| ⇒ ∥x∥⩽ ∥y∥.

In any normed vector lattice, as an immediate consequence of (iii) we have∥∥ |x|∥∥= ∥x∥. (2.19)



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
78 The Classical Banach Spaces

Moreover, the lattice operations x 7→ x+, x 7→ x−, x 7→ |x| are continuous. Indeed, by
(2.18) we have |x|− |y|⩽ |x− y| and therefore, by (2.19),∥∥ |x|− |y|∥∥⩽ ∥∥ |x− y|

∥∥= ∥x− y∥.

This gives the continuity of x 7→ |x|. The other two assertions follow from this by noting
that x+ = 1

2 (x+ |x|) and x− = x+− x. As a consequence we note that the positive cone

X+ := {x ∈ X : x ⩾ 0}

is closed.

Definition 2.54 (Banach lattices). A Banach lattice is a complete normed vector lattice.

The spaces c0, ℓp, C(K), and Lp(Ω) with 1 ⩽ p ⩽ ∞, are Banach lattices with respect
to their natural pointwise ordering, and M(Ω) is a Banach lattices with respect to the
ordering given by declaring µ ⩽ ν if and only if the measure ν−µ is nonnegative; the
greatest lower bound and least upper bound of µ and ν are given by

µ ∧ν = µ− (µ−ν)+ = ν− (ν−µ)+,

µ ∨ν = µ +(ν−µ)+ = ν +(µ−ν),

respectively (cf. Problem 2.41); here, (ν−µ)+ is defined as in Theorem 2.45. Alterna-
tively one may use the analogues for M(Ω) of the formulas appearing in Theorem 4.5.
The Jordan decomposition of a real measure now becomes a special case of Proposition
2.52(4).

Definition 2.55. Let V and W be vector lattices. A linear operator T : V →W is said to
be positivity preserving if v ⩾ 0 implies T v ⩾ 0.

If T : V →W is positivity preserving, then

|T v|⩽ T |v|, v ∈V. (2.20)

Indeed, from v ⩽ |v| we have T v ⩽ T |v| and from 0 ⩽ |v| we have 0 = T 0 ⩽ T |v|.
Combining these inequalities gives (T v)+ ⩽ T |v|. In the same way we see that (T v)− ⩽
T |v|, and the claim follows.

Theorem 2.56. Let X and Y be Banach lattices. Every positivity preserving linear op-
erator T : X → Y is bounded.

Proof Reasoning by contradiction, suppose that T is not bounded. Then for all n ⩾ 1
there is a norm one vector xn ∈ X such that ∥T xn∥ ⩾ n3. By (2.19) and (2.20), upon
replacing xn by |xn| we may assume that xn ⩾ 0 for all n ⩾ 1. In view of ∑n⩾1 ∥xn∥/n2 <

∞ the sum ∑n⩾1 xn/n2 converges in X . For all 1 ⩽ n ⩽ N we have xn/n2 ⩽ ∑
N
m=1 xm/m2,
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and the closedness of the positive cone X+ implies that for all n ⩾ 1 we have xn/n2 ⩽
∑m⩾1 xm/m2. Hence, for all n ⩾ 1,

n ⩽
1
n2 ∥T xn∥⩽

∥∥∥T ∑
m⩾1

xm

m2

∥∥∥.
This contradiction completes the proof.

This theorem has an interesting consequence:

Theorem 2.57. Any two norms which turn a vector lattice into a Banach lattice are
equivalent.

Proof Suppose the vector lattice (X ,⩽) is a Banach lattice with respect to the norms
∥ · ∥ and ∥ · ∥′. Then by Theorem 2.56 the identity mapping from (X ,∥ · ∥) to (X ,∥ · ∥′)
and its inverse are bounded.

Problems

2.1 Let 1 ⩽ p ⩽ ∞. Show that if a ∈ ℓp, then a ∈ ℓq for all p ⩽ q ⩽ ∞ and

∥a∥∞ ⩽ ∥a∥q ⩽ ∥a∥p, lim
q→∞
∥a∥q = ∥a∥∞.

Hint: First show that it suffices to consider sequences a = (an)n⩾1 satisfying
|an|⩽ 1 for all n ⩾ 1.

2.2 Show that c0 and ℓp with 1 ⩽ p < ∞ are separable, but ℓ∞ is not.
Hint: ℓ∞ contains an uncountable family (a(i))i∈I such that ∥a(i)−a(i

′)∥= 1 for all
i ̸= i′. Prove that a normed space X containing such a sequence is nonseparable.

2.3 Prove the completeness assertions at the end of Section 2.2.a.
2.4 Let K be a compact metric space. Our aim is to prove that if ( fn)n⩾1 is a sequence

in C(K) satisfying f1(x)⩾ f2(x)⩾ · · ·⩾ 0 and limn→∞ fn(x) = 0 for all x∈K, then
limn→∞ fn = 0 uniformly on K. This result, known as Dini’s theorem, provides one
of the rare instances where pointwise convergence implies uniform convergence.

(a) Reasoning by contradiction, show that if the result is false, then there exists
an ε > 0, a sequence (xn)n⩾1 in K, and an x ∈K, such that limn→∞ xn = x and
fn(xn)⩾ 1

2 ε for all n ⩾ 1.
(b) Using that also fn(x) ↓ 0 as n→ ∞ and fn(xn) ⩽ fm(xn) when n ⩾ m, show

that this leads to a contradiction.

2.5 Find a sequence ( fn)n⩾1 in Cb(0,1) such that 0 ⩽ fn+1(x) ⩽ fn(x) ⩽ 1 for all
x ∈ (0,1) and n ⩾ 1 and fn(x) ↓ 0 for all x ∈ (0,1), but ∥ fn∥∞ ̸→ 0. Compare this
with Dini’s theorem (Problem 2.4).



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
80 The Classical Banach Spaces

2.6 Let K be a compact topological space and X be a Banach space. Prove that the
space C(K;X) of all continuous functions f : K → X is a Banach space with
respect to the supremum norm ∥ f∥∞ := supx∈K ∥ f (x)∥.

2.7 Let D be a bounded open subset of Rd. By Ck(D) we denote the space of func-
tions f : D → K that are k times continuously differentiable on D and all of
whose partial derivatives ∂ α f extend continuously to D for all multi-indices α =

(α1, . . . ,αd) ∈Nd satisfying |α| := α1+ · · ·+αd ⩽ k. Here, ∂ α := ∂
α1
1 ◦ · · ·◦∂

αd
d ,

where ∂ j is the partial derivative in the jth direction. Prove that Ck(D) is a Banach
space with respect to the norm

∥ f∥Ck(D) := max
|α|⩽k
∥∂ α f∥∞.

2.8 Consider the vector space P[0,1] of all polynomials on [0,1].

(a) Show that

∥∥∥t 7→
N

∑
n=0

cntn
∥∥∥ := max

{∥∥∥t 7→
⌊N

2 ⌋

∑
k=0

c2kt2k
∥∥∥

∞

,2
∥∥∥t 7→

⌈N
2 ⌉

∑
k=1

c2k−1t2k−1
∥∥∥

∞

}
defines a norm on P[0,1]. Here, ⌊y⌋ is the greatest integer n ⩽ y and ⌈y⌉ is
the least integer n ⩾ y.

(b) Show that the functions 1, t2, t4, . . . span a subspace of P[0,1] which is dense
with respect to the supremum norm.

(c) Conclude that two different norms on a normed space may agree on a sub-
space which is dense with respect to one of these norms.

2.9 We prove the existence of smooth functions with various properties.

(a) Show that the function f : R→ [0,∞) defined by

f (x) :=

{
exp
(
−1/x2), x > 0,

0, x ⩽ 0,

belongs to C∞(R).
(b) Show that there exists a function f ∈C∞

c (0,1) such that f ⩾ 0 pointwise and∫ 1
0 f (x)dx = 1.

(c) Show that if D⊆Rd is open and nonempty, there exists a function f ∈C∞
c (D)

such that f ⩾ 0 pointwise and
∫

D f (x)dx = 1.
(d) Show that if f ∈C∞

c (Rd) and g : Rd→K is continuous, then the convolution
f ∗g is smooth and

∂
α( f ∗g) = (∂ α f )∗g

for every multi-index α ∈ Nd ; notation is as in Problem 2.7.
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(e) Show that if K ⊆ D⊆ Rd, where K is nonempty and compact and D is open,
then there exists a function f ∈ C∞

c (D) such that 0 ⩽ f ⩽ 1 pointwise and
f ≡ 1 on K.
Hint: Let δ := d(K,∁D) and put

K′ :=
{

x ∈ D : d(x,K)⩽
1
3

δ
}
, D′ :=

{
x ∈ D : d(x,K)<

2
3

δ

}
.

Apply part (c) to select a nonnegative function f ∈ C∞
c (B(0; 1

3 δ ) satisfying∫
B(0; 1

3 δ ) f (x)dx = 1 and apply part (d) to the function

g(x) :=
d(x,∁D′)

d(x,∁D′)+d(x,K′)
, x ∈ D.

2.10 Let

F :=
{

f ∈C[0,1] : 0 ⩽ f ⩽ 1, f (0) = 0, f (1) = 1
}

and consider the linear mapping T : C[0,1]→C[0,1] defined by

(T f )(t) = t f (t), t ∈ [0,1].

(a) Show that F is bounded, convex, and closed in C[0,1].
(b) Show that T maps F into F and satisfies

∥T f −T g∥∞ < ∥ f −g∥∞

for all f ,g ∈ F , f ̸= g.
(c) Show that T has no fixed point in F .
(d) Compare this result with the Banach fixed point theorem.

2.11 Let 1 ⩽ p ⩽ ∞.

(a) Show that for 1 ⩽ p < ∞ the space Lp(0,1) is the completion of C[0,1] with
respect to the norm

∥ f∥p =
(∫ 1

0
| f (t)|p dt

)1/p
.

(b) Show that C[0,1] can be identified in a natural way with a proper closed
subspace of L∞(0,1).

2.12 Prove the assertion in Remark 2.27. Can the σ -finiteness condition be omitted?
2.13 Let (Ω,F,µ) be a measure space and let fn : Ω→ K (n ⩾ 1) and f : Ω→ K

be bounded measurable functions. Show that if fn → f in L∞(Ω), then there is
a µ-null set N such that limn→∞ supω∈∁N | fn(ω)− f (ω)| = 0. Compare this with
Corollary 2.21.
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2.14 Show that passing to a subsequence is necessary for Corollary 2.21 to be true.
Hint: Consider the unit circle T = {z ∈ C : |z| = 1} with its Lebesgue measure.
Let tn := ∑

n
m=1

1
m and consider the indicator functions of the arcs In := {e2πit : t ∈

(tn, tn+1)}.
2.15 Consider the set

S := { f ∈ L1(0,1) : f (t)⩾ 0 for almost all t ∈ (0,1)}.

(a) Determine whether S is a closed subset of L1(0,1).
(b) Characterise the functions belonging to the interior of S.

Consider the set

S′ := { f ∈ L1(0,1) : f (t)> 0 for almost all t ∈ (0,1)}.

(c) Determine whether S′ is an open subset of L1(0,1).
(d) Characterise the functions belonging to the closure of S′.

2.16 Let (Ω,F,µ) be a measure space and let G ⊆F be a sub-σ -algebra. Show that
for all 1 ⩽ p ⩽ ∞ the set Lp(Ω,G ) consisting of all f ∈ Lp(Ω) that are equal
µ-almost everywhere to a G -measurable function is a closed subspace of Lp(Ω).

2.17 For n ∈ N and j ∈ {0,1, . . . ,2n− 1} we consider the interval I j,n := ( j
2n ,

j+1
2n ) ⊆

(0,1). Let 1 ⩽ p < ∞ and define the operators En : Lp(0,1)→ Lp(0,1), n ⩾ 1, by

f 7→ En f :=
2n−1

∑
j=0

1I j,n ·
1
|I j,n|

∫
I j,n

f (t)dt, f ∈ Lp(0,1).

(a) Show that each En is bounded on Lp(0,1) with norm ∥En∥= 1.
(b) Show that for all f ∈ Lp(0,1) we have limn→∞ En f = f in Lp(0,1).

Hint: Consider what happens for functions in the linear span of the set {1I j,n :
0 ⩽ j ⩽ 2n−1, n ∈ N}.

2.18 Using Young’s inequality, show that if f ∈ Lp(Rd), g ∈ Lq(Rd), h ∈ Lr(Rd) with
1 ⩽ p,q,r ⩽ ∞ such that 1

p +
1
q +

1
r = 2, then∫

Rd

∫
Rd
| f (x)g(x− y)h(y)|dxdy ⩽ ∥ f∥p∥g∥q∥h∥r.

2.19 Write out a proof of Corollary 2.30.
2.20 Let (Ω,F,µ) be a finite measure space and let 1 ⩽ p ⩽ ∞. Prove that

||| f |||p :=
∣∣∣∫

Ω

f dµ

∣∣∣+∥∥∥ f −
(∫

Ω

f dµ

)
1
∥∥∥

p

defines an equivalent norm on Lp(Ω). Here, ∥ · ∥p is the usual norm on Lp(Ω).
2.21 Let (Ω,F,µ) be a measure space and fix 1 ⩽ p,q ⩽ ∞.
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(a) Prove that Lp(Ω)∩Lq(Ω) is a Banach space with respect to the norm

∥ f∥Lp(Ω)∩Lq(Ω) := max
{
∥ f∥Lp(Ω), ∥ f∥Lq(Ω)

}
.

(b) Prove that Lp(Ω) + Lq(Ω) = {g+ h : g ∈ Lp(Ω), h ∈ Lq(Ω)} is a Banach
space with respect to the norm

∥ f∥Lp(Ω)+Lq(Ω)

:= inf
{
∥g∥Lp(Ω)+∥h∥Lq(Ω) : f = g+h, g ∈ Lp(Ω), h ∈ Lq(Ω)

}
.

Hint: For the proof of completeness use Proposition 1.3.
(c) Prove that if 1 ⩽ p ⩽ r ⩽ q ⩽ ∞, then

Lp(Ω)∩Lq(Ω)⊆ Lr(Ω)⊆ Lp(Ω)+Lq(Ω)

and that the inclusion mappings are continuous.
Hint: Write f = 1{| f |⩽1} f +1{| f |>1} f .

(d) Prove that if 1 ⩽ p ⩽ r ⩽ q ⩽ ∞ and 0 ⩽ θ ⩽ 1 are such that 1
r = 1−θ

p + θ

q ,
then for all f ∈ Lp(Ω,µ)∩Lq(Ω,µ) we have

∥ f∥r ⩽ ∥ f∥1−θ
p ∥ f∥θ

q .

Hint: Use Hölder’s inequality with suitable exponents.

2.22 Prove Lusin’s theorem: If D ⊆ Rd is open and bounded, and f : D→ K is mea-
surable, then for every ε > 0 there exists a function g ∈Cc(D) such that

|{x ∈ D : f (x) ̸= g(x)}|< ε.

Hint: Study the proof of Proposition 2.29.
2.23 Let (Ω,F,µ) be a measure space, let 1 ⩽ p ⩽ ∞, and suppose that ( fn)n⩾1 is

a bounded sequence in Lp(Ω) converging to a measurable function f µ-almost
everywhere.

(a) Using Fatou’s lemma show that f ∈ Lp(Ω) and ∥ f∥p ⩽ liminfn→∞ ∥ fn∥p.

In addition to the above assumtions, assume now that µ(Ω)< ∞ and 1 < p ⩽ ∞.

(c) Show that limn→∞ fn = f in L1(Ω).
Hint: First show that for every ε > 0 there exists an r ⩾ 0 such that

sup
n⩾1

∫
{| fn|>r}

| fn|dµ < ε.

(d) Do we also have limn→∞ fn = f in Lp(Ω)?
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2.24 Let (Ω,F,µ) be a probability space and let φ : K→ R be a convex function.
Prove Jensen’s inequality: If a function f ∈ L1(Ω) has the property that φ ◦ f is
integrable, then

φ

(∫
Ω

f dµ

)
⩽
∫

Ω

φ ◦ f dµ.

Hint: A convex function φ is the pointwise supremum of all affine functions
ψ(x) = ax+b satisfying ψ ⩽ φ pointwise.

2.25 On R+ = (0,∞) we consider the Borel measure µ given by

µ(B) :=
∫

B

1
t

dt, B ∈B(R+).

(a) Show that for all B ∈B(R+) and s ∈ R+ we have

µ(B) = µ(sB), µ(B) = µ(B−1),

where sB := {st : t ∈ B} and B−1 := {t−1 : t ∈ B}.
(b) For h ∈ L1(R+,

dt
t ) and s ∈ R+ show that∫

∞

0
h(st)

dt
t
=
∫

∞

0
h(t)

dt
t
=
∫

∞

0
h(t−1)

dt
t
.

Fix 1⩽ p<∞. For f ∈ Lp(R+,
dt
t ) and g∈ L1(R+,

dt
t ) we define the multiplicative

convolution

f ⋄g(t) :=
∫

∞

0
f (t/s)g(s)

ds
s
, t ∈ R+.

(c) Show that the multiplicative convolution is well defined for almost all t ∈ R+

and that the following analogue of Young’s inequality holds:

∥ f ⋄g∥Lp(R+,
dt
t )

⩽ ∥ f∥Lp(R+,
dt
t )
∥g∥L1(R+,

dt
t )
.

(d) Show that f ⋄g = g⋄ f .

2.26 Let k : (0,1)× (0,1)→K be measurable and suppose that

A := esssup
y∈[0,1]

∫ 1

0
|k(x,y)|dx < ∞,

B := esssup
x∈[0,1]

∫ 1

0
|k(x,y)|dy < ∞.

Let 1 ⩽ p ⩽ ∞ and define, for f ∈ Lp(0,1),

Tk f (x) :=
∫ 1

0
k(x,y) f (y)dy, x ∈ (0,1).
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Show that Tk : Lp(0,1)→ Lp(0,1) is a well-defined linear operator which satisfies
the so-called Schur estimate

∥Tk f∥p ⩽ A1/pB1−1/p∥ f∥p, f ∈ Lp(0,1).

Hint: Use Hölder’s inequality.
2.27 Let (Ω,F,µ) be a measure space and let X be a Banach space. For 1 ⩽ p ⩽ ∞ we

denote by Lp(Ω;X) the space of all (equivalence classes of) strongly measurable
functions f : Ω→ X for which ω 7→ ∥ f (ω)∥ belongs to Lp(Ω).

(a) Prove that Lp(Ω;X) is a Banach space with respect to the norm

∥ f∥p :=
∥∥ω 7→ ∥ f (ω)∥

∥∥
Lp(Ω)

.

By Lp(Ω)⊗X we denote the vector space obtained as the linear span in Lp(Ω;X)

of the set of all functions of the form f ⊗ x (cf. (1.6)) with f ∈ Lp(Ω) and x ∈ X .

(b) Show that if 1 ⩽ p < ∞, then Lp(Ω)⊗X is dense in Lp(Ω;X).

2.28 Let (Ω,F,µ) be a measure space and 1 ⩽ p < ∞. Let T be a bounded operator on
Lp(Ω) and let X be a Banach space. Consider the linear mapping from Lp(Ω)⊗X
into itself defined by

(T ⊗ I)( f ⊗ x) := (T f )⊗ x.

(a) Show that the operator T ⊗ I is well defined.
(b) Prove that if T is a positive operator, then T ⊗ I admits a unique extension to

a bounded operator on Lp(Ω;X), and that its norm of equals the norm of T .

2.29 Let (Ω,F,µ) and (Ω′,F ′,µ ′) be measure spaces and let 1 ⩽ p ⩽ q < ∞.

(a) Show that the identity mapping on linear combinations of functions of the
form (1A ⊗ 1B)(ω,ω ′) := 1A(ω)1B(ω

′) extends uniquely to a contraction
operator from Lp(Ω;Lq(Ω′)) into Lq(Ω′;Lp(Ω)).

Hint: Use (1.7).
(b) Deduce that if (Ω,F,µ) and (Ω′,F ′,µ ′) are σ -finite and f : Ω×Ω′→K is

a measurable function, then the continuous Minkowski inequality holds:(∫
Ω′

(∫
Ω

| f (ω,ω ′)|p dµ(ω)
)q/p)1/q

⩽
(∫

Ω

(∫
Ω′
| f (ω,ω ′)|q dµ(ω ′)

)p/q)1/p
.

2.30 Let f ∈ L1
loc(Rd) be given.

(a) Show that for all c ∈K there exists a Borel null set Nc ⊆ Rd such that for all
x ∈ ∁Nc we have

lim
B∋x
|B|→0

1
|B|

∫
B
| f (y)− c|dy = | f (x)− c|. (2.21)
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(b) Show that there exists a Borel null set L⊆ Rd with |∁L|= 0 such that (2.21)
holds all x ∈ L and c ∈K.
Hint: Consider

⋃
n⩾1 Ncn with (cn)n⩾1 a dense sequence in K.

A set L with the properties of part (b) is called a Lebesgue set for f .
2.31 Prove the following one-sided version of the Lebesgue differentiation theorem for

d = 1: If x is a Lebesgue point of f ∈ L1
loc(R), then

lim
h↓0

1
h

∫ x+h

x
| f (y)− f (x)|dy = lim

h↓0

1
h

∫ x

x−h
| f (y)− f (x)|dy = 0.

2.32 Show that a subset K of c0 is relatively compact if and only if there is a y ∈ c0

such that for all x ∈ K and n ⩾ 1 we have |xn|⩽ |yn|.
2.33 Let 1 ⩽ p < ∞. Show that a bounded subset S of ℓp is relatively compact if and

only if for every ε > 0 there exists an index N ⩾ 1 such that

sup
x∈S

∑
n⩾N
|xn|p ⩽ ε

p.

2.34 Let S be a nonempty set. For 1 ⩽ p < ∞, let ℓp(S) be the completion of the space
of all finitely nonzero functions f : S→ K, that is, functions such that f (s) ̸= 0
for at most finitely many different s ∈ S, with the norm

∥ f∥p :=
(
∑
s∈S
| f (s)|p

)1/p
,

where the sum extends over the finitely many s ∈ S for which f (s) ̸= 0.

(a) Show that ℓp(S) can be isometrically identified with the space of all count-
ably nonzero functions f : S→K, that is, functions such that f (s) ̸= 0 for at
most countably many different s ∈ S, for which

∥ f∥p :=
(
∑
s∈S
| f (s)|p

)1/p

is finite. How should this sum be interpreted?
(b) Show that ℓp(S) is a Banach space in a natural way.

2.35 Show that a K-valued measure ν is absolutely continuous with respect to a mea-
sure µ if and only if for every ε > 0 there exists a δ > 0 such that |ν(F)| < ε

whenever F ∈F satisfies µ(F)< δ .
2.36 A K-valued measure µ on a topological space X is said to be regular, respectively

Radon, if its variation |µ| is regular (see Definition E.15), respectively Radon
(see Definition E.20). Prove that the sets Mr(X) and MR(X) of all K-valued Borel
measures on X that are regular, respectively Radon, are closed subspaces of M(X).
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2.37 A function f : [0,1]→ K is said to be absolutely continuous if for every ε > 0
there exists a δ > 0 such that whenever (an)

N
n=1 and (bn)

N
n=1 are finite sequences

in [0,1] satisfying ∑n⩾1(bn−an)< δ , then

N

∑
n=1
| f (bn)− f (an)|< ε.

It is said to be of bounded variation if

var( f ;π) :=
N

∑
n=1
| f (tn)− f (tn−1)|< ∞

where the supremum is taken over all finite partitions π = {t0, . . . , tn} of [0,1].

(a) Show that a function f : [0,1]→ K is absolutely continuous and satisfies
f (0) = 0 if and only if there exists a function g ∈ L1(0,1) such that

f (t) =
∫ t

0
g(s)ds, t ∈ [0,1],

and that this function g, if it exists, is unique.
Hint: For the ‘only if’ part use the Radon–Nikodým theorem.

(b) Show that the space NBV [0,1] of functions f : [0,1]→K of bounded varia-
tion satisfying f (0) = 0 is a Banach space with respect to the norm

∥ f∥NBV [0,1] = sup
π

var( f ;π).

(c) Show that the space of all absolutely continuous functions f : [0,1]→ K
satisfying f (0) = 0 is a closed subspace of NBV [0,1] and that

∥ f∥NBV [0,1] = ∥g∥L1(0,1), f ∈ NBV [0,1],

where g ∈ L1(0,1) is the function of part (a).

2.38 The disc algebra A(D) is the closed subspace of the Banach space C(D) consisting
of those functions that are holomorphic on D. By the maximum principle,

∥ f∥= sup
θ∈[−π,π]

| f (eiθ )|.

(a) Show that for all f ∈C(D) and z0 ∈ D we have

f (z0) =
1

2πi

∫
T

f (z)
z− z0

dz.

(b) Show that a function f ∈C(D) belongs to A(D) if and only if f̂ (n) = 0 for
all n ∈ Z\N, where

f̂ (n) :=
1

2π

∫
π

−π

f (eiθ )e−inθ dθ , n ∈ Z.
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88 The Classical Banach Spaces

2.39 Let Lip[0,1] be the vector space of all functions f : [0,1]→K for which

∥ f∥Lip[0,1] := | f (0)|+ sup
0⩽x,y⩽1

x ̸=y

∣∣∣ f (x)− f (y)
x− y

∣∣∣
is finite. Show that Lip[0,1] is a Banach space with respect to the norm ∥·∥Lip[0,1].

2.40 A function f ∈ L1
loc(Rd) is said to have bounded mean oscillation if

| f |BMO(Rd) := sup
B

1
|B|

∫
B
| f (x)− avB( f )|dx

is finite, where the supremum is taken over all balls B in Rd, |B| is the Lebesgue
measure of B, and avB( f ) := 1

|B|
∫

B f (y)dy is the average of f on B.

(a) Show that if f and g have bounded mean oscillation, then:

(i) c f has bounded mean oscillation and

|c f |BMO(Rd) = |c|| f |BMO(Rd);

(ii) f +g has bounded mean oscillation and

| f +g|BMO(Rd) ⩽ | f |BMO(Rd)+ |g|BMO(Rd).

(b) Show that | f |BMO(Rd) = 0 if and only if f is almost everywhere constant.
(c) Show that every f ∈ L∞(Rd) has bounded mean oscillation and

| f |BMO(Rd) ⩽ 2∥ f∥∞.

(d) Show that the unbounded function x 7→ log |x| has bounded mean oscillation.
(e) Show that the quotient space BMO(Rd) = BMO(Rd)/K, obtained as the

quotient modulo the constant functions of the vector space BMO(Rd) of
functions with bounded mean oscillation, is a Banach space in a natural way.

2.41 Show that in a vector lattice (V,⩽), the greatest lower bound and the least upper
bound of two elements u,v ∈ V satisfy u∧ v = u− (u− v)+ = v− (v− u)+ and
u∨ v = u+(v−u)+ = v+(u− v)+.

2.42 Let V be a vector lattice.

(a) Show that for all v ∈V we have v+∧ v− = 0 and v+∨ v− = |v|.
(b) Show that if v,w,w′ ∈ V satisfy v = w−w′ with w ⩾ 0 and w′ ⩾ 0, then

w ⩾ v+ and w′ ⩾ v−.
(c) Show that if v,w,w′ ∈V satisfy v=w−w′ with w⩾ 0, w′⩾ 0, and w∧w′= 0,

then w = v+ and w′ = v−.

2.43 Prove that if X is a normed vector lattice, the lattice operations (x,y) 7→ x∧ y and
(x,y) 7→ x∨ y are continuous from X×X to X .

2.44 Provide the missing details to the proof, outlined at the end of Section 2.5, that
the spaces M(Ω) studied in Section 2.4 are Banach lattices.
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3
Hilbert Spaces

Arguably the most important class of Banach spaces is the class of Hilbert spaces. These
spaces play a central role in the theory and in various areas of applications, some of
which will be discussed in later chapters. The present introductory chapter develops the
basic geometric properties of Hilbert spaces arising from the presence of an inner prod-
uct generating the norm, such as the orthogonal complementation of closed subspaces,
the existence of orthonormal bases, and the selfduality of Hilbert spaces embodied by
the Riesz representation theorem.

3.1 Hilbert Spaces

Let V be a vector space. A mapping φ : V ×V → K is called sesquilinear if it is linear
in the first variable and conjugate-linear in the second variable, that is,

φ(v+ v′,w) = φ(v,w)+φ(v′,w), φ(cv,w) = cφ(v,w), (3.1)

φ(v,w+w′) = φ(v,w)+φ(v,w′), φ(v,cw) = cφ(v,w), (3.2)

for all c∈K and v,v′,w,w′ ∈V . The complex conjugation in (3.2) is of course redundant
when the scalar field is real and sesquilinearity reduces to bilinearity in that case.

Definition 3.1 (Inner products). An inner product space is a pair (H,(·|·)), where H
is a vector space and (·|·) is an inner product on H×H, that is, a sesquilinear mapping
from H×H to K with the following properties:

(i) (x|x)⩾ 0 for all x ∈ H and (x|x) = 0⇒ x = 0;

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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(ii) (x|y) = (y|x) for all x,y ∈ H.

The conjugation bar in (ii) is again redundant when the scalar field is real. If (ii) holds,
then (3.1) implies (3.2).

It will be used frequently without further comment that

if (x|y) = 0 for all y ∈ H, then x = 0.

Indeed, the hypothesis implies that (x|x) = 0, and then x = 0 by the definition of an
inner product.

When the inner product (·|·) is understood we simply write H instead of (H,(·|·)).

Example 3.2. Here are some examples of inner products:

(i) on Kd an inner product is given by (x|y) = ∑
d
n=1 xnyn;

(ii) on ℓ2 an inner product is given by (a|b) = ∑n⩾1 anbn;
(iii) on L2(Ω,µ) an inner product is given by ( f |g) =

∫
Ω

f gdµ.

David Hilbert, 1862–1943

In order to turn inner product spaces into
normed vector spaces we need the following in-
equality. Its finite-dimensional version has al-
ready been used in various places in Chapters 1
and 2.

Proposition 3.3 (Cauchy–Schwarz inequality).
Let H be a vector space and consider a sesquilin-
ear mapping (·|·) : H×H→K with the following
properties:

(i) (x|x)⩾ 0 for all x ∈ H;
(ii) (x|y) = (y|x) for all x,y ∈ H.

Then for all x,y ∈ H we have

|(x|y)|2 ⩽ (x|x)(y|y).

Proof We may assume that y ̸= 0, since otherwise the inequality trivially holds. Fix a
scalar c ∈K. Then

0 ⩽ (x− cy|x− cy) = (x|x)− (x|cy)− (cy|x)+(cy|cy)

= (x|x)− c(x|y)− c(x|y)+ |c|2(y|y)
= (x|x)−2Re(c(x|y))+ |c|2(y|y).

The choice c = (x|y)/(y|y) results in the inequality

0 ⩽ (x|x)−2Re
|(x|y)|2

(y|y)
+
|(x|y)|2

(y|y)
= (x|x)− |(x|y)|

2

(y|y)
.
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3.1 Hilbert Spaces 91

Multiplying with (y|y) gives the desired result.

This result is valid without assuming the nondegeneracy assumption in the second
part of the defining property (i) of an inner product.

Proposition 3.4. Every inner product space H can be made into a normed space by
defining

∥x∥ := (x|x)1/2, x ∈ H.

Proof We must check that ∥ · ∥ defines a norm on H. It is immediate that ∥x∥ = 0
implies x = 0 and that ∥cx∥= |c|∥x∥. The triangle inequality follows from the Cauchy–
Schwarz inequality:

∥x+ y∥2 = ∥x∥2 +2Re(x|y)+∥y∥2 ⩽ ∥x∥2 +2∥x∥∥y∥+∥y∥2 = (∥x∥+∥y∥)2.

Henceforth it is understood that inner product spaces are always endowed with this
norm.

As a corollary to the Cauchy–Schwarz inequality we record:

Corollary 3.5. Every inner product (x|y) is jointly continuous as a function of x and y.

Proof It suffices to show that if xn→ x and yn→ y, then (xn|yn)→ (x|y). We have

|(xn|yn)− (x|y)|⩽ |(xn|yn)− (xn|y)|+ |(xn|y)− (x|y)|
= |(xn|yn− y)|+ |(xn− x|y)|⩽ ∥xn∥∥yn− y∥+∥xn− x∥∥y∥.

Since convergent sequences are bounded, the number M := supn⩾1 ∥xn∥ is finite, and
we find

|(xn|yn)− (x|y)|⩽ M∥yn− y∥+∥xn− x∥∥y∥.

Both terms on the right-hand side tend to 0 as n→ ∞.

Proposition 3.6 (Parallelogram identity). In every inner product space H the parallel-
ogram identity holds: for all x,y ∈ H we have

2∥x∥2 +2∥y∥2 = ∥x+ y∥2 +∥x− y∥2.

Conversely, if X is a normed space with the property that the parallelogram identity
holds for all x,y ∈ X, then there exists an inner product on X generating the norm of X.

In what follows we only need the first part of the proposition. Its converse is included
for reasons of completeness and can be safely skipped upon first reading.

The inequality ‘⩾’ admits Lp-versions, known as Clarkson’s inequalities (see Prob-
lem 5.27).
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Proof The proof of the first part is routine:

∥x+ y∥2 +∥x− y∥2 = (x+ y|x+ y)+(x− y|x− y) = 2(x|x)+2(y|y) = 2∥x∥2 +2∥y∥2.

The proof of the second assertion is quite involved and relies on finding a formula
for the inner product in terms of the norm of X . To get an idea what this formula might
look like we first assume there is such an inner product and denote it by (·|·). Then

∥x± y∥2 = ∥x∥2±2Re(x|y)+∥y∥2.

From this we get

Re(x|y) = 1
4

(
∥x+ y∥2−∥x− y∥2

)
. (3.3)

If the scalar field K is real, then Re(x|y) = (x|y) and the above identity expresses the
inner product in terms of the norm. If the scalar field K is complex, by the previous
identity we obtain

Im(x|y) = Re(x|iy) = 1
4

(
∥x+ iy∥2−∥x− iy∥2

)
.

This leads to the identity

(x|y) = Re(x|y)+ i Im(x|y)

=
1
4

(
∥x+ y∥2−∥x− y∥2 + i∥x+ iy∥2− i∥x− iy∥2

)
.

(3.4)

In an arbitrary normed space we could now try to define an inner product by (3.3) if
K = R, respectively by (3.4) if K = C, but this does not always give an inner product.
If, however, the parallelogram identity holds, then it does. Let us check this for the case
K= R. First,

(x|x) = 1
4

(
∥x+ x∥2−∥x− x∥2

)
= ∥x∥2 ⩾ 0

and (x|x) = 0 implies ∥x∥ = 0 and hence x = 0. Second, the identity (x|y) = (y|x) is
immediate. Third,

(x+ x′|y) = 1
4

(
∥(x+ x′)+ y∥2−∥(x+ x′)− y∥2

)
=

1
4

(
2∥x∥2 +2∥x′+ y∥2−∥x− (x′+ y)∥2

)
− 1

4

(
2∥x∥2 +2∥x′− y∥2−∥x− (x′− y)∥2

)
=

1
2

(
∥x′+ y∥2−∥x′− y∥2

)
− 1

4

(
∥x− (x′+ y)∥2−∥x− (x′− y)∥2

)
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= 2(x′|y)+(x− x′|y).

This proves that

(x+ x′|y)− (x− x′|y) = 2(x′|y). (3.5)

Taking x = x′ in (3.5) we obtain (2x|y) = 2(x|y). Now let x0,x1 ∈ X be arbitrary. Apply-
ing (3.5) to x = 1

2 (x0− x1) and x′ = 1
2 (x0 + x1) gives

(x0|y)− (−x1|y) = 2
(1

2
(x0 + x1)

∣∣∣y),
which, in view of the earlier identities, simplifies to

(x0|y)+(x1|y) = (x0 + x1|y).

This gives additivity in the first coordinate. Additivity in the second coordinate is proved
similarly. Using this inductively, for positive integers k we obtain

(kx|y) = ((k−1)x+ x|y) = ((k−1)x|y)+(x|y)
= ((k−2)x+ x|y)+(x|y) = ((k−2)x|y)+2(x|y)
= · · ·= (x|y)+(k−1)(x|y) = k(x|y).

Applying this to k−1x we also find k−1(x|y) = (k−1x|y). Next let q = m/n with m,n
positive integers. By what we just proved,

(qx|y) = m(n−1x|y) = mn−1(x|y) = q(x|y).

This proves homogeneity with respect to multiplication with the positive rationals. For
such rationals we also have (−qx|y) = −(qx|y) = −q(x|y), and therefore homogene-
ity holds for all rationals. Finally, by the continuity of the norm ∥ · ∥, the mapping
q 7→ (qx|y) is continuous. The mapping q 7→ q(x|y) is continuous for trivial reasons.
Therefore, the identity (cx|y) = c(x|y) for arbitrary c ∈ R follows by approximation by
rationals.

This completes the proof that for K= R, the formula for (·|·) in (3.3) indeed defines
an inner product. We have already seen that (x|x) = ∥x∥2, so this inner product generates
the norm of X .

For K = C it can be verified in a similar manner that the formula for (·|·) in (3.4)
defines an inner product and that it generates the norm of X .

Definition 3.7 (Hilbert spaces). A Hilbert space is a complete inner product space.

Thus, by definition, every Hilbert space is a Banach space.

Example 3.8. By the completeness results in the preceding chapter, all three spaces Kd,
ℓ2, L2(Ω,µ) featuring in Example 3.2 are Hilbert spaces.
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Further examples of Hilbert spaces will be given in the problems section.

Proposition 3.9 (Completion). Let H be an inner product space. On its completion H
as a normed space, a well-defined inner product is obtained by setting

(x|y) := lim
n→∞

(xn|yn), x,y ∈ H,

whenever xn,yn ∈H satisfy x = limn→∞ xn and y = limn→∞ yn. The norm associated with
this inner product coincides with the norm of H obtained by completing H.

Proof The proof relies on a few routine verifications, some of which are left as an
exercise to the reader.

First of all, it easily follows from Corollary 3.5 that (x|y) is independent of the ap-
proximating sequences and agrees with their inner product in H when x,y ∈ H. To see
that (x|y) is indeed an inner product, suppose that (x|x) = 0 and let x = limn→∞ xn with
each xn ∈ H. Then limn→∞(xn|xn) = 0 and therefore limn→∞ xn = 0 which, by the con-
struction of the completion, means that the Cauchy sequence (xn)n⩾1 defines the zero
element of H. It follows that x = limn→∞ xn = 0 in H. The remaining properties of an
inner product follow trivially by limiting arguments.

Finally, the norm of H agrees with the norm generated by its inner product. This
follows again by approximation: if x = limn→∞ xn with each xn ∈ H, then for the norm
∥ · ∥ obtained via the completion procedure in the proof of Theorem 1.5 we have

∥x∥2 = lim
n→∞
∥xn∥2 = lim

n→∞
(xn|xn) = (x|x),

the first step being true from the definition of this norm, the second because the norm
of H is generated by its inner product, and the third because the inner product (·|·) is
jointly continuous.

3.2 Orthogonal Complements

Throughout this section we fix a Hilbert space H.

Definition 3.10 (Orthogonality). The elements x,x′ ∈ H are said to be orthogonal, no-
tation

x⊥ x′,

if (x|x′) = 0. Two subsets A and B of H are called orthogonal if a⊥ b for all a ∈ A and
b ∈ B.

Orthogonal elements x⊥ x′ satisfy the Pythagorean identity

∥x+ x′∥2 = ∥x∥2 +∥x′∥2,
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3.2 Orthogonal Complements 95

as is seen by expanding the square norms in terms of inner products.

Definition 3.11 (Orthogonal complement). The orthogonal complement of a subset A
of H is the set

A⊥ := {x ∈ H : x⊥ a for all a ∈ A}.

The orthogonal complement A⊥ of a subset A is a closed subspace of H. Indeed, it
is trivially checked that A⊥ is a vector space. To prove its closedness, let xn → x in
H with xn ∈ A⊥. Then, by the continuity of the inner product, for all a ∈ A we obtain
(x|a) = limn→∞(xn|a) = 0.

The most important result on orthogonality is certainly the fact that every closed
subspace Y of a Hilbert space is orthogonally complemented by Y⊥. This is the content
of Theorem 3.13 below. For its proof we need the following approximation theorem for
convex closed sets in Hilbert space. Recall that a subset C of a vector space is called
convex if for all x0,x1 ∈C we have (1−λ )x0 +λx1 ∈C for all 0 ⩽ λ ⩽ 1.

Theorem 3.12 (Best approximation). Let C be a nonempty convex closed subset of H.
Then for all x ∈ H there exists a unique c ∈C that minimises the distance from x to the
points of C:

∥x− c∥= min
y∈C
∥x− y∥.

Proof Let (yn)n⩾1 be a sequence in C such that

lim
n→∞
∥x− yn∥= inf

y∈C
∥x− y∥=: D.

We claim that this sequence is Cauchy. By the parallelogram identity of Proposition 3.6,
applied to the vectors x− ym and x− yn,

∥yn− ym∥2 +∥2x− (yn + ym)∥2 = 2∥x− ym∥2 +2∥x− yn∥2.

As m,n→∞, the right-hand side tends to 2D2+2D2 = 4D2, whereas from 1
2 (ym+yn)∈

C (by convexity) it follows that

∥2x− (yn + ym)∥2 = 4∥x− 1
2 (yn + ym)∥2 ⩾ 4D2.

It follows that

limsup
m,n→∞

∥yn− ym∥2 ⩽ 4D2−4D2 = 0.

The limit superior is also nonnegative, and therefore it equals 0. This proves the claim.
Since H is complete we have limn→∞ yn = c for some c ∈H, and since C is closed we

have c ∈C. Now ∥x− c∥= limn→∞ ∥x− yn∥= D, so c minimises the distance to x.

Both the existence and uniqueness parts of this theorem fail for general Banach
spaces; see Problems 3.5 and 3.6.
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Theorem 3.13 (Closed subspaces are orthogonally complemented). If Y is a closed
linear subspace of H, then we have an orthogonal direct sum decomposition

H = Y ⊕Y⊥,

that is, we have Y ∩Y⊥ = {0}, Y +Y⊥ = H, and Y ⊥ Y⊥.

Proof We have already seen that Y⊥ is a closed subspace. If y ∈Y ∩Y⊥, then y⊥ y, so
(y|y) = 0 and y = 0. It remains to show that Y +Y⊥ = H.

Let x ∈ H be arbitrary and fixed. We must show that x ∈ Y +Y⊥. Let πY : H → Y
denote the mapping arising from Theorem 3.12, that is, πY x is the unique element of Y
minimising the distance to x:

∥x−πY x∥= min
y∈Y
∥x− y∥.

Set y0 := πY x and y1 := x− y0. Then y0 ∈ Y , and for all y ∈ Y we have

∥y1∥= ∥x− y0∥⩽ ∥x− (y0− y)︸ ︷︷ ︸
∈Y

∥= ∥y+(x− y0)∥= ∥y+ y1∥. (3.6)

We claim that (3.6) implies y1 ∈ Y⊥. To see this, fix a nonzero y ∈ Y . For any c ∈K we
have, by (3.6),

∥y1∥2 ⩽ ∥cy+ y1∥2 = |c|2∥y∥2 +2Re(cy|y1)+∥y1∥2.

Taking c =−(y|y1)/∥y∥2, this gives

0 ⩽
|(y|y1)|2

∥y∥2 −2
|(y|y1)|2

∥y∥2 ,

which is only possible if (y1|y) = 0. Since 0 ̸= y ∈ Y was arbitrary, this shows that
y1 ∈ Y⊥. This proves the claim. It follows that x = y0 + y1 belongs to Y +Y⊥.

Definition 3.14 (Orthogonal projection onto a closed subspace). The projection πY onto
Y along Y⊥ given by

πY (y+ y⊥) := y, y ∈ Y, y⊥ ∈ Y⊥,

is called the orthogonal projection onto Y .

The Pythagorean inequality implies that ∥πY∥⩽ 1 (with equality if Y ̸= {0}). As was
shown in the course of the proof of Theorem 3.13, the projection πY coincides with
the mapping arising from Theorem 3.12. For general closed convex sets C, the distance
minimising mapping of Theorem 3.12 is generally nonlinear.

As a corollary to Theorem 3.13, for closed subspaces Y we get (Y⊥)⊥ =Y , and more
generally for any subspace Y we get (since Y⊥ = (Y )⊥)

(Y⊥)⊥ = Y .
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By way of example, if (hn)
N
n=1 is an orthonormal sequence, i.e., (h j|hk) = δ jk for all

1 ⩽ j,k ⩽ N, the orthogonal projection πN in H onto the span of h1, . . . ,hN is given by

πNx =
N

∑
n=1

(x|hn)hn,

as the reader will have no difficulty checking.

3.3 The Riesz Representation Theorem

Frigyes Riesz, 1880–1956

Let H be a Hilbert space. As a first application
of Theorem 3.13 we prove the Riesz represen-
tation theorem, which sets up a conjugate-linear
identification of a Hilbert space H and its dual
H∗ = L (H,K).

By the Cauchy–Schwarz inequality, every h ∈
H defines a bounded functional ψh : H → K by
taking inner products:

ψh(x) := (x|h), x ∈ H.

Boundedness is evident from |ψh(x)|= |(x|h)|⩽
∥x∥∥h∥, which shows that ∥ψh∥ ⩽ ∥h∥. From
ψh(h) = (h|h) = ∥h∥2 we see that also ∥ψh∥ ⩾
∥h∥, so that ∥ψh∥= ∥h∥.

All bounded functionals φ : H→K arise in this way:

Theorem 3.15 (Riesz representation theorem). If φ : H → K is a bounded functional,
there exists a unique element h ∈ H such that φ = ψh, that is,

φ(x) = (x|h), x ∈ H.

Proof If φ(x) = 0 for all x ∈ H, we take h = 0. Henceforth we shall assume that
φ ̸= 0. Then (N(φ))⊥ ̸= {0} by Theorem 3.13, and we can choose a norm one vector
y0 ∈ (N(φ))⊥. Fix an arbitrary x ∈ H. With c := φ(x)/φ(y0) we have φ(x− cy0) =

φ(x)− cφ(y0) = 0. This means that x− cy0 ∈ N(φ), so x− cy0 ⊥ y0 and

φ(x) = cφ(y0) = φ(y0)(cy0|y0) = φ(y0)(x|y0) = (x|φ(y0)y0).

This proves that φ = ψh with h := φ(y0)y0.
To prove uniqueness, suppose that φ = ψh = ψh′ for h,h′ ∈ H. Then ∥h− h′∥2 =

(h−h′|h−h′) = ψh(h−h′)−ψh′(h−h′) = 0 and therefore h′ = h.
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Proposition 3.16. For every bounded sequence (xn)n⩾1 in H there exist a subsequence
(xnk)k⩾1 and an x ∈ H such that

lim
k→∞

(h|xnk) = (h|x), h ∈ H.

Proof Let H0 denote the closed linear span of (xn)n⩾1 and let H⊥0 be its orthogonal
complement, so that we have the orthogonal decomposition H = H0⊕H⊥0 .

Step 1 – We begin by proving that there exist a subsequence (xnk)k⩾1 and an x ∈ H0

such that

lim
k→∞

(h|xnk) = (h|x), h ∈ H0.

Let (y j) j⩾1 be a sequence whose linear span Y is dense in H0. The (xn)n⩾1 sequence
has a subsequence which, after relabelling, we may call (x(1)n )n⩾1, such that the limit
φ(y1) := limn→∞(y1|x(1)n ) exists. This sequence has a further subsequence which, af-
ter relabelling, we may call (x(2)n )n⩾1, such that the limit φ(y2) := limn→∞(y2|x(2)n ) ex-
ists. Note that we also have φ(y1) = limn→∞(y1|x(2)n ). Continuing inductively, for ev-
ery k ⩾ 1 we obtain a subsequence (x(k)n )n⩾1 with the property that the limit φ(y j) =

limn→∞(y j|x(k)n ) exists for j = 1, . . . ,k. The ‘diagonal subsequence’ (x(n)n )n⩾1 has the
property that the limit φ(y j) = limn→∞(y j|x(n)n ) exists for all j ⩾ 1. By linearity, the
limit φ(y) := limn→∞(y|x(n)n ) exists for all y∈Y. Clearly y 7→ φ(y) is linear and |φ(y)|⩽
M∥y∥, where M := supn⩾1 ∥xn∥. This shows that φ is bounded as a mapping from Y to
K. Since Y is dense in H0, Proposition 1.18 implies that φ has a unique bounded ex-
tension of the same norm to all of H0. By the Riesz representation theorem, applied to
the Hilbert space H0, there exists an x ∈ H0 such that φ(h) = (h|x) for all h ∈ H0. This
element has the required properties: for all h ∈ Y we have

lim
n→∞

(h|x(n)n ) = φ(h) = (h|x).

For general h ∈H0 the same identity holds by an approximation argument, using that Y
is dense in H0.

Step 2 – We now show that

lim
n→∞

(h|x(n)n ) = (h|x), h ∈ H,

where (x(n)n )n⩾1 and x ∈ H0 are as in Step 1. To this end let h ∈ H be arbitrary and
write h = h0 + h⊥0 along the orthogonal decomposition H = H0 ⊕H⊥0 . Step 1 gives
limk→∞(h0|x(n)n ) = (h0|x) for h0 ∈ H0. Trivially, limk→∞(h⊥0 |x

(n)
n ) = 0 = (h⊥0 |x) for all

h⊥0 ∈ H⊥0 . This concludes the proof.

The argument in Step 1 is known as a diagonal argument.
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3.4 Orthonormal Systems

We have the following simple criterion for the convergence of a series whose terms are
pairwise orthogonal.

Proposition 3.17. Let (xn)n⩾1 be a sequence in H with xm ⊥ xn for all m ̸= n. The
following assertions are equivalent:

(1) ∑n⩾1 xn converges in H;
(2) ∑n⩾1 ∥xn∥2 < ∞.

In this situation, ∥∥∥∑
n⩾1

xn

∥∥∥2
= ∑

n⩾1
∥xn∥2.

Proof Let us first note that if I is any finite set of positive integers, then∥∥∥∑
n∈I

xn

∥∥∥2
=
(

∑
m∈I

xm

∣∣∣∑
n∈I

xn

)
= ∑

m∈I
∑
n∈I

(xm|xn) = ∑
n∈I
∥xn∥2

since (xm|xn) = 0 if m ̸= n.

(1)⇒(2): If ∑n⩾1 xn converges in H, say to x, then x = limN→∞ ∑
N
n=1 xn in H and

therefore

∥x∥2 = lim
N→∞

∥∥∥ N

∑
n=1

xn

∥∥∥2
= lim

N→∞

N

∑
n=1
∥xn∥2.

It follows that ∑n⩾1 ∥xn∥2 = ∥x∥2. This also proves the final identity in the statement of
the proposition, since by definition ∑n⩾1 xn = x.

(2)⇒(1): Suppose, conversely, that ∑n⩾1 ∥xn∥2 < ∞. Then

lim
M,N→∞

N>M

∥∥∥ N

∑
n=1

xn−
M

∑
n=1

xn

∥∥∥2
= lim

M,N→∞

N>M

∥∥∥ N

∑
n=M+1

xn

∥∥∥2
= lim

M,N→∞

N>M

N

∑
n=M+1

∥xn∥2 = 0.

It follows that (∑N
n=1 xn)N⩾1 is Cauchy, and hence convergent.

As a special case of Proposition 3.17 we record:

Proposition 3.18 (Parseval). Let (hn)n⩾1 be an orthonormal sequence in H. For a
scalar sequence (cn)n⩾1, the following assertions are equivalent:

(1) ∑n⩾1 cnhn converges in H;
(2) ∑n⩾1 |cn|2 < ∞.

In this situation the Parseval identity holds:∥∥∥∑
n⩾1

cnhn

∥∥∥2
= ∑

n⩾1
|cn|2.
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Definition 3.19 (Orthonormal system, orthonormal basis). Let I be a nonempty set. A
family (hi)i∈I in H is called an orthonormal system if for all i, j ∈ I we have

(hi|h j) = δi j :=

{
1 if i = j

0 otherwise.

In the case of a countable set I, an orthonormal system (hi)i∈I is called an orthonormal
basis if every x ∈ H can be represented as a convergent series

x = ∑
i∈I

cihi (3.7)

for suitable coefficients ci ∈K.

The convergence of the sum (3.7) is understood in the following sense. We pick
an enumeration of the index set, say I = (in)n⩾1, and ask for convergence of the sum
∑n⩾1 cinhin . By Parseval’s theorem, this sum converges if and only if ∑n⩾1 |cin |2 < ∞.
Thus, whether or not the sum converges is independent of the enumeration chosen. To
see that the sum x := ∑n⩾1 cinhin is independent of the enumeration, let ( jm)m⩾1 be
another enumeration of I and set y := ∑m⩾1 c jmh jm . Then for any i ∈ I, say i = in = jm,

(x|hi) = (x|hin) = cin = ci = c jm = (y|h jm) = (y|hi).

Since both x and y belong to the closed linear span of the family (hi)i∈I , this implies
x = y. This argument also shows that the coefficients ci in (3.7) are uniquely determined
by x and given by ci = (x|hi).

Example 3.20. The standard unit vectors (0, . . . ,0,1,0, . . .), n ⩾ 1 (with the 1 on the
nth place), form an orthonormal basis for ℓ2.

In Section 3.5 we prove that the trigonometric system is an orthonormal basis for
L2(0,1) and the (suitably normalised) Hermite polynomials form an orthonormal basis
for L2(R,γ), where γ is the standard Gaussian measure on R.

Theorem 3.21 (Orthonormal bases). Let (hn)n⩾1 be an orthonormal sequence in H.
The following assertions are equivalent:

(1) (hn)n⩾1 is a basis;
(2) (hn)n⩾1 has dense linear span;
(3) if x ∈ H satisfies (x|hn) = 0 for all n ⩾ 1, then x = 0.

Proof The equivalence (2)⇔(3) is immediate from the fact that a subspace is dense if
and only if its orthogonal complement is trivial.

(1)⇒(2): This implication is trivial, because by assumption every x ∈ H can be ap-
proximated by the partial sums of a series representation of the form ∑n⩾1 cnhn, and
these partial sums belong to the linear span of (hn)n⩾1.
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3.4 Orthonormal Systems 101

(2)⇒(1): Suppose the linear span of (hn)n⩾1 is dense in H and fix an arbitrary x ∈H.

We must prove that x admits a representation as a convergent sum ∑n⩾1 cnhn.
For each N ⩾ 1 the mapping

PNx :=
N

∑
n=1

(x|hn)hn

is a projection that maps H onto the span HN of (hn)
N
n=1. If x⊥ HN , then (x|hn) = 0 for

n = 1, . . . ,N and therefore PNx = 0. It follows that the projection PN is orthogonal. This
implies that PN is contractive. Therefore, with cn := (x|hn),

N

∑
n=1
|cn|2 = ∥PNx∥2 ⩽ ∥x∥2.

This being true for all N ⩾ 1, it follows that ∑n⩾1 |cn|2 < ∞ and therefore the sum y :=
∑n⩾1 cnhn is convergent in H by Proposition 3.18. For all n ⩾ 1 we have (y|hn) = cn =

(x|hn), and since the span of (hn)n⩾1 is dense in H this implies x = y = ∑n⩾1 cnhn.

When (xn)n⩾1 is a (finite or infinite) linearly independent sequence in H, we may
construct an orthonormal sequence (hn)n⩾1 with the property that

span{x1, . . . ,xk}= span{h1, . . . ,hk}, k ⩾ 1,

as follows. Set h1 := x1/∥x1∥. Suppose the orthonormal vectors h1, . . . ,hk have been
chosen subject to the condition that H j := span{x1, . . . ,x j} equals span{h1, . . . ,h j} for
all j = 1, . . . ,k. By linear independence, the subspace Hk+1 := span{x1, . . . ,xk+1} has
dimension k+ 1. The orthogonal complement in Hk+1 of the k-dimensional subspace
Hk has dimension 1, and therefore we may select a norm one vector hk+1 ∈ Hk+1 or-
thogonal to Hk. Then Hk+1 = span{h1, . . . ,hk+1} as desired. This procedure is called
Gram–Schmidt orthogonalisation.

Theorem 3.22 (Orthonormal bases and separability). A Hilbert space has an orthonor-
mal basis if and only if it is separable.

Proof ‘If’: By assumption we can find a (finite or infinite) sequence (xn)n⩾1 with
dense span in H. By passing to a subsequence, we may assume that the elements of the
sequence are linearly independent. By Gram–Schmidt orthogonalisation we construct
an orthonormal sequence (hn)n⩾1 with the property that for all k ⩾ 1 the linear span of
{h1, . . . ,hk} equals the linear span of {x1, . . . ,xk}. Since the linear span of (xn)n⩾1 is
dense in H, the sequence (hn)n⩾1 is an orthonormal basis of H by Theorem 3.21.

‘Only if’: If (hn)n⩾1 is an orthonormal basis of H, its linear span is dense.

Corollary 3.23. Any two infinite-dimensional separable Hilbert spaces are isometri-
cally isomorphic.
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102 Hilbert Spaces

Proof Suppose that the Hilbert spaces H1 and H2 are separable and pick orthonormal
bases (h(1)n )n⩾1 and (h(2)n )n⩾1. The operator U sending h(1)n to h(2)n for each n ⩾ 1 is
isometric by the Parseval identity and has dense range. In particular, U is injective. By
Proposition 1.21, U has also closed range and therefore U is surjective.

Definition 3.24 (Maximal orthonormal systems). A maximal orthonormal system is a
family (hi)i∈I , where I is a nonempty set and:

(i) (hi|h j) = δi j for all i, j ∈ I;
(ii) if h⊥ hi for all i ∈ I, then h = 0.

In a separable Hilbert space, every maximal orthonormal system is countable and can
therefore be relabelled into an orthonormal basis.

Theorem 3.25 (Maximal orthonormal systems). Every nonzero Hilbert space has a
maximal orthonormal system.

Proof Partially order the set of all orthonormal systems in the nonzero Hilbert space
H by set inclusion. By Zorn’s lemma (Theorem A.3) this set has a maximal element,
say (hi)i∈I , where I is some index set. It is clear that condition (i) in the above definition
holds. If there were a nonzero h∈H perpendicular to each hi, after normalising h to unit
length we obtain a new orthonormal system properly containing (hi)i∈I , contradicting
the maximality of (hi)i∈I . Therefore (ii) also holds.

3.5 Examples

In this final section we present two nontrivial examples of orthonormal bases.

3.5.a The Trigonometric System

In this example T denotes the unit circle in the complex plane, parametrised by the
interval [−π,π] and equipped with the normalised Lebesgue measure dθ/2π . We shall
prove that the functions

en(θ) := exp(inθ), θ ∈ [−π,π], n ∈ Z,

form an orthonormal basis for L2(T).
That (en)n∈Z is an orthonormal sequence in L2(T) is evident from

(e j|ek) =
1

2π

∫
π

−π

exp(i jθ)exp(ikθ)dθ =
1

2π

∫
π

−π

exp(i( j− k)θ)dθ = δ jk.

To prove that (en)n∈Z is an orthonormal basis, by Theorem 3.21 it remains to be proved
that the trigonometric polynomials, i.e., the functions of the form ∑

N
n=−N cnen, are dense
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in L2(T). This can be deduced from the Stone–Weierstrass theorem (see Problem 3.13),
but we prefer the following argument from Fourier Analysis which gives explicit ap-
proximants and some error bounds.

Definition 3.26 (Fourier coefficients). The Fourier coefficients of a function f ∈ L1(T)
are defined as

f̂ (n) := ( f |en) =
1

2π

∫
π

−π

f (θ)exp(−inθ)dθ , n ∈ Z.

Theorem 3.27. For all f ∈C(T) we have

lim
N→∞

∥∥∥ f − 1
N

N−1

∑
n=0

n

∑
k=−n

f̂ (k)ek

∥∥∥
∞

= 0.

Proof Fix f ∈C(T) with ∥ f∥∞ = 1. We have

f̂ (n)exp(inθ) =
1

2π

∫
π

−π

exp(in(θ −σ)) f (σ)dσ =
1

2π

∫
π

−π

exp(inσ) f (θ −σ)dσ

and therefore

fN(θ) :=
1
N

N−1

∑
n=0

n

∑
k=−n

f̂ (k)exp(ikθ) =
1

2π

∫
π

−π

KN(σ) f (θ −σ)dσ ,

where the Fejér kernel KN is defined by

KN(θ) :=
1
N

N−1

∑
n=0

n

∑
k=−n

exp(ikθ) =
1
N

sin2( 1
2 Nθ)

sin2( 1
2 θ)

; (3.8)

the right-hand side identity is readily deduced from the geometric series. In view of the
fact that 1

2π

∫
π

−π
KN(θ)dθ = 1, we have

| fN(θ)− f (θ)|=
∣∣∣ 1
2π

∫
π

−π

KN(s)( f (θ −σ)− f (θ))dσ

∣∣∣
⩽

1
2π

∫
π

−π

KN(s)| f (θ −σ)− f (θ)|dσ .

(3.9)

Fix ε > 0 and choose 0 < δ < π so small that ∥ f (·−σ)− f∥∞ < ε for all |σ |< δ ; this
is possible since f is uniformly continuous. Then

1
2π

∫
δ

−δ

KN(σ)| f (θ −σ)− f (θ)|dσ ⩽
ε

2π

∫
π

−π

KN(σ)dσ = ε (3.10)

and, by (3.8) and the normalisation ∥ f∥∞ = 1,

1
2π

∫
∁(−δ ,δ )

KN(σ)| f (θ −σ)− f (θ)|dσ ⩽
2
N

1
sin2( 1

2 δ )
. (3.11)
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Combining (3.9) with (3.10) and (3.11) we obtain

∥ fN− f∥∞ ⩽ ε +
1
N

2
sin2( 1

2 δ )
,

so limsupN→∞ ∥ fN− f∥∞ ⩽ ε . Since ε > 0 was arbitrary, this completes the proof.

This theorem implies that the trigonometric polynomials are dense in C(T). Since
this space is dense in L2(T) by Proposition 2.29, it follows that the trigonometric poly-
nomials are dense in L2(T). Therefore, Theorem 3.21 implies:

Theorem 3.28. The trigonometric polynomials form an orthonormal basis in L2(T).

The theory of orthonormal bases can now be applied. It entails that every function f ∈
L2(T) has a unique series representation of the form f = ∑n∈Z cnen, with convergence
in L2(T) and coefficients given by cn = ( f |en) = f̂ (n). The resulting expansion

f = ∑
n∈Z

f̂ (n)en

is called the Fourier series of f . By Parseval’s identity we have

1
2π

∫
π

−π

| f (θ)|2 dθ = ∑
n∈Z
| f̂ (n)|2,

and the mapping f 7→ ( f̂ (n))n∈Z is an isometry from L2(T) onto ℓ2(Z).

By translation and scaling, the functions

ẽn(θ) := exp(2πinθ), n ∈ Z,

form an orthonormal basis for L2(0,1). This can be used to prove:

Corollary 3.29 (Euler).
∞

∑
n=1

1
n2 =

π2

6
.

Proof For the function f (θ) = θ in L2(0,1) we have ( f |ẽ0) =
1
2 and ( f |ẽn) =− 1

2πin ,
so by Parseval’s identity

1
3
=
∫ 1

0
θ

2 dθ = ∥ f∥2 = ∑
n∈Z
|( f |ẽn)|2 =

(1
2
)2

+2
∞

∑
n=1

( 1
2πn

)2
=

1
4
+

1
2π2

∞

∑
n=1

1
n2 ,

and the result follows.

Another proof will be given in Section 14.5.f.

The system of functions

1,
√

2sin(2πnθ),
√

2cos(2πnθ) : n = 1,2, . . . (3.12)
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θ−2 −1 0 1 2

Figure 3.1 The function f , extended from (0,1) to (−2,2) by odd reflections (thick graph),
and the functions cos(πnθ/2) for n = 1,2. Notice that

∫ 2
−2 f (θ)cos(πnt/2)dθ = 0 for all

n ⩾ 1, because f (θ) is odd about 0 and cos(πnθ/2) is even about 0.

θ−2 −1 0 1 2

Figure 3.2 Idem, but now with the functions sin(πnθ/2) for n = 1,2. This time we have∫ 2
−2 f (θ)sin(πnθ/2)dθ = 0 if n ⩾ 1 is odd, because f is odd about ±1 and sin(πnθ/2) is

even about ±1 for odd n.

is orthonormal in L2(0,1) and the trigonometric functions exp(2πinθ), n ∈ Z, are con-
tained in their linear span. Hence this system forms an orthonormal basis by Theorem
3.21. Interestingly, from this we can deduce:

Theorem 3.30. Each one of the two systems
√

2sin(πnθ) : n = 1,2, . . . (3.13)

and

1,
√

2cos(πnθ) : n = 1,2, . . . (3.14)

forms an orthonormal basis for L2(0,1).
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These bases arise naturally as the eigenvector bases of the Dirichlet and Neumann
Laplacians in L2(0,1), respectively (see Example 12.23).

Proof Given a function f ∈ L2(0,1), we extend it to an odd function in L2(−1,1). This
function is extended to a function in L2(−2,2) whose restriction to (0,2) is odd about
the point 1 and whose restriction to (−2,0) is odd about the point −1. If we expand the
resulting function against the orthonormal basis for L2(−2,2) obtained by scaling the
system (3.12), that is,

1
2

1,
1√
2

sin(πnθ/2),
1√
2

cos(πnθ/2) : n = 1,2, . . . ,

then, due to the symmetries introduced by the odd reflections, only the coefficients
corresponding to the system (3.13) with even indices can contribute, but not the ones
with odd indices; nor do those of (3.14) contribute; see Figures 3.1 and 3.2. If we do
the same with even extensions, only the coefficients corresponding to the system (3.14)
with even indices can contribute. Restricting the resulting expansions in L2(−2,2) to
L2(0,1), the desired expansions of f ∈ L2(0,1) in terms of the systems (3.13) and (3.14)
are obtained.

3.5.b The Hermite Polynomials

In this section we prove that the (suitably normalised) Hermite polynomials form an
orthonormal basis for L2(R,γ), where γ is the standard Gaussian measure on R. This is
the Borel probability measure on R which is given, for Borel sets B⊆ R, by

γ(B) =
1√
2π

∫
B

exp
(
−1

2
x2
)

dx.

The Hermite polynomials will resurface in Chapters 9, 13, and 15 in connection with
the spectral theorem, the Ornstein–Uhlenbeck semigroup, and second quantisation, re-
spectively.

Definition 3.31. For n ∈ N the Hermite polynomials Hn : R→ R are defined by the
identity

H(t,x) := exp
(

tx− 1
2

t2
)
=

∞

∑
n=0

tn

n!
Hn(x), t,x ∈ R. (3.15)

The first five Hermite polynomials are given by

H0(x) = 1,

H1(x) = x,

H2(x) = x2−1,

H3(x) = x3−3x,
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H4(x) = x4−6x2 +3.

By induction one shows that

Hn(x) =
⌊n/2⌋

∑
k=0

(−1)k

2k
n!

k!(n−2k)!
xn−2k, n ∈ N.

Proposition 3.32. The Hermite polynomials have the following properties:

(i) Hn(−x) = (−1)nHn(x);
(ii) Hn+2(x) = xHn+1(x)− (n+1)Hn(x);

(iii) H ′n+1(x) = (n+1)Hn(x);
(iv) Hn is a monic polynomial of order n.

Proof Property (i) follows from the identity H(t,−x) = H(−t,x), (ii) from the identity
∂H
∂ t (t,x) = (x− t)H(t,x), and (iii) from ∂H

∂x (t,x) = tH(t,x). Assertion (iv) follows from
(ii) and the fact that H0(x) = 1.

Theorem 3.33. The sequence ( 1√
n!

Hn)n∈N forms an orthonormal basis for L2(R,γ).

Proof For all s, t ∈ R we have∫
∞

−∞

H(s,x)H(t,x)dγ(x) =
1√
2π

∫
∞

−∞

exp
(
−1

2
(s2 + t2)+(s+ t)x− 1

2
x2
)

dx

=
1√
2π

exp(st)
∫

∞

−∞

exp
(
−1

2
(s+ t− x)2

)
dx

=
1√
2π

exp(st)
∫

∞

−∞

exp
(
−1

2
y2
)

dy = exp(st).

(3.16)

Taking derivatives ∂ m+n

∂ sm∂ tn at s = t = 0 on both sides of the identity in (3.16) gives∫
∞

−∞

Hm(x)Hn(x)dγ(x) = m!δmn.

Since m!δmn =
√

m!
√

n!δmn, this shows that the sequence ( 1√
n!

Hn)n∈N is orthonormal

in L2(R,γ).
It remains to show that the span of the Hermite functions is dense in L2(R,γ). A

quick proof is obtained by making use of the injectivity of the Fourier transform (which
is an immediate consequence of Theorem 5.20). If f ∈ L2(R,γ) is orthogonal to every
Hermite polynomial, then it is orthogonal to every polynomial. From this it follows that
for all z ∈ C,

F(z) :=
∫

∞

−∞

f (x)ezx− 1
2 x2

dx =
∞

∑
k=0

∞

∑
m=0

zk

k!
(−1)m

2mm!

∫
∞

−∞

f (x)xkx2m dx = 0.

In particular, we have F(−it) = 0. From this we infer that the Fourier transform of
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x 7→ f (x)e−
1
2 x2

vanishes identically. By the injectivity of the Fourier transform, this
implies that f (x)e−

1
2 x2

= 0 for almost all x ∈ R, and therefore f (x) = 0 for almost all
x ∈ R.

The identity Hn+2(x) = xHn+1(x)− (n+ 1)Hn(x) of Proposition 3.32 is an example
of a so-called three point recurrence relation. As we will see in Section 9.6, orthogonal
polynomials in L2(R,µ), with µ a finite Borel measure on R, always satisfy a three point
recurrence relation, and conversely if a sequence of polynomials on R satisfies such a
relation, then under a mild additional assumption these polynomials are orthogonal on
L2(R,µ) for a suitable finite Borel measure µ on R.

Theorem 3.33 admits an extension to higher dimensions; see Section 15.6.

3.5.c Tensor Bases

Let µ j be a finite Borel measure on a compact metric space K j for each j = 1, . . . ,k,
and let K = K1× ·· · ×Kk and µ = µ1× ·· · × µk be their products. If ( f ( j)

n )n⩾1 is an
orthonormal basis for L2(K j,µ j) for each j = 1, . . . ,k, then the functions

fn(x) := f (1)n1 (x1) · · · f (k)nk (xk), n ∈ {1,2, . . .}k,

form an orthonormal basis for L2(K,µ). Orthonormality being clear, in view of The-
orem 3.21 it remains to check that the span of the functions fn is dense. This follows
from the fact that C(K) is dense in L2(K,µ) by the observation in Remark 2.31 and
the fact that functions of the form g(x) := g(1)(x1) · · ·g(k)(xk) with g( j) ∈C(K j) for all
j = 1, . . . ,k are dense in C(K) by Example 2.10. Since each of the functions g( j) can
be approximated in L2(K j,µ j) by linear combinations of the functions f ( j)

n , g can be
approximated in L2(K,µ) by linear combinations of the functions fn.

This is a special case of a more general construction involving tensor products of
Hilbert spaces (see Chapters 14 and 15, in particular (14.2)): if (h( j)

n )n⩾1 is an orthonor-
mal basis for the Hilbert space H j, j = 1, . . . ,k, then the vectors

hn(x) := h(1)n1 ⊗·· ·⊗h(k)nk , n ∈ {1,2, . . .}k,

form an orthonormal basis for the Hilbert space tensor product H = H1⊗·· ·⊗Hk.

Problems

3.1 Show that equality |(x|y)| = ∥x∥∥y∥ for the Cauchy–Schwarz inequality holds if
and only if x and y are collinear (that is, both belong to some one-dimensional
subspace).
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3.2 Let (xn)n⩾1 be a sequence in a Hilbert space H. Suppose that there exists x ∈ H
such that:

(i) (xn|y)→ (x|y) for all y ∈ H;
(ii) ∥xn∥→ ∥x∥.

Show that xn→ x in H.
3.3 Provide the missing details in the proof of Proposition 3.9.
3.4 A Banach space X is called strictly convex if for all norm one vectors x0,x1 ∈ X

with x0 ̸= x1 and 0 < λ < 1 we have ∥(1− λ )x0 + λx1∥ < 1. Prove that every
Hilbert space is strictly convex.

3.5 Give an example of a nonempty compact convex set C in a two-dimensional Ba-
nach space X along with a vector x ∈ X such that the set{

c ∈C : ∥x− c∥= min
y∈C
∥x− y∥

}
consists of more than one element.

3.6 Let

C :=
{

f ∈C[0,1] : f is real-valued, f (0) = 0,
∫ 1

0
f (t)dt = 0

}
.

(a) Check that C is a closed and convex subset of C[0,1].

Let g ∈C[0,1] be the function defined by g(t) := t.

(b) Show that for any f ∈C we have ∥ f −g∥> 1
2 .

(c) Show that inf f∈C ∥ f −g∥= 1
2 .

This shows that C contains no point minimising the distance d(g,C).
3.7 In this problem we determine some orthogonal complements.

(a) Let

Y :=
{

f ∈ L2(0,1) : f (t) = 0 for almost all t ∈
(
0, 1

2

)}
.

Show that Y is a closed subspace of L2(0,1) and find Y⊥.
(b) Let

Y :=
{

f ∈ L2(0,1) :
∫ 1

0
f (t)dt = 0

}
.

Show that Y is a closed subspace of L2(0,1) and find Y⊥.

3.8 For any two subspaces X and Y of a Hilbert space H, show that

(X +Y )⊥ = X⊥∩Y⊥.
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3.9 Let (hn)n⩾1 be a finite or infinite orthonormal sequence in a Hilbert space H.
Prove that for all x ∈ H we have Bessel’s inequality

∑
n⩾1
|(x|hn)|2 ⩽ ∥x∥2.

3.10 Let (e j) j⩾1 be the sequence of standard unit vectors in ℓ2, and let F = span{e2n−1 :
n ⩾ 1} and let G = span{e2n−1 +

1
n e2n : n ⩾ 1}.

(a) Give explicit expressions for the orthogonal projections PF and PG.
(b) Show that F ∩G = {0}.
(c) Show that F +G is dense, but not closed in ℓ2.

3.11 Show that if H is a separable Hilbert supporting a finite Borel measure µ that is
invariant under every isometric isomorphism of H and satisfies 0 < µ(B)< ∞ for
some open ball B in H \{0}, then H is finite-dimensional.
Hint: Modify the solution to Problem 1.38.

3.12 Prove the identity (3.8).
3.13 Use the Stone–Weierstrass theorem to prove that the trigonometric polynomials

are dense in L2(T).
3.14 Prove the following binomial identity for the Hermite polynomials: For all n ∈ N

and x,y ∈ R,

Hn(x+ y) =
n

∑
k=0

(
n
k

)
xn−kHk(y).

3.15 Prove the following formula for the Hermite polynomials: For all n∈N and x∈R,

Hn(x) =
1√
2π

∫
∞

−∞

(x+ iy)n exp
(
−1

2
y2
)

dy.

3.16 Define the polynomials Ln, n ∈ N, by the generating function expansion

exp(tx/(1+ t))
1+ t

= ∑
n∈N

tn

n!
Ln(x).

These are the Laguerre polynomials normalised so as to become monic.

(a) Compute the polynomials Ln for n = 0,1,2,3.
(b) Show that the polynomials Ln are monic, have degree n, and satisfy the recur-

rence relation

Ln+2(x) = (x−2n+3)Ln+1(x)− (n+1)2Ln(x), n ∈ N.

(c) Prove that the sequence ( 1
n! Ln)n⩾0 is an orthonormal basis for L2(R+,e−x dx).

3.17 The Hardy space H2(D) is the vector space of all holomorphic functions on D of
the form ∑n∈N cnzn with ∑n∈N |cn|2 < ∞.
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(a) Prove that H2(D) is a Hilbert space with respect to the norm

∥ f∥H2(D) :=
(

∑
n∈N
|cn|2

)1/2
.

Let the functions en ∈ L2(T) be defined by en(θ) := exp(inθ), n∈N, θ ∈ [−π,π].

(b) Show that for all f =∑n∈N cnzn ∈H2(D) the sum f |T :=∑n∈N cnen converges
in L2(T) and that the mapping

f 7→ f |T

sets up an isometric isomorphism from H2(D) onto the closed subspace of
L2(T) of all functions whose negative Fourier coefficients vanish.

(c) For holomorphic functions f : D→ C with power series expansion f (z) =
∑n∈N cnzn and 0 < r < 1 define

fr := ∑
n∈N

cnrnen.

Show that for f ∈H2(D) and 0 < r < 1 we have fr ∈ L2(T) and ∥ fr∥L2(T) ⩽
∥ f |T∥L2(T), and show that

lim
r↑1

fr = f |T in L2(T).

(d) Show that a holomorphic function f : D→ C belongs to H2(D) if and only
if

sup
0<r<1

∥ fr∥L2(T) < ∞,

and that in this case we have

∥ f∥H2(D) = ∥ f |T∥L2(T) = sup
0<r<1

∥ fr∥L2(T).

(e) Show that all f ∈ H2(D), 0 < r < 1, and θ ∈ [−π,π] we have

f (reiθ ) =
1

2π

∫
π

−π

f |T(η)Pr(θ −η)dη ,

where the Poisson kernel is given by

Pr(θ) =
1− r2

1−2r cos(θ)+ r2 .

Hint: Begin by showing that Pr(θ) = ∑n∈Z r|n|einθ .

3.18 We continue our study of the space H2(D).
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(a) Show that for all z0 ∈ D the function

kz0(z) :=
1

1− zz0

belongs to H2(D) and

∥kz0∥H2(D) =
1

(1−|z0|2)1/2 .

(b) Show that for all f ∈ H2(D) and z0 ∈ D we have

f (z0) = ( f |kz0).

(c) Use parts (a) and (b) to show that if fn→ f in H2(D), then fn→ f uniformly
on every compact subset of D.

3.19 The disc algebra A(D) is the closed subspace of the Banach space C(D) consisting
of those functions that are holomorphic on D (see Problem 2.38).

(a) Show that A(D) is dense in H2(D) (see Problem 3.17 for its definition).
(b) Show that if f ∈C(D), then we have f |D ∈ H2(D) if and only if f ∈ A(D).
(c) Show that the restriction mapping ρ : A(D)→C(T) given by

f 7→ f |T

extends to an isometry from H2(D) onto L2(T). How does it relate to Prob-
lem 3.17?

3.20 Let A2(D) denote the subspace of L2(D) consisting of all square integrable holo-
morphic functions on D. The goal of this problem is to show that A2(D) is a
Hilbert space with orthonormal basis (en)n∈N given by

en(z) :=
(n+1

π

)1/2
zn, z ∈ D, n ∈ N.

(a) Show that (en)n∈N is an orthonormal system in L2(D).
Hint: Perform a computation in polar coordinates.

(b) Show that the closed linear span Y of (en)n∈N in L2(D) is contained in A2(D).
Hint: On the one hand, every f ∈ Y can be written as a convergent sum
f = ∑n∈N cnen with convergence in L2(D) (explain why). On the other hand,
for each z∈D the sum g(z) :=∑n∈N cn(

n+1
π

)1/2zn converges absolutely. Now
use the fact that L2-convergence implies pointwise almost everywhere con-
vergence of a subsequence to show that f (z) = g(z) for almost all z ∈ D.

(c) Show that if a holomorphic function f ∈ L2(D) satisfies ( f |en) = 0 for all
n ∈ N, then f = 0.
Hint: Consider the Taylor expansion of f around 0.
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(d) Combine the above to conclude that A2(D) is a Hilbert space with orthonor-
mal basis (en)n∈N.

(e) How are the spaces A2(D) and H2(D) related?

3.21 On C we consider the measure

dγC(z) =
1
π

e−|z|
2

dz,

where dz is the Lebesgue measure on C.

(a) Show that γC is a probability measure satisfying
∫
C |z|2 dγC(z) = 1.

Let A2(C) denote the complex vector space of all entire functions f : C→ C that
are square integrable with respect to γC,∫

C
| f (z)|2 dγC(z)< ∞.

(b) Show that A2(C) is a Hilbert space with respect to the inner product

( f |g) =
∫
C

f (z)g(z)dγC(z).

(c) Show that the functions

en(z) :=
zn
√

n!
, n ∈ N,

form an orthonormal basis for A2(C).
3.22 In this problem we continue our study of the Hilbert space A2(C).

(a) Using the mean value theorem, show that for all w ∈ C the mapping f 7→
f (w) is continuous from A2(C) to C. Deduce that for all w ∈ C there exists
a unique function kw ∈ A2(C) such that

f (w) =
∫
C

kw(z) f (z)dγC(z), f ∈ A2(C), w ∈ C.

(b) Show that this function is given by

kw(z) = exp(zw), w,z ∈ C.

(c) Show that the orthogonal projection P in L2(C,γC) onto A2(C) is given by

P f (w) =
∫
C

kw(z) f (z)dγC(z), f ∈ L2(C,γC), w ∈ C.

3.23 This problem discusses the construction and elementary properties of conditional
expectations. Let (Ω,F,µ) be a probability space and let G be a sub-σ -algebra
of F. Let 1 ⩽ p ⩽ ∞ and denote by Lp(Ω,G ) the subspace of Lp(Ω) consisting of
all f ∈ Lp(Ω) having a G -measurable pointwise defined representative.
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(a) Show that Lp(Ω,G ) is a closed subspace of Lp(Ω).
(b) Let PG denote the orthogonal projection in L2(Ω) onto L2(Ω,G ) and fix a

function f ∈ L2(Ω). Prove that PG f is the unique element of L2(Ω,G ) such
that the following identity holds for all f ∈ L2(Ω) and G ∈ G :∫

G
f dµ =

∫
G

PG f dµ.

Hint: f −PG f ⊥ 1G in L2(Ω).
(c) Prove that if f ∈ L2(Ω) satisfies f ⩾ 0 µ-almost everywhere, then PG f ⩾ 0

µ-almost everywhere.
(d) Prove that if f ∈ L2(Ω) satisfies 0 ⩽ f ⩽ 1 µ-almost everywhere, then 0 ⩽

PG f ⩽ 1 µ-almost everywhere.
(e) Prove that |PG f |⩽ PG | f | µ-almost everywhere.
(f) Prove that PG restricts to a contractive projection in L∞(Ω) onto L∞(Ω;G )

and extends to a contractive projection in L1(Ω) onto L1(Ω;G ), and that the
properties described in parts (b)–(e) extend to functions in these spaces. Here,
a projection is understood to be a bounded operator P satisfying P2 = P.

(g) Discuss the relation of this problem with Problem 2.17.
(h) Give an explicit expression for PG in each of the following two cases:

(i) Ω = (0,1), F the Borel σ -algebra, µ the Lebesgue measure, and G =

{∅,Ω};
(ii) Ω = (− 1

2 ,
1
2 ), F the Borel σ -algebra, µ the Lebesgue measure, and

G = {B ∈F : B =−B}.
(i) Use the Radon–Nikodým theorem (Theorem 2.46) to give an alternative

proof of the existence of the projection PG in L1(Ω) of part (f).

3.24 In this problem we outline alternative proof of the existence part of the Radon–
Nikodým theorem (Theorem 2.46) based on Hilbert space methods. Let (Ω,F,µ)

be a σ -finite measure space and let the K-valued measure ν on (Ω,F ) be abso-
lutely continuous with respect to µ .

We first assume that ν is a finite nonnegative measure.

(a) Show that there exists a measurable function w ∈ L1(Ω,µ) such that w(ω)>

0 for µ-almost all ω ∈Ω.
(b) Show that the mapping f 7→

∫
Ω

f dν is bounded on L2(Ω,λ ), where λ is the
finite measure on (Ω,F ) given by λ (F) := ν(F)+

∫
F wdµ . Conclude that

there exists a unique h ∈ L2(Ω,λ ) such that∫
Ω

f dν =
∫

Ω

f hdλ , f ∈ L2(Ω,λ ).

(c) Show that 0 ⩽ h ⩽ 1 for λ -almost all ω ∈Ω.
Hint: Apply the identity in part (b) to f = 1F with F ∈F.
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(d) Show that µ(B) = 0, where B = {ω ∈Ω : h(ω) = 1}.
Hint: Apply the identity in part (b) to f = 1B.

(e) Show that there exists a nonnegative function g ∈ L1(Ω,µ) such that

ν(F) =
∫

F
gdµ, F ∈F.

Hint: Apply the identity in part (b) to the function f = 1+h+ · · ·+hn and use
parts (c), (d), and the monotone convergence theorem to show that the limit
g := limn→∞(1+h+ · · ·+hn)hw exists µ-almost everywhere and belongs to
L1(Ω,µ).

This proves the Radon–Nikodým theorem for finite nonnegative measures ν .

(f) Deduce from this the general case.

3.25 Using Zorn’s lemma, we will construct two nonequivalent Hilbertian norms on ℓ2.
An indexed set (vi)i∈I (where I is some index set) of a vector space V is called

an algebraic basis if every v ∈V admits a unique (up to permutation of the terms)
expansion of the form v=∑

n
k=1 ckvik with n⩾ 1 an integer and c1, . . . ,cn scalars in

K. Thus, every v is expressed as a finite linear combination of the vi. The unique-
ness assumption implies that the vi are linearly independent. By a straightforward
application of Zorn’s lemma (partially order the set of all linearly independent
subsets of V by set inclusion) every vector space has an algebraic basis.

Select an algebraic basis (hi)i∈I in ℓ2 which contains the standard unit vectors.
Now remove one of the vectors that have been added to the standard unit basis
vectors, say hi0 , and denote the resulting codimension one subspace by X .

(a) Prove that X is dense in ℓ2.

Define a linear mapping φ : ℓ2→K by φ ≡ 0 on X and φ(hi0) := 1.

(b) Prove that φ is not continuous.

On X we define a new norm ||| · ||| as follows. Let b : I \ {i0} → I be a bijection
(which exists since both sets are infinite; prove this). For j1, . . . , jn ∈ I \{i0} and
scalars c1, . . . ,cn ∈K define∣∣∣∣∣∣∣∣∣ n

∑
k=1

ckh jk

∣∣∣∣∣∣∣∣∣ :=
∥∥∥ n

∑
k=1

ckhb( jk)

∥∥∥.
This sets up an isometry B : X ≃ ℓ2. We extend this norm to ℓ2 by defining

|||h+ chi0 |||
2 := |||h|||2 + |c|2, h ∈ X , c ∈K.

This defines a norm on ℓ2.

(c) Show that ℓ2 is a Hilbert space with respect to the norm ||| · ||| and that X is a
closed subspace.
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(d) Prove that X is not closed in ℓ2 with respect to the norm ∥ · ∥ (thus there is
no analogue of Corollary 1.36 for subspaces of finite codimension). Deduce
that ∥ · ∥ and ||| · ||| are not equivalent.

(e) Does this result contradict the fact that (ℓ2,∥ · ∥) and (ℓ2, ||| · |||) are isometri-
cally isomorphic (both being separable Hilbert spaces)?

(f) Refine the construction so as to answer the question of Problem 1.11 to the
negative.

3.26 This problem provides an example of a linear operator on ℓ2 which fails to be
bounded. We return to Problem 3.25 and use the notation introduced there. Define
the mapping

π : ℓ2→ ℓ2, ∑
i∈F

cixi 7→ ∑
i∈F\{i0}

cixi for finite sets F ⊆ I.

(a) Prove that π is linear, satisfies π2 = π , and has range X .
(b) Prove that π fails to be bounded.

3.27 This problem assumes familiarity with the language of probability theory. Let
(Bt)t∈[0,1] be a standard Brownian motion on a probability space (Ω,F,P). For
each t ∈ [0,1], let Ft denote the σ -algebra generated by the family (Bs)s∈[0,t].

(a) Show that if 0 ⩽ s < t ⩽ 1, the increment Bt −Bs is independent of Fs.

Let H2
0 ((0,1)×Ω) denote the subspace of L2((0,1)×Ω) consisting of all stochas-

tic processes ξ = (ξt)t∈[0,1] of the form

ξt(ω) =
N−1

∑
n=0

an(ω)1(tn,tn+1](t), t ∈ [0,1], ω ∈Ω,

where 0= t0 < t1 < · · ·< tN = 1 and each an ∈ L2(Ω) is Ftn -measurable. For such
processes we define ∫ 1

0
ξt dBt :=

N−1

∑
n=0

an(Btn+1 −Btn).

(b) Show that for all ξ ∈ H2
0 ((0,1)×Ω) we have

∫ 1
0 ξt dBt ∈ L2(Ω) and∥∥∥∫ 1

0
ξt dBt

∥∥∥2

L2(Ω)
= ∥ξ∥2

L2((0,1)×Ω).

Let H2((0,1)×Ω) denote the closure of H2
0 ((0,1)×Ω) in L2((0,1)×Ω).

(c) Deduce that the mapping ξ 7→
∫ 1

0 ξt dBt admits a unique extension to an isom-
etry from H2((0,1)×Ω) into L2(Ω), the so-called Itô isometry.

The random variable
∫ 1

0 ξt dBt is called the Itô stochastic integral of ξ with respect
to the Brownian motion (Bt)t∈[0,1].
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4
Duality

The present chapter is devoted to the study of duality of Banach spaces. We begin by
characterising the duals of various classical Banach spaces, and then proceed to proving
the Hahn–Banach theorems. These theorems provide the existence of functionals with
certain desirable properties. The remainder of the chapter is concerned with applications
of these theorems.

4.1 Duals of the Classical Banach Spaces

Recall that the dual of a Banach space X is the Banach space X∗ :=L (X ,K). For x∈ X
and x∗ ∈ X∗, the scalar x∗(x) ∈K is denoted by ⟨x,x∗⟩, that is, we write

x∗(x) =: ⟨x,x∗⟩.

The Hahn–Banach theorems guarantee an abundance of nontrivial functionals in the
dual of any Banach space. In many concrete situations, however, it is possible to com-
pletely describe the dual space. It will be our first task to do this for some classical
Banach spaces discussed in Chapter 2.

4.1.a Finite-Dimensional Spaces

It is instructive to start with duality of finite-dimensional spaces. As we have seen, every
finite-dimensional Banach space is isomorphic to Kd for some integer d ⩾ 1. The dual
of Kd is determined as follows.

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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Every ξ ∈Kd determines an element φξ ∈ (Kd)∗ by the prescription

φξ (x) := x ·ξ =
d

∑
n=1

xnξn, x ∈Kd.

Indeed, the Cauchy–Schwarz inequality implies |φξ (x)| ⩽ ∥x∥∥ξ∥, from which it fol-
lows that φξ is bounded and ∥φξ∥⩽ ∥ξ∥. Conversely, every φ ∈ (Kd)∗ is of this form.
To see this, let e1, . . . ,ed be the standard unit vectors of Kd and set ξn := φ(en). Then
ξ := (ξ1, . . . ,ξd) ∈Kd and, for all x = (x1, . . . ,xd) = ∑

d
n=1 xnen,

φ(x) = φ

( d

∑
n=1

xnen

)
=

d

∑
n=1

xnφ(en) =
d

∑
n=1

xnξn = x ·ξ = φξ (x).

It follows that φ = φξ . Moreover, ∥ξ∥2 = φξ (ξ )⩽ ∥φξ∥∥ξ∥. Together with the inequal-
ity ∥φξ∥⩽ ∥ξ∥ it follows that ∥φξ∥= ∥ξ∥.

In summary, the correspondence φξ ↔ ξ establishes an isometric isomorphism

(Kd)∗ ≃Kd.

4.1.b Sequence Spaces

The above proof scheme can easily be extended to identify the duals of the infinite-
dimensional sequence spaces c0 and ℓp. We begin by proving that the dual of c0 can be
identified with ℓ1. Every ξ ∈ ℓ1 determines an element φξ ∈ (c0)

∗ by the prescription

φξ (x) := ∑
n⩾1

xnξn, x ∈ c0.

Indeed,

|φξ (x)|⩽ (sup
n⩾1
|xn|) ∑

n⩾1
|ξn|= ∥x∥∞∥ξ∥1,

so φξ is bounded and ∥φξ∥⩽ ∥ξ∥1. Conversely, every φ ∈ (c0)
∗ is of this form. To see

this, let (en)n⩾1 be the sequence of standard unit vectors of c0 and set ξn := φ(en). We
claim that ∑n⩾1 |ξn| < ∞. To see this, choose scalars cn ∈ K of modulus one such that
cnξn = |ξn|. The sequence (c1, . . . ,cN ,0,0, . . .) = ∑

N
n=1 cnen belongs to c0 and has norm

one, and
N

∑
n=1
|ξn|=

N

∑
n=1

cnξn = φ

( N

∑
n=1

cnen

)
⩽ ∥φ∥.

Since N ⩾ 1 was arbitrary, this establishes the claim, with bound ∥ξ∥1 ⩽ ∥φ∥. It follows
that ξ = (ξ1,ξ2, . . .) belongs to ℓ1 and for all x ∈ c0 we have

φ(x) = φ

(
∑
n⩾1

xnen

)
= ∑

n⩾1
xnφ(en) = ∑

n⩾1
xnξn = φξ (x).



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
4.1 Duals of the Classical Banach Spaces 119

It follows that φ = φξ , and the preceding bounds combine to the norm equality ∥φξ∥=
∥ξ∥1. In summary, the correspondence φξ ↔ ξ establishes an isometric isomorphism

(c0)
∗ ≃ ℓ1.

In much the same way one proves that the dual of ℓp, 1⩽ p<∞, can be represented as
ℓq, where 1

p +
1
q = 1. More precisely, every element ξ ∈ ℓq defines a bounded functional

φξ ∈ (ℓp)∗ of norm ∥φξ∥⩽ ∥ξ∥q by the same formula as before, this time using Hölder’s
inequality

|φξ (x)|=
∣∣∣∑

n⩾1
xnξn

∣∣∣⩽ ∥x∥p∥ξ∥q.

Conversely, every bounded functional is of this form. To see this let (en)n⩾1 be the
sequence of standard unit vectors of ℓp and set ξn := φ(en). We claim that (ξn)n⩾1

belongs to ℓq. The case p = 1 and q = ∞ is trivial, for |ξn| ⩽ ∥φ∥∥en∥ = ∥φ∥, n ⩾ 1,
so ∥ξ∥∞ ⩽ ∥φ∥. Therefore we only consider the case 1 < p < ∞, in which case also
1 < q < ∞. To prove that ∑n⩾1 |ξn|q < ∞ it obviously suffices to show that

N

∑
n=1
|ξn|q ⩽ ∥φ∥q, N ⩾ 1. (4.1)

Fix N ⩾ 1 and put x(N) := (c1|ξ1|q/p, . . . ,cN |ξN |q/p,0,0, . . .), where the scalars cn ∈ K
are chosen in such a way that cnξn = |ξn|. This sequence belongs to ℓp, with norm

∥x(N)∥p
p =

N

∑
n=1
|ξn|q.

Since 1
p +

1
q = 1 implies q

p +1 = q,

N

∑
n=1
|ξn|q =

∣∣∣ N

∑
n=1

cn|ξn|q/p
ξn

∣∣∣= |φ(x(N))|⩽ ∥x(N)∥p∥φ∥=
( N

∑
n=1
|ξn|q

)1/p
∥φ∥

and therefore (∑N
n=1 |ξn|q)1/q ⩽ ∥φ∥, using once more that 1

p +
1
q = 1. This proves (4.1).

Since N ⩾ 1 was arbitrary it follows that ξ = (ξ1,ξ2, . . .) belongs to ℓq with norm
∥ξ∥q ⩽ ∥φ∥, and for all x ∈ ℓp we have

φ(x) = φ

(
∑
n⩾1

xnen

)
= ∑

n⩾1
xnφ(en) = ∑

n⩾1
xnξn = φξ (x).

It follows that φ = φξ , and the preceding bounds combine to the norm equality ∥φξ∥=
∥ξ∥q. In summary, the correspondence φξ ↔ ξ establishes an isometric isomorphism

(ℓp)∗ ≃ ℓq, 1 ⩽ p < ∞,
1
p
+

1
q
= 1.

At the end of Section 4.2 we show that this result does not extend to p = ∞.
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4.1.c Spaces of Continuous Functions

Definition 4.1 (Locally compact spaces). A topological space X is called locally com-
pact if every point x ∈ X is contained in an open set with compact closure.

For example, the spaces Kd are locally compact.
When X is a locally compact topological space, we let C0(X) denote the space of

continuous functions f : X → K vanishing at infinity, that is, for every ε > 0 there
exists a compact set K ⊆ X such that | f (x)| < ε for all x ∈ ∁K. With respect to the
supremum norm, C0(X) is a Banach space; the proof is similar to that for c0. Note that
C0(X) =C(X) if X is compact.

In what follows we assume that X is a locally compact Hausdorff space and endow X
with its Borel σ -algebra. The space M(X) of K-valued Borel measures on X has been
introduced in Section 2.4. As was shown there, M(X) is a Banach space with respect
to the variation norm ∥µ∥= |µ|(X). Every µ ∈M(X) determines a bounded functional
φµ ∈ (C0(X))∗ given by

φµ( f ) :=
∫

X
f dµ.

By Proposition 2.49 it satisfies

|φµ( f )|⩽
∫

X
| f |d|µ|⩽ ∥ f∥∞∥µ∥

and therefore

∥φµ∥⩽ ∥µ∥.

A Borel measure µ ∈ M(X) is said to be Radon if its variation |µ| is Radon (see
Definition E.20), that is, if for every Borel subset B of X and all ε > 0 there is a compact
set K ⊆ X and an open set U ⊆ X such that K ⊆ B ⊆ U and |µ|(U \K) < ε; these
properties are referred to as inner regularity with compact sets and outer regularity,
respectively. By MR(X) we denote the space of all Radon measures on X . It follows
readily from the definitions that MR(X) is a closed subspace of M(X), and therefore it
is a Banach space with respect to the variation norm. The next theorem identifies this
space as the dual of C0(X):

Theorem 4.2 (Riesz representation theorem). Let X be a locally compact Hausdorff
space. For every φ ∈ (C0(X))∗ there exists a unique Radon measure µ ∈ MR(X) such
that φ = φµ , that is,

⟨ f ,φ⟩=
∫

X
f dµ, f ∈C0(X).

This measure satisfies ∥µ∥= ∥φ∥. The correspondence φ ↔ µ establishes an isometric
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isomorphism

(C0(X))∗ ≃MR(X).

The representing measure µ is nonnegative if and only if φ is positivity preserving.

In the special case of a compact metric space we have MR(X) = M(X) by Proposition
E.21 and we obtain an isometric isomorphism

(C0(X))∗ ≃M(X).

For the proof of Theorem 4.2 we need the following version of Urysohn’s lemma.

Proposition 4.3. Let X be a locally compact Hausdorff space. If K ⊆U ⊆ X with K
compact and U open, then there exists a function f ∈Cc(X) with support contained in
U such that 0 ⩽ f ⩽ 1 pointwise on X and f ≡ 1 on K.

Proof Cover K with finitely many open sets U1, . . . ,Uk, each of which has compact
closure. Then K is contained in the open set (U1∪·· ·∪Uk)∩U and this set has compact
closure. Using this set instead of U , we may now appeal to Urysohn’s lemma (Proposi-
tion C.11).

Proof of Theorem 4.2 Uniqueness is immediate from the norm equality ∥φ∥ = ∥µ∥,
which holds for any representing measure µ ∈MR(X); this follows from the argument
of Step 4 of the proof.

The existence proof will be given in four steps.

Step 1 – We begin with the case of positivity preserving functionals φ . In this step we
prove the existence of a nonnegative representing measure µ ∈M(X) for such function-
als. The Radon property of µ is shown in Step 2.

Let U denote the collection of open subsets of X . For U ∈U and f ∈Cc(X) we write

f ≺U

if 0 ⩽ f ⩽ 1 and the support of f is a compact set contained in U . Define

µ(U) := sup
{
⟨ f ,φ⟩ : f ∈Cc(X), f ≺U

}
with the convention that µ(∅) := 0. Note that

0 ⩽ µ(U)⩽ µ(X) = sup
{
⟨ f ,φ⟩ : 0 ⩽ f ⩽ 1, f ∈Cc(X)

}
⩽ ∥φ∥.

Let us show that µ is countably subadditive on U . To this end, suppose that f ≺
⋃

j⩾1 U j

with U j ∈ U for all j ⩾ 1. Since supp( f ) is compact, it is contained in some finite
union

⋃k
j=1 U j. For every x in the compact support of f choose an open set Vx with

compact closure such that x ∈ Vx. By compactness, supp( f ) is contained in a finite
union V :=

⋃N
n=1 Vxn . For j = 1, . . . ,k set Vj := U j ∩V . Then supp( f ) is contained in⋃k

j=1 Vj, and this union has compact closure. Hence we may use Theorem C.12 to select
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a partition of unity (g j)
k
j=1 relative to the sets Vj, j = 1, . . . ,k, such that ∑

k
j=1 g j ≡ 1 on

supp( f ). Then g j ∈Cc(X) and g j ≺Vj for j = 1, . . . ,k; from Vj ⊆U j we infer that also
g j ≺U j. Hence also f g j ≺U j, and therefore

⟨ f ,φ⟩=
〈

f
k

∑
j=1

g j,φ
〉
=

k

∑
j=1
⟨ f g j,φ⟩⩽

k

∑
j=1

µ(U j)⩽ ∑
j⩾1

µ(U j).

This being true for all 0 ⩽ f ∈Cc(X) satisfying f ≺
⋃

j⩾1 U j, it follows that

µ

(⋃
j⩾1

U j

)
⩽ ∑

j⩾1
µ(U j)

as claimed.
In what follows we freely use the notation and terminology introduced in Appendix

E. Let µ∗ : 2X → [0,∞] be the outer measure associated with µ through (E.1), that is,

µ
∗(A) := inf

{
∑
j⩾1

µ(U j) : A⊆
⋃
j⩾1

U j, where U j ∈U for all j ⩾ 1
}

for A ∈ 2X (see Lemma E.6). By the definition of an outer measure and the countable
subadditivity of µ we have, for any set A ∈ 2X ,

µ
∗(A) = inf

{
µ(U) : A⊆U, where U ∈U

}
. (4.2)

Clearly, µ∗(A)⩾ 0. We also note that

µ∗(U) = µ(U) for all U ∈U ,

that is, µ∗ extends µ . This fact is used repeatedly below.

We claim that U is contained in the set

Mµ∗ :=
{

A ∈ 2X : µ
∗(Q) = µ

∗(Q∩A)+µ
∗(Q∩∁A), Q ∈ 2X}.

To prove this, let U ∈ U , that is, let U be an open subset of X . By the subadditivity
of outer measures we have µ∗(Q) ⩽ µ∗(Q∩U)+ µ∗(Q∩ ∁U). The reverse inequality
trivially holds if µ∗(Q) = ∞, so it suffices to check the inequality for Q ∈ 2X satisfying
µ∗(Q)< ∞. Fix an arbitrary ε > 0. Choose an open set V such that Q⊆V and µ(V )<

µ∗(Q)+ ε; this is possible by (4.2). Let f ,g ∈Cc(X) satisfy

f ≺U ∩V , µ(U ∩V )< ⟨ f ,φ⟩+ ε,

respectively

g≺V ∩∁(supp f ), µ(V ∩∁(supp f ))< ⟨g,φ⟩+ ε.

Such functions f and g exist by the definition of µ . Then, using the linearity of φ along
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with the facts that f +g≺V (as f and g have disjoint supports both contained in V ) and
Q∩∁U ⊆V ∩∁(supp f ) (which follows from Q⊆V and supp( f )⊆U),

µ
∗(Q∩U)+µ

∗(Q∩∁U)⩽ µ
∗(U ∩V )+µ

∗(V ∩∁(supp f ))

= µ(U ∩V )+µ(V ∩∁(supp f ))

⩽ ⟨ f ,φ⟩+ ⟨g,φ⟩+2ε = ⟨ f +g,φ⟩+2ε

⩽ µ(V )+2ε ⩽ µ
∗(Q)+3ε.

Since ε > 0 was arbitrary, this gives the desired result.
By Theorem E.7, Mµ∗ is a σ -algebra and µ∗ restricts to a measure on Mµ∗ . Since

U is contained in Mµ∗ , so is σ(U ) = B(X), the Borel σ -algebra of X . Thus we
find that the restriction of µ∗ to B(X) is a measure. Since we have already seen that
µ∗(U) = µ(U) for all U ∈U , by slight abuse of notation we shall denote the measure
on B(X) thus obtained by µ . The bound µ(X)⩽ ∥φ∥ shows that µ is a finite measure.
Nonnegativity of µ follows from the nonnegativity of µ∗.

Next we check that µ represents the functional φ . To this end we first claim that if
A,B ∈B(X) and g ∈C0(X) satisfy 1A ⩽ g ⩽ 1B, then

µ(A)⩽ ⟨g,φ⟩⩽ µ(B). (4.3)

Indeed, since A is contained in the set {g ⩾ 1} and this set is contained in the open set
{g > 1−δ}, we have, for any 0 < δ < 1,

µ(A)⩽ µ{g > 1−δ}= sup
{
⟨ f ,φ⟩ : f ∈Cc(X), f ≺ {g > 1−δ}

}
⩽
〈 g

1−δ
,φ
〉
=

1
1−δ

⟨g,φ⟩

using the positivity of φ and the fact that on the set {g > 1− δ} we have f ⩽ 1 ⩽
g/(1−δ ) pointwise. Since 0 < δ < 1 was arbitrary, it follows that µ(A)⩽ ⟨g,φ⟩. In the
same way, for all δ > 0 we have

µ(B)⩾ µ{g > 0}= sup
{
⟨ f ,φ⟩ : f ∈Cc(X), f ≺ {g > 0}

}
⩾
〈
(g−δ )+,φ

〉
,

using that (g−δ )+ belongs to Cc(X) and satisfies (g−δ )+≺{g> 0}. Since (g−δ )+→
g in C0(X) as δ ↓ 0, it follows that µ(B)⩾ ⟨g,φ⟩. This proves (4.3).

Let 0 ⩽ f ∈C0(X), fix ε > 0, and for δ ⩾ 0 write fδ (ξ ) := min{ f (ξ ),δ}. Then

f = ∑
k⩾0

( f(k+1)ε − fkε).

There is no convergence issue here since functions in C0(X) are bounded, so at most
finitely many terms in this sum are nonzero. From the inequalities

ε1{ f⩾(k+1)ε} ⩽ f(k+1)ε − fkε ⩽ ε1{ f⩾kε},
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on the one hand we obtain

εµ{ f ⩾ (k+1)ε}⩽
∫

X
f(k+1)ε − fkε dµ ⩽ εµ{ f ⩾ kε},

while combining them with (4.3) gives

εµ{ f ⩾ (k+1)ε}⩽ ⟨ f(k+1)ε − fkε ,φ⟩⩽ εµ{ f ⩾ kε}.

It follows that∣∣∣∫
X

f(k+1)ε − fkε dµ−⟨ f(k+1)ε − fkε ,φ⟩
∣∣∣⩽ εµ

{
kε < f ⩽ (k+1)ε

}
and consequently∣∣∣∫

X
f dµ−⟨ f ,φ⟩

∣∣∣⩽ ε ∑
k⩾0

µ
{

kε < f ⩽ (k+1)ε
}
⩽ εµ(X).

Since ε > 0 was arbitrary, this proves that
∫

X f dµ = ⟨ f ,φ⟩ as desired. By the linearity
of both sides, this identity extends to arbitrary f ∈C0(X).

Step 2 – We prove next that µ is a Radon measure. Outer regularity is clear from the
constructions, and inner regularity with compact sets will be proved in two steps: (i)
First we prove that if U is open in X , then for every ε > 0 there is a compact set K ⊆U
such that µ(U \K)< ε; (ii) We then use this to deduce the analogous result for general
Borel sets B in X .

(i): Let U be open in X . Pick f ∈ Cc(X) such that f ≺U and
∫

X f dµ > µ(U)− ε

and let K be its support. Then K ⊆U and we have µ(K) ⩾
∫

X f dµ > µ(U)− ε since
0 ⩽ f ⩽ 1K . But then µ(U \K)< ε .

(ii): Suppose next that B is a Borel set in X . By outer regularity there is an open set
V ⊆ X such that B ⊆ V and µ(V \B) < ε . By what we just proved there is a compact
set L⊆ X such that L⊆V and µ(V \L)< ε . Using outer regularity once more, choose
an open set W such that V \B⊆W and µ(W )< ε . Let K := L\W . Then K is compact,
contained in B, and

µ(K) = µ(L)−µ(L∩W )> (µ(V )− ε)−µ(W )> (µ(B)− ε)−µ(W )> µ(B)−2ε.

It follows that µ(B\K)< 2ε and the claim is proved.
This completes the proof of the theorem for positivity preserving functionals, except

for the norm identity ∥µ∥ = ∥φ∥ which will be proved, for general functionals φ , in
Step 4.

Step 3 – The real part of a functional φ ∈ (C0(X))∗ is defined, for f = u+ iv ∈C0(X)

with u,v real-valued, by

Reφ( f ) := Re⟨u,φ⟩+ iRe⟨v,φ⟩.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
4.1 Duals of the Classical Banach Spaces 125

It is clear that Reφ is additive, and in combination with the identities

Reφ((a+bi) f ) = Reφ((au−bv)+ i(bu+av))

= Re⟨au−bv,φ⟩+ iRe⟨bu+av,φ⟩
= (a+bi)(Re⟨u,φ⟩+ iRe⟨v,φ⟩) = (a+bi)Reφ( f )

we see that Reφ is linear. Boundedness is clear, and therefore Reφ ∈ (C0(X))∗. The
functional Imφ ∈ (C0(X))∗ is defined similarly. Both Reφ and Imφ are real, in the sense
that they map real-valued functions to real numbers, and we have φ = Reφ + i Imφ .

Suppose now that φ ∈ (C0(X))∗ is real. In analogy with the formulas for the positive
and negative parts of a real measure we define, for functions 0 ⩽ f ∈C0(X),

φ
+( f ) := sup

{
⟨g,φ⟩ : g ∈C0(X), 0 ⩽ g ⩽ f

}
. (4.4)

We claim that φ+ is the restriction of a real-linear functional on C0(X ;R) of norm at
most ∥φ∥. This will follow from Theorem 4.5. This theorem implies that the dual of
C0(X) is a Banach lattice and gives a general formula for the positive part of func-
tionals in the dual of a Banach lattice of which (4.4) is a special case. For the reader’s
convenience, however, here we give a self-contained proof of the claim.

It is clear that |φ+( f )| ⩽ ∥ f∥∥φ∥ and 0 = φ+(0) ⩽ φ+( f ). It is also clear that
φ+(c f ) = cφ+( f ) for scalars c ⩾ 0. If 0 ⩽ g1 ⩽ f1 and 0 ⩽ g2 ⩽ f2, then 0 ⩽ g1 +g2 ⩽
f1 + f2, so

φ
+( f1 + f2)⩾ φ(g1 +g2) = φ(g1)+φ(g2).

Taking the supremum over all admissible g1 and g2 gives the inequality φ+( f1 + f2)⩾
φ+( f1)+φ+( f2). To prove the converse inequality let 0 ⩽ g ⩽ f1 + f2 with f1, f2 ⩾ 0,
and set g1 := f1∧g and g2 := g−g1. Then 0 ⩽ g1 ⩽ f1 and 0 ⩽ g2 ⩽ f2, so

φ(g) = φ(g1)+φ(g2)⩽ φ
+( f1)+φ

+( f2)

and therefore φ+( f1 + f2) ⩽ φ+( f1)+φ+( f2). This proves the additivity of φ+ on the
cone of nonnegative functions in C0(X).

For functions f ∈ C0(X ;R) we define φ+( f ) := φ+( f+)− φ+( f−). It is routine to
check that φ+ is real-linear on C0(X ;R). Moreover,

|φ+( f )|⩽ max{φ+( f+), φ
+( f−)}⩽ ∥φ∥max{∥ f+∥, ∥ f−∥}= ∥φ∥∥ f∥.

This completes the proof of the claim.
The functional φ−= φ+−φ is real-linear and bounded on C0(X ;R) and the definition

of φ+ implies that φ− is positive. This gives the representation φ = φ+−φ− with φ±

bounded, linear, and positive.
Since linear combinations of Radon measures are Radon, these reductions make it

possible to apply Step 2 to obtain a Radon measure µ ∈MR(X) representing φ .
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Step 4 – The only thing left to be shown is that the norm equality ∥µ∥= ∥φ∥ holds for
any representing Radon measure µ . This will be accomplished by invoking the Radon–
Nikodým theorem (Theorem 2.46), or rather, the result of Example 2.48 which follows
from it. It asserts that there exists a function h ∈ L1(Ω, |µ|) such that |h|= 1 |µ|-almost
everywhere and µ(B) =

∫
B hd|µ| for all Borel sets B⊆ X . By the usual arguments, this

implies ∫
X

f dµ =
∫

X
f hd|µ|, f ∈Cc(X).

We claim that Cc(X) is dense in C0(X). Indeed, for given f ∈ C0(X) and ε > 0, let
K be a compact set such that | f | < ε outside K, and apply Proposition 4.3 to obtain a
function g∈Cc(X) such that 0⩽ g⩽ 1 pointwise on X and g≡ 1 on K. Then f g∈Cc(X)

and ∥ f − f g∥∞ ⩽ ε . This proves the claim. Since L1(X , |µ|) is isometrically contained
in M(X) it also follows that Cc(X) is norming for L1(X , |µ|).

Combining these observations, we obtain

∥φ∥= sup
∥ f∥⩽1

f∈Cc(X)

|⟨ f ,φ⟩|

= sup
∥ f∥⩽1

f∈Cc(X)

∣∣∣∫
X

f dµ

∣∣∣= sup
∥ f∥⩽1

f∈Cc(X)

∣∣∣∫
X

f hd|µ|
∣∣∣= ∥h∥L1(X ,|µ|) = |µ|(X) = ∥µ∥

and the proof is complete.

The duality between spaces of continuous functions and spaces of Borel measures
shows how elements of Measure Theory emerge naturally from considerations involving
only linearity and topology (namely, from the problem of finding the continuous linear
functionals of a space of continuous functions).

4.1.d Spaces of Integrable Functions

Let (Ω,F,µ) be a measure space and let 1 ⩽ p,q ⩽ ∞ satisfy 1
p +

1
q = 1. By Hölder’s

inequality, every function g ∈ Lq(Ω) defines a functional φg ∈ (Lp(Ω))∗ by setting

φg( f ) :=
∫

Ω

f gdµ, f ∈ Lp(Ω),

and we have ∥φg∥ ⩽ ∥g∥q. If 1 ⩽ p < ∞ and the measure space is σ -finite, every func-
tional arises in this way:

Theorem 4.4 (Dual of Lp(Ω)). Let (Ω,F,µ) be a σ -finite measure space and let 1 ⩽
p < ∞ and 1

p +
1
q = 1. For every φ ∈ (Lp(Ω))∗ there exists a unique g∈ Lq(Ω) such that

φ = φg, that is,

⟨ f ,φ⟩=
∫

Ω

f gdµ, f ∈ Lp(Ω),
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and it satisfies ∥g∥q = ∥φ∥. The correspondence φg ↔ g establishes an isometric iso-
morphism

(Lp(Ω))∗ ≃ Lq(Ω), 1 ⩽ p < ∞,
1
p
+

1
q
= 1.

Proof Uniqueness is immediate from the norm identity ∥g∥q = ∥φ∥which, by Hölder’s
inequality and Proposition 2.26, holds for any representing function g ∈ Lq(Ω).

The existence proof will be given in two steps.

Step 1 – In this step we prove the theorem for the special case µ(Ω) < ∞. Let φ ∈
(Lp(Ω))∗ be arbitrary and fixed. Then

ν(A) := ⟨1A,φ⟩, A ∈F,

defines a K-valued measure. Indeed, if the sets An ∈F are disjoint, then by dominated
convergence limn→∞ ∑

n
j=1 1A j = 1⋃ j⩾1 A j in Lp(Ω), and therefore

ν
(⋃

j⩾1

A j
)
= lim

n→∞

n

∑
j=1
⟨1A j ,φ⟩= lim

n→∞

n

∑
j=1

ν(A j)

by the boundedness of φ . Clearly ν is absolutely continuous with respect to µ . By the
Radon–Nikodým theorem (Theorem 2.46) we have dν = gdµ for a unique g ∈ L1(Ω).
By the definition of ν and linearity, this means that

⟨ f ,φ⟩=
∫

Ω

f gdµ for all simple functions f . (4.5)

We wish to prove that g∈ Lq(Ω) with ∥g∥q ⩽ ∥φ∥ and that the identity ⟨ f ,φ⟩=
∫

Ω
f gdµ

holds for all f ∈ Lp(Ω). For n = 1,2, . . . let gn := g1Ωn with Ωn = {|g| ⩽ n}. These
functions are bounded and for all simple functions f we have, by (4.5),∣∣∣∫

Ω

f gn dµ

∣∣∣= ∣∣∣∫
Ω

f 1Ωngdµ

∣∣∣= |⟨ f 1Ωn ,φ⟩|⩽ ∥ f 1Ωn∥p∥φ∥⩽ ∥ f∥p∥φ∥.

Since the simple functions are dense in Lp(Ω), Proposition 2.26 implies that gn ∈ Lq(Ω)

and ∥gn∥q ⩽ ∥φ∥. This being true for all n ⩾ 1, Fatou’s lemma implies that g ∈ Lq(Ω)

and ∥g∥q ⩽ ∥φ∥.
Now that we know this, the density of the simple functions in Lp(Ω) and Hölder’s

inequality imply that (4.5) extends to arbitrary f ∈ Lp(Ω). This completes the proof of
the theorem in the case µ(Ω)< ∞.

Step 2 – The general σ -finite case follows by an exhaustion argument as follows.
Choose an increasing sequence Ω1 ⊆ Ω2 ⊆ . . . of sets of finite measure such that⋃

n⩾1 Ωn = Ω. By restriction to functions supported on Ωn, every φ ∈ (Lp(Ω))∗ restricts
to a functional in (Lp(Ωn))

∗, denoted by φn, of norm ∥φn∥⩽ ∥φ∥. By the previous step,
φn is represented by a unique function gn ∈ Lq(Ωn) of norm ∥gn∥q ⩽ ∥φn∥⩽ ∥φ∥. More-
over, by uniqueness we see that if m ⩽ n, then gn|Ωm = gm, since both represent φm. We
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can thus define a measurable function g : Ω→ K by setting g := gn on Ωn for n ⩾ 1.
This function satisfies ∥g∥q = supn⩾1 ∥gn∥q ⩽ ∥φ∥. Moreover, if f ∈ Lp(Ω), then by the
continuity of φ and the dominated convergence theorem,

⟨ f ,φ⟩= lim
n→∞
⟨1Ωn f ,φ⟩= lim

n→∞

∫
Ωn

f gn dµ = lim
n→∞

∫
Ωn

f gdµ =
∫

Ω

f gdµ.

For 1 < p < ∞ the σ -finiteness assumption can be omitted; see Problem 4.3.

4.1.e Hilbert Spaces

The Riesz representation theorem (Theorem 3.15) states that every bounded functional
on a Hilbert space H is of the form ψh for some unique h ∈ H, where

ψh(g) = (g|h), g ∈ H.

Moreover, we have equality of norms ∥h∥= ∥ψh∥. The identification ψh↔ h therefore
provides a bijective and norm-preserving correspondence

H∗←→ H.

It is important to observe that this correspondence is linear if K = R, but conjugate-
linear if K= C. This is a consequence of the conjugate-linearity of inner products with
respect to their second variable. Indeed, from ψch(x) = (x|ch) = c(x|h) = cψh(x) it fol-
lows that

ψch = cψh.

In contrast, the correspondence φx↔ x in each of the Sections 4.1.a–4.1.d is linear both
when K= R and K= C.

4.1.f Banach Lattices

The objective of this section is to prove the following theorem.

Theorem 4.5. With respect to the natural partial order given by

x∗ ⩽ y∗⇔ ⟨x,x∗⟩⩽ ⟨x,y∗⟩ for all 0 ⩽ x ∈ X ,

the dual X∗ of a Banach lattice X is a Banach lattice. Moreover, for all 0 ⩽ x ∈ X we
have

⟨x,x∗∧ y∗⟩= inf
{
⟨x− y,x∗⟩+ ⟨y,y∗⟩ : 0 ⩽ y ⩽ x

}
,

⟨x,x∗∨ y∗⟩= sup
{
⟨x− y,x∗⟩+ ⟨y,y∗⟩ : 0 ⩽ y ⩽ x

}
.
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A special case of the second formula has already been encountered in (4.4).
For the proof of the theorem we need the following lemma. If V is a vector lattice,

then for 0 ⩽ v ∈V we write [0,v] := {u ∈V : 0 ⩽ u ⩽ v}.

Lemma 4.6 (Decomposition property). If V is a vector lattice, then for all 0 ⩽ v,v′ ∈V
we have

[0,v]+ [0,v′] = [0,v+ v′].

Proof Let w ∈ [0,v+ v′]; we must show that there exist u ∈ [0,v] and u′ ∈ [0,v′] such
that u+u′ = w. We claim that u := v∧w and u′ := w−u have the required properties.
It is clear that u ∈ [0,v], u′ ⩾ 0, and u+u′ = w, and by Proposition 2.52(2) we have

v′−u′ = v′−w+u = (v′−w)+ v∧w

= ((v′−w)+ v)∧ ((v′−w)+w) = ((v+ v′)−w)∧ v′ ⩾ 0;

this proves that u′ ∈ [0,v′].

Proof of Theorem 4.5 First note that if 0 ⩽ y ⩽ x, then also 0 ⩽ x−y ⩽ x and therefore
∥y∥⩽ ∥x∥ and ∥x− y∥⩽ ∥x∥. It follows that

|⟨x− y,x∗⟩+ ⟨y,y∗⟩|⩽ ∥x∥(∥x∗∥+∥y∗∥),

showing that the infima and suprema on the right-hand sides of the formulas in the
statement of the theorem are finite. Lemma 4.6 implies that the right-hand sides are
additive on the positive cone X+ of X . To see this, let x,x′ ∈ X . Then

inf
{
⟨x+ x′− y,x∗⟩+ ⟨y,y∗⟩ : y ∈ [0,x+ x′]

}
= inf

{
⟨x−u,x∗⟩+ ⟨x′−u′,x∗⟩+ ⟨u,y∗⟩+ ⟨u′,y∗⟩ : u ∈ [0,x], u′ ∈ [0,x′]

}
= inf

{
⟨x−u,x∗⟩+ ⟨u,y∗⟩ : u ∈ [0,x]

}
+ inf

{
⟨x′−u′,x∗⟩+ ⟨u′,y∗⟩ : u′ ∈ [0,x′]

}
.

The corresponding identity for the suprema is proved in the same way. Since the right-
hand sides are also homogeneous with respect to scalar multiplication by nonnegative
scalars, they uniquely extend to linear mappings from X to R and therefore define ele-
ments of X∗. Thus we may define functionals x∗∧y∗ and x∗∨y∗ in X∗ by the right-hand
sides of the formulas in the statement of the theorem.

We begin by showing that the functionals x∗ ∧ y∗ and x∗ ∨ y∗ thus defined are the
greatest lower bound and the least upper bound for the pair {x∗,y∗}, respectively. We
will present the argument for x∗∧ y∗; the proof for x∗∨ y∗ is entirely similar.

It is clear that for all x ⩾ 0 we have ⟨x,x∗∧y∗⟩⩽ ⟨x,x∗⟩. This means that x∗∧y∗ ⩽ x∗,
and in the same way we see that x∗ ∧ y∗ ⩽ y∗. This shows that x∗ ∧ y∗ is a lower bound
for the pair {x∗,y∗}. To prove that it is the greatest lower bound we must show that if
z∗ ⩽ x∗ and z∗ ⩽ y∗, then z∗ ⩽ x∗∧ y∗. But this is easy: if 0 ⩽ y ⩽ x, then

⟨x,z∗⟩= ⟨x− y,z∗⟩+ ⟨y,z∗⟩⩽ ⟨x− y,x∗⟩+ ⟨y,y∗⟩,
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and therefore for all x ⩾ 0 we obtain

⟨x,z∗⟩⩽ inf
{
⟨x− y,x∗⟩+ ⟨y,y∗⟩ : 0 ⩽ y ⩽ x

}
= ⟨x,x∗∧ y∗⟩,

that is, z∗ ⩽ x∗∧ y∗.
This proves that the pair (X∗,⩽) is a lattice. It is clear from the definition of the partial

order ⩽ on X∗ that if x∗,y∗ ∈ X∗ satisfy x∗ ⩽ y∗, then cx∗ ⩽ cy∗ for all 0 ⩽ c ∈ R and
x∗+ z∗ ⩽ y∗+ z∗. It follows that (X∗,⩽) is a vector lattice and that the identities in the
statement of the theorem are satisfied.

Since X∗ is complete, all that remains to be shown is that |x∗| ⩽ |y∗| implies ∥x∗∥ ⩽
∥y∗∥. The assumption is equivalent to the statement that for all x ⩾ 0 we have

sup
{
⟨x− y,x∗⟩−⟨y,x∗⟩ : 0 ⩽ y ⩽ x

}
⩽ sup

{
⟨x− y,y∗⟩−⟨y,y∗⟩ : 0 ⩽ y ⩽ x

}
,

that is,

sup
{
⟨z,x∗⟩ : −x ⩽ z ⩽ x

}
⩽ sup

{
⟨z,y∗⟩ : −x ⩽ z ⩽ x

}
.

This, combined with the identity

∥z∗∥= sup
∥x∥⩽1

⟨x,z∗⟩= sup
∥x∥⩽1

sup
{
⟨z,z∗⟩ : −x ⩽ z ⩽ x

}
(which follows from the fact that −x ⩽ z ⩽ x implies |x| ⩽ |z| and hence ∥z∥ ⩽ ∥x∥),
gives ∥x∗∥⩽ ∥y∗∥ as desired.

4.2 The Hahn–Banach Extension Theorem

We now turn to one of the main pillars of Functional Analysis, the Hahn–Banach theo-
rem. This is a collective name for a number of closely related results, all of which assert
the existence of certain nontrivial functionals with desirable properties. These results
come in two flavours: as extension theorems asserting the extendability of functionals
that are given a priori on a subspace and as separation theorems asserting that certain
disjoint subsets can be separated by means of functionals.

The present section is concerned with Hahn–Banach extension theorems. We begin
with a version for real vector spaces whose proof exploits the order structure of the real
line.

Theorem 4.7 (Hahn–Banach extension theorem for real vector spaces). Let V be a
real vector space and let p : V → R be sublinear, that is, for all v,v′ ∈ V and t ⩾ 0 we
have

p(v+ v′)⩽ p(v)+ p(v′), p(tv) = t p(v).
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If W ⊆V is a subspace and φ : W → R is a linear mapping satisfying

φ(w)⩽ p(w), w ∈W,

then there exists a linear mapping Φ : V → R that extends φ , and satisfies

Φ(v)⩽ p(v), v ∈V.

Proof We may assume that W is a proper subspace of V . Fix w,w′ ∈W and v ∈V \W .
From φ(w)+φ(w′) = φ(w+w′)⩽ p(w+w′) and p(w+w′)⩽ p(w−v)+ p(v+w′) we
obtain φ(w)− p(w− v)⩽ p(w′+ v)−φ(w′). With α := supw∈W (φ(w)− p(w− v)) we
therefore have

φ(w)−α ⩽ p(w− v), φ(w′)+α ⩽ p(w′+ v), w,w′ ∈W.

Let W1 denote the linear span of W and v. Then φ1 : W1→ R, φ1(w+ tv) := φ(w)+ tα ,
is linear, extends φ and satisfies φ1(w1) ⩽ p(w1) for all w1 ∈W1. To see this, note that
for w ∈W and t > 0,

φ1(w+ tv) = φ(w)+ tα = t(φ(t−1w)+α)⩽ t p(t−1w+ v) = p(w+ tv)

and

φ1(w− tv) = φ(w)− tα = t(φ(t−1w)−α)⩽ t p(t−1w− v) = p(w− tv)

while for t = 0 we have φ1(w) = φ(w). This proves that φ1(w1)⩽ p(w1) for all w1 ∈W1.
The proof can now be finished by an appeal to Zorn’s lemma (Lemma A.3), applied to
all linear extensions φ ′ of φ satisfying the inequality φ ′ ⩽ p.

This result is used to give a second version of the theorem which is also valid over
the complex scalars.

Theorem 4.8 (Hahn–Banach extension theorem for vector spaces). Let V be a (real or
complex) vector space and let p : V → [0,∞) be a seminorm, that is, for all v,v′ ∈V and
t ∈K we have

p(v+ v′)⩽ p(v)+ p(v′), p(tv) = |t|p(v).

If W is a subspace of V and φ : W →K is a linear mapping satisfying

|φ(w)|⩽ p(w), w ∈W,

then there exists a linear mapping Φ : V →K that extends φ and satisfies

|Φ(v)|⩽ p(v), v ∈V.

Proof First we consider the case K= R. The assumptions imply φ(w)⩽ p(w) for all
w ∈W , and therefore by Theorem 4.7 the mapping φ : W →R admits a linear extension
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Φ : V →R satisfying Φ(v)⩽ p(v) for all v∈V. Also,−Φ(v) = Φ(−v)⩽ p(−v) = p(v),
and therefore |Φ(v)|⩽ p(v) for all v ∈V .

Next we consider the case K = C. Let us write φ = Reφ + i Imφ , where Reφ and
Imφ are the real and imaginary parts of φ ; these functions are real-linear. From

φ(x) =−iφ(ix) =−i(Reφ(ix)+ i Imφ(ix)) = Imφ(ix)− iReφ(ix),

with Imφ(ix) and Reφ(ix) real, we infer that Imφ(x) =−Reφ(ix). Hence,

φ(x) = Reφ(x)− iReφ(ix).

The real-valued function ψ := Reφ satisfies the assumptions of the previous theorem
and thus extends to a real-linear mapping Ψ : V → R satisfying Ψ ⩽ p. We now define

Φ(v) := Ψ(v)− iΨ(iv).

Then Φ extends φ , Φ is real-linear, and since also

Φ(iv) = Ψ(iv)− iΨ(−v) = Ψ(iv)+ iΨ(v) = i(Ψ(v)− iΨ(iv)) = iΦ(v),

Φ is actually complex-linear. Finally, for t ∈ C with |t|= 1 such that tΦ(v) = |Φ(v)|,

|Φ(v)|= tΦ(v) = Φ(tv)
(∗)
= Ψ(tv)⩽ p(tv) = |t|p(v) = p(v).

Here (∗) follows from the definition of Φ, noting that Φ(tv) = |Φ(v)| is nonnegative and
therefore Φ(tv) = ReΦ(tv), while at the same time ReΦ(tv) = Ψ(tv) by the definition
of Φ and the fact that Ψ is real-valued.

In the setting of normed spaces, from Theorem 4.8 we infer the following result.

Theorem 4.9 (Hahn–Banach extension theorem for normed spaces). Let X be a normed
space and let Y ⊆ X be a subspace. Then every functional y∗ ∈ Y ∗ has an extension to
a functional x∗ ∈ X∗ that satisfies

∥x∗∥= ∥y∗∥.

Here, of course, ∥x∗∥ is the norm of x∗ as an element of X∗ and ∥y∗∥ is the norm of
y∗ as an element of Y ∗. Such obvious conventions will be in place throughout the text.

Proof Given a functional y∗ ∈ Y ∗, we apply Theorem 4.8 to V = X , W = Y , φ(y) :=
⟨y,y∗⟩ for y ∈ Y , and p(x) := ∥x∥∥y∗∥ for x ∈ X .

Remark 4.10. The proof of Theorem 4.7 depends on the Axiom of Choice through the
use of Zorn’s lemma. If X is separable and a countable dense sequence (xn)n⩾1 is given,
Theorem 4.9 can be proved without invoking Zorn’s lemma as follows. Revisiting the
proof of Theorem 4.7, starting from a functional y∗ ∈ Y ∗ one defines Yn to be the span
of Y and {x1, . . . ,xn} and inductively extends y∗ to Y1, then to Y2, and so forth. On the
span of the spaces Yn, n ⩾ 1, we thus obtain a well-defined functional of norm at most
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∥y∗∥. Since this subspace is dense, by Proposition 1.18 this functional uniquely extends
to a functional with the same norm on all of X .

Recall the identity

∥x∗∥= sup
∥x∥⩽1

|⟨x,x∗⟩|,

which is nothing but the definition of the operator norm of x∗ as an element of L (X ,K).
As a consequence of the Hahn–Banach theorem we obtain the following dual expression
for the norm of elements x ∈ X :

Corollary 4.11. For all x ∈ X we have

∥x∥= sup
∥x∗∥⩽1

|⟨x,x∗⟩|.

In particular, if ⟨x,x∗⟩= 0 for all x∗ ∈ X∗, then x = 0.

Proof Fix an arbitrary x ∈ X . If x = 0 the asserted identity trivially holds, so we may
assume that x ̸= 0. Let Y be the one-dimensional subspace of X spanned by x and define
y∗0 ∈ Y ∗ by ⟨tx,y∗0⟩ := t∥x∥. Then ∥y∗0∥ = 1. Let x∗0 ∈ X∗ be a Hahn–Banach extension
provided by Theorem 4.9, that is, x∗0|Y = y∗0 and ∥x∗0∥= ∥y∗0∥= 1. Then

∥x∥= ⟨x,y∗0⟩= ⟨x,x∗0⟩⩽ sup
∥x∗∥⩽1

|⟨x,x∗⟩|,

while trivially

sup
∥x∗∥⩽1

|⟨x,x∗⟩|⩽ sup
∥x∗∥⩽1

∥x∥∥x∗∥= ∥x∥.

The next application of Theorem 4.9 provides a condition for recognising proper
closed subspaces.

Corollary 4.12. If Y is a proper closed subspace of a Banach space X, then for every
x0 ∈ X \Y there exists an x∗ ∈ X∗ such that

⟨x0,x∗⟩ ̸= 0 and ⟨y,x∗⟩= 0 for all y ∈ Y.

Proof Fix an element x0 ∈ X \Y . Without loss of generality we may assume that
∥x0∥ = 1. Let X0 denote the span of Y and x0. On X0 we can uniquely define a lin-
ear scalar-valued mapping φ by declaring φ(y) := 0 for all y ∈ Y and φ(x0) := 1. The
idea is to prove that φ : X0→K is bounded. Once this has been shown, the result follows
from the Hahn–Banach extension theorem.

We claim that there is a constant C > 0 such that

∥x0 + y∥⩾C∥x0∥, y ∈ Y.
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If such a constant does not exist, for every n ⩾ 1 one can find a yn ∈ Y so that

∥x0 + yn∥<
1
n
∥x0∥, n = 1,2, . . .

Then limn→∞ ∥x0 + yn∥ = 0, and therefore x0 ∈ Y = Y . This contradiction proves the
claim.

By the claim, for any nonzero scalar a ∈K and y ∈ Y ,

∥ax0 + y∥= |a|∥x0 +a−1y∥⩾C|a|∥x0∥=C∥ax0∥,

and the resulting inequality also holds when a = 0. Hence

|φ(ax0 + y)|= |a|= |a|∥x0∥= ∥ax0∥⩽
1
C
∥ax0 + y∥.

This proves that φ is bounded on X0 and ∥φ∥X∗0
⩽ 1/C.

Definition 4.13 (Complemented subspaces). A closed linear subspace X0 of a normed
space X is said to be complemented if there exists a closed linear subspace X1 of X such
that

• X0 +X1 = X ;
• X0∩X1 = {0}.

Here, X0 +X1 := {x0 + x1 : x0 ∈ X0, x1 ∈ X1}. In this situation we have

X = X0⊕X1

as a direct sum in the sense discussed in Section 1.1.b.

Definition 4.14 (Projections). A projection is an operator P ∈L (X) satisfying P2 = P.

Notice that the boundedness of P is taken to be part of the definition. If P is a pro-
jection, then so is I−P and the range R(P) of P equals the null space N(I−P). This
implies that R(P) is closed and we have a direct sum decomposition

X = N(P)⊕R(P).

Thus we have shown the following simple result:

Proposition 4.15. If a closed subspace X0 of a normed space X is the range of a pro-
jection in X, then X0 is complemented.

Conversely, if X = X0⊕X1 is a direct sum decomposition of a Banach space, then
the natural projections associated with it are bounded; this will be proved in the next
chapter (see Proposition 5.10).

We have seen in Corollary 1.36 that finite-dimensional subspaces are always closed.
As an application of the Hahn–Banach theorem we prove next the stronger assertion that
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they are always complemented. For later use we also include an analogue for subspaces
of finite codimension, which does not require the use of the Hahn–Banach theorem. A
subspace X0 of a Banach space X is said to have finite codimension if there exists a finite-
dimensional subspace Y of X such that X0∩Y = {0} and X0 +Y = X . In this situation
we define the codimension of X0 to be the dimension of Y and denote this number by
codim(X0). The following argument shows that this number is well defined. If Y0 and Y1

are subspaces with the said properties, then for every y0 ∈ Y0 there are unique x0 ∈ X0

and y1 ∈ Y1 such that y0 = x0 + y1. The mapping y0 7→ y1 from Y0 to Y1 is easily seen to
be linear. By the same procedure we obtain a well-defined mapping from Y1 to Y0, and
it is clear that these mappings are each other’s inverses. Hence they are isomorphisms
of finite-dimensional vector spaces and therefore dimY0 = dimY1.

Subspaces of finite dimension are closed, but subspaces of finite codimension need
not be closed, at least when we accept the Axiom of Choice: under this assumption,
in Problem 3.25 a dense subspace of ℓ2 with codimension one is constructed, and such
subspaces cannot be closed. If X0 is a closed subspace of finite codimension, it is easily
checked that

codim(X0) = dim(X/X0).

Proposition 4.16. Let Y be a subspace of a normed space X. Then the following asser-
tions hold:

(1) if dim(Y )< ∞, then Y is closed and complemented;
(2) if codim(Y )< ∞ and Y is closed, then Y is complemented.

Proof (1): Let Y be a finite-dimensional subspace of X . By Corollary 1.36, Y is closed.
To prove that Y is complemented we show that Y is the range of a projection in X .

Let (yn)
N
n=1 be a basis for Y . Then every y ∈ Y admits a unique representation y =

∑
N
n=1 cn(y)yn with coefficients cn(y) ∈ K. The mappings cn : y 7→ cn(y) are linear, and

since linear mappings on finite-dimensional normed spaces are bounded, we have cn ∈
Y ∗. By the Hahn–Banach theorem we may extend each cn to a functional x∗n ∈ X∗. Con-
sider the (bounded) linear operator P on X defined by

Px :=
N

∑
n=1
⟨x,x∗n⟩yn.

It is clear that P maps X into Y and from ⟨ym,x∗n⟩= δmn we see that

Pym =
N

∑
n=1
⟨ym,x∗n⟩yn = ym.

This shows that P maps X onto Y . The preceding identity, applied to the element Px∈Y ,
also shows that P2x = P(Px) = Px, so P is a projection.
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(2): Since finite-dimensional subspaces are closed, this is immediate from the defi-
nitions.

We next identify the duals of closed subspaces, quotients, and direct sums. For this
purpose we need the first part of the following definition. The second part is included
for reasons of symmetry of presentation and will be needed later.

Definition 4.17 (Annihilators and pre-annihilators). Let X be a Banach space.

(i) The annihilator of a subset A⊆ X is the set

A⊥ := {x∗ ∈ X∗ : ⟨x,x∗⟩= 0, x ∈ A}.

(ii) The pre-annihilator of a subset B⊆ X∗ is the set
⊥B := {x ∈ X : ⟨x,x∗⟩= 0, x∗ ∈ B}.

Proposition 4.18. Let X be a Banach space and let Y be a closed subspace of X. Then
Y⊥ is a closed subspace of X∗ and we have the following assertions:

(1) the mapping i : X∗/Y⊥ → Y ∗ defined by i(x∗ +Y⊥) := x∗|Y is well defined and
induces an isometric isomorphism

Y ∗ ≃ X∗/Y⊥;

(2) the mapping j : Y⊥→ (X/Y )∗ defined by jx∗(x+Y ) := ⟨x,x∗⟩ is well defined and
induces an isometric isomorphism

(X/Y )∗ ≃ Y⊥.

Proof The easy proof that Y⊥ is a closed subspace of X∗ is left as an exercise.

(1): Let y∗ ∈ Y ∗ be given, and let x∗ ∈ X∗ be an extension with the same norm as
provided by the Hahn–Banach theorem. If φ ∈ Y⊥, then x∗ and x∗ + φ both restrict
to y∗. This means that we obtain a well-defined linear surjection from X∗/Y⊥ to Y ∗.
This mapping is also injective, for if x∗+Y⊥ is mapped to the zero element of Y ∗, then
x∗|Y = 0 and therefore x∗ ∈Y⊥, so x∗+Y⊥ is the zero element of X∗/Y⊥. We must show
that the resulting bijection is an isometry. On the one hand,

∥x∗+Y⊥∥X∗/Y⊥ = inf
φ∈Y⊥

∥x∗+φ∥⩽ ∥x∗∥= ∥y∗∥= ∥x∗|Y∥= ∥i(x∗+Y )∥.

On the other hand, for all φ ∈ Y⊥ we have

∥i(x∗+Y )∥= ∥y∗∥= sup
∥y∥⩽1

|⟨y,y∗⟩|= sup
∥y∥⩽1

|⟨y,x∗+φ⟩|⩽ ∥x∗+φ∥

and therefore, taking the infimum over all φ ∈ Y⊥,

∥i(x∗+Y )∥⩽ inf
φ∈Y⊥

∥x∗+φ∥= ∥x∗+Y⊥∥X∗/Y⊥ .
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(2): It is clear that j is well defined. Fix an arbitrary x∗ ∈ Y⊥. Given ε > 0, choose
x0 ∈ X such that ∥x0 +Y∥X/Y = 1 and ∥ jx∗∥ ⩽ |⟨x0 +Y, jx∗⟩|+ ε. Choose y0 ∈ Y such
that ∥x0 + y0∥⩽ 1+ ε . Then,

|⟨x0 +Y, jx∗⟩|= |⟨x0,x∗⟩|= |⟨x0 + y0,x∗⟩|⩽ ∥x0 + y0∥∥x∗∥⩽ (1+ ε)∥x∗∥.

It follows that ∥ jx∗∥(X/Y )∗ ⩽ (1+ ε)∥x∗∥+ ε . Since ε > 0 was arbitrary, we find that

∥ jx∗∥(X/Y )∗ ⩽ ∥x∗∥.

In the converse direction we have

∥ jx∗∥(X/Y )∗ = sup
∥x+Y∥X/Y⩽1

|⟨x+Y, jx∗⟩|= sup
∥x+Y∥X/Y⩽1

|⟨x,x∗⟩|⩾ sup
∥x∥⩽1

|⟨x,x∗⟩|= ∥x∗∥,

where we used that ∥x∥⩽ 1 implies ∥x+Y∥X/Y ⩽ 1.
It follows that j is isometric. To see that it is also surjective, let φ ∈ (X/Y )∗ be given.

The linear mapping x 7→ φ(x+Y ) is bounded, noting that both x 7→ x+Y and φ are
bounded. It thus defines an element x∗

φ
∈ X∗, and this functional annihilates Y . From

⟨x+Y, jx∗φ ⟩= ⟨x,x∗φ ⟩= ⟨x+Y,φ⟩

it follows that jx∗
φ
= φ .

The duality of direct sum decompositions is discussed in Proposition 4.27.
The Hahn–Banach theorem, through Corollary 4.11, offers a technique to reduce cer-

tain vector-valued questions to their scalar-valued counterparts. By way of example we
demonstrate this technique by reproving some calculus rules for the vector-valued Rie-
mann integral of Proposition 1.45. A second example is given in Problem 4.2 where the
Cauchy integral formula is extended to vector-valued holomorphic functions.

Second proof of Proposition 1.45, parts (2) and (3). (2): If f (t0) ̸= f (t1) for certain
t0 ̸= t1 in I, Corollary 4.11 provides us with a functional x∗ ∈ X∗ such that ⟨ f (t0),x∗⟩ ̸=
⟨ f (t1),x∗⟩. Consider the scalar-valued function ⟨ f ,x∗⟩(t) := ⟨ f (t),x∗⟩ obtained by ap-
plying X∗ pointwise. This function is continuous on [0,1] and continuously differen-
tiable on (0,1) with ⟨ f ,x∗⟩′ = ⟨ f ′,x∗⟩ = 0. Therefore ⟨ f ,x∗⟩ is constant by the scalar-
valued version of the proposition. This contradicts the choice of x∗.

(3): By the scalar-valued version of the proposition,〈
f (1)− f (0)−

∫ 1

0
f ′(t)dt,x∗

〉
= ⟨ f (1),x∗⟩−⟨ f (0),x∗⟩−

∫ 1

0
⟨ f ′(t),x∗⟩dt = 0

for all x∗ ∈ X∗. Corollary 4.11 implies that f (1)− f (0)−
∫ 1

0 f ′(t)dt = 0. □

Using duality we can give the following version of the Pettis measurability theorem
(Theorem 1.47):
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Theorem 4.19 (Pettis measurability theorem, second version). A function f : Ω→ X is
strongly measurable if and only if f takes its values in a separable closed subspace of
X and is weakly measurable, that is, ⟨ f ,x∗⟩ : Ω→K is measurable for all x∗ ∈ X∗.

Proof The ‘only if’ part follows from the first version of the Pettis measurability the-
orem and the trivial fact that strong measurability implies weak measurability. For the
‘if’ part, choose a dense sequence (xk)k⩾1 in a closed separable subspace X0 of X where
f takes its values. By the Hahn–Banach theorem, for every k ⩾ 1 there is a unit vector
x∗k ∈ X∗ such that |⟨xk,x∗k⟩|= ∥xk∥. Then for all k ⩾ 1 we have supn⩾1 |⟨xk,x∗n⟩|= ∥xk∥,
and by a simple approximation argument this implies that supn⩾1 |⟨x,x∗n⟩| = ∥x∥ for all
x ∈ X0. Then, for all x0 ∈ X0,

ω 7→ ∥ f (ω)− x0∥= sup
n⩾1
|⟨ f (ω)− x0,x∗n⟩|

is a measurable function. Now the result follows from Theorem 1.47.

Theorem 4.19 is accompanied by the following uniqueness result.

Proposition 4.20. Let (Ω,F,µ) be a measure space. If f : Ω→ X is a strongly measur-
able function and for all x∗ ∈ X∗ we have ⟨ f ,x∗⟩= 0 µ-almost everywhere, then f = 0
µ-almost everywhere.

In the same way one proves that if ⟨ f ,x∗⟩ = 0 pointwise for all x∗ ∈ X∗, then f = 0
pointwise.

Proof Let (x∗n)n⩾1 be a sequence in X∗ separating the points of a closed subspace X0

in which f takes its values; such a sequence exists by the argument in the proof of
Theorem 4.19. Since ⟨ f ,x∗n⟩= 0 outside a µ-null set Nn, we conclude that f = 0 on the
complement of the µ-null set

⋃
n⩾1 Nn.

Corollary 4.11 has the interesting consequence that every Banach space can be iso-
metrically identified with a closed subspace of the bi-dual X∗∗ := (X∗)∗ in a natural
way. More specifically, given an element x ∈ X we define a mapping Jx : X∗→K by

Jx(x∗) := ⟨x,x∗⟩.

It is clear that this mapping is bounded and therefore it defines an element of the bi-dual
X∗∗. By the corollary, its norm is given by

∥Jx∥= sup
∥x∗∥⩽1

|⟨x∗,Jx⟩|= sup
∥x∗∥⩽1

|⟨x,x∗⟩|= ∥x∥,

and therefore the mapping J : x 7→ Jx is isometric. It is also linear, and therefore we have
proved:

Proposition 4.21 (Isometric embedding into the bi-dual). The operator J is an isometric
embedding of X into X∗∗.
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The image of X under J is closed in X∗∗; this is immediate from the fact that J is
isometric. It may happen that J(X) is a proper subspace of X∗∗. For instance, the bi-
dual of c0 is ℓ∞. Examples of Banach spaces for which we have J(X) = X∗∗ include all
Hilbert spaces and the spaces ℓp and Lp(Ω) for 1 < p < ∞. Spaces with this property are
called reflexive and enjoy some pleasant properties, some of which will be discussed in
Section 4.7.b.

We conclude this section by filling in a detail that was left open in our treatment of
the duality of ℓp, namely, that the duality (ℓp)∗ ≂ ℓq with 1

p +
1
q = 1, which has been

shown to hold for 1 ⩽ p < ∞ in Section 4.1.b, does not hold for p = ∞.
Consider the closed subspace Y of ℓ∞ consisting of all convergent sequences, and

define y∗ ∈ Y ∗ as

⟨y,y∗⟩ := lim
n→∞

yn

for y = (yn)n⩾1 ∈Y . Let x∗ ∈ (ℓ∞)∗ be any Hahn–Banach extension of y∗. We claim that
there exists no z ∈ ℓ1 such that ⟨z,x⟩= ⟨x,x∗⟩ for all x ∈ ℓ∞. Indeed, let z ∈ ℓ1 be given.
Given 0 < ε < 1 we can choose N ⩾ 1 so large that ∑n>N |zn| < ε . Consider now the
sequence xN := (0,0, . . . ,0,1,1,1, . . .) ∈ Y , with N zeroes at the beginning. Then

⟨xN,x∗⟩= ⟨xN,y∗⟩= lim
n→∞

xN
n = 1

while on the other hand

|⟨z,xN⟩|=
∣∣∣∑
n⩾1

znxN
n
∣∣= ∣∣∣∑

n>N
zn

∣∣∣⩽ ∑
n>N
|zn|< ε < 1.

This shows that ⟨z,xN⟩ ̸= ⟨xN ,x∗⟩.

4.3 Adjoint Operators

The Hahn–Banach theorem will now be used to show that when X and Y are Banach
spaces and T ∈L (X ,Y ) is a bounded operator, there exists a unique bounded operator
T ∗ ∈L (Y ∗,X∗) of norm ∥T ∗∥= ∥T∥ such that

⟨T x,y∗⟩= ⟨x,T ∗y∗⟩, x ∈ X , y∗ ∈ Y ∗.

When X and Y are Hilbert spaces, the Riesz representation theorem will be used to
prove the existence of a unique bounded operator T ⋆ ∈L (Y,X) of norm ∥T ⋆∥ = ∥T∥
such that

(T x|y) = (x|T ⋆y), x ∈ X , y ∈ Y.
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4.3.a The Banach Space Adjoint

Let X and Y be Banach spaces.

Proposition 4.22. For every bounded operator T ∈ L (X ,Y ) there exists a unique
bounded operator T ∗ ∈L (Y ∗,X∗) such that

⟨T x,y∗⟩= ⟨x,T ∗y∗⟩, x ∈ X , y∗ ∈ Y ∗. (4.6)

Furthermore,

∥T ∗∥= ∥T∥.

Proof The idea is to take the left-hand side of (4.6) as a definition for the operator
defined by the right-hand side. More precisely, for any given y∗ ∈ Y ∗ we may define a
linear mapping T ∗y∗ : X →K by

(T ∗y∗)x := ⟨T x,y∗⟩.

This mapping is bounded, of norm ∥T ∗y∗∥⩽ ∥T∥∥y∗∥, since

|(T ∗y∗)x|⩽ ∥T x∥∥y∗∥⩽ ∥T∥∥x∥∥y∗∥.

Accordingly T ∗y∗ defines an element of X∗. The resulting mapping T ∗ : Y ∗→ X∗ which
maps y∗ ∈ Y ∗ to the element T ∗y∗ ∈ X∗ is linear. By the above estimate T ∗ is bounded,
of norm ∥T ∗∥ ⩽ ∥T∥. It is clear from the definitions that ⟨T x,y∗⟩ = ⟨x,T ∗y∗⟩ for all
x ∈ X and y∗ ∈ Y ∗.

Turning to uniqueness, if S : Y ∗→ X∗ is an operator satisfying ⟨T x,y∗⟩= ⟨x,Sy∗⟩ for
all x ∈ X and y∗ ∈ Y ∗, then ⟨x,T ∗y∗⟩= ⟨x,Sy∗⟩ for all x ∈ X and y∗ ∈ Y ∗, so T ∗y∗ = Sy∗

for all y∗ ∈ Y ∗, and so T ∗ = S.
Finally,

∥T ∗∥= sup
∥y∗∥⩽1

∥T ∗y∗∥= sup
∥y∗∥⩽1

sup
∥x∥⩽1

|⟨x,T ∗y∗⟩|

= sup
∥x∥⩽1

sup
∥y∗∥⩽1

|⟨T x,y∗⟩|= sup
∥x∥⩽1

∥T x∥= ∥T∥,

using Corollary 4.11 in the penultimate step.

It is clear that I∗X = IX∗ , where IX and IX∗ are the identity operators on X and X∗,
respectively. For all T1,T2 ∈L (X ,Y ) and c1,c2 ∈K we have

(c1T1 + c2T2)
∗ = c1T ∗1 + c2T ∗2

and for all T ∈L (X ,Y ) and S ∈L (Y,Z) we have

(S◦T )∗ = T ∗ ◦S∗.

Definition 4.23 (Adjoint operator). The bounded operator T ∗ is called the adjoint of T .
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Example 4.24. Let X = Kn, Y = Km, and let A ∈ L (Kn,Km). With respect to the
standard unit bases we represent A as an m× n matrix with coefficients ai j ∈ K. With
respect to the same basis, and using the identification ξ ↔ φξ of Section 4.1.a, its adjoint
A∗ is represented as the n×m matrix with coefficients a ji. Stated differently, the matrix
associated with A∗ is the transpose of the matrix associated with A.

Example 4.25. The adjoint of the kernel operator Tk on L2(0,1) given by

Tk f (t) :=
∫ 1

0
k(t,s) f (s)ds,

where we assume that k ∈ L2((0,1)× (0,1)) (see Example 1.30) is the kernel operator
Tk∗ on L2(0,1) given by

Tk∗g(t) =
∫ 1

0
k∗(t,s)g(s)ds with k∗(t,s) = k(s, t).

Example 4.26. Let 1 ⩽ p < ∞ and 1
p +

1
q = 1. The adjoint of the left (right) shift on ℓp

is the right (left) shift on ℓq. The adjoint of the left (right) translation on Lp(R) is the
right (left) translation on Lq(R).

As a first application we prove three simple duality results:

Proposition 4.27. Let X be a Banach space. Then:

(1) if i : X → Y is an (isometric) isomorphism of X onto another Banach space Y , then
the adjoint operator i∗ : Y ∗→ X∗ is an (isometric) isomorphism of their duals.

(2) if Y is a closed subspace of X and i : Y → X is the inclusion mapping, then the
adjoint operator i∗ : X∗→ Y ∗ is the restriction mapping given by i∗x∗ = x∗|Y ;

(3) If X admits a direct sum decomposition

X = X0⊕X1

with associated projections π0 and π1, then X∗ admits a direct sum decomposition

X∗ = X∗0 ⊕X∗1

with associated projections π∗0 and π∗1 . More precisely, we have the direct sum de-
composition X∗ = π∗0 X∗⊕π∗1 X∗, and for k = 0,1 the mapping π∗k x∗ 7→ i∗kx∗ defines
an isometric isomorphisms from π∗k X∗ onto X∗k .

Proof The proofs are routine. We leave the proofs of (1) and (2) to the reader and write
out a proof of (3). For k ∈ {0,1} we have, writing x = x0 + x1 along the decomposition
X = X0⊕X1,

∥π∗k x∗∥= sup
∥x∥⩽1

|⟨πkx,x∗⟩|= sup
∥xk∥⩽1

|⟨xk,x∗⟩|= sup
∥xk∥⩽1

|⟨ikxk,x∗⟩|= ∥i∗kx∗∥.
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This establishes the isometric isomorphisms of the second part of (3). The other state-
ments are immediate consequences.

We conclude with a simple observation about the bi-adjoint operator T ∗∗ := (T ∗)∗.
Identifying X with a closed subspace of X∗∗ by means of the natural isometric embed-
ding J : X → X∗∗ (see Proposition 4.21), the restriction of T ∗∗ to X equals T . Indeed,
denoting by J : X → X∗∗ the natural embedding, the claim follows from

⟨y∗,T ∗∗Jx⟩= ⟨T ∗y∗,Jx⟩= ⟨x,T ∗y∗⟩= ⟨T x,y∗⟩= ⟨y∗,JT x⟩

so that T ∗∗Jx = JT x as claimed.

4.3.b The Hilbert Space Adjoint

Let H and K be Hilbert spaces. If T ∈L (H,K) is a bounded operator, its adjoint T ∗ ∈
L (K∗,H∗) is a bounded operator acting in the reverse direction between their duals.
By the Riesz representation theorem, the duals H∗ and K∗ can be canonically identified
with H and K. Under these identifications, the adjoint of an operator T ∈L (H,K) can
be re-interpreted as an operator acting from K to H. Although the identifications are
conjugate-linear, as an operator from K to H the adjoint of T is nevertheless linear. This
is the content of the next proposition which, incidentally, admits a straightforward direct
proof which does not call upon the Hahn–Banach theorem.

Proposition 4.28. For every bounded operator T ∈ L (H,K) there exists a unique
bounded operator T ⋆ ∈L (K,H) such that

(T x|y) = (x|T ⋆y), x ∈ H, y ∈ K.

Furthermore,

∥T∥= ∥T ⋆∥= ∥T ⋆T∥1/2.

Proof Let y ∈ K be fixed and define a mapping φ = φy,T : H→K by

φ(x) := (T x|y).

From |φ(x)| ⩽ ∥T x∥∥y∥ ⩽ ∥T∥∥x∥∥y∥ we see that φ is bounded with norm at most
∥T∥∥y∥. Hence by the Riesz representation theorem there is a unique element T ⋆y ∈ H
with norm ∥T ⋆y∥= ∥φ∥ such that

φ(x) = (x|T ⋆y).

Combining the two identities we obtain (T x|y) = (x|T ⋆y).
We must show that the mapping T ⋆ : y 7→ T ⋆y is linear and bounded. Additivity is

easy and homogeneity with respect to scalar multiplication follows from

(x|T ⋆(cy)) = (T x|cy) = c(T x|y) = c(x|T ⋆y) = (x|cT ⋆y),
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which implies T ⋆(cy) = cT ⋆y.
Next we show that T ⋆ is bounded. This follows from what we already know. Indeed,

we have

∥T ⋆y∥= ∥φ∥⩽ ∥T∥∥y∥,

so T ⋆ is bounded of norm ∥T ⋆∥⩽ ∥T∥. Writing T ⋆⋆ := (T ⋆)⋆, from

(T ⋆⋆x|y) = (y|T ⋆⋆x) = (T ⋆y|x) = (x|T ⋆y) = (T x|y)

it follows that T ⋆⋆x = T x for all x ∈ H and therefore T ⋆⋆ = T . Hence, by what we just
proved applied to T ⋆, ∥T∥ = ∥T ⋆⋆∥ ⩽ ∥T ⋆∥. We conclude that equality holds: ∥T∥ =
∥T ⋆∥.

Next we prove the identity ∥T ⋆T∥1/2 = ∥T∥. Clearly ∥T ⋆T∥⩽ ∥T∥∥T ⋆∥= ∥T∥2, and
in the converse direction we have

∥T ⋆T∥= sup
∥x∥⩽1

∥T ⋆T x∥= sup
∥x∥⩽1

sup
∥y∥⩽1

|(T ⋆T x|y)|

= sup
∥y∥⩽1

sup
∥x∥⩽1

|(T ⋆T x|y)|

= sup
∥y∥⩽1

sup
∥x∥⩽1

|(T x|Ty)|

⩾ sup
∥x∥⩽1

|(T x|T x)|= sup
∥x∥⩽1

∥T x∥2 = ∥T∥2.

Finally we prove uniqueness. If U ∈L (K,H) is bounded and (x|Uy) = (T x|y) for
all x ∈ H and y ∈ K, then Uy = T ⋆y for all y ∈ K, so U = T ⋆.

By definition we have

(T x|y) = (x|T ⋆y)

for all x,y ∈ H. Symmetrically, we also have

(T ⋆x|y) = (x|Ty).

This can be seen by noting that (T ⋆x|y) = (y|T ⋆x) = (Ty|x) = (x|Ty).
It is clear that I⋆ = I and for all T,U ∈L (H) and c ∈K we have

(T +U)⋆ = T ⋆+U⋆, (cT )⋆ = cT ⋆,

and, as we have seen in the proof of Proposition 4.28,

T ⋆⋆ = T.

Definition 4.29 (Hilbert space adjoint). The bounded operator T ⋆ is called the Hilbert
space adjoint of T .
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The relation between the Hilbert space adjoint T ⋆ (which is a bounded operator on
H) and the adjoint operator T ∗ (which is a bounded operator on the dual space H∗) is
given by

T ∗ψh = ψT ⋆h

as elements of H∗, where ψh and ψT ⋆h are the functionals in H∗ associated with h and
T ⋆h, respectively. Indeed, this follows from

⟨x,T ∗ψh⟩= ⟨T x,ψh⟩= (T x|h) = (x|T ⋆h) = ⟨x,ψT ⋆h⟩.

Here, the brackets ⟨·, ·⟩ denote the duality between H and its dual H∗.

Example 4.30. Here are some examples of Hilbert space adjoints. They should be com-
pared with Examples 4.24, 4.25, and 4.26, respectively.

(i) As in Example 4.24, let A ∈L (Kn,Km) be represented as an m× n matrix with
coefficients ai j ∈K. Viewing Kn and Km as finite-dimensional Hilbert spaces, its
Hilbert space adjoint A⋆ may be represented as the n×m matrix with coefficients
a ji. Stated differently, the matrix associated with A⋆ is the Hermitian transpose of
the matrix associated with A.

(ii) The Hilbert space adjoint of the kernel operator Tk on L2(0,1) of Example 4.25
is the kernel operator Tk⋆ on L2(0,1) given by

Tk⋆g(t) =
∫ 1

0
k⋆(t,s)g(s)ds with k⋆(t,s) = k(s, t).

(iii) The adjoint of the left (right) shift in ℓ2(Z) is the right (left) shift. Similarly, the
adjoint of the left (right) translation in L2(R) is the right (left) translation.

For later reference we state a useful decomposition result. Versions for Banach spaces
are given in Proposition 5.14 and Theorem 5.15.

Proposition 4.31. If T ∈L (H,K) is a bounded operator, then H and K admit orthog-
onal decompositions

H = N(T )⊕R(T ⋆), K = N(T ⋆)⊕R(T ).

In particular,

(1) T is injective if and only if T ⋆ has dense range;
(2) T has dense range if and only if T ⋆ is injective.

Proof If x⊥ R(T ⋆), then (T x|y) = (x|T ⋆y) = 0 for all y ∈ K and therefore T x = 0, so
x ∈ N(T ). Conversely, if x ∈ N(T ), then (x|T ⋆y) = (T x|y) = 0 for all y ∈ K implies that
x⊥ R(T ⋆) and hence x⊥ R(T ⋆). This proves the orthogonal decomposition for H. The
decomposition for K follows from it by applying it to T ⋆ and using that T ⋆⋆ = T .
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4.4 The Hahn–Banach Separation Theorem

In what follows, X is a normed space. Corollary 4.12 can be interpreted as a separation
theorem, in that it guarantees the existence of a functional separating a closed subspace
from a given element not contained in it. The following result provides a far-reaching
generalisation:

Theorem 4.32 (Hahn–Banach separation theorem). Let C and D be disjoint nonempty
convex sets in X, with C open. Then there exists an x∗ ∈ X∗ such that the sets ⟨C,x∗⟩
and ⟨D,x∗⟩ are disjoint.

Proof We prove the theorem in three steps.

Step 1 – First we prove the theorem for the real scalar field and D = {x0}. Replacing
C and x0 by C− y0 and x0− y0 for some fixed y0 ∈C, we may assume without loss of
generality that 0 ∈C.

Define the Minkowski functional of C as the mapping λC : X → [0,∞) given by

λC(x) := inf{t > 0 : t−1x ∈C}.

Since C is convex, open, and contains 0, we have λC(x) < 1 if and only if x ∈ C. We
claim that λC enjoys the following two properties:

(i) λC(x+ y)⩽ λC(x)+λC(y) for all x,y ∈ X ;
(ii) λC(tx) = tλC(x) for all t ⩾ 0.

To prove (i), fix ε > 0 and let s, t > 0 be such that s−1x ∈ C and t−1y ∈ C, with s <
λC(x)+ ε and t < λC(x)+ ε . Then

(s+ t)−1(x+ y) =
s

s+ t
s−1x+

t
s+ t

t−1y

is a convex combination of the elements s−1x, t−1y ∈ C and therefore belongs to C. It
follows that

λC(x+ y)⩽ s+ t ⩽ λC(x)+λC(y)+2ε.

Since ε > 0 was arbitrary, this establishes (i). Assertion (ii) is obvious.
We now apply Theorem 4.7 to the linear span W of x0 and the linear mapping φ :

W → R given by φ(tx0) := t for t ∈ R. In view of λC(x0)⩾ 1, for all t ⩾ 0 it satisfies

φ(tx0) = t ⩽ tλC(x0) = λC(tx0).

Hence we may apply the theorem and obtain a linear mapping x∗ : X → R extending φ

which satisfies x∗(x) ⩽ λC(x) for all x ∈ X . For all x ∈C it satisfies x∗(x) ⩽ λC(x) < 1
and for all x ∈ −C it satisfies −x∗(x) = x∗(−x) ⩽ λC(−x) = λ−C(x) < 1. It follows
that |x∗(x)| < 1 for all x in the open set C∩−C containing 0. This proves that x∗ ∈ X∗.
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Since ⟨x,x∗⟩⩽ λC(x)< 1 for all x ∈C and ⟨x0,x∗⟩= φ(x0) = 1, this functional has the
required properties.

Step 2 – In the case of complex scalars and D = {x0}, upon restricting scalar multipli-
cation to the reals, Step 1 provides us with a real-linear mapping x∗R : X → R such that
|x∗R(x)|< 1 for all x∈C∩−C and x∗R(x0) ̸∈ x∗R(C). Then, as in the proof of Theorem 4.8,
x∗(x) := x∗R(x)− ix∗R(ix) is complex-linear and bounded, and satisfies x∗(x0) ̸∈ x∗(C) (by
comparing real parts).

Step 3 – Now we prove the general case. The set C−D is open and convex, and from
C∩D = ∅ it follows that 0 ̸∈C−D. From Step 2 we obtain a functional x∗ ∈ X∗ such
that 0 ̸∈ ⟨C−D,x∗⟩, which is the same as saying that ⟨C,x∗⟩∩ ⟨D,x∗⟩=∅.

Corollary 4.33. Suppose (xn)n⩾1 is a sequence in X and suppose that there exists an
x ∈ X such that

lim
n→∞
⟨xn,x∗⟩= ⟨x,x∗⟩, x∗ ∈ X∗.

Then there exists a sequence (yn)n⩾1 in the convex hull of (xn)n⩾1 such that

lim
n→∞

yn = x

with convergence in norm.

Proof Denote by D the closure of the convex hull of (xn)n⩾1. Our task is to prove that
x∈D. Suppose that this is not the case. Then Theorem 4.32 provides us with a functional
x∗ ∈ X∗ separating D from (a small enough open ball C around) x. This functional also
separates (xn)n⩾1 from x, in contradiction to the assumptions of the corollary.

As an application of the Hahn–Banach separation theorem we prove the following
result.

Theorem 4.34. For all x∗∗ ∈ X∗∗, x∗1, . . . ,x
∗
N ∈ X∗, and ε > 0 there exists an x ∈ X such

that ∥x∥< ∥x∗∗∥+ ε and

⟨x,x∗n⟩= ⟨x∗n,x∗∗⟩, n = 1, . . . ,N.

The proof uses an elementary version of the open mapping theorem (Theorem 5.8):

Lemma 4.35. Let T be a bounded operator from a normed space X onto a finite-
dimensional normed space Y . Then T maps open sets to open sets.

Proof Let (yn)
d
n=1 be a basis for Y and choose a sequence (xn)

d
n=1 in X such that

T xn = yn for n = 1, . . . ,d. Let X0 denote the linear span of (xn)
d
n=1. The restriction

T0 := T |X0 : X0→Y is bounded and bijective. By Corollary 1.37, its inverse is bounded.
This implies that T0 maps open sets to open sets.
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Now let U be open in X . For every u ∈U let ru > 0 be such that BX0(u;ru) = u+
ruBX0 ⊆U . Then U =

⋃
u∈U (u+ ruBX0) and therefore

T (U) =
⋃

u∈U

(Tu+ ruT (BX0))

is open since T (BX0) = T0(BX0) is open.

Proof of Theorem 4.34 We prove the theorem in two steps.

Step 1 – Let x∗1, . . . ,x
∗
N ∈ X∗ and c1, . . . ,cN ∈K be given. In this step we prove that if

there exists a constant M ⩾ 0 such that for all λ1, . . . ,λN ∈K we have∣∣∣ N

∑
n=1

λncn

∣∣∣⩽ M
∥∥∥ N

∑
n=1

λnx∗n
∥∥∥, (4.7)

then there exists an x ∈ X such that ∥x∥< M+ ε and

⟨x,x∗n⟩= cn, n = 1, . . . ,N.

Consider the mapping T : x 7→ (⟨x,x∗n⟩)N
n=1 from X into KN. We must prove that

T (B(0;M + ε)), which by Lemma 4.35 is an open subset of the finite-dimensional
space R(T ), contains (cn)

N
n=1. Suppose, for a contradiction, that this is not true. Then

T (B(0;M+ε)) is an open subset of KN not containing (cn)
N
n=1. The Hahn–Banach sep-

aration theorem provides us with a sequence (λn)
N
n=1 ∈KN such that

N

∑
n=1

λncn ̸∈
{〈

x,
N

∑
n=1

λnx∗n
〉

: ∥x∥< M+ ε

}
.

Multiplying with an appropriate scalar of modulus one, it follows that also∣∣∣ N

∑
n=1

λncn

∣∣∣ ̸∈ {〈x,
N

∑
n=1

λnx∗n
〉

: ∥x∥< M+ ε

}
.

By scaling, the right-hand side set contains the interval [0,M∥∑
N
n=1 λnx∗n∥]. This contra-

dicts the assumption (4.7).

Step 2 – Returning to the assumptions of the theorem, fix x∗∗ ∈ X∗∗ and x∗1, . . . ,x
∗
N ∈

X∗, and set cn := ⟨x∗n,x∗∗⟩ for n = 1, . . . ,N. For all λ1, . . . ,λN ∈K we have

∣∣∣ N

∑
n=1

λncn

∣∣∣= ∣∣∣〈 N

∑
n=1

λnx∗n,x
∗∗
〉∣∣∣⩽ ∥∥∥ N

∑
n=1

λnx∗n
∥∥∥∥x∗∗∥,

so the assumptions of Step 1 are satisfied with M = ∥x∗∗∥.
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4.5 The Krein–Milman Theorem

Extreme points play an important role in many applications of Functional Analysis. For
instance, in Quantum Mechanics pure states are the extreme points of the convex set of
all states (see Chapter 15).

Definition 4.36 (Extreme points). An extreme point of a convex subset C of a vector
space is an element v∈C such that if v = (1−λ )v0+λv1 with v0,v1 ∈C and 0 < λ < 1,
then v0 = v1 = v.

Stated differently, extreme points are points of C which cannot be realised in a non-
trivial way as a convex combination of other points of C.

Example 4.37. Let C denote the set of all probability measures on a given measure
space (Ω,F,µ). Viewing C as a closed convex subset of M(Ω), the Banach space of K-
valued measures on (Ω,F ), we claim that a probability measure µ is an extreme point
of C if and only if µ is atomic, that is, whenever A = A0∪A1 with disjoint A0,A1 ∈F,
then min{µ(A0),µ(A1)}= 0.

To prove the claim, suppose first that µ ∈C and µ = (1−λ )µ0+λ µ1 with µ0,µ1 ∈C
and 0 < λ < 1. If µ0 ̸= µ1, there is a set A ∈F such that µ0(A) ̸= µ1(A). Interchanging
µ0 and µ1 if necessary, we may assume that 0 ⩽ µ0(A) < µ1(A) ⩽ 1. Then µ1(A) > 0
implies µ(A) > 0, and µ0(∁A) > 0 implies µ(∁A) > 0, and therefore µ is not atomic.
This proves that every atomic measure is an extreme point of C.

Conversely, if µ ∈C is not atomic, then there exists a set A ∈F such that µ(A)> 0
and µ(∁A)> 0. Consider the probability measures µ0,µ1 ∈C given by

µ0(B) := (µ(A))−1
µ(B∩A), µ1(B) := (µ(∁A))−1

µ(B∩∁A), B ∈F.

With λ := µ(∁A) we have 0 < λ < 1 and µ = (1−λ )µ0 +λ µ1, so µ is not extreme.
As a special case, if K is a compact Hausdorff space, the extreme points of the set

of all Borel probability measures on K are the Dirac measures supported on K. To see
this, suppose that µ is atomic and let S be its support, that is, S is the complement of
the union of all open sets of µ-measure zero. If S is not a singleton, then it contains two
distinct points, say x0 and x1. Since K is Hausdorff, they are contained in disjoint open
sets U0 and U1. By the definition of support, µ(U0) > 0 and µ(U1) > 0, and µ is not
atomic. This proves that S is a singleton, say S = {x}, and therefore µ = δx.

Closed convex sets need not have any extreme points:

Example 4.38. In L1(0,1), the closed convex set

C = { f ∈ L1(0,1) : f ⩾ 0, ∥ f∥1 = 1}

has no extreme points. Indeed, let f ∈C. The mapping φ(δ ) := ∥1(0,δ ) f∥1 is continuous
from [0,1] to [0,1], and satisfies φ(0) = 0 and φ(1) = 1. Hence there exists 0 < δ < 1
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such that φ(δ ) = 1
2 . Then f = 1

2 g+ 1
2 h, where g,h ∈ C are given by g = 21(0,δ ) f and

h = 21(δ ,1) f , so f is not an extreme point of C.

As an application of the Hahn–Banach theorem we can prove the following result
about the existence of extreme points. Recall that the (closed) convex hull of a subset S
of a Banach space is the smallest (closed) convex set containing S.

Theorem 4.39 (Krein–Milman). Every compact convex subset of a Banach space is the
closed convex hull of its extreme points.

Proof Let K be a compact convex subset of the Banach space X . We first prove the
existence of extreme points of K, and then prove that K is the closed convex hull of its
extreme points.

A face in K is a nonempty closed convex subset F of K whose elements can only
be realised as convex combinations of elements in F , that is, whenever x ∈ F satisfies
x = (1−λ )x0+λx1 with x0,x1 ∈K and 0 < λ < 1, then x0,x1 ∈ F . We make two useful
observations:

(i) x ∈ K is an extreme point of K if and only if {x} is a face of K;
(ii) if F is a face of K and F ′ is a face of F , then F ′ is a face of K.

Claim (i) is evident. For (ii), if x ∈ F ′ is given as x = (1−λ )x0 +λx1 with x0,x1 ∈ K
and 0 < λ < 1, then x0,x1 ∈ F since x ∈ F and F is a face of K. Then x0,x1 ∈ F ′ since
F ′ is a face of F .

Step 1 – Let K denote the collection of faces in K. This collection is nonempty, for it
contains K. We partially order K by declaring K1 ⩽ K2 if K2 ⊆ K1. By the finite inter-
section property (see Appendix C), any totally ordered subset L of K has nonempty
intersection; the singletons consisting of elements in this intersection are upper bounds
for L . Hence we can apply Zorn’s lemma and obtain that K has a maximal element,
say F . We claim that F is a singleton, say F = {x}. By (i), this means that x is an extreme
point of K.

To prove the claim, assume the contrary and let x0,x1 ∈ F be two distinct points. By
the Hahn–Banach theorem there exists an x∗ ∈ X∗ such that Re⟨x0,x∗⟩ ≠ Re⟨x1,x∗⟩. Let

F0 :=
{

x ∈ F : Re⟨x,x∗⟩= inf
y∈F

Re⟨y,x∗⟩
}
.

Then F0 is a proper closed subset of F , which is nonempty since the compactness of
F implies that the infimum is a minimum. If an element x ∈ F0 can be represented as
x = (1−λ )x′+λx′′ with x′,x′′ ∈ F and 0 < λ < 1, then

(1−λ )Re⟨x′,x∗⟩+λ Re⟨x′′,x∗⟩= inf
y∈F

Re⟨y,x∗⟩.

If x′ ̸∈ F0, then Re⟨x′,x∗⟩> infy∈F Re⟨y,x∗⟩. Since also Re⟨x′′,x∗⟩⩾ infy∈F Re⟨y,x∗⟩, the
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above inequality cannot hold. The same contradiction is reached if x′′ ̸∈F0. We conclude
that x′,x′′ ∈ F0 and F0 is a face of F .

Now (ii) implies that F0 is a face of K. Since F0 ⪈ F , this contradicts the maximality
of F . This completes the proof of the claim that F is a singleton. It follows that K has
an extreme point.

Step 2 – Let L denote the closed convex hull of all extreme points of K. We wish to
show that L = K. Reasoning by contradiction, suppose that L is a proper subset of K
and fix an element x0 ∈ K \L. By the Hahn–Banach separation theorem (Theorem 4.32)
there exists an x∗ ∈ X∗ such that ⟨x0,x∗⟩ ̸∈ ⟨L,x∗⟩. Multiplying x∗ with an appropriate
scalar if necessary, we may assume that

Re⟨x0,x∗⟩< inf
y∈L

Re⟨y,x∗⟩.

As in Step 1 we see that the set

F :=
{

x ∈ K : Re⟨x,x∗⟩= inf
y∈K

Re⟨y,x∗⟩
}

is a nonempty face of K. Moreover, Step 1 applied to F shows that F has an extreme
point x1. By (i) and (ii), x1 is also an extreme point of K. On the other hand from

Re⟨x1,x∗⟩= inf
y∈K

Re⟨y,x∗⟩⩽ Re⟨x0,x∗⟩< inf
y∈L

Re⟨y,x∗⟩

we infer that x1 ̸∈ L. Since L contains all extreme points of K we have arrived at a
contradiction.

4.6 The Weak and Weak∗ Topologies

Some of the more advanced applications of the Hahn–Banach theorem can be conve-
niently formulated in terms of certain topologies generated by bounded functionals.
The two most important ones are the weak topology of a Banach space and the weak∗

topology of its dual.

4.6.a Definition and Elementary Properties

Definition 4.40 (Weak topologies). Let V and W be vector spaces and let β :V×W→K
be a bilinear mapping. The weak topology of V generated by W is the smallest topology
τ on V with the property that the linear mapping v 7→ β (v,w) is continuous for all w∈W .

This topology is obtained as the intersection of all topologies in V for which all
linear mappings v 7→ β (v,w), w ∈W , are continuous. The family of topologies with this
property is nonempty, for it always contains the power set topology of V .
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By necessity, the weak topology τ must contain every set of the form

Uv0,w0,ε := {v ∈V : |β (v− v0,w0)|< ε},

noting that this set is the inverse image under the continuous mapping v 7→ β (v,w0) of
the open ball B(β (v0,w0);ε) in K.

We claim that τ coincides with the topology τ ′ generated by the sets Uv0,w0,ε , where
v0, w0, and ε range over V , W , and (0,∞) respectively. The observation just made im-
plies that τ ′ ⊆ τ . In the opposite direction, for every w ∈W the inverse under β (·,w) of
every open ball belongs to τ ′, so every β (·,w) is continuous with respect to τ ′. Since τ

is the smallest topology with this property we have τ ⊆ τ ′. This establishes the claim.
It follows from the claim that a set U ⊆V belongs to τ if and only if it can be written

as a union of finite intersections of sets of the form Uv0,w0,ε . Indeed, the collection τ ′′

of sets that can be written this way is a topology which contains every set Uv0,w0,ε , and
therefore we have τ ′ ⊆ τ ′′. By the preceding observation, this means that τ ⊆ τ ′′. In the
converse direction, the fact that topologies are closed under taking unions and finite
intersections implies that every set in τ ′′ belongs to τ .

Proposition 4.41. In the above setting, a sequence (vn)n⩾1 converges to v with respect
to τ if and only if

lim
n→∞

β (vn− v,w) = 0, w ∈W.

Proof The ‘only if’ part follows from the fact that if vn→ v with respect to τ , then for
all ε > 0 and w ∈W we have vn ∈Uv,w,ε for all large enough n. For the ‘if’ part we note
that if U ∈ τ contains v, then the observation preceding the statement of the proposition
allows us to find Uv(1),w(1),ε(1) , . . . ,Uv(k),w(k),ε(k) such that

x ∈
k⋂

j=1

Uv( j),w( j),ε( j) ⊆U.

Since we assume that β (vn− v,w( j))→ 0 for j = 1, . . . ,k, for large enough n we have
vn ∈

⋂k
j=1 Uv( j),w( j),ε( j) and hence vn ∈U .

The duality between a Banach space and its dual leads to two special cases of interest:

Definition 4.42 (The weak and weak∗ topologies). Let X be a Banach space.

(i) The weak topology of X is the topology induced by X∗.
(ii) The weak∗ topology of X∗ is the topology induced by X .

It is implicit that in (i) we use the bilinear mapping from X × X∗ to K given by
(x,x∗) 7→ ⟨x,x∗⟩; in (ii) we use the bilinear mapping from X∗×X to K given by (x∗,x) 7→
⟨x,x∗⟩. For these topologies, Proposition 4.41 takes the following form:



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
152 Duality

Corollary 4.43. Let X be a Banach space. The following assertions hold:

(1) a sequence (xn)n⩾1 in X converges to x ∈ X with respect to the weak topology of X
if and only if limn→∞⟨xn− x,x∗⟩= 0 for all x∗ ∈ X∗;

(2) a sequence (x∗n)n⩾1 in X∗ converges to x∗ ∈ X∗ with respect to the weak∗ topology
of X∗ if and only if limn→∞⟨x,x∗n− x∗⟩= 0 for all x ∈ X .

Convergence with respect to the weak and weak∗ topologies will be referred to as
weak convergence and weak∗ convergence, respectively. The following result is imme-
diate from the Hahn–Banach separation theorem:

Proposition 4.44 (Closed convex sets are weakly closed). Every closed convex set in a
Banach space is closed in the weak topology.

The next result characterises functionals that are continuous with respect to the weak
and weak∗ topologies.

Proposition 4.45. Let X be a Banach space. The following assertions hold:

(1) a linear mapping φ : X →K is continuous with respect to the weak topology if and
only if it belongs to X∗;

(2) a linear mapping φ : X∗ → K is continuous with respect to the weak∗ topology if
and only if it belongs to X, that is, there exists an x ∈ X such that φ(x∗) = ⟨x,x∗⟩
for all x∗ ∈ X∗.

Proof (1): We only need to prove the ‘only if’ part. If φ is weakly continuous, then
φ−1(BK) contains a weakly open set containing the origin. Since weakly open sets are
open, this set contains a ball B(0;r) with r > 0. This means that φ ∈ X∗ and ∥φ∥⩽ 1/r.

(2): Again we only need to prove the ‘only if’ part. If φ is weakly continuous, then
φ−1(BK) contains a weak∗ open set U containing the origin. Since weak∗ open sets are
weakly open, part (1) shows that φ ∈ X∗∗. The set U contains a set of the form

U ′ := {x∗ ∈ X∗ : |⟨x j,x∗⟩|< ε, j = 1, . . . ,k}

for suitable ε > 0, k ⩾ 1, and x1, . . . ,xk ∈ X . Let X0 denote the span of x1, . . . ,xk. This
space is finite-dimensional and therefore closed, and by Proposition 4.16 it is comple-
mented. The proof of this proposition shows that X0 is the range of a projection π0. Let
π1 := I−π0 be the complementary projection and denote by X1 its range.

Viewing π0 as a bounded operator from X onto X0, its second adjoint π∗∗0 is a bounded
operator from X∗∗ to X∗∗0 . The space X0, being finite-dimensional, can be identified with
its second dual, the identification being given by the natural inclusion mapping J : X0→
X∗∗0 which is surjective in this case (the details are spelled out in Example 4.57). Thus
we may identify π∗∗0 φ =: x with an element of X0. We will show that φ(x∗) = ⟨x,x∗⟩ for
all x∗ ∈ X∗.
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Let X∗ = R(π∗0 )⊕R(π∗1 ) be the direct sum decomposition associated with the adjoint
projections π∗0 and π∗1 . If x∗1 ∈ R(π∗1 ), then ⟨x j,x∗1⟩= 0 for all j = 1, . . . ,k, so ⟨x,x∗1⟩= 0.
By the definition of U ′ this implies that cx∗1 ∈ U ′ ⊆ φ−1(BK) for all c ∈ K, that is,
φ(cx∗1) ∈ BK for all c ∈K, and this is only possible if φ(x∗1) = 0. For all x∗ = x∗0 + x∗1 ∈
R(π∗0 )⊕R(π∗1 ) = X∗ we thus obtain

⟨x,x∗⟩= ⟨x,x∗0⟩= ⟨x∗0,π∗∗0 φ⟩= ⟨π∗0 x∗0,φ⟩= ⟨x∗0,φ⟩= ⟨x∗,φ⟩= φ(x∗).

We apply the second part of this proposition to prove a version of the Hahn–Banach
separation theorem for the weak∗ topology.

Proposition 4.46. If F is a weak∗ closed convex subset of X∗ and x∗0 ̸∈ F, then there
exists an element x0 ∈ X such that ⟨x0,x∗⟩ ̸∈ ⟨x0,F⟩.

Proof Suppose first that K = R. By definition of the weak∗ topology there exists a
weak∗ open set U of the form

U = {x∗ ∈ X∗ : |⟨x j,x∗⟩|< ε, j = 1, . . . ,k}

for suitable x1, . . . ,xk ∈ X and ε > 0, such that (x∗0 +U)∩F =∅. By the Hahn–Banach
separation theorem there exists an element x∗∗0 ∈ X∗∗ separating x∗0 +U from F . This
forces x∗∗0 to be bounded on U , for otherwise the convexity and symmetry of U implies
that ⟨U,x∗∗0 ⟩=R and then the set ⟨x∗0 +U,x∗∗0 ⟩ would contain the set ⟨F,x∗0⟩, contradict-
ing the choice of x∗∗0 .

Since x∗∗0 is bounded on U , x∗∗0 is continuous with respect to the weak∗ topology of
X∗. Hence by Proposition 4.45 it can be identified with an element x0 ∈ X . This element
has the desired properties.

This concludes the proof in the case K = R. If K = C we apply the result for real
scalars to the real Banach space XR obtained by restricting scalar multiplication to real
scalars.

Using the notation introduced in Definition 4.17 we have the following characterisa-
tion of weak and weak∗ closures of subspaces.

Proposition 4.47. Let X be a Banach space. The following assertions hold:

(1) for every subspace Y of X we have ⊥(Y⊥) = Y weak
= Y ;

(2) for every subspace Y of X∗ we have (⊥Y )⊥ = Y weak∗.

Proof (1): The inclusion ⊥(Y⊥) ⊇ Y weak follows from the easy observation that pre-
annihilators are weakly closed, and the equality Y weak

= Y is a consequence of Propo-
sition 4.44. To prove the inclusion ⊥(Y⊥)⊆Y , let x ̸∈Y . By Corollary 4.12 we can find
x∗0 ∈ Y⊥ such that ⟨x,x∗0⟩ ̸= 0. This means that x is not in the pre-annihilator of Y⊥.
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(2): This is proved in the same way, except that now we use Proposition 4.46.

4.7 The Banach–Alaoglu Theorem

We have seen in Chapter 1 that the closed unit ball of a Banach space is compact if and
only if the space is finite-dimensional. In this section we prove that the closed unit ball
of every dual Banach space is compact with respect to the weak∗ topology, and use this
to prove that a Banach space is reflexive if and only if its closed unit ball is compact
with respect to the weak topology.

4.7.a The Theorem

In preparation for the main result of this section, Theorem 4.50, we have the following
simple result. It extends Proposition 3.16 to separable Banach spaces.

Proposition 4.48. Let X be a separable Banach space and let (x∗n)n⩾1 be a bounded
sequence in the dual space X∗. Then there exists a subsequence (x∗nk

)k⩾1 and an x∗ ∈ X∗

such that

lim
k→∞
⟨x,x∗nk

⟩= ⟨x,x∗⟩, x ∈ X .

Proof Let (x j) j⩾1 be a countable set with dense linear span X0 in X . By a diagonal
argument, there exists a subsequence (x∗nk

)k⩾1 of (x∗n)n⩾1 such that the limit φ(x j) :=
limk→∞⟨x j,x∗nk

⟩ exists for all j ⩾ 1. Then, by linearity, the limit φ(x) := limk→∞⟨x,x∗nk
⟩

exists for all x ∈ X0. Clearly x 7→ φ(x) is linear, and from |φ(x)|⩽ supk⩾1 ∥x∥∥x∗nk
∥ we

see that φ is bounded as a mapping from X0 to K. Since X0 is dense in X , Proposition
1.18 implies that φ has a unique bounded extension of the same norm to all of X . Denot-
ing this extension also by φ , it follows from Proposition 1.19 that limk→∞⟨x,x∗nk

⟩= φ(x)
for all x ∈ X . Thus x∗ := φ has the required properties.

In contrast to the Hilbert space case considered in Proposition 3.16, the separability
assumption in Proposition 4.48 cannot be omitted:

Example 4.49. Consider the sequence (φn)n⩾1 of coordinate functionals x 7→ xn on
X = ℓ∞. Given a subsequence (φnk)k⩾1, let x ∈ ℓ∞ be any element such that xnk = (−1)k

for all k ⩾ 1. Then ⟨x,φnk⟩= (−1)k fails to converge as k→ ∞.

Proposition 4.48 can be viewed as a sequential version of the following theorem.

Theorem 4.50 (Banach–Alaoglu). The closed unit ball of every dual Banach space is
compact with respect to the weak∗ topology.
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Proof Let BK = {a∈K : |a|⩽ 1} and BX∗ = {x∗ ∈ X∗ : ∥x∗∥⩽ 1}, where X is a given
Banach space. In the remainder of the proof we think of BX∗ as endowed with the weak∗

topology inherited from X∗.
By Tychonov’s theorem (Theorem C.14), the product space

K := ∏
x∈X
∥x∥ ·BK

is compact with respect to the product topology. Denoting elements of K as k = (kx)x∈X ,
consider the mapping from φ : BX∗ → K given by

φ(x∗) := (⟨x,x∗⟩)x∈X . (4.8)

Let R denote its range. We first prove that R is a closed subset of K. To this end let r ∈ R.
As a first step we show that r is linear in the sense that a0rx0 +a1rx1 = ra0x0+a1x1 for all
a0,a1 ∈ K and x0,x1 ∈ X . Fix an arbitrary ε > 0. By the definitions of the weak∗ and
product topologies, the set

U =
{

k ∈ K : |kx0 − rx0 |< ε, |kx1 − rx1 |< ε, |ka0x0+a1x1 − ra0x0+a1x1 |< ε
}

is open in K and contains r, and therefore U intersects R. This means that there is an
x∗0 ∈ BX∗ such that (⟨x,x∗0⟩)x∈X ∈U , that is,

|⟨x0,x∗0⟩− rx0 |< ε, |⟨x1,x∗0⟩− rx1 |< ε, |⟨a0x0 +a1x1,x∗0⟩− ra0x0+a1x1 |< ε.

Then,

|a0rx0 +a1rx1 − ra0x0+a1x1 |⩽ |a0rx0 −a0⟨x0,x∗0⟩|+ |a1rx1 −a1⟨x1,x∗0⟩|
+ |a0⟨x0,x∗0⟩−a1⟨x1,x∗0⟩− ra0x0+a1x1 |

⩽ |a0|ε + |a1|ε + ε.

Since ε > 0 was arbitrary, this proves the linearity of r.
Next we prove that r = (⟨x,x∗⟩)x∈X for some x∗ ∈ X∗, which is the same as saying

that r ∈ R. Since we already know that r is linear, we must prove that r is bounded in
the sense that |rx| ⩽ C∥x∥ for all x ∈ X . To this end let x0 ∈ X and ε > 0. Arguing as
before, from |⟨x0,x∗0⟩− rx0 |< ε we infer

|rx0 |⩽ |⟨x0,x∗0⟩|+ ε ⩽ ∥x0∥+ ε.

Since x0 ∈ X and ε > 0 were arbitrary, it follows that r is bounded of norm at most 1
and thus defines an element x∗ ∈ BX∗ in the sense that rx = ⟨x,x∗⟩ for all x ∈ X . This
completes the proof that R is closed. As a consequence, R is compact, it being a closed
subset of the compact set K.

Since the mapping φ defined by (4.8) is injective, the inverse mapping φ−1 : R→ BX∗

is well defined. We claim that this mapping is continuous. Since the sets Vx∗0,x0,ε ∩BX∗



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
156 Duality

generate the weak∗ topology of BX∗ it suffices to check that their images under φ are
open in R. But these are the sets {k ∈ K : |kx0 −⟨x0,x∗0⟩|< ε}∩R, which are open in R.

The weak∗ compactness of BX∗ = φ−1(R) now follows from the compactness of R.

A topological space τ is said to be metrisable if the underlying set admits a metric
whose open sets are precisely the sets of τ . The next result shows that if X is separable,
then the weak∗ topology of the unit ball of X∗ is metrisable. As a result, Proposition
4.48 can alternatively be deduced from Theorem 4.50 by using that compactness and
sequential compactness are equivalent for metric spaces.

Proposition 4.51. If X is a separable Banach space, then the weak∗ topology of the
closed unit ball of X∗ is metrisable.

Proof Let (xn)n⩾1 be a dense sequence in the closed unit ball BX of X . Such a sequence
exists since X is separable. It is easily checked that the formula

d(x∗,y∗) := ∑
n⩾1

1
2n

|⟨xn,x∗− y∗⟩|
1+ |⟨xn,x∗− y∗⟩|

defines a metric d on BX∗ and that the identity mapping IX∗ : (BX∗ ,weak∗)→ (BX∗ ,d)
is continuous. In particular IX∗ maps compact subsets of (BX∗ ,weak∗) to compact sub-
sets of (BX∗ ,d). The Banach–Alaoglu theorem asserts that (BX∗ ,weak∗) is compact.
Since closed subsets of a compact space are compact and compact sets are closed, IX∗

maps closed subsets of (BX∗ ,weak∗) to closed subsets of (BX∗ ,d). Thus the continuous
mapping IX∗ has continuous inverse and the result follows.

As an application of the Banach–Alaoglu theorem we have the following density
result.

Theorem 4.52 (Goldstine). Let X be a Banach space. The following assertions hold:

(1) X is weak∗ dense in X∗∗;
(2) BX is weak∗ dense in BX∗∗ .

Proof It suffices to prove the second assertion; the first follows from it by normalising
elements x ∈ X to unit length. Arguing by contradiction, suppose that x∗∗0 ∈ BX∗∗ is
not contained in the weak∗ closure F of BX . Then by Proposition 4.46 there exists an
element x∗0 ∈ X∗ such that ⟨x∗0,x∗∗0 ⟩ ̸∈ ⟨x∗0,F⟩. By multiplying with a scalar may assume
that ∥x∗0∥= 1. Then BX ⊆F ⊆BX∗∗ implies BK⊆ ⟨x∗0,F⟩ ⊆BK. By the Banach–Alaoglu
theorem BX∗∗ is weak∗ compact, hence so is F , and therefore ⟨x∗0,F⟩ is a compact subset
of K. We conclude that ⟨x∗0,F⟩= BK. As a consequence we have |⟨x∗0,x∗∗0 ⟩|> 1. But this
contradicts the fact that ∥x∗∗0 ∥⩽ 1 and ∥x∗0∥= 1.
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4.7.b Reflexivity

Recall that if X is a Banach space, we can use the natural isometry J : X → X∗∗ given
by ⟨x∗,Jx⟩ := ⟨x,x∗⟩ to identify X with a closed subspace of X∗∗.

Definition 4.53 (Reflexivity). A Banach space X is called reflexive if the mapping J :
X → X∗∗ is surjective.

The Banach–Alaoglu theorem implies the following characterisation of reflexivity.

Theorem 4.54 (Reflexivity and weak compactness of the unit ball). A Banach space is
reflexive if and only if its closed unit ball is weakly compact.

Proof The ‘only if’ part follows from the Banach–Alaoglu theorem, noting that the
canonical embedding J : X → X∗∗ maps BX onto BX∗∗ and that, under the identification
of X and X∗∗, the weak topology of X equals the weak∗ topology of X∗∗.

The ‘if’ part follows from Goldstine’s theorem (Theorem 4.52). Indeed, if BX is
weakly compact, then its image under the canonical embedding J is weak∗ compact in
X∗∗: this follows from the observation that J is continuous as a mapping from (X ,weak)
to (X∗∗,weak∗), which in turn is a trivial consequence of the definitions of the weak and
weak∗ topologies. It follows that BX is weak∗ compact as a subset of the closed unit ball
BX∗∗ . On the other hand, Goldstine’s theorem says that BX is weak∗ dense as a subset of
BX∗∗ . Hence we must have BX = BX∗∗ , and this implies X = X∗∗.

Corollary 4.55. Let X be a Banach space. The following assertions hold:

(1) if X is reflexive, then every closed subspace of X is reflexive;
(2) X is reflexive if and only if X∗ is reflexive;
(3) if X is isomorphic to a Banach space Y , then X is reflexive if and only if Y is

reflexive.

Proof (1): If Y is a closed subspace of X , the closed unit ball BY is the intersection of
the set BX , which is weakly compact by Theorem 4.54, and the set Y , which is weakly
closed by Corollary 4.12. As a result, BY is weakly compact, and Y is reflexive by
another application of Theorem 4.54.

(2): If X is reflexive, the weak∗ and weak topologies of X∗ coincide. As a result, BX∗

is weakly compact by the Banach–Alaoglu theorem, and therefore X∗ is reflexive by
Theorem 4.54. If X∗ is reflexive, then X∗∗ is reflexive by what we just proved, and then
X , viewed as a closed subspace of X∗∗, is reflexive by part (1).

(3): If i : X → Y is an isomorphism, then i∗∗ : X∗∗ → Y ∗∗ is an isomorphism by
Proposition 4.27 applied twice. Denoting the natural isometries of X and Y into their
second duals by JX and JY , one easily checks that i∗∗◦JX = JY ◦ i∗∗. This identity implies
that JX is surjective if and only if JY is surjective.
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Part (3) can be also be deduced from Theorem 4.54; we leave this as an easy exercise.

Corollary 4.56. Every bounded sequence in a reflexive Banach space has a weakly
convergent subsequence.

Proof Let (xn)n⩾1 be a bounded sequence in the reflexive Banach space X and let Y be
its closed span. Then Y is separable, and Y is reflexive by Corollary 4.55. Proceeding as
in the proof of Proposition 4.51, the weakly compact set BY is metrisable and we may
argue by sequential compactness of the resulting metric space.

Example 4.57. The following are examples of reflexive Banach spaces:

• finite-dimensional Banach spaces;

• the spaces ℓp with 1 < p < ∞;

• the spaces Lp(Ω) with 1 < p < ∞;

• Hilbert spaces.

To prove that finite-dimensional Banach spaces X are reflexive we use the fact that
such spaces are isomorphic to Kd, where d = dim(X). The isomorphism Kd ≃ (Kd)∗

dualises to an isomorphism (Kd)∗ ≃ (Kd)∗∗, and one easily checks that the composition
of these isomorphisms equals the canonical embedding J : Kd → (Kd)∗∗. In particular,
this embedding is surjective. It follows that Kd is reflexive, and therefore X is reflexive
by Corollary 4.55.

In the same way the second and third examples follow from the isometric identifica-
tions (ℓp)∗ = ℓq and (Lp(Ω))∗ = Lq(Ω), 1

p +
1
q = 1. Strictly speaking we have shown the

identification (Lp(Ω))∗ = Lq(Ω) only for σ -finite measure spaces, but for 1 < p < ∞

the σ -finiteness assumption is redundant (see Problem 4.3).
That Hilbert spaces are reflexive is a consequence of the Riesz representation the-

orem (Theorem 3.15) which sets up a conjugate-linear identification of the dual H∗

of a Hilbert space with the Hilbert space H itself. Applying the theorem twice and
composing the identifications of H with H∗ and H∗ with H∗∗, and again the resulting
identification H with H∗∗ equals the natural embedding J : H→ H∗∗.

Example 4.58. The spaces c0, ℓ1 and ℓ∞ are nonreflexive: for c0 this follows from the
fact that c∗∗0 = ℓ∞ and for ℓ1 = c∗0 and ℓ∞ = (ℓ1)∗ this follows from Corollary 4.55.
The spaces C(K) and L1(Ω) are nonreflexive except when they are finite-dimensional.
Indeed, it is easy to find closed subspaces isomorphic to c0 or ℓ1, respectively (take the
closed linear span of any sequence of norm one vectors with disjoint supports), and
nonreflexivity again follows from Corollary 4.55.
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4.7.c Translation Invariant Operators on L1(Rd)

In this section and the next we give two nontrivial applications of the Banach–Alaoglu
theorem or, more precisely, its sequential version contained in Proposition 4.48. The first
application is concerned with characterising translation invariant operators on L1(Rd)

as convolutions with a finite Borel measure. It is complemented by Theorem 5.34 in the
next chapter, which characterises the translation invariant operators on L2(Rd) as the
Fourier multiplier operators.

Lemma 4.59. If g ∈ L1(Rd) satisfies
∫
Rd g(x)φ(x)dx = 0 for all φ ∈C∞

c (D), then g = 0
almost everywhere on D.

Proof This follows from the uniqueness part of Theorem 4.2, viewing gdx as a finite
Borel measure on Rd

Theorem 4.60 (Translation invariant operators on L1(Rd)). If T is a bounded operator
on L1(Rd) commuting with every translation, then T is the convolution with respect
to a (necessarily unique) measure µ ∈M(Rd); more precisely, for all f ∈Cc(Rd) and
x ∈ Rd we have

T f (x) =
∫
Rd

f (x− y)dµ(y).

Moreover, ∥T∥⩽ ∥µ∥.

Proof Fix a function η ∈ L1(Rd) satisfying
∫
Rd η(x)dx = 1. For ε > 0 the mollified

functions ηε(x) := ε−dη(ε−1x) belong to L1(Rd) and satisfy ∥ηε∥1 = ∥η∥1. By view-
ing the functions T ηε ∈ L1(Rd) as densities of finite Borel measures on Rd we may
identify them with finite Borel measures µε ∈M(Rd). By Theorem 4.2 and Proposition
E.16, M(Rd) can be identified with the dual of C0(Rd). Hence by the sequential ver-
sion of the Banach–Alaoglu theorem (Proposition 4.48), some subsequence (T ηεn)n⩾1

converges weak∗ to a measure µ ∈M(Rd). Then, for all g ∈C0(Rd),

lim
n→∞

∫
Rd

g(y)T ηεn(y)dy =
∫
Rd

g(y)dµ(y).

Applying this to the functions y 7→ g(x+ y) = (τxg)(y), where τx is translation over x,
upon letting n→ ∞ we obtain∫

Rd
g(y)T ηεn(y− x)dy =

∫
Rd

g(x+ y)T ηεn(y)dy→
∫
Rd

g(x+ y)dµ(y).

By Fubini’s theorem, a change of variables, the commutation assumption, and Proposi-
tion 2.34, for all f ∈Cc(Rd) this implies∫

Rd
g(x)

∫
Rd

f (x− y)dµ(y)dx =
∫
Rd

∫
Rd

f (x− y)g(x)dxdµ(y)

=
∫
Rd

f (x)
∫
Rd

g(x+ y)dµ(y)dx
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= lim
n→∞

∫
Rd

f (x)
∫
Rd

g(y)T ηεn(y− x)dydx

= lim
n→∞

∫
Rd

f (x)
∫
Rd

g(y)τ−xT ηεn(y)dydx

= lim
n→∞

∫
Rd

f (x)
∫
Rd

g(y)T τ−xηεn(y)dydx

(∗)
= lim

n→∞

∫
Rd

T ∗g(y)
∫
Rd

f (x)ηεn(y− x)dxdy

=
∫
Rd

T ∗g(y) f (y)dy =
∫
Rd

g(y)T f (y)dy.

In (∗) we identified g ∈C0(Rd) with a function in L∞(Rd) = (L1(Rd))∗.
Since the above identities hold for all g ∈C0(Rd), it follows from Lemma 4.59 that∫

Rd f (x−y)dµ(y) = T f (x) for almost all x∈Rd, and hence by continuity for all x∈Rd .
This proves that T is of the asserted form, and the bound ∥T∥ ⩽ ∥µ∥ follows from the
observation preceding the theorem.

It remains to establish the uniqueness of the measure µ . Suppose that µ ∈ M(Rd)

satisfies ∫
Rd

τx f (−y)dµ(y) =
∫
Rd

f (x− y)dµ(y) = 0

for all x ∈ Rd and f ∈Cc(Rd). Then∫
Rd

φ(y)dµ(y) = 0, φ ∈Cc(Rd).

Since Cc(Rd) is dense in C0(Rd), by Theorem 4.2 this implies µ = 0.

4.7.d Prokhorov’s Theorem

The aim of this section is to prove a compactness result of fundamental importance
in Probability Theory, known as Prokhorov’s theorem. For its statement we need the
following terminology.

Definition 4.61 (Uniform tightness). A collection P of Borel measures on a topological
space X is called uniformly tight if for every ε > 0 there exists a compact set K in X
such that µ(X \K)< ε for all µ ∈ P.

Definition 4.62 (Weak convergence). A sequence (µn)n⩾1 of Borel probability mea-
sures on a topological space X is said to converge weakly to a Borel probability measure
µ on X if

lim
n→∞

∫
X

f dµn =
∫

X
f dµ, f ∈Cb(X),

where Cb(X) denotes the Banach space of bounded continuous functions on X .
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Viewing Borel probability measures on X as functionals in the dual space (Cb(X))∗,
weak convergence in the sense of the above definition is precisely weak∗ convergence
in the sense discussed in the present chapter. The terminology ‘weak convergence’ is
firmly established in the Probability Theory literature, however.

Theorem 4.63 (Prokhorov’s theorem). For a metric space X, the following assertions
hold:

(1) if a family P of Borel probability measures on X is uniformly tight, then every se-
quence in P contains a weakly convergent subsequence;

(2) if X is separable and complete, then every weakly convergent sequence of Borel
probability measures on X is uniformly tight.

For the proof of this theorem we need the following characterisation of weak conver-
gence, known as the Portmanteau theorem.

Proposition 4.64. Let µn, n⩾ 1, and µ be Borel probability measures on a metric space
X. The following assertions are equivalent:

(1) limn→∞ µn = µ weakly;
(2) for all open subsets U of X we have µ(U)⩽ liminfn→∞ µn(U);
(3) for all closed subsets F of X we have limsupn→∞ µn(F)⩽ µ(F).

Proof (1)⇒(2): Let U ⊆ X be open. For each k ⩾ 1 let

U (k) :=
{

x ∈U : d(x,∁U)>
1
k

}
.

Since U is open we have U =
⋃

k⩾1 U (k) and µ(U) = limk→∞ µ(U (k)).
The functions fk(x) := min{1,k d(x,∁U)} belong to Cb(X) and satisfy 0 ⩽ fk ⩽ 1,

fk = 0 on ∁U , and fk = 1 on U (k).
For each k ⩾ 1,

µ(U (k))⩽
∫

X
fk dµ = lim

n→∞

∫
X

fk dµn = liminf
n→∞

∫
X

fk dµn ⩽ liminf
n→∞

µn(U).

Now we pass to the limit k→ ∞.

The equivalence (2)⇔(3) follows by taking complements.

It remains to prove that (2) and (3) together imply (1). Let U1, . . . ,Uk be open sets in
X and consider a function of the form g = ∑

k
j=1 c j1U j . We have, using (2),

∫
X

gdµ =
k

∑
j=1

c jµ(U j)⩽ liminf
n→∞

k

∑
j=1

c jµn(U j) = liminf
n→∞

∫
X

gdµn.
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Similarly, for g = ∑
k
j=1 c j1U j

we have, using (3),

limsup
n→∞

∫
X

gdµn ⩽
k

∑
j=1

c j limsup
n→∞

µn(U j)⩽
k

∑
j=1

c jµ(U j) =
∫

X
gdµ.

Let f ∈Cb(X) be a real-valued function and choose a,b∈R such that a< f (x)< b for
all x∈X . There are at most countably many r∈ (a,b) such that the set {x∈X : f (x)= r}
has nonzero µ-measure. Let R denote the set of these numbers r. Fix ε > 0 and let
π = {t0, . . . , tk} be a partition of [a,b] with mesh(π) < ε such that t0 = a, tk = b, and
t j ̸∈ R for all j = 1, . . . ,k−1. Put U j := {x ∈ X : f (x) ∈ (t j−1, t j)}, j = 1, . . . ,k, and

g :=
k

∑
j=1

t j−11U j , h :=
k

∑
j=1

t j1U j .

With the above notation, g(x)⩽ f (x)⩽ ε +g(x) and f (x)⩽ h(x)⩽ ε + f (x) whenever
f (x) ̸= t j for j = 1, . . . ,k−1. Since µ{x ∈ X : f (x) = t j}= 0 for j = 1, . . . ,k−1,

limsup
n→∞

∫
X

f dµn ⩽ limsup
n→∞

∫
X

hdµn ⩽
∫

X
hdµ ⩽ ε +

∫
X

f dµ

⩽ 2ε +
∫

X
gdµ ⩽ 2ε + liminf

n→∞

∫
X

gdµn ⩽ 2ε + liminf
n→∞

∫
X

f dµn.

Since ε > 0 was arbitrary, this concludes the proof for real-valued functions f . In the
case of complex scalars, the result for complex-valued f follows from it by considering
real and imaginary parts separately.

The proof of part (1) of Prokhorov’s theorem relies on the following lemma.

Lemma 4.65. Let (Ω,F ) be a measurable space and let A1⊆A2⊆ . . . be an increasing
sequence of sets in F such that

⋃
j⩾1 A j = Ω. For each j ⩾ 1 let µ j be a measure on

A j. If the measures µ j are increasing in the sense that µ j|Ai ⩾ µi whenever j ⩾ i, then

µ(B) := lim
j→∞

µ j(B∩A j)

defines a measure on Ω.

Proof If B ∈F , then for j ⩾ i we have µ j(B∩A j) ⩾ µ j(B∩Ai) = µ j|Ai(B∩Ai) ⩾
µi(B∩Ai). Therefore the limit defining µ(B) exists, and µ(B) = sup j⩾1 µ j(B∩A j).

It is clear that µ(∅) = 0. To prove that µ is countably additive, let B =
⋃

n⩾1 Bn with
disjoint measurable sets Bn. On the one hand,

µ(B) = sup
j⩾1

µ j(B∩A j) = sup
j⩾1

∑
n⩾1

µ j(Bn∩A j)

⩽ ∑
n⩾1

sup
j⩾1

µ j(Bn∩A j) = ∑
n⩾1

µ(Bn).
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On the other hand, for each j0 ⩾ 1 we have

µ(B) = sup
j⩾1

µ j(B∩A j)⩾ µ j0(B∩A j0) = ∑
n⩾1

µ j0(Bn∩A j0).

Hence, by monotone convergence,

µ(B)⩾ lim
j0→∞

∑
n⩾1

µ j0(Bn∩A j0) = ∑
n⩾1

lim
j0→∞

µ j0(Bn∩A j0) = ∑
n⩾1

µ(Bn).

Proof of Theorem 4.63 We begin with the proof of part (1). Assuming that P is uni-
formly tight, we must prove that there is a Borel probability measure µ on X such that
µn→ µ weakly.

Choose an increasing sequence of compact sets K j ⊆ X such that µn(K j)⩾ 1−1/2 j

for all j ⩾ 1 and n ⩾ 1. Replacing X by
⋃

j⩾1 K j, we may assume that X is separable.

Step 1 – Identifying each restriction µn|K j with an element of (C(K j))
∗, by a diag-

onal argument we find a subsequence (µnk)k⩾1 such that for all j ⩾ 1 the sequence
(µnk |K j)k⩾1 is weak∗ convergent in (C(K j))

∗ to some Borel measure ν j on K j; this ar-
gument uses the sequential version of the Banach–Alaoglu theorem (Proposition 4.48)
and the separability of the spaces C(K j) (Proposition 2.8). Hence by Proposition 4.64,

ν j(K j)⩾ limsup
k→∞

µnk(K j)⩾ 1−2− j.

Step 2 – We claim that if j ⩾ i, then ν j|Ki ⩾ νi. To this end, fix a number ε > 0
and a function f ∈C(Ki) satisfying 0 ⩽ f (x)⩽ 1 for all x ∈Ki. Using Theorem C.13 we
extend f to a function in C(K j) satisfying 0⩽ f (x)⩽ 1 for all x∈K j, and let fm ∈C(K j)

be defined by fm(x) := (1−m · d(x,Ki))
+ f (x), x ∈ K j. Choosing m large enough, say

m ⩾ mε , we may assume that ∫
K j\Ki

fm dν j < ε.

Since fm = f on Ki we find∫
Ki

f dν j−
∫

Ki

f dνi ⩾−ε +
∫

K j

fm dν j−
∫

Ki

fm dνi

=−ε + lim
k→∞

(∫
K j

fm dµnk −
∫

Ki

fm dµnk︸ ︷︷ ︸
⩾0

)
⩾−ε.

Since ε > 0 was arbitrary, this proves that
∫

Ki
f dν j ⩾

∫
Ki

f dνi.

Step 3 – We apply Lemma 4.65 to see that

µ(B) := lim
j→∞

ν j(B∩K j) = sup
j⩾1

ν j(B∩K j)
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defines a Borel measure µ on X0 :=
⋃

j⩾1 K j. We may extend µ to a Borel measure on
all of X by extending it identically 0 outside X0. Clearly, µ(X)⩽ 1 and

µ(X)⩾ µ(K j)⩾ ν j(K j)⩾ 1−2− j.

This proves a couple of things at the same time, namely that µ is a probability measure
and that µ is tight.

It remains to prove that limn→∞ µnk = µ weakly. For this, it suffices to prove that
limn→∞

∫
X f dµnk =

∫
X f dµ for all f ∈Cb(X) satisfying 0 ⩽ f ⩽ 1. Fixing such a func-

tion, choose a sequence ( fm)m⩾1 of simple functions satisfying 0 ⩽ fm ⩽ 1 for all m ⩾ 1
and fm→ f uniformly as m→ ∞. Fix j0 so large that 2− j0 < ε . Then, for m ⩾ 1 large
enough and all j ⩾ j0,

limsup
k→∞

∣∣∣∫
X

f dµ−
∫

X
f dµnk

∣∣∣⩽ 2− j+1 + limsup
k→∞

∣∣∣∫
K j

f dµ−
∫

K j

f dµnk

∣∣∣
⩽ 2ε +

∣∣∣∫
K j

f dµ−
∫

K j

f dν j

∣∣∣
⩽ 4ε +

∣∣∣∫
K j0

f dµ−
∫

K j0

f dν j

∣∣∣
⩽ 6ε +

∣∣∣∫
K j0

fm dµ−
∫

K j0

fm dν j

∣∣∣.
Since lim j→∞ ν j(B∩K j0) = lim j→∞ ν j(B∩K j0 ∩K j) = µ(B∩K j0) for all Borel sets B
in X and each function fm is simple, upon letting j→ ∞ we obtain

lim
j→∞

∫
K j0

fm dν j =
∫

K j0

fm dµ.

Consequently,

limsup
k→∞

∣∣∣∫
X

f dµ−
∫

X
f dµnk

∣∣∣⩽ 6ε.

Since ε > 0 was arbitrary this proves the weak convergence.

We now turn to the proof of part (2). Since X is separable, we may pick a dense
sequence (xn)n⩾1 in X . For every integer k ⩾ 1 the open balls B(xn; 1

k ), n ⩾ 1, cover X .
Fix ε > 0 and choose the integers Nk ⩾ 1 such that

µ

( Nk⋃
n=1

B(xn; 1
k )
)
> 1− ε

2k .

By Proposition 4.64, this implies that for all large enough j, say for j ⩾ j0, we have

µ j

( Nk⋃
n=1

B(xn; 1
k )
)
> 1− ε

2k .
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The set

K =
⋂
k⩾1

Nk⋃
n=1

B(xn; 1
k )

is closed and totally bounded. The completeness of X therefore implies that K is com-
pact. Moreover, for j ⩾ j0,

µ j(∁K)⩽ ∑
k⩾1

µ j

(
∁

Nk⋃
n=1

B(xn; 1
k )
)
⩽ ∑

k⩾1
µ j

(
∁

Nk⋃
n=1

B(xn; 1
k )
)
⩽ ∑

k⩾1

ε

2k = ε.

Problems

4.1 Let X and Y be Banach spaces. A bounded operator T ∈L (X ,Y ) is said to be of
finite rank if its range is finite-dimensional. Show that every finite rank operator
T ∈L (X ,Y ) is of the form

T x =
N

∑
n=1
⟨x,x∗n⟩yn, x ∈ X ,

for certain yn ∈ Y and x∗n ∈ X∗.
4.2 Consider an open set D⊆C and a complex Banach space X . A function f : D→X

is said to be holomorphic if for all z0 ∈ D the limit

lim
z→z0

f (z)− f (z0)

z− z0

exists in X . Use the Hahn–Banach theorem to prove that the Cauchy theorem and
the Cauchy integral formula hold for holomorphic functions f : D→ X defined
on an open set D in C:

1
2πi

∫
{|z−z0|=r}

f (z)dz = 0

and

1
2πi

∫
{|z−z0|=r}

f (z)
z− z0

dz = f (z0).

Here it is assumed that z0 ∈D and r > 0 is so small that {|z−z0|= r} is contained
in D; this contour is oriented counterclockwise.

4.3 Let 1 ⩽ p,q ⩽ ∞ satisfy 1
p +

1
q = 1.
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(a) Prove that the identification (Lp(Ω))∗ = Lq(Ω), remains true in the non-σ -
finite case if 1 < p < ∞.
Hint: Given φ ∈ (Lp(Ω))∗, there is a sequence ( fn)n⩾1 in Lp(Ω) such that
∥φ∥= supn⩾1 |⟨ fn,φ⟩|. The σ -algebra generated by this sequence is σ -finite.

(b) Show, by way of example, that part (a) does not extend to p = 1.

4.4 Prove that if the dual of a Banach space X is separable, then X is separable.
Hint: There is a sequence (xn)n⩾1 in X such that ∥x∗∥ = supn⩾1 |⟨xn,x∗⟩| for a
countable dense set of functionals x∗ in X∗.

4.5 Let X be a Banach space.

(a) Show that for all nonzero x∗ ∈ X∗ we have an isomorphism of Banach spaces

X/N(x∗)≃K,

where N(x∗) := {x ∈ X : ⟨x,x∗⟩= 0}.
(b) Let Q : X → X/N(x∗) denote the quotient mapping. Prove that if ∥x∗∥ = 1,

then for all x ∈ X we have

∥Qx∥= |⟨x,x∗⟩|.

Hint: For the inequality ‘⩽’, begin by showing that for any 0 < ε < 1 there
must exist c ∈K and y ∈ X such that ∥cx+ y∥= 1 and |⟨cx+ y,x∗⟩|⩾ 1− ε.

4.6 Let Y be a proper closed subspace of a Banach space X and let x0 ∈ X \Y . As
in Corollary 4.12, on the span X0 of Y and x0 define φ(y) := 0 for all y ∈ Y and
φ(x0) := 1. It was shown in the corollary that φ is bounded. Show that its norm is
given by

∥φ∥X∗0
=

1
d(x0,Y )

.

4.7 Let X be a Banach space. For a set A ⊆ X and an element x ∈ X we denote by
d(x,A) = infy∈A ∥x− y∥ the distance from x to A.

(a) Let X be a Banach space, let X0 ⊆ X be a proper closed subspace, and let
x∈X \X0. Prove that there exists an x∗ ∈X∗ with ∥x∗∥= 1 such that ⟨x,x∗⟩=
d(x,X0) and x∗|X0 = 0.
Hint: Let Y = span(X0,x). Prove that the mapping x∗0 : Y →K given by

x∗0(x0 + tx) := td(x,X0), x0 ∈ X0, t ∈K,

is linear, belongs to Y ∗, has norm ∥x∗0∥Y ∗ = 1, and satisfies x∗0|X0 = 0. Apply
the Hahn–Banach theorem to extend x∗0 to a functional on X .

(b) Using the result of part (a), show that there exists x∗ ∈ (L∞(0,1))∗ such that

⟨ f ,x∗⟩=
∫
[0,1]

f (t)dt, f ∈C[0,1],
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but

⟨1(0, 1
2 )
,x∗⟩ ̸=

∫
[0,1]

1(0, 1
2 )
(t)dt.

4.8 We take a look at Banach spaces containing – and contained in – ℓ∞.

(a) Let X be a Banach space, Y be a closed subspace of X , and let T0 : Y → ℓ∞ be
a bounded operator. Show that there exists a bounded operator T : X → ℓ∞

such that T |Y = T0 and ∥T∥= ∥T0∥.
Hint: Apply the Hahn–Banach theorem ‘coordinatewise’.

(b) Using the result of part (a), prove that if a closed subspace Y of a Banach
space X is isomorphic to ℓ∞, then Y is complemented in X .

(c) Show that every separable Banach space X is isometrically isomorphic to a
closed subspace of ℓ∞. More precisely, show that if X is a separable Banach
space, then there exists a closed subspace Y of ℓ∞ and an isometric isomor-
phism T from X onto Y .
Hint: Use the Hahn–Banach theorem in combination with the separability to
make a clever choice of a sequence of functionals (x∗n)n⩾1 in X∗, and consider
the mapping T : x 7→ (⟨x,x∗n⟩)n⩾1.

4.9 Find an example of a two-dimensional Banach space X and a functional on one
of its closed one-dimensional subspaces which has infinitely many extensions to
a functional on X of the same norm.

4.10 Recall from Problem 3.4 that a Banach space X is called strictly convex if for all
norm one vectors x0,x1 ∈ X with x0 ̸= x1 and 0 < λ < 1 we have

∥(1−λ )x+λy∥< 1.

This problem shows that if the dual X∗ of a Banach space is strictly convex, then
every functional on a closed subspace of X has a unique Hahn–Banach extension
of the same norm.

Let Y be a closed subspace of a Banach space X .

(a) Prove that for all x∗ ∈ X∗ we have

d(x∗,Y⊥) =
∥∥x∗|Y

∥∥
Y ∗ .

The closed subspace Y of X is said to have the Haar property if for all x ∈ X \Y
there exists a unique y ∈ Y such that d(x,Y ) = ∥x− y∥.
(b) Prove that a functional y∗ ∈ Y ∗ has a unique extension to a functional in X∗

of the same norm if and only if the annihilator Y⊥ has the Haar property as a
closed subspace of X∗.

(c) Prove that if X is strictly convex, then every closed subspace Y of X has the
Haar property.
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4.11 Let X and Y be Banach spaces. Prove that if T : X → Y is an isomorphism from
X onto its range in Y , then the adjoint operator T ∗ : Y ∗→ X∗ is surjective.

4.12 Provide proofs of parts (1) and (2) of Proposition 4.27.
4.13 Let H1 and H2 be Hilbert spaces and X be a Banach space. Show that for T1 ∈

L (H1,X) and T2 ∈L (H2,X) the following assertions are equivalent:

(1) R(T1)⊆ R(T2);
(2) there is a constant C ⩾ 0 such that ∥T ∗1 x∗∥⩽C∥T ∗2 x∗∥ for all x∗ ∈ X∗.

Hint: We may assume that T1 and T2 are injective. For (1)⇒(2), show that the
assumption implies that {T1h1 : ∥h1∥⩽ 1} ⊆ {T2h2 : ∥h2∥⩽C} for some C ⩾ 0.

4.14 Let H be a Hilbert space. Show that a vector y ∈ H belongs to the range of an
operator T ∈L (H) if and only if there exists a constant Cy ⩾ 0 such that

|(x|y)|⩽Cy∥T ⋆x∥, x ∈ H.

Hint: Apply the result of Problem 4.13 to the orthogonal projection onto the span
of y.

4.15 Let 1 ⩽ p < ∞.

(a) Let T : Lp(0,1)→K be the linear mapping defined by

T f :=
∫ 1

0
f (s)ds, f ∈ Lp(0,1).

Show that T is bounded and find an expression for T ∗.
(b) Let T : Lp(0,1)→ Lp(0,1) be the linear operator defined by

(T f )(t) :=
∫ t

0
f (s)ds, t ∈ (0,1), f ∈ Lp(0,1).

Show that T is bounded and find an expression for T ∗.
(c) Let T be the linear operator of part (b), now viewed as an operator from

Lp(0,1) into C[0,1]. Show that T is bounded and find an expression for T ∗.

4.16 Let H0 be a closed subspace of a Hilbert space H and let i : H0 → H be the
inclusion mapping. Show that the adjoint i⋆ : H→H0 is the orthogonal projection
in H onto H0, viewed as a mapping from H to H0.

4.17 Let H be a Hilbert space and let T ∈L (H) be a contraction, that is, ∥T∥⩽ 1.

(a) Show that for each x ∈ H we have T x = x if and only if T ⋆x = x. Conclude
that H admits an orthogonal direct sum decomposition

H = N(I−T )⊕R(I−T ).

Hint: If T x = x, show that T ⋆x− x⊥ x and deduce that T ⋆x = x.
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(b) Define

Sn :=
1
n

n−1

∑
k=0

T k, n ⩾ 1.

Using Proposition 4.31 and the result of part (a), prove that

lim
n→∞

Snx =

{
x if x ∈ N(I−T ),

0 if x⊥ N(I−T ).

4.18 Let K be a compact Hausdorff space and let φ ∈ (C(K))∗ be an element with the
following two properties:

(i) φ(1) = 1;
(ii) φ( f g) = φ( f )φ(g) for all f ,g ∈C(K).

Prove that φ( f ) = f (x) for some x ∈ K.
Hint: Show that φ , as an element of M(K), is supported on a singleton.

4.19 Find the extreme points of the closed convex set

C = { f ∈ L2(0,1) : f ⩾ 0, ∥ f∥2 ⩽ 1}.

4.20 Let C be a closed convex subset of a separable Banach space X . Prove that there
exists a sequence (x∗n)n⩾1 of norm one elements in X∗ and a sequence (Fn)n⩾1 of
closed sets in K such that

C =
⋂
n⩾1

{
x ∈ X : ⟨x,x∗n⟩ ∈ Fn

}
.

Hint: Separate C from the elements of a dense sequence in its complement using
the Hahn–Banach separation theorem.

4.21 Prove that the Borel σ -algebra of a separable Banach space X is the smallest
σ -algebra relative to which all functionals x∗ ∈ X∗ are measurable.

4.22 Let X and Y be Banach spaces. Prove the following assertions:

(a) a linear operator T : X→Y is continuous with respect to the weak topologies
of X and Y if and only if it is bounded;

(b) a linear operator S : Y ∗→ X∗ is continuous with respect to the weak∗ topolo-
gies of Y ∗ and X∗ if and only if it is the adjoint of a bounded operator
T : X → Y .

4.23 Prove that the weak topology of a Banach space X coincides with the norm topol-
ogy if and only if X is finite-dimensional.

4.24 Prove that c0, C[0,1], Cb(D), and L1(Ω) are norm closed and weak∗ dense in ℓ∞,
L∞[0,1], L∞(D), and M(Ω), respectively.

4.25 Prove that if X is a locally compact Hausdorff space, then the linear span of the
Dirac measures δξ , ξ ∈ X , is weak∗ dense in M(X).
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4.26 Find an example of a sequence (x∗n)n⩾1 in a dual Banach space X∗ with the fol-
lowing two properties:

(i) there exists an x∗ ∈ X∗ such that limn→∞⟨x,x∗n⟩= ⟨x,x∗⟩ for all x ∈ X ;
(ii) no sequence contained in the convex hull of (x∗n)n⩾1 converges to x∗ with

respect to the norm of X∗.

Compare with Corollary 4.33.
4.27 Prove the following converse to Proposition 4.51: If the weak∗ topology of the

closed unit ball of the dual of a Banach space X is metrisable, then X is separable.
Hint: Complete the details of the following argument. Let d be a metric which
induces the weak∗ topology of BX∗ . Then (BX∗ ,d) is a compact metric space and
therefore the Banach space C(BX∗ ,d) is separable by Proposition 2.8. Now ob-
serve that X is isometrically contained in C(BX∗ ,d) in a natural way.

4.28 Let X be a Banach space.

(a) Let x1, . . . ,xN ∈ X and c1, . . . ,cN ∈ K and a constant M ⩾ 0 be given. Prove
that the following are equivalent:

(1) there exists x∗ ∈ X∗ such that ∥x∗∥⩽ M and

⟨xn,x∗⟩= cn, n = 1, . . . ,N.

(2) for all λ1, . . . ,λN ∈K we have∣∣∣ N

∑
n=1

λncn

∣∣∣⩽ M
∥∥∥ N

∑
n=1

λnxn

∥∥∥.
(b) Use the Banach–Alaoglu theorem to extend the result of part (a) to infinite

sequences (xn)n⩾1 and (cn)n⩾1.

4.29 Show that the weak topology of a weakly compact subset of a separable Banach
space is metrisable.

4.30 Using the result of the preceding problem, show that if K is a weakly compact sub-
set of a Banach space, then every sequence (xn)n⩾1 contained in K has a weakly
convergent subsequence.

4.31 Using the result of the preceding problem, show that C[0,1] and L1(0,1) are non-
reflexive by checking that their closed unit balls contain sequences that fail to
converge weakly.

4.32 As an application of the Banach–Alaoglu theorem, prove that there exist function-
als φ ∈ (ℓ∞)∗ such that for all x = (xn)n⩾1 ∈ ℓ∞ we have:

(i) ⟨x,φ⟩⩾ 0 whenever x ⩾ 0;
(ii) ⟨x,φ⟩= ⟨Sx,φ⟩, where S : (xn)n⩾1 7→ (xn+1)n⩾1 is the left shift;

(iii) ⟨x,φ⟩= limn→∞ xn whenever limn→∞ xn exists.
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Functionals with these properties are called Banach limits.
Hint: Consider the functionals φn(x) := 1

n ∑
n
j=1 x j.

4.33 Let (xn)n⩾1 be the sequence in ℓ∞ defined by xn = (0, . . . ,0︸ ︷︷ ︸
n times

,1,1, . . .), n ⩾ 1.

(a) Show that this sequence has no weakly convergent subsequence.
Hint: Use the result of Problem 4.32.

(b) Why doesn’t this contradict the Banach–Alaoglu theorem?

4.34 Let X be a separable Banach space and let X0 be a closed subspace of X isomor-
phic to c0. Our aim is to show that X0 is complemented in X .

(a) Use the Hahn–Banach theorem to show that there exists a bounded sequence
(x∗n)n⩾1 in X∗ such that for all y ∈ c0 and n ⩾ 1 we have ⟨ jy,x∗n⟩= yn, where
j : c0→ X0 is the isomorphism mapping c0 onto X0.
Hint: Consider the adjoint of the operator j−1 : X0→ c0.

(b) Suppose that x∗ ∈ X∗ is such that limn→∞⟨x,x∗nk
⟩ = ⟨x,x∗⟩ for all x ∈ X and

some subsequence (x∗nk
)k⩾1 of (x∗nk

)n⩾1. Show that ⟨x0,x∗⟩= 0 for all x0 ∈X0.
(c) Use the Banach–Alaoglu theorem to deduce that limn→∞ d(x∗n,X

⊥
0 ) = 0.

(d) Suppose that ∥x∗n∥⩽ R for all n ⩾ 1. Use Proposition 4.51 and part (c) to con-
clude that there exists a sequence (y∗n)n⩾1 in B(0;R) such that limn→∞⟨x,x∗n−
y∗n⟩= 0 for all x ∈ X and ⟨x0,y∗n⟩= 0 for all x0 ∈ X0 and all n ⩾ 1.

(e) Show that the mapping P : x 7→ (⟨x,x∗n−y∗n⟩)n⩾1 is well defined and bounded
from X into c0 and that j ◦P is a projection in X whose range equals X0.

4.35 Show that ℓ1 has the Schur property: If limn→∞ xn = x weakly in ℓ1, then
limn→∞ xn = x strongly in ℓ1.

4.36 Let (Ω,F,µ) be a probability space. Let ( fn)n⩾1 be a bounded sequence in L1(Ω)

which is uniformly integrable, that is,

lim
r→∞

sup
n⩾1
∥1{| fn|>r} f∥1 = 0.

Show that ( fn)n⩾1 contains a weakly convergent subsequence by completing the
details of the following argument.

(a) For k = 1,2, . . . the sequence defined by f (k)n := 1{| fn|⩽k} fn contains a subse-
quence that is weakly convergent in L2(Ω), and hence weakly convergent in
L1(Ω). Denote by f (k) their weak limits in L1(Ω).

(b) Show that ∥ f (k)− f (ℓ)∥1 ⩽ liminfn→∞ ∥ f (k)n − f (ℓ)n ∥1 and the latter tends to 0
by uniform integrability.

(c) Conclude that the limit limk→∞ f (k) = f exists in L1(Ω) and that limn→∞ fn =

f weakly in L1(Ω).

4.37 Deduce Theorem 4.52 from Theorem 4.34.
4.38 Prove the various identifications made in the discussion following Example 4.57.
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4.39 Prove that if Y is a closed subspace of a reflexive Banach space X , then the quo-
tient space X/Y is reflexive.

4.40 Show that if X is a Banach lattice, then an element x ∈ X satisfies x ⩾ 0 if and
only if ⟨x,x∗⟩⩾ 0 for all x∗ ∈ X∗ satisfying x∗ ⩾ 0.

4.41 Show that if X is a Banach lattice and x∗ ∈ X∗ satisfies x∗ ⩾ 0, then for all x ∈ X
we have the following assertions:

(a) ⟨x+,x∗⟩= sup{⟨x,y∗⟩ : 0 ⩽ y∗ ⩽ x∗};
(b) ⟨|x|,x∗⟩= sup{⟨x,y∗⟩ : |y∗|⩽ x∗}.

4.42 Under the assumptions of Theorem 4.2, let µ ∈ MR(X) represent the functional
φ ∈ (C0(X))∗. Show that the measures representing φ+, φ−, and |φ |, are µ+, µ−,
and |µ|, respectively.

4.43 For 1 ⩽ p < ∞ consider the space ℓp[0,1] introduced in Problem 2.34.

(a) Show that there is a natural isometric isomorphism (ℓp[0,1])∗ ≃ ℓq[0,1],
where 1

p +
1
q = 1.

(b) Show that the function F : [0,1]→ ℓp[0,1] given by

(F(t))(s) =

{
1, s = t,

0, s ̸= t,

has the following properties:

(i) t 7→ ⟨F(t),g⟩ is measurable for all g ∈ ℓq[0,1];
(ii) t 7→ F(t) fails to be strongly measurable.

4.44 Let (An)n⩾1 be a sequence of disjoint intervals of positive measure |An| in the
interval [0,1] and define f : [0,1]→ c0 by

f (t) = ∑
n⩾1

1
|An|

1An(t)un,

where (un)n⩾1 is the sequence of standard unit vectors of c0.

(a) Show that f is strongly measurable.
(b) Show that for all x∗ ∈ c∗0 = ℓ1 the integral

∫ 1
0 ⟨ f (t),x∗⟩dt is well defined.

(c) Show that f fails to be Bochner integrable.

4.45 Consider the mapping f : (0,1)→ L∞(0,1) given by f (t) := 1(0,t).
(a) Show that ⟨ f ,x∗⟩ is measurable for all x∗ ∈ (L∞(0,1))∗.

Hint: Monotone scalar-valued functions are measurable.
(b) Show that f fails to be Bochner integrable.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5

5
Bounded Operators

In the first chapter, bounded operators have been introduced and some of their basic
properties were established. This chapter treats some of their deeper properties. In Sec-
tions 5.1–5.3 we begin with three results, each of which expresses a certain robustness
property of the class of bounded operators: the uniform boundedness theorem (Theorem
5.2), the open mapping theorem (Theorem 5.8), and the closed graph theorem (Theo-
rem 5.12). Completeness plays a critical role through their dependence on the Baire
category theorem. In Section 5.4 we present the fourth main result of this chapter, the
closed range theorem (Theorem 5.15).

As simple as the definition of a bounded operator may seem, in practice it can be quite
hard to establish the boundedness of a given linear operator. This applies in particular to
some of the most important operators in Analysis, such as the Fourier–Plancherel trans-
form and the Hilbert transform. Their properties are studied in fair detail in Sections
5.5 and 5.6. The final Section 5.7 discusses the Riesz–Thorin interpolation theorem
(Theorem 5.38) and its companion, the Marcinkiewicz interpolation theorem (Theorem
5.46).

5.1 The Uniform Boundedness Theorem

The proof of the uniform boundedness theorem, as well as the proofs of some other
results in this chapter, depend on the Baire category theorem.

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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5.1.a The Baire Category Theorem

Theorem 5.1 (Baire category theorem). Let X be a nonempty complete metric space.
Let F1,F2, . . . be closed subsets of X such that

X =
⋃
n⩾1

Fn.

Then at least one of the sets Fn has nonempty interior.

Proof Assuming that all sets Fn have empty interior, we prove the existence of an x∈X
not contained in any one of the Fn’s.

Pick an x1 ∈ ∁F1. This is possible, for otherwise we have F1 = X and F1 contains
open balls. Since F1 is closed, ∁F1 is open and therefore contains an open ball B(x1;r1).
By shrinking the radius a bit, we may even assume that the closed ball B(x1;r1) is
contained in ∁F1 and, moreover, that 0 < r1 ⩽ 1. The ball B(x1;r1) is not contained in
F2 and consequently the open set B(x1;r1) \F2 is nonempty. By the same reasoning as
before, this set contains a closed ball B(x2;r2) with radius 0 < r2 ⩽ 1

2 . Continuing in
this way we obtain a decreasing sequence of closed balls B(x1;r1)⊇B(x2;r2)⊇ . . . with
0 < rn ⩽ 1

n . The sequence (xn)n⩾1 is a Cauchy sequence, and therefore has a limit x, by
the completeness of X . It is clear that x ∈

⋂
n⩾1 B(xn;rn), and therefore x ̸∈

⋃
n⩾1 Fn.

5.1.b The Uniform Boundedness Theorem

The uniform boundedness theorem infers uniform boundedness of a family of bounded
operators from their pointwise boundedness.

Theorem 5.2 (Uniform boundedness theorem). Let (Ti)i∈I be a family of bounded op-
erators from a Banach space X into a normed space Y . If

sup
i∈I
∥Tix∥< ∞, x ∈ X ,

then

sup
i∈I
∥Ti∥< ∞.

Proof For each i ∈ I the sets {x ∈ X : ∥Tix∥ ⩽ n} are closed by the continuity of the
operator Ti. Since the intersection of closed sets is closed, the sets

Fn :=
{

x ∈ X : sup
i∈I
∥Tix∥⩽ n

}
=
⋂
i∈I

{
x ∈ X : ∥Tix∥⩽ n

}
are closed. Moreover, their union equals X . By the Baire category theorem, at least one
of them, say Fn0 , has nonempty interior. Accordingly there exist x0 ∈ X and r0 > 0 such
that B(x0;r0)⊆ Fn0 .
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Fix an index i ∈ I. For any x ∈ X with norm ∥x∥< r0 we write x = x0− (x0− x) and
note that both x0 and x0− x belong to B(x0;r0). As a consequence,

∥Tix∥⩽ ∥Tix0∥+∥Ti(x0− x)∥⩽ n0 +n0 = 2n0.

Hence, for all x ∈ X with norm ∥x∥< 1,

∥Tix∥⩽ 2n0/r0.

This implies that ∥Ti∥ ⩽ 2n0/r0. This being true for all i ∈ I, we have shown that
supi∈I ∥Ti∥⩽ 2n0/r0.

We continue with some typical applications.

Proposition 5.3. Let X be a Banach space, Y be a normed space, and suppose that
Tn : X → Y , n ⩾ 1, are bounded operators such that limn→∞ Tnx =: T x exists for all
x ∈ X. Then the operators Tn, n ⩾ 1, are uniformly bounded, the mapping x 7→ T x is
linear and bounded, and

∥T∥⩽ liminf
n→∞

∥Tn∥.

Proof The uniform boundedness theorem implies supn ∥Tn∥ < ∞. The remaining as-
sertions are proved by the argument of Proposition 1.19.

Proposition 5.4 (Boundedness of bilinear mappings). Let X ,Y,Z be normed spaces and
suppose that at least one of the spaces X and Y is a Banach space. Let B : X ×Y → Z
be linear and bounded in both variables separately. Then there exists a constant C ⩾ 0
such that

∥B(x,y)∥⩽C∥x∥∥y∥, x ∈ X , y ∈ Y.

In particular, B is jointly continuous.

Proof Assume that X is a Banach space (if Y is a Banach space we interchange the
roles of X and Y ). For each y ∈Y , Tyx := B(x,y) defines an element of L (X ,Z) since B
is bounded in its first variable. Also, for each x ∈ X we have sup∥y∥⩽1 ∥Tyx∥ < ∞ since
B is bounded in its second variable. Since X is a Banach space, the uniform bound-
edness theorem shows that {Ty : ∥y∥ ⩽ 1} is uniformly bounded in L (X ,Z). With
M := sup∥y∥⩽1 ∥Ty∥ we then obtain, for all y ∈ Y with ∥y∥⩽ 1,

∥B(x,y)∥= ∥Tyx∥⩽ M∥x∥.

By a scaling argument for the second variable, this implies the claim as stated.

The same proof works if we assume that B is linear in the first variable, conjugate-
linear in the second variable, and bounded in both variables separately; this observation
will be useful in the context of Hilbert spaces.
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The following proposition and its corollary give an application of the uniform bound-
edness theorem to duality.

Proposition 5.5 (Weakly bounded sets are bounded). A subset S of a normed space X
is bounded if and only if it is weakly bounded, that is, the set ⟨S,x∗⟩ := {⟨x,x∗⟩ : x ∈ S}
is bounded for all x∗ ∈ X∗.

Proof Only the ‘if’ part needs proof. Suppose that S is weakly bounded. For each x∈ S,
the mapping Tx : x∗ 7→ ⟨x,x∗⟩ is bounded, with ∥Tx∥= sup∥x∗∥⩽1 |⟨x,x∗⟩|= ∥x∥. Since for
each x∗ ∈ X∗ we have supx∈S |Txx∗|< ∞, the uniform boundedness theorem (which can
be applied since X∗ is a Banach space) implies that supx∈S ∥x∥= supx∈S ∥Tx∥< ∞.

Corollary 5.6. Let X be a Banach space. The following assertions hold:

(1) if limn→∞⟨x,x∗n⟩= ⟨x,x∗⟩ for all x ∈ X, then (x∗n)n⩾1 is bounded;
(2) if limn→∞⟨xn,x∗⟩= ⟨x,x∗⟩ for all x∗ ∈ X∗, then (xn)n⩾1 is bounded.

Proof Part (1) follows directly from the uniform boundedness theorem and part (2) is
a special case of Proposition 5.5.

Observe that the completeness of X is only needed for part (1).

5.2 The Open Mapping Theorem

The next main theorem is the open mapping theorem. Among other things it implies that
a bijective bounded operator between Banach spaces has a bounded inverse (and hence
is an isomorphism). Its proof relies on the following lemma, in which we use subscripts
to tell apart open balls in X and Y .

Lemma 5.7. Let X be a Banach space, Y a normed space, and let T ∈L (X ,Y ) be a
bounded operator. If 0 < r,R < ∞ are such that

BY (0;r)⊆ T (BX (0;R)),

then

BY (0;r)⊆ T (BX (0;2R)).

As is apparent from the proof, the constant 2 may be replaced by 1+ ε for any fixed
ε > 0.

Proof Fix an arbitrary y0 ∈ BY (0;r). Then y0 ∈ T (BX (0;R)), so we can write

y0 = T x1 + y1 with x1 ∈ BX (0;R) and ∥y1∥< 1
2 r.
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Then 2y1 ∈ BY (0;r), so

2y1 = T x2 + y2 with x2 ∈ BX (0;R) and ∥y2∥< 1
2 r.

Then 2y2 ∈ BY (0;r), so

2y2 = T x3 + y3 with x3 ∈ BX (0;R) and ∥y3∥< 1
2 r.

Continuing this way, for all N ∈ N we obtain

y0 = T x1 + y1

= T x1 +
1
2 T x2 +

1
2 y2

= T x1 +
1
2 T x2 +

1
4 T x3 +

1
4 y3

= . . .

= T x1 +
1
2 T x2 +

1
4 T x3 + · · ·+ 1

2N T xN+1 +
1

2N yN+1.

Clearly, limN→∞
1

2N yN+1 = 0 and

∞

∑
k=0

1
2k ∥xk+1∥<

∞

∑
k=0

R
2k = 2R.

This implies that the sum ∑
∞
k=0

1
2k xk+1 converges in X , by the completeness of X . The

boundedness of T implies that the sum ∑
∞
k=0

1
2k T xk+1 converges in Y to T ∑

∞
k=0

1
2k xk+1,

and therefore

y0 = lim
N→∞

(( N

∑
k=0

1
2k T xk+1

)
+

1
2N yN+1

)
= T

∞

∑
k=0

1
2k xk+1 ∈ T (BX (0;2R)).

Theorem 5.8 (Open mapping theorem). Let X and Y be Banach spaces. If T ∈L (X ,Y )
is bounded and surjective, then T maps open sets to open sets.

Proof Set Fn := T (BX (0;n)). The surjectivity of T implies that Y =
⋃

n⩾1 Fn. There-
fore, by the Baire category theorem (Theorem 5.1), some Fn0 has nonempty interior.
This means that there exist y0 ∈ Y and r0 > 0 such that

BY (y0;r0)⊆ T (BX (0;n0)).

In view of T (−x) =−T x, we then also have

BY (−y0;r0)⊆ T (BX (0;n0)).

Writing y = 1
2 (y0 + y)+ 1

2 (−y0 + y), it follows that

BY (0;r0)⊆ 1
2 ·T (BX (0;n0))+

1
2 ·T (BX (0;n0)) = T (BX (0;n0)).
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178 Bounded Operators

Now we can invoke the lemma and find

BY (0;r0)⊆ T (BX (0;2n0)).

Let U be an open set in X ; we wish to prove that T (U) is open. To this end let
T x ∈ T (U) be given, with x ∈U ; we wish to prove that T (U) contains the open ball
BY (T x;ρ) for some ρ > 0.

Since U is open, there is an ε > 0 such that BX (x;ε) ⊆U . Let δ := ε/(2n0). Then
T (U) contains T x + T (BX (0;ε)) = T x + δT (BX (0;2n0)), and the latter contains the
open ball T x+δBY (0;r0) = BY (T x;δ r0).

Corollary 5.9. Let X and Y be Banach spaces, and let T ∈L (X ,Y ) be given. If T is a
bijection, then T is an isomorphism from X onto Y . More generally, if R(T ) is closed,
then the quotient operator T/ is an isomorphism from X/N(T ) onto R(T ).

Proof First assume that T is a bijection. The fact that T maps open sets to open sets
can be reformulated as saying that (T−1)−1(U) is open for every open set U in X , so
T−1 is continuous. This gives the first assertion. The second follows from it by noting
that T/ is a bijection from X/N(T ) onto R(T ).

We have already encountered an example of this situation in Chapter 4. If Y is a
closed subspace of a Banach space X , the Hahn–Banach extension theorem implies
that restriction mapping r : X∗→ Y ∗ is surjective. Since the null space of r equals the
annihilator Y⊥, Corollary 5.9 corollary gives that r induces a isomorphism r/ of Banach
spaces

X∗/Y⊥ ≃ Y ∗.

The Hahn–Banach extension theorem also gives that r/ is an isometry, and therefore
this isomorphism is in fact isometric. This recovers the first part of Proposition 4.18.

It was noted in Proposition 4.15 that if a subspace X0 of a normed space X is the range
of a projection in X , then X0 is complemented in X . As an application of Corollary 5.9
we prove the following converse:

Proposition 5.10. A closed subspace of a Banach space X is complemented if and only
if it is the range of a projection in X.

Proof It remains to prove the ‘only if’ part. If X = X0⊕X1 is a direct sum decomposi-
tion, then |||x||| := ∥x0∥+∥x1∥, with x = x0 + x1 along the decomposition X = X0⊕X1,
defines a complete norm on X , and the mapping x 7→ x is bounded (in fact, contractive)
from (X , ||| · |||) to X by the triangle inequality. By Corollary 5.9, its inverse is bounded
as well. The boundedness of the projections π0 and π1 from X to X0 and X1 immediately
follows from this, noting that they are bounded (in fact, contractive) from (X , ||| · |||) to
X0 and X1.
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5.3 The Closed Graph Theorem

Let X and Y be Banach spaces. The graph of a mapping T : X → Y is the set

G(T ) := {(x,T x) : x ∈ X}

in X ×Y . If T is linear, G(T ) is a linear subspace of X ×Y . Endowing X ×Y with the
norm

∥(x,y)∥1 := ∥x∥+∥y∥ (5.1)

turns this space into a Banach space and it is easy to check that if T is bounded, then
G(T ) is closed in X×Y . Since all product norms on X×Y are equivalent (see Example
1.33), the particular choice of product norm made in (5.1) is immaterial.

Definition 5.11 (Closed operators). A linear operator T : X → Y is closed if its graph
is closed in X×Y .

Every bounded linear operator is closed. In the converse direction we have the fol-
lowing result.

Theorem 5.12 (Closed graph theorem). Let X and Y be Banach spaces. If a linear
operator T : X → Y is closed, then T is bounded.

Proof Let πX : X×Y→X and πY : X×Y→Y be given by πX (x,y) := x and πY (x,y) :=
y. Both mappings are bounded and of norm one. By assumption Z := G(T ) is a closed
subspace of X ×Y , hence a Banach space with respect to the inherited norm. Con-
sider the linear operator S : X → Z given by Sx := (x,T x). This operator is a bijection
whose inverse S−1 is the bounded operator πX . By Corollary 5.9 the inverse S of S−1 is
bounded. Hence also T = πY ◦S is bounded.

G(T )

X Y

πYS

T

Figure 5.1 Proof of the closed graph theorem

As an application of the closed graph theorem we prove the following variation of
Proposition 2.26.

Proposition 5.13. Let 1 ⩽ p,q ⩽ ∞ satisfy 1
p +

1
q = 1. Let (Ω,µ) be a measure space,
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180 Bounded Operators

which is assumed to be σ -finite if p = ∞. A measurable function f belongs to Lp(Ω) if
and only if f g ∈ L1(Ω) for all g ∈ Lq(Ω). In that case we have

∥ f∥p = sup
∥g∥q⩽1

∫
Ω

| f g|dµ.

Proof The ‘only if’ part is immediate from Hölder’s inequality. To prove the ‘if’ part
we may assume that f is not identically 0. Using Corollary 2.21, the mapping g 7→ f g
is easily seen to be closed as a mapping from Lq(Ω) to L1(Ω): if gn→ g in Lq(Ω) and
f gn→ h in L1(Ω), we may pass to a subsequence such that gnk → g and f gnk → h µ-
almost everywhere, and therefore f g = limn→∞ f gn = h µ-almost everywhere. By the
closed graph theorem, the operator g 7→ f g is bounded. It follows that the assumptions
of Proposition 2.26 are satisfied, with M the norm of the operator g 7→ f g. This gives
that g ∈ Lq(Ω) with bound

∥ f∥p ⩽ sup
∥g∥q⩽1

∫
Ω

| f g|dµ.

Hölder’s inequality gives the opposite bound.

As a further illustration of the use of the closed graph theorem, let us deduce Propo-
sition 5.10 from it. Let X = X0⊕X1 be a direct sum decomposition, and consider the
linear mapping π0 : (x0,x1) 7→ x0. In what follows we suggestively write (x0,x1) for the
element x0+x1 of X . To prove that π0 is bounded, we shall prove that its graph is closed.
Suppose that (xn

0,x
n
1)→ (x0,x1) and (xn

0,0)→ (y0,y1) in X . Then also

(0,xn
1) = (xn

0,x
n
1)− (xn

0,0)→ (x0,x1)− (y0,y1) = (x0− y0,x1− y1)

in X . The closedness of X0 and X1 in X implies that (y0,y1) = limn→∞(xn
0,0) belongs to

X0 and (x0−y0,x1−y1) = limn→∞(0,xn
1) belongs to X1. This forces y0 = x0 and y1 = 0.

It follows that (y0,y1) = (x0,0) = π0(x0,x1). This proves that π0 is closed. Therefore,
by the closed graph theorem, π0 is bounded.

5.4 The Closed Range Theorem

As a warm-up for the main result of this section we begin with a simple application of
the Hahn–Banach theorem. Recall that the annihilator of a subset A of X is the set

A⊥ := {x∗ ∈ X∗ : ⟨x,x∗⟩= 0 for all x ∈ A}

and the pre-annihilator of a subset B of X∗ is the set

⊥B := {x ∈ X : ⟨x,x∗⟩= 0 for all x∗ ∈ B}.
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Proposition 5.14. For any operator T ∈L (X ,Y ), where X and Y are Banach spaces,
we have

R(T ) = ⊥(N(T ∗)).

In particular, T has dense range if and only if T ∗ is injective.

Proof ⊆: If y = T x ∈ R(T ), then for all y∗ ∈ N(T ∗) we have ⟨y,y∗⟩ = ⟨x,T ∗y∗⟩ = 0,
and therefore y ∈ ⊥(N(T ∗)). This proves R(T ) ⊆ ⊥(N(T ∗)). The result now follows
from the fact that ⊥(N(T ∗)) is closed.

⊇: If x0 ̸∈ R(T ) =: Y0, by Corollary 4.12 there exists a y∗ ∈Y ∗ such that ⟨x0,y∗⟩ ̸= 0
and y∗|Y0 ≡ 0. For all x ∈ X , ⟨x,T ∗y∗⟩ = ⟨T x,y∗⟩ = 0 and therefore y∗ ∈ N(T ∗). Since
⟨x0,y∗⟩ ̸= 0 we have x0 ̸∈ ⊥(N(T ∗)).

In Sections 7.2 and 7.3 we will encounter interesting classes of operators whose
ranges are closed. For such operators, the closed range theorem provides a ‘dual’ variant
of Proposition 5.14 which is considerably harder to prove. We need this theorem in our
discussion of duality of Fredholm operators in Section 7.3.

Theorem 5.15 (Closed range theorem). Let the operator T ∈L (X ,Y ) be given, where
X and Y are Banach spaces. If R(T ) is closed, then

R(T ∗) = (N(T ))⊥.

As a consequence, R(T ∗) is weak∗ closed.

Proof Once we have proved the identity R(T ∗) = (N(T ))⊥, the weak∗ closedness of
R(T ∗) follows from the general observation that annihilators are weak∗ closed.

⊆: If x∗ = T ∗y∗ ∈ R(T ∗), then for all x ∈ N(T ) and we have ⟨x,x∗⟩ = ⟨T x,y∗⟩ = 0.
This shows that x∗ ∈ (N(T ))⊥.

⊇: Suppose that x∗ ∈ (N(T ))⊥. For elements y = T x ∈ R(T ) we define

φ(y) := ⟨x,x∗⟩.

To see that this is well defined, suppose that we also have y = T x′. Then T (x− x′) =
y− y = 0 implies x− x′ ∈ N(T ) and therefore ⟨x− x′,x∗⟩ = 0. This gives the well-
definedness as claimed.

For all z ∈ N(T ) we have φ(y) = ⟨x− z,x∗⟩ and therefore |φ(y)| ⩽ ∥x− z∥∥x∗∥. By
taking the infimum over all z ∈ N(T ) we obtain

|φ(y)|⩽ d(x,N(T ))∥x∗∥.

We claim that the closedness of the range of T implies the existence of a constant C ⩾ 0
such that

d(x,N(T ))⩽C∥T x∥. (5.2)
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182 Bounded Operators

Taking this for granted for the moment, we first show how to complete the proof. From
(5.2) we obtain the estimate

|φ(y)|⩽C∥T x∥∥x∗∥=C∥y∥∥x∗∥,

proving that φ is bounded as a functional defined on R(T ). By the Hahn–Banach theo-
rem, we obtain an element y∗ ∈ Y ∗ extending φ . For all x ∈ X we obtain

⟨x,T ∗y∗⟩= ⟨T x,y∗⟩= φ(T x) = ⟨x,x∗⟩,

so x∗ = T ∗y∗ ∈ R(T ∗).
It remains to prove (5.2). For this we note that

d(x,N(T )) = ∥x+N(T )∥X/N(T ). (5.3)

The operator T induces a well-defined and bounded quotient operator T/, which is an
isomorphism from X/N(T ) onto R(T ) by Corollary 5.9. Denoting by C the norm of its
inverse we obtain the desired estimate from (5.3) and

∥x+N(T )∥X/N(T ) ⩽C∥T/(x+N(T ))∥=C∥T x∥.

This completes the proof of (5.2).

5.5 The Fourier Transform

In the present section and the next we study two nontrivial examples of bounded op-
erators: the Fourier–Plancherel transform and the Hilbert transform. It is not an exag-
geration to state that, at least from the point of view of the theory of partial differential
equations, these rank among the most important bounded operators in all of Analysis.

5.5.a Definition and General Properties

Definition 5.16 (Fourier transform). The Fourier transform of a function f ∈ L1(Rd) is
the function f̂ : Rd → C defined by

f̂ (ξ ) :=
1

(2π)d/2

∫
Rd

f (x)exp(−ix ·ξ )dx, ξ ∈ Rd, (5.4)

where x ·ξ := ∑
d
j=1 x jξ j.

It is evident that f̂ ∈ L∞(Rd) and ∥ f̂∥∞ ⩽ (2π)−d/2∥ f∥1. This shows that the oper-
ator F : f 7→ f̂ , which will be referred to as the Fourier transform, defines a bounded
operator from L1(Rd) to L∞(Rd).
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Remark 5.17. In certain situations it is useful to absorb the constant (2π)−d/2 into the
measure. Denoting the resulting normalised Lebesgue measure by

dm(x) = (2π)−d/2 dx,

one may interpret the Fourier transform as the operator from L1(Rd,m)→ L∞(Rd,m)

given by

f̂ (ξ ) :=
∫
Rd

f (x)exp(−ix ·ξ )dm(x), ξ ∈ Rd.

The advantage of this point of view is that this operator is contractive. In many applica-
tions, however, working with the normalised Lebesgue measure is somewhat artificial,
and for this reason we stick with (5.4) most of the time.

The dominated convergence theorem implies that for all f ∈ L1(Rd) the function f̂
is sequentially continuous, hence continuous. More is true: the following lemma shows
that f̂ belongs to C0(Rd), the space of continuous functions vanishing at infinity.

Theorem 5.18 (Riemann–Lebesgue lemma). For all f ∈ L1(Rd) we have f̂ ∈C0(Rd).

Proof By separation of variables one sees that lim|ξ |→∞ | f̂ (ξ )| = 0 for step functions
f = ∑

n
i=1 ci1Qi where n ⩾ 1, ci ∈ C and Qi cubes with sides parallel to the coordinate

axes (1 ⩽ i ⩽ n). Indeed, if Q = ∏
d
j=1[a j,b j] is such a cube, then

f̂ (ξ ) =
1

(2π)d/2

∫
Rd

d

∏
j=1

1[a j ,b j ] exp(−ix jξ j)dx

=
1

(2π)d/2i

d

∏
j=1

1
ξ j
(exp(−ia jξ j)− exp(−ib jξ j))

=
1

(2π)d/2i

d

∏
j=1

exp(−ib jξ j)
exp(i(b j−a j)ξ j)−1

ξ j
.

If |ξ |⩾ r, then at least one coordinate satisfies |ξ j0 |⩾ r/
√

d and then

| f̂ (ξ )|⩽ 1
(2π)d/2

2
√

d
r ∏

j ̸= j0

M j,

where the constants

M j = sup
y∈R\{0}

∣∣∣exp(i(b j−a j)y)−1
y

∣∣∣
are finite. This proves that f̂ ∈C0(Rd) as claimed.

Since the functions of the form considered above are dense in L1(Rd) by (the proof
of) Proposition 2.29, and since C0(Rd) is a closed subspace of L∞(Rd), by Proposi-
tion 1.18 the Fourier transform extends uniquely to a bounded operator from L1(Rd)
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to C0(Rd). Identifying C0(Rd) with a closed subspace of L∞(Rd), this extension agrees
with the Fourier transform.

We continue with an inversion theorem for the Fourier transform. Its proof is based
on a simple lemma.

Lemma 5.19. For λ > 0 the Fourier transform of the function

g(λ )(x) =
1

(2π)d/2 exp
(
−1

2
λ |x|2

)
equals

ĝ(λ )(ξ ) =
1

(2πλ )d/2 exp
(
−1

2
|ξ |2/λ

)
.

Proof First let d = 1. Completing squares and using Cauchy’s theorem to shift the path
of integration, we find

1
(2π)1/2

∫
R

g(λ )(x)exp(−ix ·ξ )(x)dx

=
1

2π

∫
R

exp
(
−1

2
λ [(x+ iξ/λ )2 +ξ

2/λ
2]
)

dx

=
1

2π
exp
(
−1

2
ξ

2/λ

)∫
R+iξ/λ

exp
(
−1

2
λ z2
)

dz

=
1

2π
exp
(
−1

2
ξ

2/λ

)∫
R

exp
(
−1

2
λ z2
)

dz =
1

(2πλ )1/2 exp
(
−1

2
ξ

2/λ

)
.

The general case follows from this by separation of variables.

A different proof based on the Picard–Lindelöf theorem is outlined in Problem 5.20.

Theorem 5.20 (Fourier inversion theorem). If f ∈ L1(Rd) satisfies f̂ ∈ L1(Rd), then
for almost all x ∈ Rd we have the identity

f (x) =
1

(2π)d/2

∫
Rd

f̂ (ξ )exp(ix ·ξ )dξ .

In particular this result implies that the Fourier transform is injective as a mapping
from L1(Rd) to L∞(Rd). A more general injectivity result will be proved in Theorem
5.30.

Proof By Lemma 5.19, the function g(x) = (2π)−d/2 exp
(
− 1

2 |x|
2
)

satisfies

g(x) = ĝ(x) =
1

(2π)d/2

∫
Rd

g(ξ )exp(−ix ·ξ )dξ =
1

(2π)d/2

∫
Rd

g(ξ )exp(ix ·ξ )dξ ,
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where the last identity uses that g is real-valued, so that taking complex conjugates
leaves the expression unchanged. Substituting x/λ for x we obtain

gλ (x) := λ
−dg(λ−1x) =

1
(2π)d/2

∫
Rd

g(λξ )exp(ix ·ξ )dξ .

By Proposition 2.34 and Corollary 2.21, after passing to an appropriate subsequence
λ j ↓ 0 we have gλ j ∗ f (x)→ f (x) for almost all x ∈ Rd as j→ ∞. Using the above, it
follows that for almost all x ∈ Rd we have

f (x) = lim
j→∞

∫
Rd

gλ j(y) f (x− y)dy

= lim
j→∞

∫
Rd

( 1
(2π)d/2

∫
Rd

g(λ jξ )exp(iy ·ξ )dξ

)
f (x− y)dy

= lim
j→∞

∫
Rd

exp(ix ·ξ )
( 1
(2π)d/2

∫
Rd

f (x− y)exp(−i(x− y) ·ξ )dy
)

g(λ jξ )dξ

= lim
j→∞

1
(2π)d/2

∫
Rd

g(λ jξ )exp(ix ·ξ ) f̂ (ξ )dξ

=
1

(2π)d/2

∫
Rd

f̂ (ξ )exp(ix ·ξ )dξ ,

where the last step is justified by dominated convergence, which can be used here since
f̂ is integrable, g is bounded, and g(λ jξ )→ g(0) = 1 pointwise as j→ ∞.

The Fourier transform of the translate τh f of a function f ∈ L1(R) is given by

τ̂h f (ξ ) =
1√
2π

∫
∞

−∞

f (x+h)exp(−ixξ )dx = exp(ihξ ) f̂ (ξ ).

Norbert Wiener, 1894–1964

It follows that if f̂ (ξ0) = 0 for some ξ0 ∈ R,
then τ̂h f (ξ0) = 0 for all h ∈ R. Therefore the
linear span of the set of translates of f is con-
tained in {g ∈ L1(R) : ĝ(ξ0) = 0}, which is a
proper closed subspace of L1(R). Thus, a nec-
essary condition in order that the linear span of
the set of translates of a function f ∈ L1(R) be
dense in L1(R) is that f̂ be zero-free. Strikingly,
this necessary condition is also sufficient. This is
the content of the next theorem, which will be
proved by operator theoretic methods in Section
13.1.b.

Theorem 5.21 (Wiener’s Tauberian theorem). If the Fourier transform of a function
f ∈ L1(R) is zero-free, then the span of the set of all translates of f is dense in L1(R).
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5.5.b The Plancherel Theorem

The Fourier transform enjoys an important L2 boundedness property.

Theorem 5.22 (Plancherel, preliminary version). If f ∈ L1(Rd)∩ L2(Rd), then f̂ ∈
L2(Rd) and

∥ f̂∥2 = ∥ f∥2.

Proof Since f ∈ L1(Rd), f̂ is bounded and ξ 7→ exp
(
− 1

2 λ |ξ |2
)
| f̂ (ξ )|2 is integrable

for all λ > 0, and∫
Rd

exp
(
−1

2
λ |ξ |2

)
| f̂ (ξ )|2 dξ

=
∫
Rd

exp
(
−1

2
λ |ξ |2

)
f̂ (ξ ) f̂ (ξ )dξ

=
1

(2π)d/2

∫
Rd

g(λ )(ξ )
∫
Rd

f (x)exp(−ix ·ξ )dx
∫
Rd

f (y)exp(iy ·ξ )dydξ

=
∫
Rd

∫
Rd

( 1
(2π)d/2

∫
Rd

g(λ )(ξ )exp(−i(x− y)ξ )dξ

)
f (x) f (y)dxdy

=
∫
Rd

∫
Rd

1
(2πλ )d/2 exp

(
−1

2
|x− y|2/λ

)
f (x) f (y)dxdy

=
∫
Rd

f ∗φ√
λ
(y) f (y)dy,

where φµ(x) := µ−dφ(µ−1x) with φ(y) = (2π)−d/2 exp
(
− 1

2 |y|
2
)
; the change of order

of integration is justified by the absolute integrability of the integrand. Applying Propo-
sition 2.34 we find that limλ↓0 f ∗φ√

λ
= f in L2(Rd). Then,

lim
λ↓0

∫
Rd

f ∗φ√
λ
(y) f (y)dy =

∫
Rd

f (y) f (y)dy = ∥ f∥2
2.

On the other hand,

lim
λ↓0

∫
Rd

exp
(
−1

2
λ |ξ |2

)
| f̂ (ξ )|2 dξ =

∫
Rd
| f̂ (ξ )|2 dξ = ∥ f̂∥2

2

by dominated convergence. This completes the proof.

Consider the vector space

F 2(Rd) :=
{

f ∈ L1(Rd)∩L2(Rd) : f̂ ∈ L1(Rd)∩L2(Rd)
}
.

There is some redundancy in this definition, for if f ∈ L1(Rd)∩L2(Rd), then f̂ ∈ L2(Rd)

by the Plancherel theorem. The advantage of the above format is that it brings out the
symmetry between f and f̂ explicitly. The interest of this space is explained by the
following two observations.
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Lemma 5.23. The Fourier transform maps F 2(Rd) bijectively into itself.

Proof Injectivity of f 7→ f̂ follows from the Plancherel theorem and surjectivity from
the Fourier inversion theorem, which implies if f ∈F 2(Rd), then f is the Fourier trans-
form of the function ξ 7→ f̂ (−ξ ) in F 2(Rd).

Lemma 5.24. F 2(Rd) is dense in L2(Rd).

Proof Since C∞
c (Rd) is dense in L2(Rd) by Proposition 2.29, it suffices to show that

every f ∈ C∞
c (Rd) belongs to F 2(Rd). Integrating by parts, for all f ∈ C∞

c (Rd) and
multi-indices α ∈ Nd we have

∂̂ α f (ξ ) = i|α|ξ α f̂ (ξ ),

where ∂ α := ∂
α1
1 ◦ · · · ◦ ∂

αd
d with ∂ j the partial derivative in the jth direction, ξ α :=

ξ
α1
1 · · ·ξ

αd
d , and |α| := α1 + · · ·+αd . Since Fourier transforms of integrable functions

are bounded, this implies that ξ 7→ (1+ |ξ |k) f̂ (ξ ) is bounded for every integer k ⩾ 1.
The desired result follows from this.

Combining these lemmas with Proposition 1.18, we obtain the following improved
version of Theorem 5.22.

Theorem 5.25 (Plancherel). The restriction of the Fourier transform to L1(Rd)∩L2(Rd)

has a unique extension to an isometry from L2(Rd) onto itself.

Definition 5.26 (Fourier–Plancherel transform). This isometry of L2(Rd) is called the
Fourier–Plancherel transform.

With slight abuse of notation we denote the Fourier–Plancherel transform again by
F : f 7→ f̂ . It is important to realise that f̂ is no longer given by the pointwise formula
(5.4). In fact, for functions f ∈ L2(Rd) the integrand in (5.4) is not even integrable
unless f ∈ L1(Rd)∩L2(Rd).

Remark 5.27. Theorem 5.25 also holds with respect to the normalised Lebesgue mea-
sure dm(x) = (2π)−d/2 dx: the restriction to L1(Rd,m)∩L2(Rd,m) of the Fourier trans-
form as defined in Remark 5.17 extends to an isometry from L2(Rd,m) onto itself.

For later use we record two further properties of the Fourier–Plancherel transform.

Proposition 5.28. For all f ,g ∈ L2(Rd) we have∫
Rd

f (x)ĝ(x)dx =
∫
Rd

f̂ (x)g(x)dx.

Proof For f ,g ∈F 2(Rd) the identity follows by writing out the Fourier transforms
and using Fubini’s theorem:∫

Rd
f (x)ĝ(x)dx =

∫
Rd

1
(2π)d/2

∫
Rd

f (x)g(ξ )exp(−ix ·ξ )dξ dx
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188 Bounded Operators

=
∫
Rd

1
(2π)d/2

∫
Rd

f (x)g(ξ )exp(−ix ·ξ )dxdξ =
∫
Rd

f̂ (ξ )g(ξ )dξ .

The general case follows by approximation, using that F 2(Rd) is dense in L2(Rd) by
Lemma 5.24.

The appearance of the factor (2π)d/2 in the next proposition is an artefact of our
convention to normalise the Fourier transform with this factor, but not the convolution.

Proposition 5.29. Let f ∈ L1(Rd) and let g ∈ L1(Rd) or g ∈ L2(Rd). For almost all
ξ ∈ Rd we have

f̂ ∗g(ξ ) = (2π)d/2 f̂ (ξ )ĝ(ξ ).

Proof If g ∈ Cc(Rd), then f ∗ g ∈ L1(Rd)∩ L2(Rd) by Young’s inequality, and by
Fubini’s theorem and a change of variables we obtain

f̂ ∗g(ξ ) =
1

(2π)d/2

∫
Rd

(∫
Rd

f (x− y)g(y)dy
)

exp(−ix ·ξ )dx

=
∫
Rd

( 1
(2π)d/2

∫
Rd

f (x− y)exp(−i(x− y) ·ξ )dx
)

exp(−iy ·ξ )g(y)dy

=
∫
Rd

( 1
(2π)d/2

∫
Rd

f (u)exp(−iu ·ξ )du
)

g(y)exp(−iy ·ξ )dy

= (2π)d/2 f̂ (ξ )ĝ(ξ ).

This proves the identity for g∈Cc(Rd). For p∈{1,2} and 1
p +

1
q = 1, Young’s inequality

implies that the Lq-function f̂ ∗g depends continuously on the Lp-norm of g. Since
Cc(Rd) is dense in Lp(Rd) by Proposition 2.29, it follows that the identity extends to
arbitrary functions g ∈ Lp(Rd).

From Proposition 2.43 we know that if µ is a real or complex measure, its variation
|µ| is a finite measure. Accordingly, the Lebesgue integrals of bounded Borel functions
with respect to µ are well defined. In particular we can define the Fourier transform of
a real or complex Borel measure µ on Rd by

µ̂(ξ ) :=
1

(2π)d/2

∫
Rd

exp(−ix ·ξ )dµ(x), ξ ∈ Rd.

From

|µ̂(ξ )|⩽ 1
(2π)d/2

∫
Rd

d|µ|= 1
(2π)d/2 ∥µ∥,

where ∥µ∥ = |µ|(Rd) is the variation norm of µ , we see that µ̂ is a bounded function,
and it is continuous by dominated convergence. Thus we have µ̂ ∈Cb(Rd) and ∥µ̂∥∞ ⩽
(2π)−d/2∥µ∥. The Riemann–Lebesgue lemma does not extend to the present setting, as
is demonstrated by the identity δ̂0 = 1.
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5.5 The Fourier Transform 189

The Fourier inversion theorem (Theorem 5.20) implies that the Fourier transform is
injective as an operator from L1(Rd) to L∞(Rd). More generally we have the following
result.

Theorem 5.30 (Injectivity of the Fourier transform). If µ is a real or complex Borel
measure on Rd satisfying µ̂(ξ ) = 0 for all ξ ∈ Rd, then µ = 0.

Proof To prove that µ = 0, by the uniqueness part of the Riesz Representation theorem
(Theorem 4.2) it suffices to show that∫

Rd
f dµ = 0, f ∈Cc(Rd). (5.5)

Fix 0 < ε < 1 and f ∈Cc(Rd). We may assume that ∥ f∥∞ ⩽ 1. Let r > 0 be so large
that the support of f is contained in a cube [−r,r]d satisfying |µ|

(
∁[−r,r]d

)
⩽ ε . By the

Stone–Weierstrass theorem (Theorem 2.5) there exists a linear combination p : Rd→C
of the functions of the form x 7→ exp(2πikx ·ξ/2r) with ξ ∈ Rd and k ∈ Z (that is, a
‘trigonometric polynomial of period 2r’) such that supx∈[−r,r]d | f (x)− p(x)|⩽ ε. Then,
noting that ∥p∥∞ ⩽ 1+ ε ,∣∣∣∫

Rd
f dµ

∣∣∣= ∣∣∣∫
[−r,r]d

f dµ

∣∣∣⩽ ∫
[−r,r]d

| f − p|d|µ|+
∣∣∣∫

[−r,r]d
pdµ

∣∣∣
⩽ ε∥µ∥+

∣∣∣∫
Rd

pdµ−
∫
∁[−r,r]d

pdµ

∣∣∣
⩽ ε∥µ∥+

∣∣∣∫
Rd

pdµ︸ ︷︷ ︸
=0

∣∣∣+ ε(1+ ε) = ε∥µ∥+ ε(1+ ε).

The equality in the last step follows from the assumption that µ̂ vanishes, as it implies∫
Rd pdµ = 0. Since ε > 0 was arbitrary, this proves (5.5).

For later reference we mention that this theorem also admits a discrete version, the
proof of which is an even more direct application of the Stone–Weierstrass theorem (see
Problem 5.18). The Fourier coefficients of a real or complex Borel measure µ on the
unit circle T are defined by

µ̂(n) :=
1

2π

∫
π

−π

exp(−inθ)dµ(θ), n ∈ Z.

Theorem 5.31 (Injectivity of the Fourier transform on the circle). If µ is a real or
complex Borel measure on T satisfying µ̂(n) = 0 for all n ∈ Z, then µ = 0.

If µ is real-valued, it suffices to have µ̂(n) = 0 for all n ∈ N, for then µ̂(−n) = µ̂(n)
implies that µ̂(n) = 0 for all n ∈ Z.
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190 Bounded Operators

5.5.c Fourier Multiplier Operators

The Plancherel theorem provides a method for constructing nontrivial bounded opera-
tors on L2(Rd) as follows. Given m ∈ L∞(Rd) and f ∈ L2(Rd), the function

m f̂ : ξ 7→ m(ξ ) f̂ (ξ )

belongs to L2(Rd) and therefore the same is true for its inverse Fourier–Plancherel trans-
form (m f̂ )

̂
.

Definition 5.32 (Fourier multiplier operators). For functions m ∈ L∞(Rd), the bounded
operator on L2(Rd) defined by

Tm : f 7→ (m f̂ )

̂
is called the Fourier multiplier operator with symbol m.

The operator Tm is bounded of norm ∥Tm∥= ∥g 7→mg∥L (L2(Rd)) = ∥m∥∞ (cf. Exam-
ple 1.29). We have the elementary properties

Tm1+m2 = Tm1 +Tm2 , Tm1m2 = Tm1 ◦Tm2 .

Fourier multipliers can be characterised by commutation properties. This fact de-
pends on the following lemma.

Lemma 5.33. Let (Ω,F,µ) be a σ -finite measure space and let 1 ⩽ p ⩽ ∞. For a
bounded operator T on Lp(Ω) the following assertions are equivalent:

(1) T is a pointwise multiplier, that is, there exists a function m ∈ L∞(Ω) such that
T f = m f for all f ∈ Lp(Ω);

(2) T commutes with all pointwise multipliers, that is, T Mφ = Mφ T for all φ ∈ L∞(Ω),
where Mφ f = φ f .

If Ω = Rd with Lebesgue measure and 1 ⩽ p < ∞, then (1) and (2) are equivalent to

(3) T Meξ
= Meξ

T for all ξ ∈ Rd , where eξ (x) = exp(ix ·ξ ) for x ∈ Rd .

Proof It is trivial that (1) implies (2). If, conversely, T commutes with every pointwise
multiplier, then for all f ∈ Lp(Ω)∩L∞(Ω) we have

T f = T ( f 1) = T M f 1 = M f T 1 = f T 1 = MT 1 f .

Hence for all f ∈ Lp(Ω)∩L∞(Ω) we have

∥MT 1 f∥p = ∥T f∥p ⩽ ∥T∥∥ f∥p.

Since Lp(Ω)∩L∞(Ω) is dense in Lp(Ω), this implies that pointwise multiplication by T 1
extends to a bounded operator on Lp(Ω). This forces T 1 ∈ L∞(Ω) (see the observation
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5.5 The Fourier Transform 191

at the end of Section 2.3.a; this is where the σ -finiteness assumption is used). Setting
m := T 1, we obtain T = Mm. This proves that (2) implies (1).

Now suppose that Ω = Rd with Lebesgue measure. It is trivial that (2) implies (3).
Suppose now that (3) holds, with 1 ⩽ p < ∞. Fix ε > 0 and f ∈ Lp(Rd), and choose
r > 0 so large that ∥ fr− f∥p < ε , where fr := f |[−r;r]d . If p is a linear combination of
2r-periodic trigonometric exponentials, (3) implies

T (p fr) = pT fr.

By the Stone–Weierstrass theorem, every φ ∈ C([−r,r]d) can be uniformly approxi-
mated by linear combinations pn of such trigonometric exponentials. Applying the pre-
ceding identity to pn and taking limits in Lp(Rd), we find that

T (φ fr) = φT fr, φ ∈C([−r,r]d).

If φ ∈ Cb(Rd), this implies that T (φr fr) = φrT fr. As r→ ∞ we have φr fr → φ f and
φrT fr→ φT f in Lp(Rd), and therefore

φT f = T (φ f ), φ ∈Cb(Rd).

Finally, if φ ∈ L∞(Rd), then by the regularity of the Lebesgue measure and the use of
Urysohn functions we can find a sequence of functions φn ∈ Cb(Rd) converging to φ

pointwise almost everywhere and such that supn⩾1 ∥φn∥∞ < ∞. Since φnT f → φT f and
φn f → φ f in Lp(Rd), we conclude that

T (φ f ) = φT f , φ ∈ L∞(Rd).

This proves that (2) holds.

As an application we have the following characterisation of translation invariant op-
erators on L2(Rd).

Theorem 5.34 (Translation invariant operators on L2(Rd)). If T is a bounded op-
erator on L2(Rd) commuting with every translation, then T is a Fourier multiplier
operator, that is, there exists a (necessarily unique) function m ∈ L∞(Rd) such that
T f = F−1(mF f ) for all f ∈ L2(Rd).

Proof Using the notation of Lemma 5.33 and letting τy f (x) := f (x+ y), easy calcula-
tions show that Meξ

F = F τξ and τξ F−1 = F−1Meξ
for all ξ ∈ Rd. These identities

imply that the operator T̃ = FTF−1 has the property Meξ
T̃ = T̃ Meξ

for all ξ ∈ Rd,

and the lemma implies that T̃ is a pointwise multiplier. This means that T is a Fourier
multiplier.
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192 Bounded Operators

5.6 The Hilbert Transform

A case of special interest concerns the multiplier

m(ξ ) =−isign(ξ ), ξ ∈ R.

In order to obtain an explicit representation for the Fourier multiplier operator Tm we
observe that m =−i(1R+ −1R−) and consider the functions

n±a (ξ ) := exp(−a|ξ |)1R±(ξ ), a > 0.

Then

n̂+a (x) =
1√
2π

∫
∞

0
exp(−aξ )exp(ixξ )dξ =

1√
2π

1
a− ix

and

n̂−a (x) =
1√
2π

∫ 0

−∞

exp(aξ )exp(ixξ )dξ =
1√
2π

1
a+ ix

.

Formally letting a ↓ 0, in view of Proposition 5.29 one expects that

T−isign f =−i lim
a↓0

(Tn+a f −Tn−a f )

=− i√
2π

lim
a↓0

(n̂+a ∗ f − n̂−a ∗ f )

=− i
2π

lim
a↓0

( 1
a− i(·)

− 1
a+ i(·)

)
∗ f =

1
π(·)
∗ f .

This suggests the formula

T−isign f (x) =
1
π

∫
∞

−∞

f (x− y)
y

dy.

The above argument is nonrigorous and the convolution with the nonintegrable function
1/x is not even well defined as an operator acting on L2(R). The next theorem turns the
above formal derivation into a rigorous argument.

Theorem 5.35 (Hilbert transform as a Fourier multiplier operator). The Fourier multi-
plier operator H := T−isign is given by

H f (·) = lim
ε↓0

1
π

∫
{|y|>ε}

f (·− y)
y

dy, f ∈ L2(R),

the convergence being in the sense of L2(R).

Proof Setting

Hε f :=
1
π

∫
{|y|>ε}

f (·− y)
y

dy,
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we see that Hε is the operator of convolution with the integrable function φε(x) =
1

πx 1{|x|>ε}. The Fourier transform of this function can be rewritten as

φ̂ε(ξ ) =
1

π
√

2π

∫
{|x|>ε}

1
x

exp(−ixξ )dx

=− 1
π
√

2π
sign(ξ ) lim

R→∞

∫
i[−R,−ε]∪i[ε,R]

exp(z|ξ |)dz
z

=− i
π
√

2π
sign(ξ ) lim

R→∞

∫ 3
2 π

1
2 π

exp
(
|ξ |Reiθ

)
− exp

(
|ξ |εeiθ

)
dθ ,

where the last step used Cauchy’s theorem applied to the boundary of the part of the
annulus {ε < |z|< R} in the left half-plane. Now,∣∣∣∫ 3

2 π

1
2 π

exp
(
|ξ |Reiθ

)
dθ

∣∣∣⩽ ∫ 3
2 π

1
2 π

exp(|ξ |Rcosθ)dθ

= 2
∫ 1

2 π

0
exp(−|ξ |Rsinθ)dθ

⩽ 2
∫ 1

2 π

0
exp(−(2/π)|ξ |Rθ)dθ =

1− exp(−|ξ |R)
|ξ |R/π

,

where we used that sinθ ⩾ (2/π)θ for θ ∈ [0, 1
2 π]. As the expression on the right-hand

side tends to 0 as R→ ∞, we find

φ̂ε(ξ ) =−
i

π
√

2π
sign(ξ )

∫ 3
2 π

1
2 π

exp
(
|ξ |εeiθ

)
dθ .

As ε ↓ 0, the integral on the right-hand side tends to π for every ξ ∈ R. Hence by
dominated convergence

lim
ε↓0

∥∥φ̂ε − (− i√
2π

sign)
∥∥2

2 =
∫
R

∣∣∣ 1
π

∫ 3
2 π

1
2 π

exp
(
|ξ |εeiθ

)
dθ −1

∣∣∣2 dξ = 0.

As a result, by using Proposition 5.29 we obtain

lim
ε↓0

Ĥε f =
√

2π lim
ε↓0

φ̂ε f̂ =−isign · f̂

with convergence in L2(R). Therefore, by the Plancherel theorem and the definition of
H,

lim
ε↓0

Hε f = (−isign · f̂ )

̂
= H f

with convergence in L2(R).

Definition 5.36 (Hilbert transform). The operator H = T−isign is called the Hilbert
transform.
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The Hilbert transform has deep applications in Harmonic Analysis and the theory of
partial differential equations. It will resurface in our treatment of the Poisson semigroup
in Chapter 13. Its connection with harmonic functions is pointed out in Problem 5.23.

The final theorem of this section gives a characterisation of the Hilbert transform in
terms of commutation properties. A dilation on L2(Rd) is an operator of the form

Dδ f (x) := f (δx), x ∈ Rd,

where δ > 0.

Theorem 5.37 (Characterisation of the Hilbert transform). If T is a bounded operator
on L2(R) commuting with every translation and dilation, then T is a linear combination
of the identity operator and the Hilbert transform.

Proof Theorem 5.34 tells us that T is a Fourier multiplier operator, say T = Tm with
m ∈ L∞(R). For δ > 0, simple calculations give

TmDδ f (x) = TDδ m f (δx)

and

Dδ Tm f (x) = Tm f (δx)

for almost all x ∈ R. It follows that TmDδ = Dδ Tm if and only if TDδ m = Tm, that is, if
and only if m(δξ ) = m(ξ ) for almost all ξ ∈R. This is true for all δ > 0 if and only if m
is constant almost everywhere on both R+ and R−. Hence m = a1+bsign for suitable
a,b ∈ C. The result now follows from Theorem 5.35.

5.7 Interpolation

In general it can be difficult to establish Lp-boundedness of operators acting in spaces of
measurable functions. In such situations, interpolation theorems may be helpful. They
serve to establish Lp-boundedness in situations where suitable boundedness properties
can be established for ‘endpoint’ exponents p0 and p1 satisfying p0 ⩽ p ⩽ p1. In typical
applications one takes p0 ∈ {1,2} and p1 ∈ {2,∞} (cf. Sections 5.7.b and 5.7.c).

5.7.a The Riesz–Thorin Interpolation Theorem

Theorem 5.38 (Riesz–Thorin interpolation theorem). Let (Ω,F,µ) and (Ω′,F ′,µ ′) be
measure spaces and let 1 ⩽ p0, p1,q0,q1 ⩽ ∞. Let

T0 : Lp0(Ω)→ Lq0(Ω′), T1 : Lp1(Ω)→ Lq1(Ω′)
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be bounded operators which are consistent in the sense that T f := T0 f = T1 f µ ′-almost
surely for all f ∈ Lp0(Ω)∩Lp1(Ω). Assume furthermore that

∥T0 f∥Lq0 (Ω′) ⩽ A0∥ f∥Lp0 (Ω), f ∈ Lp0(Ω),

∥T1 f∥Lq1 (Ω′) ⩽ A1∥ f∥Lp1 (Ω), f ∈ Lp1(Ω).

Let 0 < θ < 1 and set

1
pθ

:=
1−θ

p0
+

θ

p1
,

1
qθ

:=
1−θ

q0
+

θ

q1
.

Then the common restriction T of T0 and T1 to Lp0(Ω)∩Lp1(Ω) maps this space into
Lqθ (Ω′) and extends uniquely to a bounded operator

T : Lpθ (Ω)→ Lqθ (Ω′)

satisfying

∥T f∥Lqθ (Ω′) ⩽ A1−θ

0 Aθ
1 ∥ f∥Lpθ (Ω), f ∈ Lpθ (Ω).

We begin with a simple lemma, which corresponds to the special case where the
interpolated operator is the identity operator.

Lemma 5.39. Let (Ω,F,µ) be a measure space, let 1 ⩽ r0 ⩽ r1 ⩽ ∞ and 0 < θ < 1,
and set 1

rθ
:= 1−θ

r0
+ θ

r1
. Then for all f ∈ Lr0(Ω)∩Lr1(Ω) we have f ∈ Lrθ (Ω)

∥ f∥rθ
⩽ ∥ f∥1−θ

r0
∥ f∥θ

r1
.

Proof Write | f |rθ = | f |(1−θ)rθ | f |θrθ and apply Hölder’s inequality.

Consider the open strip

S := {z ∈ C : 0 < Rez < 1}.

Lemma 5.40 (Three lines lemma). Suppose that F : S→ C is a bounded continuous
function, holomorphic on S, and satisfying

sup
v∈R
|F(iv)|⩽ A0, sup

v∈R
|F(1+ iv)|⩽ A1.

Then for all 0 < θ < 1 we have

sup
v∈R
|F(θ + iv)|⩽ A1−θ

0 Aθ
1 .

Proof Let F satisfy the assumptions of the lemma with constants A0 and A1. For each
ε > 0 the function Fε(z) := Az−1

0 A−z
1 exp(εz(z−1))F(z) satisfies the assumptions of the

lemma with constants A0,ε = A1,ε = 1. Moreover, limv→∞ |Fε(u+ iv)| = 0 uniformly
with respect to u ∈ [0,1]. Hence for large enough R we have |Fε | ⩽ 1 on the boundary
of the rectangle Rez ∈ [0,1], | Imz|⩽ R. The maximum modulus principle implies that
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|Fε |⩽ 1 on this rectangle, and by letting R→ ∞ we find that |Fε |⩽ 1 on S. The lemma
now follows by letting ε ↓ 0.

Inspection of the proof reveals that the boundedness assumption on F can be relaxed.
It cannot be entirely dispensed with, however: the function F(z) = exp(exp(π(z−1)))
is bounded on the lines Rez = 0 and Rez = 1, but unbounded on the line Rez = 1

2 .

Proof of Theorem 5.38 There is no loss of generality in assuming that A0 > 0 and
A1 > 0. If p0 = p1 = ∞, then for all f ∈ L∞(Ω) we have T f ∈ Lq0(Ω′)∩Lq1(Ω′) and
therefore, by Lemma 5.39,

∥T f∥qθ
⩽ ∥T f∥1−θ

q0
∥T f∥θ

q1
⩽ A1−θ

0 Aθ
1 ∥ f∥1−θ

∞ ∥ f∥θ
∞ = A1−θ

0 Aθ
1 ∥ f∥∞.

This settles that case p0 = p1 = ∞. In the rest of the proof we may therefore assume that
min{p0, p1}< ∞. This assumption implies pθ < ∞.

For z ∈ S define pz,qz ∈ C by the relations

1
pz

=
1− z

p0
+

z
p1

,
1
q′z

=
1− z

q′0
+

z
q′1

,

where q′0 and q′1 are the conjugate exponents of q0 and q1, respectively. Let a : Ω→ C
and b : Ω′ → C be µ- and µ ′-simple functions and define, for each z ∈ S, the µ- and
µ ′-simple functions fz ∈ Lp0(Ω)∩Lp1(Ω) and gz ∈ Lq′0(Ω′)∩Lq′1(Ω′) by

fz(ω) = 1{a̸=0}|a(ω)|pθ /pz
a(ω)

|a(ω)|
, gz(ω

′) = 1{b̸=0}|b(ω ′)|q
′
θ
/q′z

b(ω ′)
|b(ω ′)|

. (5.6)

Then T fz ∈ Lq0(Ω′)∩Lq1(Ω′), and the function F : S→ C defined by

F(z) :=
∫

Ω′
(T fz) ·gz dµ

′

is easily checked to be bounded and continuous on S, holomorphic on S, and for all
v ∈ R we have

|F(iv)|⩽ A0∥ fiv∥p0∥giv∥q′0
⩽ A0∥a∥pθ /p0

pθ
∥b∥q′

θ
/q′0

q′
θ

and similarly

|F(1+ iv)|⩽ A1∥a∥pθ /p1
pθ
∥b∥q′

θ
/q′1

q′
θ

.

Hence, by (5.6) and the three lines lemma (Lemma 5.40),∣∣∣∫
Ω′
(Ta) ·bdµ

′
∣∣∣= |F(θ)|⩽ A1−θ

0 Aθ
1 ∥a∥

(1−θ)pθ /p0
pθ

∥b∥(1−θ)q′
θ
/q′0

q′
θ

∥a∥θ pθ /p1
pθ

∥b∥θq′
θ
/q′1

q′
θ

= A1−θ

0 Aθ
1 ∥a∥pθ

∥b∥q′
θ
.

Taking the supremum over all µ ′-simple functions b ∈ Lq′
θ (Ω′) of norm at most one, by
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Hölder’s inequality and Propositions 2.26 and 2.28 (here we use the assumption pθ <∞)
we obtain

∥Ta∥qθ
⩽ A1−θ

0 Aθ
1 ∥a∥pθ

.

Since the µ-simple functions are dense in Lpθ (Ω), this proves that the restriction of T
to the µ-simple functions has a unique extension to a bounded operator T̃ from Lpθ (Ω)

into Lqθ (Ω′) of norm at most A1−θ

0 Aθ
1 .

It remains to be checked that T̃ f = T f for all f ∈ Lpθ (Ω). To this end, we may assume
p0 ⩽ p1. Selecting y > 0 such that µ{| f | = y} = 0 and replacing f by y−1 f , we may
assume that µ{| f |= 1}= 0. Write f = 1{| f |>1} f +1{| f |⩽1} f =: f 0+ f 1 and observe that
f j ∈ Lp j(Ω) ( j = 0,1). If fn→ f in Lpθ (Ω) with each fn µ-simple, then, with obvious
notation, f j

n → f j in Lp j(Ω) and therefore T̃ f j = limn→∞ T̃ f j
n = limn→∞ T f j

n = T f j in
Lq j(Ω′). As a consequence T̃ f = T̃ f 0 + T̃ f 1 = T f 0 +T f 1 = T f .

Up to this point we have implicitly assumed that the scalar field is complex. Suppose
now that the scalar field is real. We may extend a bounded operator T : Lp(Ω)→ Lq(Ω′)

to a bounded operator TC : Lp(Ω;C)→ Lq(Ω′;C) by setting

TC(u+ iv) := Tu+ iT v

for real-valued u,v ∈ Lp(Ω). The triangle inequality implies the trivial bounds

∥T∥⩽ ∥TC∥⩽ 2∥T∥.

If T is a positivity preserving operator (that is, f ⩾ 0 implies T f ⩾ 0), then the identity

|a+ ib|= sup
θ∈[0,2π]

|acosθ +bsinθ |

(for a proof, rotate the point (a,b) ∈ R2 to the positive x-axis) together with the in-
equality |T g|⩽ T |g| for real-valued g ∈ Lp(Ω) (which follows from (2.20)) implies the
pointwise bound

|TC f |= |Tu+ iT v|= sup
θ∈[0,2π]

|(Tu)cosθ +(T v)sinθ |

⩽ sup
θ∈[0,2π]

T |ucosθ +T vsinθ |⩽ T |u+ iv|= T | f |.

This implies the norm bound ∥TC∥⩽ ∥T∥ and hence equality

∥TC∥= ∥T∥. (5.7)

With some additional work, the equality (5.7) can be extended to arbitrary bounded
operators T and exponents 1 ⩽ p ⩽ q < ∞. The proof is based on the observation that
for all z = a+bi ∈ C and 1 ⩽ q < ∞ we have

|z|= 1
∥γ∥q

(Ẽ|aγ1 +bγ2|q)1/q, (5.8)
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where γ,γ1,γ2 are real-valued standard Gaussian random variables defined on some
probability space Ω̃, with γ1 and γ2 independent, and Ẽ denotes the expectation. Indeed,
if |z|= 1, then aγ1 +bγ2 is another standard Gaussian random variable and

(Ẽ|aγ1 +bγ2|q)1/q = ∥γ1∥q.

The general case follows from this by scaling.
Assuming 1⩽ p⩽ q<∞, from (5.8) in combination with Fubini’s theorem we obtain

∥γ∥q
q∥TC(u+ iv)∥q

Lq(Ω′;C) = ∥γ∥
q
q

∫
Ω′
|Tu+ iT v|q dµ

′

=
∫

Ω′
Ẽ|γ1Tu+ γ2T v|q dµ

′ = ∥γ1Tu+ γ2T v∥q
Lq(Ω′;Lq(Ω̃))

= ∥T (γ1u+ γ2v)∥q
Lq(Ω̃;Lq(Ω′))

⩽ ∥T∥q∥γ1u+ γ2v∥q
Lq(Ω̃;Lp(Ω))

⩽ ∥T∥q∥γ1u+ γ2v∥q
Lp(Ω;Lq(Ω̃))

= ∥γ∥q
q∥T∥q∥u+ iv∥q

Lp(Ω;C).

Felix Hausdorff, 1868–1942

In the penultimate step we used the continuous ver-
sion of Hölder’s inequality (Problem 2.29). This
proves (5.7) for 1 ⩽ p ⩽ q < ∞. In the range q < p,
(5.7) is generally false, as is shown by a classical
counterexample due to M. Riesz.

The Riesz–Thorin theorem may now be extended
to the case of real scalars and exponents 1 ⩽ p ⩽
q < ∞ as follows. Suppose that the assumptions of
the theorem are satisfied, except that all spaces are
real. Apply the Riesz–Thorin theorem to the com-
plexified operators S0 := (T0)C and S1 := (T1)C,
we obtain bounded operators Sθ from Lpθ (Ω;C)
to Lqθ (Ω′;C) of norm at most A1−θ

0 Aθ
1 . This op-

erator maps functions in Lp0(Ω)∩ Lp1(Ω) to func-
tions in Lqθ (Ω′). Since Lp0(Ω)∩Lp1(Ω) is dense in
Lpθ (Ω), by approximation it follows that Sθ maps
real-valued functions in Lpθ (Ω) to real-valued functions in Lqθ (Ω′). Stated differently,
Sθ restricts to a bounded operator, denoted Tθ , from Lpθ (Ω) to Lqθ (Ω′) of norm at most
A1−θ

0 Aθ
1 . On Lp0(Ω)∩Lp1(Ω), Tθ coincides with the common restriction of T0 and T1.

Informally stated, this discussion shows that the Riesz–Thorin theorem extends, with
the same constant, to the case of real scalars if we assume T to be positivity preserving
or the exponents satisfy 1 ⩽ p j ⩽ q j < ∞ for j = 0,1.
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5.7.b The Hausdorff–Young Theorem

This brief section and the next are devoted to some applications of the Riesz–Thorin
theorem.

As we have seen in Section 5.5, the Fourier transform is bounded from L1(Rd) to
L∞(Rd) and its restriction to L1(Rd)∩L2(Rd) extends to an isometry from L2(Rd) onto
itself. The Fourier transform with respect to the normalised Lebesgue measure dm(x) =
(2π)−d/2 dx defined in Remark 5.17 is contractive from L1(Rd,m) to L∞(Rd,m), and its
restriction to L1(Rd,m)∩L2(Rd,m) extends to an isometry from L2(Rd,m) onto itself
by Remark 5.27. Accordingly, the Riesz–Thorin theorem implies:

Theorem 5.41 (Hausdorff–Young). Let 1 ⩽ p ⩽ 2 and 1
p +

1
q = 1. The restriction to

L1(Rd)∩L2(Rd) of the Fourier transform has a unique extension to a bounded operator
from Lp(Rd) to Lq(Rd). With respect to the normalised Lebesgue measure, the Fourier
transform has a unique extension to a contraction from Lp(Rd,m) to Lq(Rd,m).

A similar result holds for the Fourier transform on the circle (see Problem 5.28).

5.7.c Lp-Boundedness of the Hilbert Transform

A second application of the Riesz–Thorin theorem is the following theorem due to M.
Riesz about Lp-boundedness of the Hilbert transform.

Theorem 5.42 (Riesz). For all 1 < p < ∞ the restriction of the Hilbert transform to
L2(R)∩Lp(R) has a unique extension to a bounded operator on Lp(R).

The proof of Theorem 5.42 is based on a couple of lemmas.

Lemma 5.43. If f ∈C1
c (R), then H f ∈ Lp(R) for all 2 ⩽ p ⩽ ∞.

Proof Let I be a bounded interval containing the support of f . The pointwise identity

Hε f (x) =
1
π

∫
∞

ε

f (x− y)− f (x+ y)
y

dy

=
1
π

∫
∞

ε

1(−I+x)∪(I−x)(y)
f (x− y)− f (x+ y)

y
dy, x ∈ R,

implies the bound

|Hε f (x)|⩽ 1
π
·2|I| ·2∥ f ′∥∞, x ∈ R. (5.9)

As ε ↓ 0, we have Hε f →H f in L2(R) by Theorem 5.35 and, upon passing to an almost
everywhere convergent subsequence, (5.9) implies that H f ∈ L∞(R). This gives the
result.
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Lemma 5.44. The Hilbert transform of a real-valued function u ∈ L2(R) is the unique
real-valued function v ∈ L2(R) such that the Fourier–Plancherel transform of u+ iv
vanishes on R−.

Proof That the Fourier transform of u+ iHu vanishes on R− is immediate from Theo-
rem 5.35. In the converse direction, let u,v∈ L2(R) be real-valued such that the Fourier–
Plancherel transform of u+ iv vanishes on R−. Then for almost all ξ > 0 we have

0 = û(−ξ )+ iv̂(−ξ ) = û(ξ )+ iv̂(ξ ) = û(ξ )− iv̂(ξ ),

so v̂(−ξ ) = iû(−ξ ) and v̂(ξ ) =−iû(ξ ). Hence, for almost all ξ ∈ R,

v̂(ξ ) =−isign(ξ )û(ξ ).

By Theorem 5.35 this proves that v = Hu.

In the next lemma we use that if φ ∈ C2
c (R), then φ̂ ′′(ξ ) = −|ξ |2φ̂(ξ ) is bounded,

and therefore φ̂ is integrable.

Lemma 5.45 (Cotlar). Let H be the Hilbert transform on L2(R). For all real-valued
u ∈C2

c (R) we have

(Hu)2 = u2 +2H(uHu).

Proof Let u,v ∈C2
c (R) be real-valued functions. By Theorem 5.35 the Fourier trans-

forms of u+ iHu and v+ iHv are integrable and vanish on R−, and by Proposition 5.29
the same is true for the Fourier transform of

(u ·Hv+Hu · v)+ i(Hu ·Hv−u · v) =−i(u+ iHu)(v+ iHv).

By Lemma 5.44, this implies

Hu ·Hv−u · v = H(u ·Hv+Hu · v).

Cotlar’s identity follows by taking u = v.

Proof of Theorem 5.42 The proof consists of three steps. First we prove the theorem
for exponents p= 2n with n∈N by Cotlar’s identity, then for 2< p<∞ by interpolation,
and finally for 1 < p < 2 by duality.

Step 1 – In this step we show that if H is Lp-bounded for some 2 ⩽ p < ∞, then H is
L2p-bounded. The proof also gives a bound for ∥H∥2p in terms of ∥H∥p. In what follows
we set ∥H∥p =: cp.

Let u ∈C2
c (R) be real-valued. Then Hu ∈ L2p(R) by Lemma 5.43. By Cotlar’s iden-

tity and Hölder’s inequality,

∥(Hu)2∥p ⩽ ∥u2∥p +2∥H∥p∥uHu∥p ⩽ ∥u2∥p +2cp∥u∥2p∥Hu∥2p.
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Using the identity ∥v2∥p = ∥v∥2
2p, this gives

∥Hu∥2
2p ⩽ ∥u∥2

2p +2cp∥u∥2p∥Hu∥2p,

or equivalently,

(∥Hu∥2p− cp∥u∥2p)
2 ⩽ (1+ c2

p)∥u∥2
2p.

It follows that

∥Hu∥2p− cp∥u∥2p ⩽
√

1+ c2
p∥u∥2p

and hence

∥Hu∥2p ⩽
(

cp +
√

1+ c2
p

)
∥u∥2p.

By considering real and imaginary parts separately, at the expense of an additional con-
stant 2 this inequality extends to arbitrary u ∈C2

c (R). Since C2
c (R) is dense in L2p(R),

it follows that the restriction of H to C2
c (R) uniquely extends to a bounded operator on

L2p(R). Obviously, this operator extends the restriction of H to L2(R)∩L2p(R).
Step 2 – Since H is L2-bounded, Step 1 implies that H is L2n

-bounded for all n ∈ N.
The Riesz–Thorin theorem then implies that H is Lp-bounded for all 2 ⩽ p < ∞.

Step 3 – Finally suppose that 1 < p < 2 and let 1
p +

1
q = 2. For f ,g∈C2

c (R) one easily
checks that ∫

R
H f ·gdx =−

∫
R

f ·Hgdx

and consequently ∣∣∣∫
R

H f ·gdx
∣∣∣⩽ ∥ f∥p∥Hg∥q ⩽ cq∥ f∥p∥g∥q,

where cq = ∥H∥q. Since C2
c (R) is dense in Lq(R) by Proposition 2.29, Proposition 2.26

implies that H f ∈ Lp(R) and ∥H f∥p ⩽ cq∥ f∥p. This proves that H is Lp-bounded, with
∥H∥p ⩽ cq (in fact we have equality here, since we can also apply this argument in the
opposite direction).

5.7.d The Marcinkiewicz Interpolation Theorem

In this final section we prove another Lp-interpolation theorem, the Marcinkiewicz inter-
polation theorem. It has the virtue of requiring less stringent conditions at the endpoints
and the operator to be interpolated does not even need to be linear. On the downside, the
constant obtained from the proof is rather poor. The theorem elaborates on the observa-
tion, made after the proof of the Hardy–Littlewood maximal theorem, that the proof of
the Lp-bound essentially only depended on the weak L1-bound.

By (Lp0 +Lp1)(Rd) we denote the vector space of all f ∈ L1
loc(Rd) that admit a de-

composition f = f0 + f1 with f0 ∈ Lp0(Rd) and f1 ∈ Lp1(Rd).
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Theorem 5.46 (Marcinkiewicz interpolation theorem). Let 1 ⩽ p0 < p < p1 ⩽ ∞ and
suppose that T : (Lp0 +Lp1)(Rd)→ (Lp0 +Lp1)(Rd) is a subadditive mapping in the
sense that for all f ∈ Lp0 and g ∈ Lp1(Rd) we have

|T ( f +g)|⩽ |T ( f )|+ |T (g)| almost everywhere.

Suppose furthermore that for j = 1,2 there are constants Cd,p j ⩾ 0, depending only on
d and p j, such that

|{T ( f )> t}|⩽
(Cd,p j

t

)p j
∥ f∥p j

p j , f ∈ Lp j(Rd),

if 1 < p1 < ∞; if p1 = ∞ we replace the assumption regarding p1 by

∥T ( f )∥∞ ⩽Cd,∞∥ f∥∞, f ∈ L∞(Rd).

Then T maps Lp(Rd) into Lp(Rd) and

∥T ( f )∥p ⩽Cd,p∥ f∥p, f ∈ Lp(Rd),

where Cd,p is a constant independent of f .

A weak Lq-bound holds if T is Lq-bounded in the sense that ∥T ( f )∥q ⩽Cd,q∥ f∥q for
all f ∈ Lq(Rd).

Proof We give the proof for 1 < p1 < ∞; the case p1 = ∞ proceeds along the lines of
Theorem 2.38, requiring small changes that are left to the reader. Fixing t > 0, we split
f = f0 + f1 with f0 ∈ Lp0(Rd) and f1 ∈ Lp1(Rd) by taking

f0 = 1{| f |⩾t/2} f , f1 = 1{| f |<t/2} f .

From the subadditivity of T we obtain

{|T ( f )|> t} ⊆ {|T ( f0)|> t/2}+{|T ( f1)|> t/2}

and therefore

|{|T ( f )|> t}|⩽ |{T ( f0)|> t/2}|+ |{T ( f1)|> t/2}|.

Combining the assumptions with Fubini’s theorem and proceeding as in the proof of
Theorem 2.38, after some computations we arrive at∫

Rd
|T ( f )(x)|p dx = p

∫
∞

0
t p−1|{|T ( f )|> t}|dt

⩽ p
∫

∞

0
t p−1

((Cd,p0

t/2

)p0
∫
{| f |⩾t/2}

| f (x)|p0 dx
)

dt

+ p
∫

∞

0
t p−1

((Cd,p1

t/2

)p1
∫
{| f |<t/2}

| f (x)|p1 dx
)

dt
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⩽Cp
d,p

∫
Rd
| f (x)|p dx,

where Cp
d,p = 2p p

(C
p0
d,p0

p−p0
+

C
p1
d,p1

p1−p

)
.

Problems

5.1 Let (xn)n⩾1 be a sequence with dense linear span in a Banach space X . Using
Baire’s theorem, prove that this linear span equals X if and only if dimX < ∞.

5.2 Using the Baire category theorem, prove that there exists no norm on L1
loc(Rd)

that turns this space into a Banach lattice.
Hint: Use Theorem 2.57.

5.3 This problem outlines a proof of the uniform boundedness theorem that does not
appeal to the Baire category theorem.

Let X be a Banach space and Y be a normed space, and suppose that (Ti)i∈I ⊆
L (X ,Y ) is an operator family such that:

(i) supi∈I ∥Tix∥=: Cx < ∞ for all x ∈ X ;
(ii) supi∈I ∥Ti∥= ∞.

For n = 1,2, . . . choose indices in ∈ I and vectors xn ∈ X such that

1
4 ·3n ∥Tin∥⩾

n−1

∑
m=1

Cxm +n, ∥xn∥⩽
1
3n , ∥Tinxn∥⩾

3
4 ·3n ∥Tin∥.

Let x := ∑n⩾1 xn. By writing

Tinx =
n−1

∑
m=1

Tinxm +Tinxn +
∞

∑
m=n+1

Tinxm

and estimating these terms, prove that ∥Tinx∥⩾ n for all n ⩾ 1. This contradiction
proves the result.

5.4 Let X be the linear span of the standard basis vectors of ℓ2 and let Pn : ℓ2 → K
denote the orthogonal projection in ℓ2 onto the nth coordinate. Show that nPnx→ 0
for all x ∈ X and ∥nPn∥ = n→ ∞. Conclude that the completeness assumption
cannot be omitted from the uniform boundedness theorem.

5.5 The aim of this problem is to prove that a weakly holomorphic function is holo-
morphic. Let us start with the definitions of these notions. We fix an open set
D⊆ C and a complex Banach space X . A function f : D→ X is said to be:

• holomorphic, if for all z0 ∈ D the limit

lim
z→z0

f (z)− f (z0)

z− z0
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exists in X (see Problem 4.2);
• weakly holomorphic, if for all z0 ∈ D and x∗ ∈ X∗ the limit

lim
z→z0

〈 f (z)− f (z0)

z− z0
,x∗
〉

exists in C.

Obviously every holomorphic function f : D→ X is weakly holomorphic.
Now let f : D→ X be weakly holomorphic, fix z0 ∈D, and let r > 0 be so small

that the closed disc {z ∈ C : |z− z0|⩽ r} is contained in D.

(a) Applying Proposition 5.5 to the set

U =
{ 1

h−g

( f (z0 +h)− f (z0)

h
− f (z0 +g)− f (z0)

g

)
: |g|, |h|< r

2

}
and using the Cauchy integral formula for X-valued holomorphic functions
(see Problem 4.2), prove that there is a constant M ⩾ 0 such that for all
|g|, |h|< r/2 we have∥∥∥ f (z0 +h)− f (z0)

h
− f (z0 +g)− f (z0)

g

∥∥∥⩽ M|h−g|.

(b) Deduce that every weakly holomorphic function f : D→ X is holomorphic.

5.6 State and prove an analogue of Proposition 5.5 for the weak∗ topology.
5.7 Using the open mapping theorem, show that there exists no complete norm ||| · |||

on C[0,1] with the property that

||| fn− f ||| → 0 ⇔ fn→ f pointwise.

5.8 Let X be a Banach space. A sequence (xn)n⩾1 in X is called a Schauder basis if
for every x ∈ X admits a unique representation as a convergent sum x = ∑n⩾1 cnxn

with cn ∈K for all n ⩾ 1.
Let (xn)n⩾1 be Schauder basis in X , and let Y be the vector space of all scalar

sequences c = (cn)n⩾1 such that the sum ∑n⩾1 cnxn converges in X .

(a) Show that

∥c∥Y := sup
N⩾1

∥∥∥ N

∑
n=1

cnxn

∥∥∥
defines a norm on Y and that Y is a Banach space with respect to this norm.

(b) Show that c 7→ ∑n⩾1 cnxn is an isomorphism from Y onto X .
(c) Conclude that the coordinate projections

Pk : ∑
n⩾1

cnxn 7→ ck

are bounded and that supk⩾1 ∥Pk∥< ∞.
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5.9 For f ∈ L1(−π,π) and N ∈ N define the functions

sN f (t) :=
N

∑
n=−N

f̂ (n)exp(int), t ∈ [−π,π],

where f̂ (n) is the nth Fourier coefficient of f , that is,

f̂ (n) :=
1

2π

∫
π

−π

f (s)exp(−ins)ds, n ∈ Z.

By the results of Section 3.5.a, for all f ∈ L2(−π,π) we have

f = lim
N→∞

sN f = ∑
n∈Z

f̂ (n)exp(in(·))

with convergence in L2(−π,π); the series on the right-hand side is the Fourier
series of f . One might express the hope that if f ∈C[−π,π] is periodic, then its
Fourier series converges to f with respect to the norm of C[−π,π]. The aim of
this problem is to prove that this is wrong in a strong sense: there exists a function
f ∈C[−π,π] that is periodic in the sense that f (−π) = f (π) and whose Fourier
series diverges at t = 0.

(a) Show that sN f (t) = 1
2π

∫
π

−π
f (s)DN(t − s)ds, where the Dirichlet kernel is

given by

DN(t) :=
N

∑
n=−N

exp(int) =
sin
(
N + 1

2

)
t

sin
( 1

2 t
) .

(b) Show that ∥ΛN∥ = ∥DN∥1, where the linear map ΛN : Cper[−π,π]→ C is
given by ΛN f := sN f (0).
Hint: To prove the inequality ∥ΛN∥ ⩾ ∥DN∥1, approximate sign(DN) point-
wise almost everywhere by a sequence of continuous periodic functions fn

of norm ⩽ 1, set gn(t) = fn(−t), and use dominated convergence to obtain

lim
n→∞

ΛN(gn) = lim
n→∞

1
2π

∫
π

−π

fn(t)DN(t)dt =
1

2π

∫
π

−π

|DN(t)|dt.

Fill in the missing details.
(c) Show that limN→∞ ∥DN∥1 = ∞.

Hint: Use that |sin(x)| ⩽ |x| for all x ∈ R, and then perform some careful
estimates on the resulting integral.

(d) Apply the uniform boundedness theorem to prove that sN f (0) ̸→ f (0) as
N→ ∞ for some f ∈Cper[−π,π].

5.10 Let (an)n⩾1 be a scalar sequence with the property that the sum ∑n⩾1 anbn con-
verges for all scalar sequences (bn)n⩾1 satisfying ∑n⩾1 |bn|2 < ∞.
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(a) Show that ∑n⩾1 anbn converges absolutely for all scalar sequences (bn)n⩾1

satisfying ∑n⩾1 |bn|2 < ∞.
(b) Show that ∑n⩾1 |an|2 < ∞.

Hint: Apply the closed graph theorem to the mapping T : ℓ2→ ℓ1 defined by
T : (bn)n⩾1 7→ (anbn)n⩾1. Conclude that (an)n⩾1 defines a bounded functional
on ℓ2.

5.11 Let X be a Banach space with a direct sum decomposition X = X0⊕X1. Prove
that the projections onto the summands define isomorphisms of Banach spaces

X/X0 ≃ X1, X/X1 ≃ X0.

5.12 Let X be a Banach space with a direct sum decomposition X = X0⊕X1. Show
that if T0 : X0 → Y and T1 : X1 → Y are bounded operators, then the operator
T := T0⊕T1 from X to Y defined by

T (x0 + x1) := T0x0 +T1x1

is bounded. What can be said about the norm of T ?
Hint: First show that |||x0 + x1||| := ∥x0∥+∥x1∥ is an equivalent norm on X .

5.13 Let X and Y be Banach spaces. The aim of this problem is to prove that the set of
surjective operators is open in L (X ,Y ).

(a) Let T ∈L (X ,Y ) be a surjective operator. Show that there is a constant A ⩾ 0
such that for all y∈Y there exists an x ∈ X such that ∥x∥⩽ A∥y∥ and T x = y.

(b) Let T ∈L (X ,Y ) be a bounded operator. Suppose there exist constants A ⩾ 0
and 0 ⩽ B < 1 such that for all y ∈Y with ∥y∥⩽ 1 there exists an x ∈ X such
that ∥x∥⩽ A and ∥T x− y∥⩽ B. Show that T is surjective.
Hint: Look into the proof of Lemma 5.7.

(c) Show that if T ∈L (X ,Y ) is surjective and S ∈L (X ,Y ) is a bounded oper-
ator satisfying ∥S∥ < 1/A, where A is the constant of part (a), then T + S is
surjective.
Hint: Apply the first part with B = A∥S∥.

(d) Let T ∈ (X ) have closed range. Show that there exists a real number δ > 0
with the following property: whenever S ∈ L (X) satisfies ∥S∥ < δ , then
R(T (I +S)) = R(T ).

5.14 Let X be a vector space.

(a) Suppose that ∥ · ∥ and ∥ · ∥′ are two norms on X , each of which turns X
into a Banach space. Show that if there exists a constant C ⩾ 0 such that
∥x∥⩽C∥x∥′ for all x ∈ X , then the two norms are equivalent.
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(b) Find the mistake in the following “proof” that every two norms ∥ ·∥ and ∥ ·∥′
turning X into a Banach space are equivalent. Define

|||x||| := ∥x∥+∥x∥′, x ∈ X .

This is a norm which turns X into a Banach space and we have ∥x∥ ⩽ |||x|||
and ∥x∥′ ⩽ |||x|||. Hence part (a) implies that ∥x∥ and |||x||| are equivalent and
that ∥x∥′ and |||x||| are equivalent. It follows that ∥ ·∥ and ∥ ·∥′ are equivalent.

5.15 Let (Ω,F,µ) be a measure space, let 1 ⩽ p ⩽ ∞, and suppose that f : Ω→ X is
a function which has the property that the scalar-valued function ω 7→ ⟨ f (ω),x∗⟩
belongs to Lp(Ω) for every x∗ ∈ X∗.

(a) Show that the mapping T : X∗→ Lp(Ω) defined by x∗ 7→ ⟨ f (·),x∗⟩ is closed.
(b) Deduce that there exists a constant C ⩾ 0 such that

∥⟨ f (·),x∗⟩∥Lp(Ω) ⩽C∥x∗∥, x∗ ∈ X∗.

5.16 Prove that every separable Banach space X is isomorphic to a quotient of ℓ1.
Hint: Use Problem 1.30 to construct a bounded surjection T : ℓ1→ X .

5.17 Let (Ω,F,µ) be a finite measure space and let X be a Banach space.

(a) Let f : Ω→ X be a strongly measurable function. Show that if there is an
exponent 1 < p ⩽ ∞ such that ⟨ f (·),x∗⟩ ∈ Lp(Ω) for all x∗ ∈ X∗, then there
exists a unique element x f ∈ X , the Pettis integral of f with respect to µ ,
such that

⟨x f ,x∗⟩=
∫

Ω

⟨ f (ω),x∗⟩dµ(ω), x∗ ∈ X∗.

Hint: The integrals
∫

Ω
1{∥ f∥⩽n} f dµ are well defined as Bochner integrals.

(b) Show that the result of part (a) fails for p = 1.
Hint: Let (An)n⩾1 be a sequence of disjoint intervals of positive measure |An|
in the interval (0,1) and consider the function f : (0,1)→ c0 defined by

f (t) := ∑
n⩾1

1
|An|

1An(t)en, t ∈ (0,1),

where (en)n⩾1 is the sequence of standard unit vectors in c0.

5.18 Write out a proof of Theorem 5.31.
5.19 For n ⩾ 1 and f ∈ L2(Rd) let

Fn f (ξ ) :=
1

(2π)d/2

∫
[−n,n]d

exp(−ix ·ξ ) f (x)dx.

Show that Fn maps L2(Rd) into itself and defines a bounded operator on L2(Rd),
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and show that for all f ∈ L2(Rd) we have the following identity for the Fourier–
Plancherel transform:

F f = lim
n→∞

Fn f ,

where the limit is taken in L2(Rd).
5.20 It was shown in Lemma 5.19 that for λ > 0 the Fourier transform of g(x) =

(2π)−d/2 exp
(
− 1

2 λ |x|2
)

is given as

ĝ(ξ ) = (2πλ )−d/2 exp
(
−1

2
|ξ |2/λ

)
.

Give an alternative proof of this identity by completing the following steps:

(a) it suffices to prove the identity for λ = 1 and in dimension d = 1;
(b) the function u(x) := (2π)−d/2 exp

(
− 1

2 x2
)

solves the differential equation

u′(x)+ xu(x) = 0;

(c) the Fourier transform of u also satisfies the differential equation;
(d) apply the Picard–Lindelöf theorem (Theorem 2.12).

5.21 Consider the Fourier–Plancherel transform F : f 7→ f̂ on L2(Rd).

(a) Show that F 2 = R, where R f (x) := f (−x) is the reflection operator on
L2(Rd).

(b) Deduce that F 4 = I.

5.22 Prove that the Hilbert transform H on L2(R) satisfies H2 =−I.
5.23 This problem establishes a connection between the Hilbert transform and the the-

ory of harmonic functions.
For real-valued functions f ∈ L2(R) we define u f : R× (0,∞)→ R

u f (x,y) := py ∗ f (x), x ∈ R, y > 0,

where

py(x) :=
1
π

y
x2 + y2 , x ∈ R, y > 0,

is the Poisson kernel.

(a) Show that u f is harmonic, that is, u ∈C2(R× (0,∞)) and ∆u≡ 0.
(b) Show that u f + iuH f is holomorphic.

5.24 Let f ∈ L1(R) satisfy f̂ (−ξ ) = 0 for almost all ξ ⩾ 0.

(a) Show that for all y > 0 the function py ∗ f , where py is the Poisson kernel
introduced in the preceding problem, is integrable and its Fourier transform
belongs to L1(R)∩L2(R).
Hint: Compute the Fourier transform of py.
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(b) Using Fourier inversion, prove that the function

g(x+ iy) := py ∗ f (x)

is holomorphic on the open half-plane {Imz = x+ iy > 0}.
(c) Using Proposition 2.34, show that

lim
y↓0
∥g(·+ iy)− f (·)∥L1(R) = 0.

Somewhat informally, part (c) states that every L1-function whose Fourier trans-
form vanishes on the negative half-line is the boundary value (in the L1-sense) of
a holomorphic function on the upper half-plane.

(d) State and prove a version of part (c) for the disc.

5.25 We use the notation introduced in Problem 2.27. Let F be the Fourier–Plancherel
transform on L2(Rd) and let X be a Banach space. On the space L2(Rd)⊗X we
define the linear operator F ⊗ I by

(F ⊗ I)( f ⊗ x) := (F f )⊗ x, f ∈ L2(Rd), x ∈ X .

(a) Show that this operator is well defined.
(b) Show that if X = ℓp with 1 ⩽ p ⩽ ∞, then F ⊗ I extends to a bounded oper-

ator on L2(R;ℓp) if and only if p = 2.
Hint: For 1 ⩽ p < 2 consider the functions

fN :=
N

∑
n=0

f (·+n)⊗ en+1,

where (en)n⩾1 is the sequence of standard unit vectors in ℓp and 0 ̸= f ∈
Cc(R) has support in the interval (−π,π); for 2 < p ⩽ ∞ use the functions

fN :=
N

∑
n=0

e−in(·) f ⊗ en+1.

5.26 Let 1 ⩽ p ⩽ ∞. Young’s inequality implies that the convolution of a function f ∈
L1(Rd) with a function g ∈ Lp(Rd) belongs to Lp(Rd) and ∥ f ∗g∥p ⩽ ∥ f∥1∥g∥p.

(a) Write out the proof of this result obtained by taking r = 1 in the proof of
Proposition 2.33.

The special case of Young’s inequality just stated can be reformulated as saying
that for every g∈ Lp(Rd) the convolution operator Cg : f 7→ f ∗g is bounded from
L1(Rd) to Lp(Rd) with norm

∥Cg∥L (L1(Rd),Lp(Rd)) ⩽ ∥g∥p.
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(b) Let 1
p +

1
q = 1. Using Hölder’s inequality, show that the restriction of Cg to

L1(Rd)∩ Lq(Rd) extends uniquely to a bounded operator from Lq(Rd) to
L∞(Rd) of norm

∥Cg∥L (Lq(Rd),L∞(Rd)) ⩽ ∥g∥p.

(c) Use the Riesz–Thorin interpolation theorem to obtain an alternative proof of
the general form of Young’s inequality.

5.27 Let (Ω,F,µ) be a measure space and let 1 ⩽ p,q < ∞ satisfy 1
p +

1
q = 1. The

aim of this problem is to use the Riesz–Thorin interpolation theorem to derive the
Clarkson inequalities:

(1) if 1 ⩽ p ⩽ 2, then for all f ,g ∈ Lp(Ω) we have

(∥ f +g∥p
p +∥ f −g∥p

p)
1/p ⩽ 21/p(∥ f∥p

p +∥g∥p
p)

1/p

and

(∥ f +g∥q
p +∥ f −g∥q

p)
1/q ⩽ 21/q(∥ f∥p

p +∥g∥p
p)

1/p;

(2) if 2 ⩽ p < ∞, then for all f ,g ∈ Lp(Ω) we have

(∥ f +g∥p
p +∥ f −g∥p

p)
1/p ⩽ 21/q(∥ f∥p

p +∥g∥p
p)

1/p

and

(∥ f +g∥p
p +∥ f −g∥p

p)
1/p ⩽ 21/p(∥ f∥q

p +∥g∥q
p)

1/q.

Let 1 ⩽ r,s ⩽ ∞. On the cartesian product Lr(Ω)×Lr(Ω) we consider the norm

∥( f ,g)∥r,s := (∥ f∥s
r +∥g∥s

r)
1/s.

(a) Show that the resulting normed space Xr,s(Ω) is complete.

On Xr,s(Ω) we consider the operator

T : ( f ,g) 7→ ( f +g, f −g).

Its norm will be denoted by ∥T∥r,s.

(b) Show that ∥T∥1,1 = 2 and ∥T∥2,2 =
√

2.
(c) Deduce the first inequality in (1).
(d) Show that for all f ,g ∈ L1(Ω) we have ∥T ( f ,g)∥1,∞ ⩽ ∥( f ,g)∥1,1.
(e) Deduce the second inequality in (1).
(f) Prove the inequalities in (2).
(g) Prove that Lp(Ω) is strictly convex, that is, ∥ f∥p = ∥g∥p = 1 with f ̸= g

implies ∥ 1
2 ( f +g)∥p < 1.

5.28 State and prove an analogue of the Hausdorff–Young theorem for the circle.
5.29 Write out the details of the proof of the Marcinkiewicz interpolation theorem for

the case p1 = ∞.
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6
Spectral Theory

Spectral theory is the branch of operator theory that seeks to extend the theory of eigen-
values to an infinite-dimensional setting. Much of its power derives from the observa-
tion that, away from the spectrum of a bounded operator T , the operator-valued function
λ 7→ (λ I−T )−1 is holomorphic. This makes it possible to import results from the the-
ory of functions into operator theory. For instance, the fact that bounded operators on
nonzero Banach spaces have nonempty spectra is deduced from Liouville’s theorem,
and the Cauchy integral formula can be used to introduce a functional calculus for func-
tions holomorphic in an open set containing the spectrum of T .

6.1 Spectrum and Resolvent

In Linear Algebra, a complex number λ is said to be an eigenvalue of an n×n matrix A
with complex coefficients if there exists a nonzero vector x∈Cn such that Ax = λx. The
number λ is an eigenvalue if and only if λ I−A fails to be invertible, or equivalently,
if and only if det(λ I−A) = 0. Writing out the determinant we obtain the so-called
characteristic polynomial in the variable λ , which has n zeroes (counting multiplicities)
by the main theorem of Algebra. Our first task will be to investigate to what extent these
results generalise to bounded operators acting on a Banach space.

Throughout the chapter, T denotes a bounded operator acting on a complex Ba-
nach space X . We work over the complex scalars; this convention will remain in force
throughout the rest of this work.

Definition 6.1 (Resolvent and spectrum). The resolvent set of an operator T ∈L (X)

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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is the set ρ(T ) consisting of all λ ∈ C for which the operator λ I − T is boundedly
invertible, by which we mean that there exists a bounded operator U on X such that

(λ I−T )U =U(λ I−T ) = I.

The spectrum of T is the complement of the resolvent set of T :

σ(T ) := C\ρ(T ).

From now on we shall write λ −T instead of λ I−T . It is customary to write

R(λ ,T ) := (λ −T )−1

for the resolvent operator of T at the point λ ∈ ρ(T ). By the open mapping theorem
(Theorem 5.8), a complex number λ belongs to ρ(T ) if and only if λ −T is a bijection
on X .

Example 6.2. The spectrum of an n×n matrix with complex coefficients, viewed as a
bounded operator acting on Cn, equals its set of eigenvalues.

In the present setting, a complex number λ is said to be an eigenvalue of the bounded
operator T ∈L (X) if T x = λx for some nonzero vector x∈ X ; such a vector is then said
to be an eigenvector. The set σp(T ) of all eigenvalues of T is called the point spectrum
of T . If λ is an eigenvalue of T , then λ −T is not injective and therefore not invertible.
As a result, eigenvalues belong to the spectrum. In contrast to the finite-dimensional
situation, however, points in the spectrum need not be eigenvalues:

Example 6.3. The right shift T on ℓ2, given by the right shift

T : (c1,c2, . . .) 7→ (0,c1,c2, . . .)

has no eigenvalues. Indeed, the identity T c = λc can be written out as

(0,c1,c2, . . .) = (λc1,λc2, . . .).

If λ ̸= 0, comparison of the entries of these sequences inductively gives cn = 0 for all
n ⩾ 1. If λ = 0, the identity reads (0,c1,c2, . . .) = (0,0, . . .) and again we obtain cn = 0
for all n ⩾ 1. In both cases we find that T c = λc only admits the zero solution c = 0.

The spectrum of T equals the closed unit disc: σ(T ) =D. This can be proved directly
(see Problem 6.4) or by the following argument based on results proved below. By
Proposition 6.18 we have σ(T ) = σ(T ∗). The adjoint operator T ∗ is readily identified
as the left shift (c1,c2, . . .) 7→ (c2,c3, . . .). For each λ ∈ C with |λ | < 1, the element
(1,λ ,λ 2, . . .) ∈ ℓ2 is an eigenvector for this operator with eigenvalue λ . It follows that
D ⊆ σ(T ). Since by Lemma 6.7 the spectrum of a bounded operator is closed, this
forces D ⊆ σ(T ). On the other hand, by Lemma 6.6, the fact that T is a contraction
implies that σ(T )⊆ D.
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6.1 Spectrum and Resolvent 213

Remark 6.4. In contrast to the case of matrices in finite dimensions, the existence
of a left inverse does not imply the existence of a right inverse and vice versa. For
example, the right shift in ℓ2 has a left inverse, namely by the left shift, but not a right
inverse; similarly the left shift in ℓ2 has a right inverse, namely the right shift, but not
a left inverse. This is the reason for insisting on the existence of a two-sided inverse
in Definition 6.1. If both a left inverse Ul and a right inverse Ur exist, then necessarily
Ul =Ur and this operator is a two-sided inverse.

If the bounded operators T and U are boundedly invertible, then so is TU and

(TU)−1 =U−1T−1.

Invertibility of TU by itself does not imply invertibility of T or U ; a counterexample is
obtained by taking T and U be the left and right shift on ℓ2. However we do have the
following result.

Lemma 6.5. The product of two commuting bounded operators is invertible if and only
if each of the operators is invertible.

Proof The ‘if’ part is clear. For the ‘only if’ part, suppose that TU =UT is invertible.
The invertibility of TU implies that T is surjective and U is injective, and likewise the
invertibility of UT implies that U is surjective and T is injective. It follows that both T
and U are bijective, and by the open mapping theorem their inverses are bounded.

Our first main result, Theorem 6.11, asserts that the spectrum of a bounded operator
acting on a nonzero Banach space is always a nonempty compact subset of the complex
plane. This will be deduced from a series of lemmas.

Lemma 6.6 (Neumann series). If ∥T∥ < 1, then I−T is boundedly invertible and its
inverse is given by the absolutely convergent series

(I−T )−1 =
∞

∑
n=0

T n.

As a consequence, the spectrum of a bounded operator T is contained in the closed disc
{z ∈ C : |z|⩽ ∥T∥}.

Proof The absolute convergence in L (X) of the series follows from ∑
∞
n=0 ∥T n∥ ⩽

∑
∞
n=0 ∥T∥n < ∞. By the completeness of L (X), the series ∑

∞
n=0 T n converges in L (X).

The identity in the statement of the lemma is a consequence of the identities

(I−T )
N

∑
n=0

T n =
N

∑
n=0

T n(I−T ) = I−T N+1,
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valid for all N ⩾ 1. Upon letting N→ ∞ they give

(I−T )
∞

∑
n=0

T n =
∞

∑
n=0

T n(I−T ) = I,

which means that the bounded operator ∑
∞
n=0 T n is a two-sided inverse for I−T .

To prove the second assertion, let T ∈L (X) be an arbitrary bounded operator. By
the first assertion, for all λ ∈ C with |λ | > ∥T∥ the operator λ − T = λ (I− T/λ ) is
boundedly invertible.

As an application we prove that the spectrum is always a closed subset of C.

Lemma 6.7. The spectrum σ(T ) is a closed subset of C. More precisely, if λ ∈ ρ(T ),
then ρ(T ) contains the open ball with centre λ and radius r = 1/∥R(λ ,T )∥. If |λ−µ|⩽
δ r with 0 ⩽ δ < 1, then

∥R(µ,T )∥⩽ 1
1−δ

∥R(λ ,T )∥.

Proof If S ∈L (X) is boundedly invertible and U ∈L (X) has norm ∥U∥ ⩽ δ r with
r := 1/∥S−1∥, then ∥S−1U∥⩽ δ < 1 and therefore, by Lemma 6.6, S−U = S(I−S−1U)

is boundedly invertible and

∥(S−U)−1∥⩽ ∥S−1∥∥(I−S−1U)−1∥= ∥S−1∥
∥∥∥ ∞

∑
n=0

(S−1U)n
∥∥∥⩽ 1

r

∞

∑
n=0

δ
n =

1
r

1
1−δ

.

Now take U = (λ −µ)I and S = λ −T.

Lemma 6.8 (Resolvent identity). For all λ ,µ ∈ ρ(T ) we have

R(λ ,T )−R(µ,T ) = (µ−λ )R(λ ,T )R(µ,T ).

Proof Multiply both sides with the invertible operator (µ−T )(λ −T ).

Definition 6.9 (Holomorphy). Let Ω be an open subset of C. A function f : Ω→ X is
holomorphic if for all z0 ∈Ω the limit

lim
z→z0

f (z)− f (z0)

z− z0

exists in X .

Some properties of Banach space-valued functions have already been explored in
Problems 4.2 and 5.5.

Lemma 6.10. The function λ 7→ R(λ ,T ) is holomorphic on ρ(T ) and satisfies

lim
|λ |→∞

∥R(λ ,T )∥= 0.
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Proof Continuity of the mapping λ 7→ R(λ ,T ) follows from the resolvent identity and
the bound in Lemma 6.7. To prove the holomorphy of λ 7→ R(λ ,T ) on ρ(T ) we use the
resolvent identity and the continuity of λ 7→ R(λ ,T ) to obtain

lim
µ→λ

R(λ ,T )−R(µ,T )
λ −µ

=− lim
µ→λ

R(λ ,T )R(µ,T ) =−(R(λ ,T ))2.

For |λ |> 2∥T∥ the Neumann series gives

∥R(λ ,T )∥= |λ |−1∥(I−λ
−1T )−1∥⩽ |λ |−1

∞

∑
n=0
∥λ−1T∥n ⩽ 2|λ |−1.

This proves the second assertion.

We are ready for the first main result of this chapter:

Theorem 6.11 (Nonemptiness of the spectrum). If T is a bounded operator on a non-
zero Banach space, then σ(T ) is a nonempty compact subset of the closed disc {λ ∈C :
|λ |⩽ ∥T∥}.

Proof Containment in {λ ∈ C : |λ | ⩽ ∥T∥} and closedness of the spectrum have al-
ready been proved in Lemmas 6.6 and 6.7, respectively. Since bounded closed subsets
of C are compact, this gives the compactness of σ(T ).

Suppose, for a contradiction, that σ(T ) =∅. Then the function λ 7→ R(λ ,T ) is holo-
morphic on C. By Lemma 6.10 it is also bounded. Now we are in a position to apply
Liouville’s theorem: for all x ∈ X and x∗ ∈ X∗ we find that λ 7→ ⟨R(λ ,T )x,x∗⟩ is con-
stant. Its limit for |λ | →∞ is zero, and therefore ⟨R(λ ,T )x,x∗⟩= 0 for all λ ∈ ρ(T ) and
all x ∈ X and x∗ ∈ X∗. By the Hahn–Banach theorem, R(λ ,T )x = 0 for all λ ∈ ρ(T ) and
all x ∈ X . It follows that R(λ ,T ) = 0 for all λ ∈ ρ(T ). This implies X = {0}.

Instead of using duality to reduce matters to scalar-valued functions one may note that
the proof of Liouville’s theorem generalises mutatis mutandis to holomorphic functions
with values in a Banach space.

We have seen in Lemma 6.10 that the resolvent λ 7→R(λ ,T ) is holomorphic on ρ(T ).
The next result shows that the topological boundary ∂ρ(T ) := ρ(T )\ρ(T ) is a natural
barrier for holomorphy for this function.

Proposition 6.12. If λn→ λ in C, with each λn ∈ ρ(T ) and d(λn,σ(T ))→ 0, then

lim
n→∞
∥R(λn,T )∥= ∞.

Proof By Lemma 6.7, if µ ∈ ρ(T ), then the open ball B(µ;∥R(µ,T )∥−1) is con-
tained in ρ(T ). This implies the more precise assertion that for all µ ∈ ρ(T ) we have
d(µ,σ(T ))⩾ ∥R(µ,T )∥−1, that is, ∥R(µ,T )∥⩾ 1/d(µ,σ(T )).

An immediate application is the following analytic continuation result.
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Corollary 6.13. If D ⊆ C is a connected open set intersecting the resolvent set of a
bounded operator T , and if λ 7→ R(λ ,T ) extends holomorphically to D, then D⊆ ρ(T ).

A more substantial application of Proposition 6.12 is the following result about the
spectra of isometries. Recall that an isometry is an operator T ∈ L (X ,Y ) such that
∥T x∥= ∥x∥ for all x ∈ X .

Corollary 6.14. The spectrum of an isometry is either contained in the unit circle T or
else equals the closed unit disc D.

Proof First note that an isometry T has norm ∥T∥= 1, so that σ(T )⊆D by the second
assertion of Lemma 6.6.

If µ ∈ ρ(T ) with 0 < |µ|< 1, then, using that T is an isometry, for all x ∈ X we find

∥x∥= ∥(µ−T )R(µ,T )x∥⩾ ∥T R(µ,T )x∥−∥µR(µ,T )x∥= (1−|µ|)∥R(µ,T )x∥

and therefore ∥R(µ,T )∥ ⩽ 1/(1− |µ|). In view of Proposition 6.12, this implies that
for all 0 < r < 1 the disc {µ ∈ C : |µ|⩽ r} does not contain boundary points of σ(T ).
This being true for all 0 < r < 1 it follows that either the open unit disc D is contained
in σ(T ) or else D contains no points of σ(T ). In the former case we have σ(T ) =D, as
σ(T ) is closed and contained in D; in the latter case we have σ(T )⊆ T.

This result is the best possible in the following sense: both the closed unit disc and
any nonempty closed subset of the unit circle can be realised as the spectrum of suitable
isometries. For instance, the left and right shift on ℓ2 provide examples of the former,
and if K ⊆ T is a nonempty closed set, then the bounded operator on C(K) given by
(T f )(z) = z f (z) is easily verified to have spectrum equal to K.

We have the following continuity result for spectra:

Proposition 6.15 (Lower semicontinuity of the spectrum). Let Ω be an open set in the
complex plane containing σ(T ). Then there exists a δ > 0 such that if the bounded
operator T ′ satisfies ∥T −T ′∥< δ , then σ(T ′)⊆Ω.

Proof In the proof of Lemma 6.10 we have seen that lim|λ |→∞ ∥R(λ ,T )∥= 0. In par-
ticular, sup|λ |>2∥T∥ ∥R(λ ,T )∥ < ∞. By the continuity of λ 7→ R(λ ,T ) we also have
sup{|λ |⩽2∥T∥}∩{λ ̸∈Ω} ∥R(λ ,T )∥< ∞. Combining these, we find that

sup
λ ̸∈Ω

∥R(λ ,T )∥< ∞.

Denote this supremum by M. If ∥T −T ′∥< 1/M and λ ̸∈Ω, then from

λ −T ′ = (λ −T )[I +R(λ ,T )(T −T ′)]

we infer that λ − T ′ is invertible, noting that I +R(λ ,T )(T − T ′) is invertible since
∥R(λ ,T )(T −T ′)∥< M ·1/M = 1.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
6.1 Spectrum and Resolvent 217

It has already been noted that eigenvalues belong to the spectrum, and that a bounded
operator need not have any eigenvalues (see Example 6.3). We now prove a useful result
that makes up for this to some extent.

Definition 6.16 (Approximate eigenspectrum). The number λ ∈C is called an approx-
imate eigenvalue of the operator T if there exists a sequence (xn)n⩾1 in X with the
following two properties:

(1) ∥xn∥= 1 for all n ⩾ 1;
(2) ∥T xn−λxn∥→ 0 as n→ ∞.

In this context the sequence (xn)n⩾1 is called an approximate eigensequence for λ . The
set of all approximate eigenvalues is called the approximate point spectrum.

Every eigenvalue is an approximate eigenvalue. Approximate eigenvalues belong to
the spectrum, for if λ were an approximate eigenvalue belonging to the resolvent set of
T , we would arrive at the contradiction

1 = ∥xn∥= ∥R(λ ,T )(T xn−λxn)∥⩽ ∥R(λ ,T )∥∥T xn−λxn∥→ 0 as n→ ∞.

Proposition 6.17. The boundary of σ(T ) consists of approximate eigenvalues.

Proof If λ ∈ ∂σ(T ), then there exists a sequence (λn)n⩾1 in ρ(T ) converging to λ .
Using Proposition 6.12 and the uniform boundedness principle, we find a vector x ∈ X
such that ∥R(λn,T )x∥→ ∞. The vectors

xn :=
R(λn,T )x
∥R(λn,T )x∥

then define an approximate eigensequence: this follows from

∥T xn−λxn∥=
∥[(T −λn)+(λn−λ )]R(λn,T )x∥

∥R(λn,T )x∥
⩽

∥x∥
∥R(λn,T )x∥

+ |λn−λ | → 0.

We have the following duality result:

Proposition 6.18. The spectrum of the adjoint of a bounded operator T equals

σ(T ∗) = σ(T ).

Proof If λ ∈ ρ(T ), then

(λ −T ∗)[R(λ ,T )]∗ = [R(λ ,T )(λ −T )]∗ = I∗X = IX∗ ,

and similarly [R(λ ,T )]∗(λ − T ∗) = IX∗ , from which it follows that λ ∈ ρ(T ∗) and
R(λ ,T ∗) = [R(λ ,T )]∗. This proves the inclusion σ(T ∗)⊆ σ(T ).

To complete the proof we show that ρ(T ∗)⊆ ρ(T ). Applying what we just proved to
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T ∗ we obtain ρ(T ∗)⊆ ρ(T ∗∗). Fix λ ∈ ρ(T ∗). Identifying X with its natural isometric
image in X∗∗ (see Proposition 4.21), we wish to prove that the restriction of R(λ ,T ∗∗)
to X maps X into itself. This restriction will be a two-sided inverse for λ −T , proving
that λ ∈ ρ(T ).

By Proposition 5.14 the range R(λ −T ) is dense in X . Moreover, for all x ∈ X we
have

x = R(λ ,T ∗∗)(λ −T ∗∗)x = R(λ ,T ∗∗)(λ −T )x.

This shows that R(λ ,T ∗∗) maps the dense subspace R(λ−T ) of X into X , and therefore
it maps all of X into X , by the boundedness of R(λ ,T ∗∗) and the closedness of X in X∗∗.
The restriction of R(λ ,T ∗∗) to X is therefore a bounded operator on X , which is a left
inverse to λ −T . It is also a right inverse, since in X∗∗ we have the identities

(λ −T )R(λ ,T ∗∗)x = (λ −T ∗∗)R(λ ,T ∗∗)x = x.

This proves that λ −T is invertible, with inverse R(λ ,T ∗∗)|X . Hence ρ(T ∗)⊆ ρ(T ), or
equivalently σ(T )⊆ σ(T ∗).

We continue with an observation about relative spectra. Let A ⊆L (X) be a unital
closed subalgebra, that is, A is a closed subspace of L (X) closed under taking compo-
sitions and containing the identity operator I. For an operator T ∈A we define ρA (T )
as the set of all λ ∈ C for which the operator λ − T boundedly invertible in A , that
is, there exists an operator U ∈A such that (λ −T )U =U(λ −T ) = I. We further set
σA (T ) :=C\ρA (T ). By redoing the proofs of Lemmas 6.6 and 6.7, ρA (T ) is an open
set and σA (T ) is a closed set contained in the closed disc of radius ∥T∥, and therefore
σA (T ) is compact.

It is evident that ρA (T )⊆ ρ(T ) and therefore

σ(T )⊆ σA (T ).

The next result provides a partial converse.

Proposition 6.19. Let A ⊆L (X) be a unital closed subalgebra and let T ∈A . Then

∂σA (T )⊆ σ(T ).

Proof Let λ ∈ ∂σA (T ) and let λn → λ in C with each λn in ρA (T ). By redoing
the proof of Proposition 6.12 we obtain that ∥R(λn,T )∥ → ∞ as n→ ∞. Since ρ(T ) is
open and the resolvent λ 7→ R(λ ,T ) continuous with respect to the operator norm, this
implies that λ ∈ σ(T ).

The example of the left shift T on X = ℓ2(Z) and the unital closed subalgebra A

generated by the identity and the right shift, shows that this result is the best possible:
here one has ∂σA (T ) = σ(T ) = T and σA (T ) = D.
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6.2 The Holomorphic Functional Calculus

If f : C→ C is an entire function and T is a bounded operator on X , we may define a
bounded operator f (T ) on X as follows. Writing f as a convergent power series about
z = 0,

f (z) =
∞

∑
n=0

f (n)(0)
n!

zn,

we define

f (T ) :=
∞

∑
n=0

f (n)(0)
n!

T n.

This series converges absolutely in L (X) since the same is true for the power series of
f (z) for every z ∈ C. The mapping f 7→ f (T ) is called the entire functional calculus of
T and has the following properties, the easy proofs of which we leave to the reader:

(i) if f (z) = zn with n ∈ N, then f (T ) = T n;
(ii) f (T )g(T ) = ( f g)(T );

(iii) g( f (T )) = (g◦ f )(T ).

This calculus may be used to define operators such as exp(T ), sin(T ), cos(T ), and so
forth. There is a beautiful way to extend the entire functional calculus to a larger class
of holomorphic functions, namely by replacing power series expansions by the Cauchy
integral formula

f (z0) =
1

2πi

∫
Γ

f (λ )
λ − z0

dλ . (6.1)

Here, f is assumed to be a holomorphic function on an open set Ω in the complex
plane containing z0, and Γ is a suitable contour winding about z0 in Ω counterclockwise
once. Formally substituting T for z0 and interpreting 1/(λ −T ) as R(λ ,T ), one is led
to conjecture that a holomorphic functional calculus may be defined by the formula

f (T ) :=
1

2πi

∫
Γ

f (λ )R(λ ,T )dλ . (6.2)

Since λ 7→ R(λ ,T ) is continuous on ρ(T ) with respect to the operator norm of L (X),
after parametrising Γ the integral in (6.2) is well defined as a Riemann integral with
values in L (X) (see Section 1.5.a).

In order to flesh out a set of conditions on Ω, Γ, and T to make this idea work we
first take a closer look at the precise assumptions in the Cauchy integral formula (6.1).
These are that Ω is an open set in the complex plane containing z0 and Γ is a piecewise
continuously differentiable closed contour in Ω\{z0}with the following two properties:

(i) the winding number of Γ about the point z0 equals 1;
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(ii) the winding number of Γ about every point in ∁Ω equals 0.

Here, the winding number of Γ about a point z is the (integer) number

w(Γ;z0) :=
1

2πi

∫
Γ

1
λ − z0

dλ .

More generally we can admit finite unions of such contours, as long as their union
satisfies (i) and (ii). If Γ = Γ1∪·· ·∪Γk is such a union, we define

w(Γ;z0) :=
1

2πi

k

∑
j=1

∫
Γj

1
λ − z0

dλ .

Condition (ii) is satisfied if Ω = Ω1 ∪ ·· · ∪Ωk is a finite union of disjoint convex sets
and Γj is a piecewise continuously differentiable closed contour in Ω j \{z0}.

Turning to the discussion of (6.2), we need to fix a similar set of assumptions re-
garding Ω and Γ while letting the operator T take the role of z0. We require that Ω is
an open set in the complex plane containing σ(T ) and Γ is a piecewise continuously
differentiable closed contour in Ω\σ(T ) with the following two properties:

(i) the winding number of Γ about every point z0 ∈ σ(T ) equals 1;
(ii) the winding number of Γ about every point in ∁Ω equals 0.

It is easy to see that such contours always exist. If the conditions (i) and (ii) are met
we say that Γ is an admissible contour for σ(T ) in Ω. As before we admit the possibility
that Γ is a finite union of such contours; for such contours we interpret (6.2) as

f (T ) :=
1

2πi

k

∑
j=1

∫
Γj

f (λ )R(λ ,T )dλ .

For example, if σ(T ) = K1∪K2 is the union of two disjoint compact sets with K j ⊆Ω j,
where Ω := Ω1∪Ω2 is a disjoint union of open convex sets, we may select contours Γj

with winding number 1 about every point in K j and consider Γ = Γ1∪Γ2 as an admis-
sible contour for σ(T ) in Ω. This example is relevant for defining spectral projections,
where one uses the holomorphic functions f = 1Ω1 and f = 1Ω2 (see Proposition 6.23).

For an open set Ω in the complex plane we denote by H(Ω) the vector space of all
holomorphic functions on Ω.

Theorem 6.20 (Holomorphic functional calculus). Let T ∈ L (X) be a bounded op-
erator, and let Ω ⊆ C be an open set containing σ(T ). For functions f ∈ H(Ω) we
define

f (T ) :=
1

2πi

∫
Γ

f (λ )R(λ ,T )dλ ,

where Γ is an admissible contour for σ(T ) in Ω. The resulting operators f (T ) are well
defined and have the following properties:
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K1 K2

Γ1 Γ2

Ω1 Ω2

Figure 6.1 The contour Γ = Γ1∪Γ2 around σ(T ) = K1∪K2 in Ω = Ω1∪Ω2

(i) the operator f (T ) is independent of the admissible contour Γ;
(ii) for entire functions the holomorphic and entire functional calculi agree;

(iii) for fµ(λ ) = 1/(µ−λ ) with µ ∈ ρ(T ) we have fµ(T ) = R(µ,T );
(iv) for all f ,g ∈ H(Ω) we have f (T )g(T ) = ( f g)(T );
(v) for all f ∈ H(Ω) we have f (T ∗) = ( f (T ))∗.

Proof (i): This follows by applying the Cauchy theorem to the scalar-valued integrals

1
2πi

∫
Γ

f (λ )⟨R(λ ,T )x,x∗⟩dλ

and then using the Hahn–Banach theorem. Alternatively one may extend mutatis mu-
tandis the proof of the Cauchy theorem to functions with values in a Banach space.

(ii): For fn(z) = zn with n ∈ N we have, with Γ a circle of radius r > ∥T∥ oriented
counterclockwise,

fn(T ) =
1

2πi

∫
Γ

λ
nR(λ ,T )dλ

=
1

2πi

∫
Γ

λ
n−1

∞

∑
k=0

λ
−kT k dλ =

∞

∑
k=0

( 1
2πi

∫
Γ

λ
n−1−k dλ

)
T k = T n.

Here we first used the Neumann series for R(λ ,T ) = λ−1(I− λ−1T )−1 (noting that
|λ |> ∥T∥ for λ ∈ Γ), then we interchanged integration and summation (which is justi-
fied by the absolute convergence of the series, uniformly in λ ∈ Γ), and finally we used
that

1
2πi

∫
Γ

λ
j dλ =

{
1, j =−1;

0, j ∈ Z\{−1}.
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By linearity, this proves that the holomorphic calculus agrees with the entire functional
calculus for polynomials. The general case follows by approximating an entire function
by its power series and noting that this approximation is uniform on bounded sets.

(iv): Let Γ and Γ′ be admissible contours for σ(T ) in Ω, with Γ′ to the interior of Γ

(more precisely, the outer contour Γ should have winding number one with respect to
every point on the inner contour Γ′). By the resolvent identity and Fubini’s theorem,

f (T )g(T ) =
1

(2πi)2

∫
Γ

∫
Γ′

f (λ )g(µ)R(λ ,T )R(µ,T )dµ dλ

=
1

(2πi)2

∫
Γ

∫
Γ′

f (λ )g(µ)(λ −µ)−1[R(µ,T )−R(λ ,T )]dµ dλ

=
1

(2πi)2

∫
Γ

∫
Γ′

f (λ )g(µ)(λ −µ)−1R(µ,T )dµ dλ

=
1

(2πi)2

∫
Γ′

∫
Γ

f (λ )g(µ)(λ −µ)−1R(µ,T )dλ dµ

=
1

2πi

∫
Γ′

f (µ)g(µ)R(µ,T )dµ = ( f g)(T ).

Here we used that
1

2πi

∫
Γ′

g(µ)(λ −µ)−1 dµ = 0 and
1

2πi

∫
Γ

f (λ )(λ −µ)−1 dλ = f (µ).

(iii): The identity (µ−λ ) · fµ(λ ) = fµ(λ ) · (µ−λ ) = 1 gives, via (ii) and (iv), that
(µ−T ) fµ(T ) = fµ(T )(µ−T ) = I. It follows that fµ(T ) = R(µ,T ).

(v): This follows from Proposition 6.18 and the continuity of the mapping S 7→ S∗,
which allows one to ‘take adjoint under the integral sign’.

Theorem 6.21 (Spectral mapping theorem). Let Ω⊆C be an open set containing σ(T ).
For all f ∈ H(Ω) we have

σ( f (T )) = f (σ(T )).

Proof We begin with the proof of the inclusion σ( f (T ))⊆ f (σ(T )). Fix λ ̸∈ f (σ(T ));
our aim is to show that λ ̸∈ σ( f (T )). Let U be an open set containing the (compact)
set f (σ(T )) but not λ . Then Ω′ := Ω∩ f−1(U) is an open subset of Ω containing σ(T )
and λ ̸∈ f (Ω′).

The function f is holomorphic on Ω′, and so is gλ (z) = (λ − f (z))−1, by the choice
of Ω′. By the multiplicativity of the holomorphic functional calculus applied to H(Ω′),

(λ − f (T ))gλ (T ) = gλ (T )(λ − f (T )) = I,

from which we infer that λ ̸∈ σ( f (T )).
Turning to the converse inclusion f (σ(T )) ⊆ σ( f (T )), let λ ∈ Ω. By the theory

of functions in one complex variable we have f (λ )− f (z) = (λ − z)hλ (z) for some
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hλ ∈H(Ω), so f (λ )− f (T ) = (λ −T )hλ (T ). If λ ∈ σ(T ), then λ −T is noninvertible.
Since λ −T and hλ (T ) commute, Lemma 6.5 implies that f (λ )− f (T ) is noninvertible
and therefore f (λ ) ∈ σ( f (T )).

Theorem 6.22 (Composition). Let Ω ⊆ C be an open set containing σ(T ), let f ∈
H(Ω), and let Ω′ ⊆ C be an open set containing σ( f (T )). Then for all g ∈ H(Ω′) we
have

g( f (T )) = (g◦ f )(T ).

Proof Let Γ′ be an admissible contour for σ( f (T )) in Ω′, and let Ω̃ be an open subset
of Ω containing σ(T ), chosen in such a way that Γ′ has winding number 1 about every
point of f (Ω̃). Let Γ be an admissible contour for σ(T ) in Ω̃.

If µ is a point on Γ′, then hµ(λ ) := (µ− f (λ ))−1 defines a function in H(Ω̃) and

hµ(T )(µ− f (T )) = (µ− f (T ))hµ(T ) = I.

It follows that µ ∈ ρ( f (T )) and

R(µ, f (T )) = hµ(T ) =
1

2πi

∫
Γ

(µ− f (λ ))−1R(λ ,T )dλ .

Hence, using Fubini’s theorem to justify the change of order of integration,

g( f (T )) =
1

2πi

∫
Γ′

g(µ)R(µ, f (T ))dµ

=
( 1

2πi

)2
∫

Γ′

∫
Γ

g(µ)(µ− f (λ ))−1R(λ ,T )dλ dµ

=
( 1

2πi

)2
∫

Γ

∫
Γ′

g(µ)(µ− f (λ ))−1R(λ ,T )dµ dλ

=
1

2πi

∫
Γ

g( f (λ ))R(λ ,T )dλ = (g◦ f )(T ).

In the penultimate identity we used that 1
2πi
∫

Γ′ g(µ)(µ− f (λ ))−1 dµ = g( f (λ )) by the
Cauchy integral formula.

An interesting application of the holomorphic calculus arises when the spectrum is
the disjoint union of two nonempty disjoint compact sets.

Theorem 6.23 (Spectral projections). Suppose that σ(T ) is the union of two nonempty
disjoint compact sets K1 and K2, Ω1 and Ω2 are disjoint open sets containing K1 and
K2, and let Γ1 and Γ2 be admissible contours for K1 and K2 in Ω1 and Ω2, respectively.
The operators

Pj :=
1

2πi

∫
Γj

R(λ ,T )dλ , j ∈ {1,2},
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are projections, their ranges X1 and X2 are invariant under T , and we have a direct sum
decomposition X = X1⊕X2. Moreover,

σ(T |X j) = K j, j ∈ {1,2}.

Proof To see that Pj is a projection we just note that Pj = f j(T ), where f j : Ω1∪Ω2→
C is the holomorphic function which is 1 on Ω j and 0 elsewhere. By the multiplicativity
of the holomorphic calculus, Pj is bounded and

P2
j = ( f j(T ))2 = f 2

j (T ) = f j(T ) = Pj.

Also, f1 + f2 ≡ 1 implies that P1 +P2 = I. We further have

P1P2 = f1(T ) f2(T ) = ( f1 f2)(T ) = 0

since f1 f2 = 0, and similarly P2P1 = 0. Consequently, R(P1)∩R(P2) = {0}, for if x =

P1x1 =P2x2, then P1x=P1P2x2 = 0 and P2x=P2P1x1 = 0 and therefore x= (P1+P2)x=
0+0 = 0. It follows that we have a direct sum decomposition X = R(P1)⊕R(P2). Since
T obviously commutes with Pj, it follows that T maps X j = R(Pj) into itself. It follows
that T restricts to a bounded operator Tj := T |X j on X j.

Let µ ∈ C\K j. We show that µ ∈ ρ(Tj). Define

Sµ, j :=
1

2πi

∫
Γj

(µ−λ )−1R(λ ,T )dλ ,

where Γj is an admissible contour for K j in Ω j with µ on the exterior. Writing µ−Tj =

(µ−λ )+(λ −Tj) and using that T Pjx = TjPjx for all x ∈ X , we find

(µ−Tj)Sµ, jPjx = Sµ, j(µ−Tj)Pjx =
1

2πi

∫
Γj

(µ−λ )−1R(λ ,T )(µ−Tj)Pjxdλ

=
1

2πi

∫
Γj

R(λ ,T )Pjx+(µ−λ )−1Pjxdλ

=
1

2πi

∫
Γj

R(λ ,T )Pjxdλ = P2
j x = Pjx,

which shows that (µ−Tj)Sµ, j = Sµ, j(µ−Tj) = I on R(Pj). This proves that µ ∈ ρ(Tj).
We have shown that σ(Tj)⊆ K j. In particular this implies that σ(T0)∩σ(T1) =∅.

Next we claim that σ(T )⊆ σ(T1)∪σ(T2); this concludes the proof since it gives

K1∪K2 = σ(T )⊆ σ(T1)∪σ(T2)⊆ K1∪K2

and therefore equality holds at all steps. To prove the claim it suffices to note that if µ ̸∈
σ(T1)∪σ(T2), then µ ∈ ρ(T1)∩ρ(T2) and R(µ,T1)⊕R(µ,T2) is a two-sided inverse to
µ−T = (µ−T1)⊕ (µ−T2).
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As a further application of the holomorphic calculus we prove the following exact
formula for the spectral radius

r(T ) := sup{|λ | : λ ∈ σ(T )}

of a bounded operator T ∈L (X) (with the convention sup∅= 0 to deal with the trivial
case X = {0}). Since the spectrum σ(T ) is contained in the closed disc with radius
∥T∥ we have r(T ) ⩽ ∥T∥. More generally, by the spectral mapping theorem, r(T )n =

r(T n)⩽ ∥T n∥, so r(T )⩽ ∥T n∥1/n. We actually have equality:

Theorem 6.24 (Gelfand). For every bounded operator T ∈L (X) we have

r(T ) = inf
n⩾1
∥T n∥1/n = lim

n→∞
∥T n∥1/n.

Israel Gelfand, 1913–2009

Existence of the right-hand side limit is part of
the assertion.

Proof We have already observed that

r(T )⩽ inf
n⩾1
∥T n∥1/n.

The theorem will be proved once we show that

limsup
n→∞

∥T n∥1/n ⩽ r(T ).

Fix ε > 0 arbitrary and let Γ denote the cir-
cular contour about the origin with radius R =

r(T )+ ε , oriented counterclockwise. Then

T n =
1

2πi

∫
Γ

λ
nR(λ ,T )dλ

implies

∥T n∥⩽ 1
2π
·2πR ·Rn sup

|λ |=R
∥R(λ ,T )∥,

the supremum being finite in view of the continuity of λ 7→ R(λ ,T ). Taking nth roots
and passing to the limit superior for n→ ∞, this implies limsupn→∞ ∥T n∥1/n ⩽ R =

r(T )+ ε. Since ε > 0 was arbitrary, this completes the proof.

As an application we have the following stability result.

Theorem 6.25 (Lyapunov’s stability theorem). If A∈L (X) is a bounded operator with
σ(A)⊆ {z ∈ C : Rez < 0}, then

lim
t→∞
∥etA∥= 0.
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Proof Since σ(A) is compact, there is a δ > 0 such that σ(A) ⊆ {z ∈ C : Rez ⩽
−δ}. By the spectral mapping theorem (Theorem 6.21) this implies that σ(eA) ⊆ {z ∈
C : |z| ⩽ e−δ}. Stated differently, we have r(eA) ⩽ e−δ < 1. By Gelfand’s theorem
(Theorem 6.24) there exists an integer n0 ⩾ 1 such that M0 := ∥en0A∥< 1.

By estimating the power series defining esA, ∥esA∥⩽ es∥A∥ for all s ⩾ 0. Let now t ⩾ 0
and write t = kn0 + r with k ∈ N and r ∈ [0,n0). Then

∥etA∥= ∥ekn0AerA∥⩽ ∥en0A∥ker∥A∥ ⩽ Mk
0en0∥A∥.

Since M0 < 1 this gives the result (with exponential rate), for t→∞ implies k→∞.

The interpretation of this theorem is as follows. Consider the initial value problem{
u′(t) = Au(t), t ⩾ 0,

u(0) = u0,

where A ∈L (X) is bounded and u0 ∈ X is given. By differentiating the power series
defining etA we see that this problem is solved by the function u(t) := etAu0. Lyapunov’s
theorem now gives the following sufficient spectral criterion for stability of this solution:
if the spectrum of A is contained in the open left-half plane, then limt→∞ ∥u(t)∥= 0.

Problems

6.1 Prove the following improvement to Lemma 6.6: if T ∈L (X) is such that the sum
∑

∞
n=0 T nx converges for all x ∈ X , then I−T is invertible. What is its inverse?

6.2 Show that if T ∈ L (X) and λ ,µ ∈ ρ(T ) satisfy |λ − µ| ⩽ δ∥R(λ ,T )∥−1 with
0 ⩽ δ < 1, then

∥R(µ,T )−R(λ ,T )∥⩽ δ

1−δ
∥R(λ ,T )∥.

6.3 Prove in an elementary way, by multiplying power series, that if T ∈L (X), then
ewT ezT = e(w+z)T for all complex numbers w,z ∈ C.

6.4 For 1 ⩽ p ⩽ ∞ consider the right shift operator T ∈L (ℓp):

T : (a1,a2,a3, . . .) 7→ (0,a1,a2, . . .).

Give a direct proof of the fact (see Example 6.3) that σ(T ) = {λ ∈ C : |λ |⩽ 1}.
6.5 We compute the spectra of some multiplier operators.

(a) Let m ∈C[0,1] and define Tm ∈L (C[0,1]) by

(Tm f )(t) = m(t) f (t), f ∈C[0,1], t ∈ [0,1].

Show that σ(Tm) coincides with the range of m.
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(b) Let m ∈ L∞(0,1), let 1 ⩽ p ⩽ ∞, and define Tm ∈L (Lp(0,1)) by

(Tm f )(t) = m(t) f (t), f ∈ Lp(0,1), t ∈ (0,1).

Show that σ(Tm) coincides with the essential range of m, that is, the set of
all λ ∈K such that for any open set U ⊆K containing λ the set {t ∈ (0,1) :
m(t) ∈U} has positive measure.
Hint: First show that λ is not contained in the essential range of m if and only
if 1

m−λ
is well defined almost everywhere and essentially bounded.

6.6 Let Tm be the Fourier multiplier on L2(Rd) with symbol m ∈ L∞(Rd).

(a) Show that σ(Tm) equals the essential range of m.
Hint: Use the result of the preceding problem.

(b) Show that if f is a holomorphic function defined on an open set containing
σ(Tm), then f ◦m ∈ L∞(Rd) and Tf◦m = f (Tm), the latter being defined by
the holomorphic calculus.

6.7 Show that every nonempty compact subset of C can be realised as the spectrum
of some bounded operator.

6.8 Show that if P and Q are projections satisfying ∥P−Q∥ < 1, then dim(R(P)) =
dim(R(Q)) (admitting the possibility ∞ = ∞).
Hint: The invertibility of I− (P−Q) implies PQ = P(I−P+Q) = P.

6.9 Show that if T ∈L (X) and Ω⊆C is an open set containing σ(T ), then admissi-
ble contours for σ(T ) in Ω always exist.

6.10 Show that if T ∈L (X) is an isometry, then every approximate eigenvalue of T
has modulus one. Use this to give an alternative proof of Corollary 6.14.

6.11 Let F be the Fourier–Plancherel transform on L2(Rd).

(a) Recalling that F 4 = I (see Problem 5.21), apply the spectral mapping theo-
rem to see that σ(F )⊆ {±1,±i}.

(b) Show that (F − iI)(F + I)(F + iI)(F − I) = 0 and (F + I)(F + iI)(F −
I) ̸= 0, and deduce that i ∈ σ(F ).

(c) Prove that σ(F ) = {±1,±i}.

6.12 Determine the spectrum of the Hilbert transform H on L2(Rd).
Hint: Use the result of Problem 5.22.

6.13 Suppose that we have a direct sum decomposition X = X0 ⊕ X1. Prove that if
T ∈L (X) leaves both X0 and X1 invariant, then

σ(T ) = σ(T |X0)∪σ(T |X1),

viewing T |X0 and T |X1 as bounded operators on the Banach spaces X0 and X1.
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6.14 Prove that for all S,T ∈L (X) we have

σ(ST )\{0}= σ(T S)\{0}.

Hint: Use the Neumann series to relate the resolvents of ST and T S.
6.15 Prove the claims about the example below Proposition 6.19.
6.16 The aim of this problem is to prove Chernoff’s theorem: If T ∈ L (X) satisfies

supn∈N ∥T n∥=: M < ∞, then for all n ∈ N we have

∥exp(n(T − I))x−T nx∥⩽
√

nM∥T x− x∥.

(a) Show that

∥exp(n(T − I))x−T nx∥⩽ e−n
∞

∑
k=0

nk

k!
∥T kx−T nx∥

⩽ e−nM∥T x− x∥
∞

∑
k=0

(nk

k!

)1/2(nk

k!

)1/2
|n− k|.

(b) Show that
∞

∑
k=0

nk

k!
(n− k)2 = nen.

(c) Combine (a), (b), and the Cauchy–Schwarz inequality to complete the proof.

6.17 Let T ∈L (X) be power bounded, that is, T is invertible and supk∈Z ∥T k∥ < ∞,
with the property that σ(T ) = {1}.
(a) Using the holomorphic calculus and its properties, explain that we can define

the bounded operators S :=−i logT and sin(nS), n ∈ N.
(b) Show that sin(nS) = 1

2i (T
n−T−n), n ∈ N.

(c) Using the spectral mapping theorem, show that σ(nS) = σ(sin(nS)) = {0}.
We now use that if ∑

∞
k=0 ckzk denotes the Taylor series of the principal branch of

arcsinz at z = 0, then ck ⩾ 0 for all k ∈ N and ∑
∞
k=0 ck = arcsin(1) = π

2 .

(d) Show that nS = arcsin(sin(nS)), where the latter is again defined by means
of the holomorphic calculus, and deduce that

∥nS∥⩽ π

2
sup
k∈Z
∥T k∥.

Conclude that S = 0 and T = eiS = I.

6.18 Let T ∈L (X) and let f be a nonzero holomorphic function on a connected open
set Ω containing σ(T ). Show that if f (T ) = 0, then σ(T ) is a finite set.
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7
Compact Operators

This chapter studies the class of compact operators. By definition, these are the operators
that map bounded sets to relatively compact sets. Examples include integral operators
on various Banach spaces of functions over a compact domain. Because of this, com-
pact operators have important applications in the theory of partial differential equations
and Mathematical Physics. After establishing some generalities we prove the Riesz–
Schauder theorem, which asserts that the nonzero part of the spectrum of a compact
operator is discrete and consists of eigenvalues.

The final section of this chapter presents an introduction to the theory of Fredholm
operators. These are the operators that are invertible modulo a compact operator, and
their degree of noninvertibility is quantified by the so-called Fredholm index. As an
example we prove the Gohberg–Krein–Noether theorem, which states that a Toeplitz
operator with continuous zero-free symbol is Fredholm and its index equals the negative
winding number of their symbol.

7.1 Compact Operators

Let X and Y be Banach spaces.

Definition 7.1 (Compact operators). An operator T ∈L (X ,Y ) is compact if it maps
bounded sets to relatively compact sets.

Since every bounded set in X is contained in a multiple of the unit ball BX = {x ∈
X : ∥x∥ < 1}, a bounded operator is compact if and only if T BX is relatively compact.

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven

229



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
230 Compact Operators

Furthermore, using that a subset of a Banach space is relatively compact if and only if it
is relatively sequentially compact, a linear operator T is compact if and only if (T xn)n⩾1

has a convergent subsequence for every bounded sequence (xn)n⩾1 in X .
The set of all compact operators is a linear subspace of L (X ,Y ). It is clear that cT

is compact if T is compact, for any scalar c ∈K, and if S and T are compact, then also
S+T is compact: for if SBX and T BX are contained in the compact sets K and L, then
(S+T )BX is contained in the compact set K+L (this set is the image of the compact set
K×L under the continuous image (x1,x2) 7→ x1 +x2 from X×X to X). It is also a two-
sided ideal in L (X ,Y ), in the sense that if T ∈L (X ,Y ) is compact and S ∈L (X ′,X)

and U ∈ L (Y,Y ′) are bounded, then UT S ∈ L (X ′,Y ′) is compact. Indeed, if C is a
bounded set in X ′, then S(C) is bounded in X , so T S(C) is contained in a compact set K
of Y , and then UT S(C) is contained in the compact set U(K).

Example 7.2. As an immediate corollary to Theorem 1.38, the identity operator on a
Banach space X is compact if and only if X is finite-dimensional.

Example 7.3. A bounded operator is said to be of finite rank if its range is finite-
dimensional. Since bounded sets in finite-dimensional spaces are relatively compact,
every finite rank operator is compact.

Example 7.4 (Integral operators on C(K)). Let µ be a finite Borel measure on compact
metric space K and let k : K×K → K be continuous. Then the operator T : C(K)→
C(K),

T f (x) :=
∫

K
k(x,y) f (y)dµ(y), f ∈C(K), x ∈ K,

is well defined and bounded by Example 1.30. Let us show that T is compact. Let
( fn)n⩾1 be a bounded sequence in C(K). We claim that the bounded sequence (T fn)n⩾1

is equicontinuous. Once we have shown this, the Arzelà–Ascoli theorem (Theorem
2.11) implies that this sequence is relatively compact, hence has a convergent subse-
quence. This implies that T is compact.

To check the equicontinuity we first note that K × K is compact and hence k is
uniformly continuous, in the sense that given any ε > 0 we can find δ > 0 such that
d(x,x′)+d(y,y′)< δ implies |k(x,y)− k(x′,y′)|< ε . Then, if d(x,x′)< δ ,

|T fn(x)−T fn(x′)|⩽
∫

K
|k(x,y)− k(x′,y)|| fn(y)|dµ(y)⩽ εMµ(K),

where M = supn⩾1 ∥ fn∥∞. The equicontinuity follows immediately from this.

The next proposition shows that the compact operators form a closed subspace in
L (X ,Y ). This subspace will be denoted by K (X ,Y ) and we write K (X) :=K (X ,X).

Proposition 7.5. If limn→∞ ∥Tn−T∥ = 0 with each Tn compact, then T is compact. In
particular, uniform limits of finite rank operators are compact.
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7.1 Compact Operators 231

Proof For any ε > 0 we can choose an index nε ⩾ 1 such that ∥Tnε
−T∥ < ε . Since

Tnε
BX is relatively compact and T BX ⊆ Tnε

BX +B(0;ε), the relative compactness of
T BX follows from Proposition 1.40.

The following converse of the second assertion of Proposition 7.5 holds for Hilbert
space operators:

Proposition 7.6. Let H and K be Hilbert spaces. An operator T ∈L (H,K) is compact
if and only if it is the uniform limit of finite rank operators.

Proof It remains to prove the ‘only if’ part. Let T be compact, say T BH ⊆ C with
C ⊆ K compact, where BH is the open unit ball of H. Fix an arbitrary ε > 0 and let
B(y1;ε), . . . ,B(yN ;ε) be an open cover of C. Let Y denote the linear span of {y1, . . . ,yN}
and let P be the orthogonal projection in K onto Y . This projection is of finite rank, and
therefore PT is of finite rank. For any x ∈ H of norm ∥x∥ < 1 we have T x ∈ C, so
∥T x− yn∥< ε for some 1 ⩽ n ⩽ N. Then, noting that Pyn = yn and using that ∥P∥⩽ 1,

∥T x−PT x∥⩽ ∥T x− yn∥+∥yn−PT x∥< ε +∥P(yn−T x)∥⩽ ε +∥yn−T x∥< 2ε.

Taking the supremum over all x ∈ H with ∥x∥< 1 we obtain ∥T −PT∥⩽ 2ε .

Example 7.7 (Integral operators on L2(K,µ)). Let µ be a finite Borel measure on a
compact metric space K and let k : K×K→K be square integrable. Then the operator
T : L2(K)→ L2(K),

T f (x) :=
∫

K
k(x,y) f (y)dµ(y), f ∈ L2(K), x ∈ K,

is well defined and bounded by Example 1.30. Let us prove that T is compact.
Fix ε > 0. Since C(K ×K) is dense in L2(K ×K,µ × µ) (see Remark 2.31), we

may choose κ ∈ C(K×K) such that ∥κ − k∥2 < ε . Since κ is uniformly continuous
we can find δ > 0 such that |κ(x,y)− κ(x′,y′)| < ε whenever d(x,x′)+ d(y,y′) < δ .
Starting from a finite cover of K by open balls with diameter at most 1

2 δ , we can write
K = B1∪·· ·∪Bn with disjoint Borel sets B j of diameter at most 1

2 δ . Set

k̃ :=
n

∑
j,k=1

κ(x j,yk)1B j×Bk ,

where x j ∈B j and yk ∈Bk are chosen arbitrarily. For this function we have ∥κ− k̃∥∞ ⩽ ε .
Then, ∥κ− k̃∥2 ⩽ ε(µ×µ)(K×K)1/2 = εµ(K) and hence

∥k̃− k∥2 ⩽ ∥k̃−κ∥2 +∥κ− k∥2 < ε(1+µ(K)). (7.1)

The integral operator with kernel k̃, which we denote by T̃ , is given explicitly as

T̃ =
n

∑
j=1

( n

∑
k=1

κ(x j,yk)µ(Bk)
)

1B j ⊗1B j ,



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
232 Compact Operators

where 1B j ⊗1B j is the rank one operator sending f to ( f |1B j)1B j . This shows that T̃ is
of finite rank and therefore compact. By (1.4) (with k replaced by k̃− k) and (7.1) we
have

∥T̃ −T∥⩽ ∥k̃− k∥2 < ε(1+µ(K)).

Since ε > 0 was arbitrary this proves that T can be approximated in the operator norm
by compact operators.

In Example 14.3 it will be shown, under the weaker assumption that the measure
space (K,µ) be σ -finite, that the integral operator T defined above is Hilbert–Schmidt.
By Proposition 14.5, this property implies compactness. The required separability of
L2(K,µ) follows from Remark 2.31 (and an approximation argument to pass from finite
to σ -finite measures).

We conclude this section with a duality result for compact operators.

Proposition 7.8. An operator T ∈L (X ,Y ) is compact if and only if its adjoint T ∗ ∈
L (Y ∗,X∗) is compact.

Proof First we prove the ‘only if’ part. Let T be compact and let K denote the closure
of T BX . By assumption, K is a compact subset of Y . By restriction, every y∗ ∈ Y ∗

determines a function in C(K) given by y∗(y) := ⟨y,y∗⟩ for y ∈ K. Moreover, if (y∗n)n⩾1

is a bounded sequence in Y ∗, the corresponding functions are uniformly bounded and
equicontinuous; the latter follows from |⟨x−x′,y∗n⟩|⩽M∥x−x′∥with M := supn⩾1 ∥y∗n∥.
Hence, by the Arzelà–Ascoli theorem, there is a subsequence (y∗n j

) j⩾1 such that

lim
j,k→∞

∥y∗nk
− y∗n j

∥C(K) = 0.

Then,

lim
j,k→∞

∥T ∗y∗nk
−T ∗y∗n j

∥= lim
j,k→∞

sup
∥x∥⩽1

|⟨x,T ∗y∗nk
−T ∗y∗n j

⟩|

= lim
j,k→∞

sup
∥x∥⩽1

|⟨T x,y∗nk
− y∗n j

⟩|= lim
j,k→∞

∥y∗nk
− y∗n j

∥C(K) = 0.

Thus we have shown that (T ∗y∗n)n⩾1 has a convergent subsequence. It follows that T ∗ is
compact.

To prove the ‘if’ part suppose that T ∗ is compact. Then, by what we just proved,
T ∗∗ is compact as an operator from X∗∗ to Y ∗∗. Identifying X with a closed subspace
of X∗∗ in the natural way, the restriction of T ∗∗ to X maps X to Y and equals T . Since
the restriction of a compact operator is compact, the compactness of T ∗∗ implies the
compactness of T .
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7.2 The Riesz–Schauder Theorem

As we have seen in earlier examples, the spectrum of a bounded operator need not
contain eigenvalues. This is in sharp contrast to the situation in finite dimensions, where
the spectra of matrices consist of eigenvalues. The aim of the present section is to show
that compact operators spectrally resemble matrices to some degree. The main result is
Theorem 7.11, which shows that the nonzero part of the spectrum of a compact operator
is discrete and consists of eigenvalues.

Lemma 7.9. If T ∈L (X) is compact, then:

(1) N(I−T ) is finite-dimensional;
(2) R(I−T ) is closed.

Proof (1): Let BY denote the unit ball of Y :=N(I−T ). We have Ty = y for all y ∈Y ,
so the compactness of T implies that BY = T BY is relatively compact. By Theorem 1.38,
this implies that Y is finite-dimensional.

(2): Let Y := N(I−T ) and consider the linear mapping S : X/Y → X defined by

S(x+Y ) := (I−T )x, x ∈ X .

Then S is well defined and bounded as a quotient operator. We claim that there exists a
constant c > 0 such that

∥S(x+Y )∥⩾ c∥x+Y∥, x ∈ X . (7.2)

If this were false we would be able to find elements xn ∈ X satisfying ∥xn +Y∥= 1 and
∥S(xn +Y )∥< 1/n. Then (I−T )xn = S(xn +Y )→ 0. By the compactness of T we can
find a subsequence such that T xnk → x0 for some x0 ∈ X . Then,

lim
k→∞

xnk = lim
k→∞

[(I−T )xnk +T xnk ] = 0+ x0 = x0.

By the boundedness of I−T ,

(I−T )x0 = lim
k→∞

(I−T )xnk = lim
k→∞

S(xnk +Y ) = 0,

and therefore x0 ∈N(I−T ) =Y . The contradiction 0 = ∥x0+Y∥= limk→∞ ∥xnk +Y∥=
1 concludes the proof of (7.2).

By Proposition 1.21, (7.2) implies that S is injective and the range R(S) of S is closed.
Finally, R(S) = R(I−T ) and therefore the range of I−T is closed.

In order to describe the spectra of compact operators we need the following lemma.

Lemma 7.10. Let T ∈L (X) be a compact operator. Then I−T is injective if and only
if I−T is surjective.
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Proof We begin with the proof of the ‘only if’ part. We assume that I−T is injective
but not surjective and deduce a contradiction.

By assumption, X1 := R(I− T ) is a proper subspace of X and by Lemma 7.9 this
subspace is closed. It is clear that T X1 ⊆ X1. Let T1 denote the restriction of T to X1.
This operator is compact.

The operator I−T1 : X1→ X1 is not surjective, since I−T : X → X1 is bijective and
X1 is a proper subspace of X . The same argument shows that X2 := R(I−T1) is a proper
closed subspace of X1. It is clear that T X2 ⊆ X2. Let T2 denote the restriction of T to
X2. Continuing as above we obtain a strictly decreasing sequence of closed subspaces
X1 ⊋ X2 ⊋ . . . each of which is T -invariant, such that

Xn+1 = (I−T )Xn, n = 1,2, . . .

By Lemma 1.39 we can select vectors xn ∈ Xn \Xn+1 of norm one such that

inf
y∈Xn+1

∥xn− y∥⩾ 1
2
. (7.3)

Since T is compact, (T xn)n⩾1 has a convergent subsequence (T xnk)k⩾1. Then, for ℓ > k,

∥T xnk −T xnℓ∥= ∥xnk +(T − I)xnk −T xnℓ∥⩾
1
2
,

where we use (7.3) along with (T − I)xnk ∈ Xnk+1 and T xnℓ ∈ Xnℓ ⊆ Xnk+1. This contra-
dicts the convergence of (T xnk)k⩾1.

Turning to the ‘if’ part, assume that I−T is surjective. If T ∗x∗ = x∗ for some x∗ ∈ X∗,
then by writing an arbitrary x ∈ X as (I−T )y, we find ⟨x,x∗⟩= ⟨y,(I−T ∗)x∗⟩= 0 for
all x ∈ X , so x∗ = 0. This shows that I−T ∗ is injective. Applying the preceding step to
the operator T ∗, which is compact by Proposition 7.8, it follows that I−T ∗ is surjective
as well. Then from the preceding argument, applied to T ∗, it follows that I− T ∗∗ is
injective, and hence I−T is injective.

Theorem 7.11 (Riesz–Schauder). Let T ∈L (X) be a compact operator. Then:

(1) every nonzero λ ∈ σ(T ) is an eigenvalue of T and the eigenspace

Eλ := {x ∈ X : T x = λx}

is finite-dimensional;
(2) for every r > 0, the number of eigenvalues satisfying |λ |⩾ r is finite;
(3) if dim(X) = ∞, then 0 ∈ σ(T ).

Proof (1): Let 0 ̸= λ ∈ σ(T ) and suppose that λ is not an eigenvalue of T . Then
I − λ−1T is injective and hence, by the preceding lemma, surjective. It follows that
I−λ−1T is invertible, and this implies that λ ∈ ρ(T ).

Since T acts as a multiple of the identity on the subspace Eλ and T is compact, the
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identity operator on Eλ is compact. By Theorem 1.38, this implies that Eλ is finite-
dimensional.

(2): Suppose there is an infinite sequence of distinct eigenvalues λn, n ⩾ 1, all of
which satisfy |λn|⩾ r. Let xn ∈ X be eigenvectors for λn of norm one.

Let Yn denote the linear span of {x1, . . . ,xn}, n ⩾ 1, and set Y0 := {0}. By the distinct-
ness of the eigenvalues, the vectors xn are linearly independent (this is easily proved
with induction on n). Therefore dim(Yn) = n. In particular, Yn is a proper subspace of
Yn+1. For y ∈ Yn, say y = ∑

n
j=1 c jx j, we have

Ty =
n

∑
j=1

c jλ jx j ∈ Yn

and

(λn−T )y =
n

∑
j=1

c j(λn−λ j)x j =
n−1

∑
j=1

c j(λn−λ j)x j ∈ Yn−1.

Lemma 1.39 shows that for every n ⩾ 1 it is possible to find a vector yn ∈ Yn of norm
one such that ∥y− yn∥⩾ 1

2 for all y ∈ Yn−1. Arguing as in the proof of Lemma 7.10, for
n > m these vectors satisfy the lower bound

∥Tyn−Tym∥= ∥λnyn +(T −λn)yn−Tym∥

= |λn|
∥∥∥yn−

Tym− (T −λn)yn

λn

∥∥∥⩾ 1
2 |λn|⩾ 1

2 r,

using that Tym ∈Ym ⊆Yn−1 and (T −λn)yn ∈Yn−1, and therefore (Tyn)n⩾1 cannot have
a convergent subsequence. This contradicts the compactness of T .

(3): If T is invertible, then T−1BX is bounded and BX = T (T−1BX ) is relatively
compact. Therefore X must be finite-dimensional.

Juliusz Schauder, 1899–1943

For compact normal operators on a Hilbert
space, a more direct proof is sketched in Prob-
lem 9.2.

Definition 7.12. The number dim(Eλ ) is called
the geometric multiplicity of λ .

Suppose now that T ∈L (X) is compact and
that 0 ̸= λ ∈ σ(T ). Then λ is an isolated point
of σ(T ), that is, for small enough r > 0 we have
B(λ ;r)∩σ(T ) = {λ}. With 0 < r′ < r and Γ =

∂B(λ ,r′) oriented counterclockwise, the spec-
tral projection corresponding to λ (see Theorem



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
236 Compact Operators

6.23) is given by

Pλ :=
1

2πi

∫
Γ

R(µ,T )dµ.

By Theorem 6.23 the range Xλ := Pλ X is invariant under T and σ(T |Xλ
) = {λ}. In

particular, T |Xλ
is invertible. This operator is also compact as an operator on Xλ . This is

only possible if dim(Xλ ) is finite. Thus we have proved:

Corollary 7.13. Let T be a compact operator on a Banach space X. For all nonzero
λ ∈ σ(T ) the range Xλ of the spectral projection Pλ is finite-dimensional.

This argument can be used to give the following alternative proof that nonzero ele-
ments λ in the spectrum of a compact operator T are eigenvalues. Since Xλ is finite-
dimensional, upon choosing a basis we may identify Xλ with a space Cd and represent
T |Xλ

as a d×d matrix. Since σ(T |Xλ
) = {λ}, it follows that λ is an eigenvalue of this

matrix, and hence of T .

Definition 7.14. The number dim(Xλ ) is called the algebraic multiplicity of λ .

Proposition 7.15. Let T ∈L (X) be a compact operator. Then the geometric multiplic-
ity of every nonzero λ ∈ σ(T ) is less than or equal to its algebraic multiplicity.

Proof If T x = λx and Γ is as before, then Pλ x = ( 1
2πi
∫

Γ
(µ − λ )−1 dµ)x = x. This

shows that the eigenspace Eλ is contained in the range of the projection Pλ .

Example 7.16 (Jordan normal form). Consider a k× k Jordan block

Jλ =



λ 1 0 · · · 0

0 λ 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · 0 λ


and its resolvent

R(µ,Jλ ) =



(µ−λ )−1 (µ−λ )−2 · · · (µ−λ )−k

0 (µ−λ )−1 (µ−λ )−2 ...

...
. . . . . . . . .

...

...
. . . . . . (µ−λ )−2

0 · · · 0 (µ−λ )−1


.
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If A is a matrix with λ ∈ σ(A) and if Jλ is the corresponding block in the Jordan normal
form of A, it follows that the spectral projection corresponding to λ is given by

Pλ =
1

2πi

∫
Γ

R(µ,A)dµ = Iλ ,

where Iλ is the diagonal matrix with 1’s on the diagonal entries corresponding to the
Jordan block Jλ and 0’s elsewhere. It follows that the algebraic multiplicity νλ of λ

equals the sum of dimension of all Jordan blocks with λ on the diagonal.

7.3 Fredholm Theory

Throughout this section we let X and Y be Banach spaces.

7.3.a The Fredholm Alternative

From the results in the preceding section we know that if T is a compact operator on a
Banach space X , then every nonzero λ ∈ σ(T ) is an eigenvalue and the corresponding
eigenspace is finite-dimensional. The next theorem (when applied to the compact oper-
ator λ−1T ) asserts that the dimension of the eigenspace is equal to the codimension of
the range of λ −T . This generalises the elementary result in Linear Algebra that for a
d×d matrix A we have dimN(A)+dimR(A) = d.

Theorem 7.17 (Fredholm alternative). If T ∈L (X) is compact, then

dimN(I−T ) = codimR(I−T ).

Ivar Fredholm, 1866–1927

This theorem contains Lemma 7.10 as a spe-
cial case. The proof of the theorem is based on
the following geometric lemma. Recall that if
Y ⊆ X∗, then

⊥Y = {x ∈ X : ⟨x,x∗⟩= 0 for all x∗ ∈ Y}.

Lemma 7.18. If Y is a finite-dimensional sub-
space of X∗, then ⊥Y has finite codimension in X
and codim(⊥Y ) = dimY.

Proof Let x∗1, . . . ,x
∗
d be a basis of Y and con-

sider the mapping from X to Kd,

ψ : x 7→ (⟨x,x∗1⟩, . . . ,⟨x,x∗d⟩).

We claim that this mapping is surjective. Indeed, if ξ ∈ Kd is such that ψ(x) · ξ = 0



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
238 Compact Operators

for all x ∈ X , that is, ∑
d
j=1⟨x,x∗j⟩ξ j = 0 for all x ∈ X , then ∑

d
j=1 ξ jx∗j = 0 and therefore

ξ = 0 by linear independence. This proves the claim. As a consequence there exist
x j ∈ X such that ψ(x j) = e j, the jth unit vector of Kd. The resulting sequence x1, . . . ,xd

has the property that

⟨xi,x∗j⟩= δi j, i, j = 1, . . . ,d.

The vectors x j are linearly independent, for if ∑
d
j=1 c jx j = 0, then ck = ⟨∑d

j=1 c jx j,x∗k⟩=
0 for all k = 1, . . . ,d.

Now suppose that an arbitrary x ∈ X is given and set x̃ := x−∑
d
j=1 c jx j, where c j :=

⟨x,x∗j⟩. Then ⟨x̃,x∗k⟩ = ⟨x,x∗k⟩− ck = 0 for all k = 1, . . . ,d, so x̃ ∈ ⊥Y . This shows that
X = (⊥Y )+X0, where X0 is the linear span of x1, . . . ,xd . If x ∈ (⊥Y )∩X0, then we can
write x=∑

d
j=1 c jx j since x∈X0, and we have ck =∑

d
j=1 c j⟨x j,x∗k⟩= 0 for all k = 1, . . . ,d

since x ∈ ⊥Y . It follows that x = 0. Thus we obtain the direct sum decomposition X =

(⊥Y )⊕X0, and therefore codim(⊥Y ) = dimX0 = d = dim(Y ).

Proof of Theorem 7.17 We begin by recalling that, by Lemma 7.9, N(I−T ) is finite-
dimensional and R(I−T ) is closed. Hence Proposition 5.14, applied to I−T , implies
that R(I− T ) = ⊥(N(I− T ∗)) and therefore, by Lemma 7.18 (which can be applied
because Lemma 7.9 applied to the compact operator T ∗ gives dimN(I−T ∗)< ∞),

codimR(I−T ) = codim(⊥(N(I−T ∗))) = dimN(I−T ∗).

Thus it remains to prove that d := dimN(I−T ) = dimN(I−T ∗) =: d∗.

Step 1 – We first prove that d∗ ⩽ d. Reasoning by contradiction, suppose that d∗ >
d. Since N(I− T ) is finite-dimensional, by Proposition 4.16(1) we have a direct sum
decomposition

X = N(I−T )⊕Y

for some closed subspace Y of X . Also, since R(I−T ) is closed and has finite codimen-
sion d∗, by Proposition 4.16(2) we have a direct sum decomposition

X = R(I−T )⊕Z (7.4)

for some closed subspace Z of X of dimension d∗. Since d < d∗ there is an injective
linear map L : N(I−T )→ Z that is not surjective. Set S := T +L ◦π , where π is the
projection in X onto N(I−T ) along Y . Since L is a finite rank operator, it is compact
and hence also L◦π is compact.

We claim that N(I−S) = {0}. Indeed, if Sx = x, then

0 = Sx− x = T x− x︸ ︷︷ ︸
∈R(I−T )

+ Lπx︸︷︷︸
∈Z

and therefore (7.4) implies T x− x = 0 and Lπx = 0. The first of these identities means
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that x ∈ N(I− T ), so πx = x, and then the second of these identities takes the form
Lx = 0. The injectivity of L then implies that x = 0. This proves the claim.

By Lemma 7.10, R(I − S) = X . To arrive at a contradiction, let z ∈ Z \R(L) and
choose x ∈ X such that x−Sx = z. Then

x−T x︸ ︷︷ ︸
∈R(I−T )

− Lπx︸︷︷︸
∈Z

= z︸︷︷︸
∈Z

and by (7.4) this implies x−T x = 0 and z = Lπx. The second of these identities contra-
dicts our assumption that z ∈ Z \R(L).

Step 2 – Having established that d∗ ⩽ d, we now prove the opposite inequality d ⩽ d∗

by a duality argument. Setting d∗∗ := dimN(I−T ∗∗), applying Step 1 to the compact
operator T ∗ gives d∗∗ ⩽ d∗. Identifying X with a closed subspace of X∗∗, T ∗∗ is an
extension of T and therefore d ⩽ d∗∗ ⩽ d∗.

7.3.b Application to Integral Equations

As an application of the foregoing theory we turn to the problem of finding a function
u ∈C[0,1] solving inhomogeneous integral equations of the form

λu(s) = f (s)+
∫ 1

0
k(s, t)u(t)dt, s ∈ [0,1]. (H f )

Here f ∈C[0,1] is given, k : [0,1]× [0,1]→K is continuous, and λ is a nonzero scalar.
Under a solution of this equation we understand a function u ∈C[0,1] satisfying (H f )
for all s ∈ [0,1]. In order to study existence of solutions it is useful to also consider the
homogeneous equation corresponding to f = 0,

λu(s) =
∫ 1

0
k(s, t)u(t)dt, s ∈ [0,1], (H0)

as well as the ‘dual’ homogeneous problem

λv(s) =
∫ 1

0
k(t,s)v(t)dt, s ∈ [0,1]. (H∗0 )

Solutions to these problems are defined in the same way.

Theorem 7.19 (Fredholm alternative for integral equations). Let k : [0,1]× [0,1]→ K
be continuous and let λ ̸= 0 be fixed. Then:

(1) if the homogeneous problem (H0) has no nonzero solution, then for all f ∈C[0,1]
the inhomogeneous problem (H f ) has a unique solution u in C[0,1];

(2) if the homogeneous problem (H0) has a nonzero solution, then it has at most finitely
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many linearly independent nonzero solutions, and for a given f ∈C[0,1] the inho-
mogeneous problem (H f ) has a solution if and only if∫ 1

0
f (t)v(t)dt = 0

for all v ∈ L1(0,1) satisfying the dual homogeneous problem (H∗0 ).

Proof By the result of Example 7.4 the operator T : C[0,1]→C[0,1],

Tu(s) :=
∫ 1

0
k(s, t)u(t)dt, s ∈ [0,1],

is compact. Using this operator, the problem (H f ) can be abstractly formulated as

(λ −T )u = f .

If the homogeneous problem (λ −T )u = 0 has no nonzero solution, then λ is not an
eigenvalue. Since we are assuming that λ ̸= 0 it follows that λ ̸∈ σ(T ) by Theorem
7.11. Therefore, λ −T is invertible and the inhomogeneous problem (λ −T )u = f is
uniquely solved by u = (λ −T )−1 f .

If the homogeneous problem (λ−T )u = 0 has a nonzero solution, then λ is an eigen-
value, in which case the space of solutions u equals the eigenspace corresponding to λ ,
which is finite-dimensional. In that case, the inhomogeneous problem (λ −T )u = f has
a solution u ∈ C[0,1] if and only if f ∈ R(λ −T ) = ⊥N(λ −T ∗); here we use Propo-
sition 5.14 along with the fact that λ −T has closed range. Stated differently, problem
(λ −T )u = f has a solution u ∈C[0,1] if and only if

⟨ f ,x∗⟩= 0, x∗ ∈ N(λ −T ∗).

To make this condition more explicit we recall from Section 4.1.c that the dual of C[0,1]
is the space of complex Borel measures on [0,1], the duality between functions φ and
measures µ being given by ⟨ f ,µ⟩=

∫ 1
0 f dµ . For such measures µ we compute

⟨g,T ∗µ⟩= ⟨T g,µ⟩=
∫ 1

0

∫ 1

0
k(s, t)g(t)dt dµ(s)

=
∫ 1

0
g(t)

∫ 1

0
k(s, t)dµ(s)dt = ⟨g,ν⟩,

where the K-valued measure ν is given by

ν(B) =
∫

B

∫ 1

0
k(s, t)dµ(s)dt

for Borel sets B⊆ [0,1]. Now µ ∈ N(λ −T ∗) if and only if λ µ(B) = ν(B) for all Borel
sets B⊆ [0,1], that is, if and only if∫

B
λ dµ(t) =

∫
B

∫ 1

0
k(s, t)dµ(s)dt
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for all Borel sets B ⊆ [0,1]. In this case µ is absolutely continuous with respect to
the Lebesgue measure dt. Then, by the Radon–Nikodým theorem, dµ = vdt, where
v ∈ L1(0,1) satisfies

λv(t) =
∫ 1

0
k(s, t)dµ(s) =

∫ 1

0
k(s, t)v(s)ds

for almost all t ∈ (0,1). Since both sides are continuous functions of t, the equality holds
for all t ∈ [0,1]. This means that v solves (H∗0 ).

7.3.c Fredholm Operators

Let X and Y be Banach spaces. The following definition is suggested by the Fredholm
alternative (Theorem 7.17):

Definition 7.20 (Fredholm operators). A bounded operator T ∈ L (X ,Y ) is called a
Fredholm operator if it has the following properties:

(i) dimN(T )< ∞;
(ii) codimR(T )< ∞.

The index of such an operator is defined as

ind(T ) := dimN(T )− codimR(T ).

Example 7.21. Here are some examples of Fredholm operators:

(i) If T is a compact operator, then I−T is Fredholm with index ind(I−T ) = 0. This
is a restatement of the Fredholm alternative.

(ii) The left and right shift on ℓp, 1 ⩽ p ⩽ ∞, are Fredholm with indices 1 and −1,
respectively.

(iii) For every zero-free φ ∈C(T) the Toeplitz operator Tφ on the Hardy space H2(D)
is Fredholm with index ind(Tφ ) =−w(φ), where w(φ) is the winding number of
φ . This is the content of Noether–Gohberg–Krein theorem in Section 7.3.d, where
the relevant definitions can be found.

We begin our analysis of Fredholm operators with the observation that such operators
have closed range. As a result, codimR(T ) equals the dimension of the quotient Banach
space Y/R(T ).

Proposition 7.22. If the range of a bounded operator T ∈L (X ,Y ) has finite codimen-
sion, then it is closed.

Proof Let Y0 be a finite-dimensional subspace of Y such that R(T )∩Y0 = {0} and
R(T )+Y0 = Y . Then Y0 is closed and the bounded operator S : X ×Y0→ Y defined by
S(x,y0) := T x+y0 is surjective. By the open mapping theorem, S is open. In particular,
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S(X× (Y0 \{0})) is open. Clearly this set is the complement of S(X×{0}) = R(T ) and
therefore R(T ) is closed.

Theorem 7.23 (Atkinson). For a bounded operator T ∈L (X ,Y ) the following asser-
tions are equivalent:

(1) T is Fredholm;
(2) there exist a bounded operator S ∈L (Y,X) and compact operators K ∈L (X) and

L ∈L (Y ) such that

ST = I−K, T S = I−L.

If these equivalent conditions hold, the operator S is Fredholm with index

ind(S) =− ind(T ).

Moreover, S can be chosen in such a way that K = I−ST and L = I−T S are finite rank
projections satisfying dim(R(K)) = dim(N(T )) and dim(R(L)) = codim(R(T )).

Proof (1)⇒(2): By Propositions 4.16 and 7.22 there exist closed subspaces X0 ⊆ X
and Y0 ⊆ Y such that codim(X0)< ∞, dim(Y0)< ∞, and

X = N(T )⊕X0, Y = R(T )⊕Y0.

Let P and Q denote the corresponding projections in X and Y onto X0 and R(T ), re-
spectively. The restriction T0 := T |X0 is a bijection from X0 onto R(T ), injectivity and
surjectivity both being clear. Since R(T ) is closed, the open mapping theorem implies
that the inverse mapping S0 := T−1

0 is bounded as an operator from R(T ) onto X0. Define
S ∈L (Y,X) by S := S0 ◦Q. Then for all x ∈ X and y ∈ Y we have

ST x = S0QT x = S0T x = S0T Px = Px = x−Kx with K = I−P

and

T Sy = T S0Qy = Qy = y−Ly with L = I−Q.

Since I−P and I−Q are the projections onto the finite-dimensional subspaces N(T )
and Y0, these projections are of finite rank and hence compact. It also follows that
dim(R(K)) = dim(N(T )) and dim(R(L)) = codim(R(T )).

(2)⇒(1): We have N(T )⊆ N(ST ) and hence

dim(N(T ))⩽ dim(N(ST )) = dim(N(I−K))< ∞.

Likewise R(T )⊇ R(T S) and hence

codim(R(T ))⩽ codim(R(T S)) = codim(R(I−L))< ∞,

the finiteness of the codimension being a consequence of Theorem 7.17. This completes
the proof of the equivalence (1)⇔(2).
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It remains to prove the identity ind(S) = − ind(T ). Using the notation introduced
before we have N(S) = N(S0Q) = N(Q) = Y0, so

dim(N(S)) = dim(Y0) = codim(R(T ))

and likewise R(S) = R(S0Q) = X0, so

codim(R(S)) = codim(X0) = dim(N(T )).

As a result,

ind(S) = dim(N(S))− codim(R(S)) = codim(R(T ))−dim(N(T )) =− ind(T ).

The equivalence (1)⇔(2) can be concisely stated by introducing the Calkin algebra

L (X ,Y )/K (X ,Y ).

Theorem 7.23 states that an operator T ∈L (X ,Y ) is Fredholm if and only if its equiv-
alence class in L (X ,Y )/K (X ,Y ) is invertible in the sense that there exists an operator
S ∈L (Y,X) such that ST = I mod K (X) and T S = I mod K (Y ).

Proposition 7.24. If T1 ∈L (X ,Y ) and T2 ∈L (Y,Z) are Fredholm, where Z is another
Banach space, then T2T1 ∈L (X ,Z) is Fredholm and

ind(T2T1) = ind(T1)+ ind(T2).

Proof Let S1 ∈L (Y,X) and S2 ∈L (Z,Y ) be such that

S1T1 = I−K1, T1S1 = I−L1, S2T2 = I−K2, T2S2 = I−L2,

with K1,K2,L1,L2 compact. Then

(S1S2)(T2T1) = S1(I−K2)T1 = I−K1−S1K2T1 =: I−K3,

where K3 = K1 +S1K2T1 is compact. Likewise

(T2T1)(S1S2) = T2(I−L1)S2 = I−L2−T2L1S2 =: I−L3,

where L3 = L2 + T2L1S2 is compact. Hence Atkinson’s theorem implies that T2T1 is
Fredholm. To compute its index, let X1,Y1,Y2,Z2 be finite-dimensional subspaces such
that

X = N(T1)⊕X1, Y = R(T1)⊕Y1 = N(T2)⊕Y2, Z = R(T2)⊕Z2.

Along the decomposition of X , an element x = x0 +x1 belongs to N(T2T1) if and only if
x0 ∈N(T1) and T1x1 ∈N(T2). Since the restriction T1|X1 : X1→R(T1) is an isomorphism,
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we furthemore have T1x1 ∈ N(T2) if and only if x1 ∈ (T1|X1)
−1(R(T1)∩N(T2)). As a

result, we have x ∈ N(T2T1) if and only if

x ∈ N(T1)⊕{x1 ∈ X1 : T1x1 ∈ N(T2)}= N(T1)⊕ (T1|X1)
−1(R(T1)∩N(T2)).

Since T1 acts as an isomorphism from X1 onto R(T1), we have

dim(N(T2T1)) = dim(N(T1))+dim(R(T1)∩N(T2)).

Furthermore, N(T2) is finite-dimensional and we have

dim(N(T2)) = dim(R(T1)∩N(T2))+dim(Y1∩N(T2)).

Combined with the previous identity this gives

dim(N(T2T1)) = dim(N(T1))+dim(N(T2))−dim(Y1∩N(T2)). (7.5)

Next, we have

Z = R(T2)⊕Z2 = T2(R(T1)⊕Y1)⊕Z2

and therefore

codim(R(T2T1)) = codim(R(T2))+ codim(R(T1))−dim(Y1∩N(T2)). (7.6)

It follows from (7.5) and (7.6) that

ind(T2T1) = dim(N(T2T1))− codim(R(T2T1))

= dim(N(T1))+dim(N(T2))− codim(R(T2))− codim(R(T1))

= ind(T1)+ ind(T2).

Another proof is proposed in Problem 14.19.
The next three propositions show that Fredholmness is preserved under various oper-

ations.

Proposition 7.25. If T ∈ L (X ,Y ) is Fredholm and K ∈ K (X ,Y ) is compact, then
T +K is Fredholm and

ind(T +K) = ind(T ).

Proof If S ∈L (Y,X) and compact operators L1 ∈L (X) and L2 ∈L (Y ) are such that
ST = I−L1 and T S = I−L2, then S(T +K) = I−L1+SK = I−M1 with M1 = L1−SK
compact, and (T +K)S = I−L2 +KS = I−M2 with M2 = L2−KS compact. Hence
T +K is Fredholm by Atkinson’s theorem. Moreover, by Proposition 7.24,

0 = ind(I−M1) = ind(S(T +K)) = ind(S)+ ind(T +K),
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so ind(T +K) = − ind(S) = ind(T ) by the identity for indices in Atkinson’s theorem.

The set of Fredholm operators is open in L (X ,Y ):

Proposition 7.26 (Dieudonné). For any Fredholm operator T ∈L (X ,Y ) there exists
a number δ > 0 such that for all U ∈ L (X ,Y ) with ∥U∥ < δ the operator T +U is
Fredholm and

ind(T +U) = ind(T ).

Proof The proof is a variation on the proof of the openness of the set of invertible
bounded operators. Let S ∈ L (Y,X) be such that ST = I −K and T S = I − L with
K ∈L (X) and L ∈L (Y ) compact. Then

S(T +U) = I−K +SU, (T +U)S = I−L+US.

If ∥U∥< δ := ∥S∥−1, then I +SU and I +US are boundedly invertible and

(I +SU)−1S(T +U) = I− (I +SU)−1K,

(T +U)S(I +US)−1 = I−L(I +US)−1,

where M := (I +SU)−1K and N := L(I +US)−1 are compact. Noting that

(I +SU)−1S =
∞

∑
n=0

(SU)nS =
∞

∑
n=0

S(US)n = S(I +SU)−1

by the Neumann series, Atkinson’s theorem implies that T +U is Fredholm.
Next, by Proposition 7.24 and Theorem 7.17,

ind(I +SU)−1 + ind(S)+ ind(T +U) = ind(I−M) = 0

and ind(I+SU)−1 = 0 by invertibility. By the identity for indices in Atkinson’s theorem
it follows that

ind(T +U) =− ind(S) = ind(T ).

Proposition 7.27. If T ∈L (X ,Y ) is Fredholm, then T ∗ ∈L (Y ∗,X∗) is Fredholm and

ind(T ∗) =− ind(T ).

Proof If S∈L (Y,X) is bounded and K ∈L (X) and L∈L (Y ) are compact operators
such that ST = I−K and T S = I−L, then S∗T ∗ = I−L∗ and T ∗S∗ = I−K∗ with K∗

and L∗ compact. Hence T ∗ is Fredholm by Atkinson’s theorem.
We claim that

dim(N(T ∗)) = codim(R(T )) (7.7)



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
246 Compact Operators

and

dim(N(T )) = codim(R(T ∗)). (7.8)

Together, these identities imply that ind(T ∗) = − ind(T ). We give a detailed proof of
(7.8) and indicate the changes that need to be made to prove (7.7).

Since T ∗ is Fredholm we have a direct sum decomposition

X∗ = R(T ∗)⊕W (7.9)

with W ⊆ X∗ a finite-dimensional subspace.
If x1, . . . ,xk is a basis for N(T ), by the Hahn–Banach extension theorem we obtain

x∗1, . . . ,x
∗
k ∈ X∗ such that

⟨xi,x∗j⟩= δi j, 1 ⩽ i, j ⩽ k. (7.10)

Let Z denote the span of x∗1, . . . ,x
∗
k in X∗. We claim that

R(T ∗)∩Z = {0}.

Indeed, if x∗ ∈ Z, say x∗ = ∑
k
j=1 c jx∗j , then

⟨xi,x∗⟩= ci, 1 ⩽ i ⩽ k.

If we also have x∗ ∈ R(T ∗), say x∗ = T ∗y∗, then from xi ∈ N(T ) we obtain

ci = ⟨xi,x∗⟩= ⟨T xi,y∗⟩= 0, 1 ⩽ i ⩽ k.

This implies x∗ = 0 and proves the claim.
Now, for any fixed x∗ ∈ X∗, set

ξ
∗ := x∗−

k

∑
j=1
⟨x j,x∗⟩x∗j .

Then, for i = 1, . . . ,k,

⟨xi,ξ
∗⟩= ⟨xi,x∗⟩−

k

∑
j=1
⟨x j,x∗⟩⟨xi,x∗j⟩= ⟨xi,x∗⟩−⟨xi,x∗⟩= 0.

This means that ξ ∗ ∈ N(T )⊥. By Theorem 5.15, this implies that ξ ∗ ∈ R(T ∗). Since
x∗− ξ ∗ ∈ Z it follows that R(T ∗)+Z = X∗. Together with Z ∩R(T ∗) = {0} it follows
that we have a direct sum decomposition

X∗ = R(T ∗)⊕Z. (7.11)

From (7.9) and (7.11) it follows that dim(W ) = dim(Z), and dim(Z) = dim(N(T ))
and dim(W ) = codim(R(T ∗)). This completes the proof of (7.8).

The proof of (7.7) proceeds along the same lines, interchanging the roles of T and
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T ∗. We now consider a basis x∗1, . . . ,x
∗
k for N(T ∗) and use the Hahn–Banach theorem to

obtain x∗∗1 , . . . ,x∗∗k ∈ X∗∗ such that

⟨x∗i ,x∗∗j ⟩= δi j, 1 ⩽ i, j ⩽ k.

At this point we invoke Theorem 4.34 to obtain x1, . . . ,xk ∈ X such that

⟨x j,x∗i ⟩= δi j, 1 ⩽ i, j ⩽ k.

With this analogue of (7.10) at hand the proof can be completed as before.

7.3.d The Noether–Gohberg–Krein Theorem

Let D and T denote the open unit disc and unit circle in the complex plane, respec-
tively. We think of T as parametrised by θ ∈ [−π,π] and equipped with the normalised
Lebesgue measure dθ/2π . The Hardy space H2(D) is the Hilbert space of all holomor-
phic functions on D of the form ∑n∈N cnzn with

∑
n∈N
|cn|2 < ∞.

Since every square summable sequence (cn)n∈N defines a convergent power series
∑n∈N cnzn holomorphic on D, the correspondence between a power series and its co-
efficient sequence sets up an isometric isomorphism between H2(D) and ℓ2(N). With
respect to the norm

∥ f∥H2(D) :=
(

∑
n∈N
|cn|2

)1/2
,

H2(D) is a Hilbert space. For n ∈ N consider the functions en ∈ L2(T) defined by

en(θ) := exp(inθ).

Since (en)n∈N is an orthonormal sequence in L2(T), every square summable sequence
(cn)n∈N defines a convergent sum ∑n∈N cnen in L2(T). Denoting this sum by f , its
Fourier coefficients are given by

f̂ (n) =

{
cn, n ⩾ 0,

0, n ⩽−1.

Conversely, if all negative Fourier coefficients of a function f ∈ L2(T) vanish, then f =
∑n∈N f̂ (n)en as a convergent sum in L2(T). Since the Fourier coefficients of functions
in L2(T) are square summable, we obtain an isometric isomorphism between H2(D)
and the closed subspace of L2(T) consisting of all functions whose negative Fourier
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coefficients vanish. In what follows we identify H2(D) with this closed subspace of
L2(T). As such, H2(D) is the range of the Riesz projection

P : ∑
n∈Z

f̂ (n)en 7→ ∑
n∈N

f̂ (n)en

in L2(T) which discards the terms in the Fourier series with negative indices.
Given a function φ ∈ L∞(T) we define the bounded operator Mφ on L2(T) by point-

wise multiplication,

Mφ f := φ f , f ∈ L2(T).

When Mφ is applied to a function f ∈ H2(D), the resulting function φ f generally does
not belong to H2(D), but the Riesz projection will take us back to H2(D). This motivates
the following definition.

Definition 7.28 (Toeplitz operators). Given a function φ ∈ L∞(T), the Toeplitz operator
with symbol φ is the operator Tφ on H2(D) given by

Tφ f := P(φ f ), f ∈ H2(D),

where P is the Riesz projection.

Every Toeplitz operator Tφ is bounded of norm

∥Tφ∥⩽ ∥P∥∥Mφ∥⩽ ∥φ∥∞. (7.12)

Its Hilbert space adjoint is given by T ⋆
φ
= T

φ
; this follows from

(Tφ f |g)H2(D) = (φ f |g)L2(T) = ( f |φg)L2(T) = ( f |T
φ

g)H2(D).

The following theorem shows that a Toeplitz operator with continuous and zero-free
symbol φ ∈C(T) is Fredholm, and its index equals the negative of the winding number
of the closed contour in C \ {0} parametrised by φ . As we have seen in Section 6.2,
for piecewise C1 functions φ , the winding number is given analytically by the contour
integral

w(φ) =
1

2πi

∫
φ

dz
z
=

1
2πi

∫
π

−π

φ ′(t)
φ(t)

dt.

For functions φ that are merely continuous, the winding number can be defined as fol-
lows. It is an elementary theorem in Algebraic Topology that there exists a unique inte-
ger n ∈ Z such that φ is homotopic to the curve θ 7→ en(θ). By definition, this means
that there exists a homotopy from φ to en in C\{0}, that is, a continuous function

h : [0,1]× [−π,π]→ C\{0}

such that for all θ ∈ [−π,π] we have

h(0,θ) = φ(θ), h(1,θ) = en(θ).
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Setting ht(θ) := h(t,θ), we think of the curves ht : [−π,π]→ C\{0} as continuously
deforming φ = h0 to en = h1. The winding number w(φ) of φ is defined to be this
integer:

w(φ) := n.

In particular, the winding number of en equals n. It is an easy consequence of Cauchy’s
theorem that this definition agrees with the analytic definition given earlier if φ is piece-
wise C1.

Theorem 7.29 (Noether–Gohberg–Krein). If the function φ ∈ C(T) is zero-free, then
the Toeplitz operator Tφ is Fredholm on H2(D) and

ind(Tφ ) =−w(φ).

This theorem is remarkable, as it computes an analytic quantity (the index) in terms
of a topological one (the winding number). The main ingredient in the proof is the
following lemma, which implies that the mapping φ 7→ Tφ from C(T) to L (H2(D)) is
multiplicative up to a compact operator.

Lemma 7.30. For all φ ,ψ ∈C(T) the operator Tφ Tψ −Tφψ is compact on H2(D).

Proof By the estimate (7.12), the Weierstrass approximation theorem (Theorem 2.3),
and the fact that uniform limits of compact operators are compact (Proposition 7.5), it
suffices to prove the lemma for trigonometric polynomials φ and ψ .

Let φ = ∑
M
m=−M cmem and ψ = ∑

N
n=−N dnen be trigonometric polynomials. For j ⩾ N

we have

(Tφ Tψ −Tφψ)e j

=
M

∑
m=−M

N

∑
n=−N

cmdnP(emP(ene j))−
M

∑
m=−M

N

∑
n=−N

cmdnP(emene j) = 0

since n+ j ⩾ 0 and hence emP(ene j) = emP(en+ j) = emen+ j = emene j in each summand.
By linearity and density, this shows that (Tφ Tψ−Tφψ) f = 0 for all f in the closed linear
span of {e j : j ⩾ N}. This implies that Tφ Tψ −Tφψ is a finite rank operator (of rank at
most N) and hence compact.

In particular this lemma implies that the commutator Tφ Tψ −Tψ Tφ is compact. For
functions φ ,ψ ∈C2(T) a more precise result will be proved in Section 14.5.d.

Proof of Theorem 7.29 It follows from the lemma that the mapping

J : C(T)→L (H2(D))/K (H2(D))

given by

J(φ) := Tφ +K (H2(D))
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is multiplicative:

J(φ)J(ψ) = J(φψ), φ ,ψ ∈C(T).

If φ is zero-free, then 1/φ defines an element of C(T) and

J(1/φ)J(φ) = J(φ)J(1/φ) = J(1) = I +K (H2(D)).

Stated differently, there exist compact operators K,L ∈K (H2(D)) such that with S :=
T1/φ we have

STφ = I−K, Tφ S = I−L.

By Atkinson’s theorem this implies that Tφ is Fredholm.
It remains to compute the index. To this end let w(φ) = n be the winding number of

φ and let h : [0,1]× [−π,π]→ C\{0} be a homotopy from φ to en. By the continuity
of the mapping φ 7→ Tφ and Dieudonné’s theorem (Theorem 7.26), the mapping

t 7→ ind(Tht ), t ∈ [0,1],

is locally constant, and hence constant, where ht(s) := h(t,s). Since h0 = φ and h1 = en,
in particular we obtain

ind(Tφ ) = ind(Ten).

Moreover, from

Ten ∑
j∈N

c je j = P
(

∑
j∈N

c je j+n

)
=

∞

∑
j=(−n)∨0

c je j+n

we see that

dimN(Ten) =

{
0, n ⩾ 0,

−n, n ⩽−1,
codimR(Ten) =

{
n, n ⩾ 0,

0, n ⩽−1,

so that ind(Ten) =−n.

The following result clarifies why the symbol was assumed to be zero-free.

Theorem 7.31 (Hartman–Wintner). If φ ∈C(T) is such that the Toeplitz operator Tφ is
Fredholm on H2(D), then φ is zero-free.

Proof Since N(Tφ ) is finite-dimensional and hence complemented, we have a direct
sum decomposition H2(D) = X0⊕N(Tφ ). Denote by π the projection onto N(Tφ ) along
X0. The operator Tφ restricts to an injective bounded operator from X0 onto R(Tφ ), and
the latter is a closed subspace of H2(D) by Proposition 7.22. Hence by the open mapping
theorem there exists a constant C > 0 such that

∥Tφ f0∥⩾C∥ f0∥, f0 ∈ X0.
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For f ∈ H2(D) write f = f0 + g along the above decomposition. Then, since ||| f ||| :=
C∥ f0∥+∥g∥ is an equivalent norm on H2(D),

∥Tφ f∥+∥π f∥= ∥Tφ f0∥+∥g∥⩾C∥ f0∥+∥g∥⩾C′∥ f∥,

where C′ > 0 is a constant independent of f . For all g ∈ L2(T) we thus obtain

∥Tφ Pg∥+∥πPg∥⩾C′∥Pg∥⩾C′(∥g∥−∥(I−P)g∥),

where P is the Riesz projection. Let U ∈L (L2(T)) be the bounded operator given by
Ug(θ) := exp(iθ)g(θ). Applying the preceding estimate to Ung in place of g and using
that Un and U−n are isometric, for all g ∈ L2(T) we obtain

∥U−nTφ PUng∥+∥U−n
πPUng∥+C′∥U−n(I−P)Ung∥⩾C′∥g∥. (7.13)

For every trigonometric polynomial g we have U−nPUng→ g in L2(T). Since these
polynomials are dense in L2(T) and the operators U± all have norm one, it follows that

U−nPUng→ g, g ∈ L2(T).

This implies that U−n(I−P)Ung→ 0 for all g ∈ L2(T) and, using that U commutes
with Mφ ,

U−nTφ PUng =U−nPMφ PUng = (U−nPUn)Mφ (U−nPUn)g→Mφ g

for all g ∈ L2(T). Also, (Ung|h)→ 0 for all g,h ∈ L2(T) and therefore, since π is of
finite rank,

πPUng→ 0, g ∈ L2(T).

Passing to the limit in (7.13), we obtain

∥Mφ g∥⩾C′∥g∥, g ∈ L2(T).

Since T ⋆
φ
= T

φ
is Fredholm, we also obtain

∥M⋆
φ g∥= ∥Mφ g∥⩾C′∥g∥, g ∈ L2(T).

It follows that Mφ is invertible (indeed, the inequality for Mφ gives injectivity and closed
range, and the inequality for M⋆

φ
gives that Mφ has dense range). This is only possible if

φ is zero-free (the inverse is then given by M1/φ ).

Corollary 7.32. For all φ ∈C(T), the norm of the Toeplitz operator Tφ is given by

∥Tφ∥= ∥φ∥∞.

Proof Denote by Mφ the pointwise multiplication operator f 7→ φ f on L2(T). We have
σ(Mφ ) = {φ(θ) : θ ∈ T}. If λ −Tφ = Tλ−φ is invertible, then Tλ−φ is Fredholm with
index zero, and therefore λ −φ is zero-free by Theorem 7.31. But then Mλ−φ = λ −Mφ



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
252 Compact Operators

is invertible. This argument shows that σ(Mφ )⊆σ(Tφ ). Now the corollary follows from
the inequalities

∥φ∥∞ = sup{|φ(θ)| : θ ∈ T}= sup{|λ | : λ ∈ σ(Mφ )}
⩽ sup{|λ | : λ ∈ σ(Tφ )}⩽ ∥Tφ∥⩽ ∥φ∥∞.

(7.14)

In the next theorem we denote by Tz the Toeplitz operator with symbol φ(z) = z. Its
adjoint is the Toeplitz operator T ⋆

z = Tz with symbol φ(z) = z. Identifying H2(D) with
ℓ2(N) by identifying the function z 7→ zn with the nth unit vector en, the operators Tz and
Tz correspond to the right and left shift on ℓ2(N), respectively. With these identifications
in mind, the following theorem can be interpreted as giving a precise description of the
closed subalgebra of ℓ2(N) generated by the right and left shift.

Theorem 7.33 (Coburn). Let T denote the closed subalgebra in L (H2(D)) generated
by Tz and T ⋆

z . Denoting by K the space of compact operators on H2(D), we have:

(1) T = {Tφ +K : φ ∈C(T), K ∈K };
(2) the mapping π : Tφ +K 7→ φ induces a multiplicative isometric isomorphism

T /K ≃C(T).

As a consequence, the representation of elements in T as the sum of a Toeplitz operator
and a compact operator is unique, and we have the short exact sequence

0−→K −→T
π−→C(T)−→ 0.

In the final statement we used standard terminology from Algebraic Topology: a se-
quence of mappings is exact if the range of every operator in the sequence equals the
null space of the next operator in the sequence.

In the proof, as well as in later chapters, we need the following notation. For elements
g,h of a Hilbert space H, we denote by g⊗̄h the rank one operator on H defined by

(g⊗̄h)x := (x|h)g, x ∈ H.

The bar in this notation serves to emphasise the fact that ⊗̄ is not a tensor product, but
rather its sesquilinear counterpart in the sense that for all c ∈K and x ∈ H we have

(cg)⊗̄h = c(g⊗̄h), g⊗̄(ch) = c(g⊗̄h).

For norm one vectors h ∈ H, the operator h⊗̄h is the orthogonal projection onto the
one-dimensional subspace of H spanned by h.

Proof The crucial observation is that for all φ ∈C(T) and K ∈K we have

∥Tφ +K∥⩾ ∥Tφ∥. (7.15)
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7.3 Fredholm Theory 253

In order to prove this it suffices to show that σ(Tφ ) ⊆ σ(Tφ +K), for this implies the
claim via

∥Tφ +K∥⩾ r(Tφ +K)⩾ r(Tφ ) = ∥Tφ∥,

the last identity being a consequence of the proof of (7.14). To prove the spectral in-
clusion we argue as follows. Suppose λ ∈ C is such that λ − (Tφ +K) = Tλ−φ −K is
invertible. Then this operator is Fredholm with index 0. By Dieudonné’s theorem, this
implies that Tλ−φ is Fredholm with index 0. It remains to prove that this implies the
invertibility of Tλ−φ .

Suppose now that ψ ∈ C(T) is such that Tψ has index 0 but is not invertible. Then
Tψ has a nontrivial null space. By Proposition 7.27, T ⋆

ψ = Tψ has index 0 and fails to
be invertible, hence also this operator has a nontrivial null space. This means that there
are nonzero g,h ∈ H2(D) such that P(ψg) = P(ψh) = 0, that is, ψg and ψh have only
negative Fourier coefficients. Invoking some standard results from the theory of Hardy
spaces (see the Notes), this can be shown to imply ψ = 0.

Applying the preceding argument to ψ := λ − φ it follows that if Tλ−φ were non-
invertible, then φ ≡ λ . But then Tλ−φ −K = −K is compact and hence noninvertible,
contradicting our assumption. This concludes the proof of (7.15).

(1): The inclusion ‘⊆’ is a consequence of Lemma 7.30. To prove the inclusion ‘⊇’
we must prove that T contains all Toeplitz operators with continuous symbol and all
compact operators. Given a function φ ∈C(T), we use the Stone–Weierstrass theorem
to find a sequence of trigonometric polynomials pn → φ in C(T). Then Tpn → Tφ in
operator norm by (7.12). Since Tpn = pn(Tz) we have Tpn ∈ T , and since T is closed
this implies Tφ ∈T .

We prove next that T contains every compact operator. Let S := Tz for brevity, where
z is shorthand for the function z 7→ z. We have S⋆S = I and I−SS⋆ = P0, the orthogonal
projection onto the constant functions. These identities show that both I and P0 belong
to T . Clearly,

I := T ∩K

is a closed ideal in T which is closed under taking adjoints, and since P0 is compact we
have P0 ∈I . We will show that I = K .

Fix an arbitrary f ∈H2(D) and let ε > 0. There is a polynomial p such that ∥p(S)1−
f∥< ε . Then P0(p(S))⋆ ∈I and, since P0h = (h|1)1,

∥P0(p(S))⋆− (1⊗̄ f )∥= sup
∥g∥=∥h∥=1

|(P0(p(S))⋆g− (1⊗̄ f )g|h)|

= sup
∥g∥=∥h∥=1

|(g|p(S)1)− (g| f ))||(1|h)|

= ∥p(S)1− f∥< ε.
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254 Compact Operators

In the same way, for any g∈H2(D) and ε > 0 there is a polynomial q such that ∥q(S)1−
g∥< ε . Then,

∥q(S)(1⊗̄ f )− (g⊗̄ f )∥= sup
∥h∥=∥h′∥=1

|(q(S)(1⊗̄ f )h|h′)− ((g⊗̄ f )h|h′)|

= sup
∥h∥=∥h′∥=1

|(q(S)1|h′)− (g|h′)||(h| f )|

= ∥q(S)1−g∥∥ f∥< ε∥ f∥.

Since ε > 0 was arbitrary and I is closed, it follows that every rank one operator g⊗̄ f
is contained in I . By linearity, the same is true for every finite rank operator. Since the
finite rank operators are dense in K by Proposition 7.6, it follows that K ⊆I .

(2): From (7.15) it follows that

∥Tφ +K ∥= inf
K∈K

∥Tφ +K∥⩾ ∥Tφ∥.

Together with the trivial inequality ∥Tφ∥⩾ infK∈K ∥Tφ +K∥ we conclude that

∥Tφ +K ∥= ∥Tφ∥= ∥φ∥∞.

This shows that the mapping Tφ +K 7→ φ is well defined and isometric. Clearly it is
surjective, and therefore it is an isometric isomorphism. Its multiplicativity follows from
Lemma 7.30.

Using some elementary facts from the theory of C⋆-algebras, a more transparent al-
ternative proof of Theorem 7.31 can be given as a corollary to Theorem 7.33. This proof
is sketched in the Notes to this chapter.

Remark 7.34. Identifying H2(D) with ℓ2(N) as indicated above, the short exact se-
quence of the theorem induces a short exact sequence

0−→K (ℓ2(N))−→T (ℓ2(N)) π−→C(T)−→ 0,

where K (ℓ2(N)) and T (ℓ2(N)) denote, respectively, the compact operators acting on
ℓ2(N) and the closed algebra generated by the left and right shift in ℓ2(N), and π is the
operator induced by π under the identifications made.

Problems

7.1 Give an alternative proof of Proposition 7.5 by using the equivalence of compact-
ness and sequential compactness.

7.2 Let X and Y be Banach spaces. Prove that if X is infinite-dimensional and T ∈
L (X ,Y ) is compact, then there exists a sequence (xn)n⩾1 of norm one vectors in
X such that limn→∞ T xn = 0 in Y .
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7.3 Let (mn)n⩾1 be a bounded scalar sequence.

(a) For 1 ⩽ p < ∞, show that the multiplication operator (cn)n⩾1 7→ (mncn)n⩾1

is compact on ℓp if and only if limn→∞ mn = 0.
(b) Does the same result hold for ℓ∞? And for c0?

Hint: Compare with Problem 2.32.

7.4 Let 1 ⩽ p < q ⩽ ∞.

(a) Prove that the inclusion mapping ℓp ⊆ ℓq is not compact.
(b) Prove that the inclusion mapping Lq(0,1)⊆ Lp(0,1) is not compact.

Hint: Look up Khintchine’s inequality for the Rademacher functions fn(θ)=

sign(sin(2π2nθ)).

7.5 For 1 ⩽ p ⩽ ∞ consider the bounded operator Tp : Lp(0,1)→C[0,1],

Tp f (t) :=
∫ t

0
f (s)ds, t ∈ [0,1].

(a) Show that if 1 < p ⩽ ∞, then Tp is compact.
(b) Is T1 compact?

7.6 For f ∈Cc(0,∞) and t > 0 let

(T f )(t) :=
1
t

∫ t

0
f (s)ds.

(a) Show that T f ∈ L2(R+) for all f ∈Cc(0,∞), and the mapping f 7→ T f thus
defined has a unique extension to a bounded operator T ∈L (L2(R+)).

(b) Is this extension compact?

7.7 For any fixed k ⩾ 1, find a bounded operator T acting on a Hilbert space such that
T k+1 is compact but T k is not.

7.8 Let g ∈ C[0,1] be given. Show that the multiplication operator Tg : f 7→ f g on
C[0,1] is compact if and only if g = 0.

7.9 Let X and Y be Banach spaces. Show that an operator T ∈L (X ,Y ) is compact if
and only if there is a sequence (x∗n)n⩾1 in X∗ such that limn→∞ x∗n = 0 in X∗ and

∥T x∥⩽ sup
n⩾1
|⟨x,x∗n⟩|, x ∈ X .

Hint: For the ‘if’ part consider T as the composition of mappings

x 7→ (⟨x,x∗n⟩)n⩾1 7→ T x

and argue as in Problem 7.3; for the ‘only if’ part use the result of Problem 1.36
and the compactness of T ∗.

7.10 Let X be a reflexive Banach space.
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256 Compact Operators

(a) Show that every operator T ∈L (X , ℓ1) is compact.
Hint: Use the result of Problem 4.35.

(b) Show that every operator T ∈L (c0,X) is compact.

7.11 Show that a compact operator has closed range if and only if it is a finite rank
operator.
Hint: In one direction, use the open mapping theorem.

7.12 Let H be an infinite-dimensional Hilbert space with orthonormal basis (hn)n⩾1.

(a) Show that for all x ∈ H we have limn→∞(T hn|x) = 0.
Hint: Consider T ⋆x.

(b) Show that if T is compact, then limn→∞ ∥T hn∥= 0.

Remark. A converse to this result will be proved in Problem 7.18.
7.13 Let X be a Banach space. A subspace I of L (X) is called a left ideal if it is closed

under left multiplication with arbitrary bounded operators, i.e., for all S ∈L (X)

and T ∈I we have ST ∈I . A right ideal is defined similarly. A two-sided ideal
is a left ideal that is also a right ideal. Show that if I is a left (resp., right) ideal
in L (X), then I ∗ = {T ∗ : T ∈I } is a right (resp., left) ideal in L (X∗).

7.14 Let X be a Banach space. Show that if I is a nonzero two-sided ideal in L (X),
then I contains all finite-rank operators on X .
Hint: For given x ∈ X and x∗ ∈ X∗ define the rank-one operator x⊗ x∗ on X by

(x⊗ x∗)y := ⟨y,x∗⟩x, y ∈ X .

Show that if x0 ∈ X , x∗0 ∈ X∗, and T ∈L (X) are such that ⟨T x0,x∗0⟩= 1, then

x⊗ x∗ = (x⊗ x∗0)◦T ◦ (x0⊗ x∗).

Now use the result of Problem 4.1.
7.15 Let H be a Hilbert space. Show that for an operator T ∈ L (H) the following

assertions are equivalent:

(a) T is compact;
(b) R(T ) contains no infinite-dimensional closed subspace.

Hint: The proof of (b)⇒(a) relies on results in the next two chapters. Use Lemma
9.3 and the result of Problem 8.19 to show that without loss of generality it may be
assumed that T is positive. Let P be the spectral measure of the positive operator
T . For λ > 0, use the result of Problem 4.13 to prove that R(P[λ ,∞) ⊆ R(T ), and
infer from (b) that the projection P[λ ,∞) is of finite rank. Finally observe that ∥T −
P[λ ,∞)T∥⩽ λ , and let λ ↓ 0.

7.16 The aim of this problem is to prove that if H is a separable Hilbert space and I

is a two-sided ideal properly contained in L (H), then I is contained in K (H).
Suppose that I is a two-sided ideal L (H) not contained in K (H); we wish to
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prove that I = L (H). By the result of Problem 7.15, I contains an operator T
whose range contains an infinite-dimensional closed subspace X . Let N := N(T ),
and let T0 be the restriction of T to N⊥, viewed as an operator from N⊥ to H.

(a) Show that T0 is injective, and that the subspace Y = T−1
0 X is well-defined,

closed, infinite-dimensional subspace contained in N⊥.
(b) Show that the exist isometries U,V ∈L (H) with R(U) = Y and R(V ) = X .

Hint: Use the separability assumption.
(c) Show that the operator S ∈L (H) defined by S :=V ⋆TU is invertible.

Hint: Show that S = Ṽ ⋆T0Ũ , where Ũ ∈ L (H,Y ) and Ṽ ∈ L (H,X) are
obtained by restricting the range spaces, and note that Ũ ∈ L (X ,Y ) and
Ṽ ⋆ ∈L (X ,H) are injective and surjective.

(d) Deduce that I = S−1S belongs to I . Conclude that I = L (H).

7.17 Show that H is a separable Hilbert space, then K (H) is the only nonzero two-
sided closed ideal properly contained in L (H).
Hint: Combine the results of Problems 7.14 and 7.16.

7.18 This problem establishes the following converse to Problem 7.12: If H is a sepa-
rable Hilbert space and T ∈L (H) satisfies limn→∞ ∥T hn∥= 0 for every orthonor-
mal basis (hn)n⩾0 of H, then T is compact.

Consider the collection I of all operators that have the stated property.

(a) Show that I is a closed subspace of L (H).
(b) Show that if T ∈I , then ST ∈I for all S ∈L (H), i.e., I is a left ideal.
(c) Show that if T ∈I and U ∈L (H) is unitary, then TU ∈I.
(d) Show that every contraction in L (H) is a convex combination of four uni-

taries.
Hint: This is Lemma 14.25.

(e) Conclude that I is a two-sided closed ideal.
(f) Use the result of Problem 7.17 to conclude that every T ∈I is compact.

7.19 The aim of this problem is to show how part (1) of Theorem 7.11 can be deduced
from part (2). Let X be a Banach space and let T ∈L (X) be compact.

(a) Using Proposition 6.17, show that every nonzero λ ∈ ∂σ(T ) is an eigen-
value.

(b) Using part (a) and part (2) of Theorem 7.11, deduce that every nonzero λ ∈
σ(T ) is an eigenvalue.

7.20 Let X be a Banach space. Show that a bounded operator T ∈L (X) is compact if
and only if exp(T )− I is compact.
Hint: To prove ‘only if’, show that for large enough k⩾ 1 we have T =(exp(T/k)−
I) fk(T ), where fk(z) = z/(ez/k−1) is holomorphic in a neighbourhood of σ(T ).
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258 Compact Operators

7.21 Let T be a compact operator on a Banach space X , let 0 ̸= λ ∈ σ(T ), and let ν

be its algebraic multiplicity. Let Xλ := Pλ X be the range of the spectral projection
associated with the point λ . Prove the following assertions:

(a) a vector x ∈ X belongs to Xλ if and only if (λ −T )kx = 0 for some k ⩾ 1;
(b) for all x ∈ Xλ we have (λ −T )ν x = 0;
(c) Xλ = N(λ −T )ν .

7.22 Let X be a Banach space. In this problem we write [T ] for the element T +K (X)

of the Calkin algebra L (X)/K (X). Show that the multiplication [S]◦ [T ] := [ST ]
is well defined on L (X)/K (X) and satisfies

∥[S]◦ [T ]∥L (X)/K (X) ⩽ ∥[S]∥L (X)/K (X)∥[T ]∥L (X)/K (X).

In the terminology introduced in the Notes to this chapter, this shows that the
Calkin algebra L (X)/K (X) is a (unital) Banach algebra.

7.23 Let X be a Banach space and T ∈L (X) be a bounded operator. Show that if T k

is compact for some integer k ⩾ 1, then I +T is Fredholm. What is its index?
7.24 Prove that the two definitions of the winding number of a piecewise C1 curve

discussed in Section 7.3 agree.
7.25 Let φ ∈ L∞(T). Prove the following assertions:

(a) the operator Mφ on L2(T) defined by

Mφ f := φ f , f ∈ L2(T),

maps H2(D) into itself if and only if φ ∈H∞(D), that is, identifying φ with a
function in L2(T) whose negative Fourier coefficient vanish, then φ ∈ L∞(T);

(b) if φ ∈ L∞(T) and ψ ∈ H∞(T), then the associated Toeplitz operators satisfy

Tφ Tψ f = Tφψ f , f ∈ H2(D);

(c) if φ ,ψ ∈ H∞(T), then the associated Toeplitz operators satisfy

Tψ Tφ f = Tφψ f , f ∈ H2(D).

7.26 Using notation of Section 7.3.d, prove that if an operator T ∈T satisfies

T = Tφ +K = Tψ +L

with φ ,ψ ∈C(T) and K,L ∈K (H2(D)), then φ = ψ and K = L.
7.27 Show that T ∈ T is Fredholm if and only if T = Tφ +K, where φ ∈ C(T) is

zero-free and K ∈K (H2(D)).
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8
Bounded Operators on Hilbert Spaces

The identification of a Hilbert space H with its dual via the Riesz representation theorem
makes it possible to consider a bounded operator T and its adjoint simultaneously on H.
This leads to the important classes of selfadjoint, unitary, and normal operators. Their
spectral theory is particularly rich. Its full power comes to bear only in the next chapter,
where we prove the spectral theorem for bounded normal operators. The present chapter
discusses the elementary theory and, for normal operators T , establishes a generalisa-
tion of the holomorphic calculus to a calculus for continuous functions on the spectrum
σ(T ). Using this calculus, we prove a number of nontrivial results such as the exis-
tence of a unique positive square root of a positive operator and a polar decomposition
for general bounded operators. In the last section we establish the celebrated Sz.-Nagy
theorem on the existence of unitary dilations for Hilbert space contractions.

8.1 Selfadjoint, Unitary, and Normal Operators

Throughout this chapter, H is a complex Hilbert space. The following proposition is key
to several proofs in this chapter. The example of rotation over 1

2 π in R2 shows that its
counterpart for real Hilbert spaces fails.

Proposition 8.1. If T ∈L (H) satisfies (T x|x) = 0 for all x ∈ H, then T = 0.

Proof For all x,y ∈ H, from (T (x+ y)|x+ y) = 0 we obtain

(T x|y)+(Ty|x) = 0. (8.1)

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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260 Bounded Operators on Hilbert Spaces

Replacing y by iy we obtain−i(T x|y)+ i(Ty|x) = 0. Multiplying both sides with i gives

(T x|y)− (Ty|x) = 0. (8.2)

Adding (8.1) and (8.2) gives (T x|y) = 0 for all x,y ∈ H. This implies the result.

The trick used in the proof is called polarisation.
In Proposition 4.28 it was shown that if H and K are Hilbert spaces and T ∈L (H,K)

is a bounded operator, then there exists a unique bounded operator T ⋆ ∈L (K,H), the
Hilbert space adjoint of T , such that

(T x|y) = (x|T ⋆y), x ∈ H, y ∈ K.

Furthermore,

∥T∥= ∥T ⋆∥= ∥T ⋆T∥1/2. (8.3)

The existence of Hilbert space adjoints permits the introduction of several interesting
classes of Hilbert space operators.

Definition 8.2 (Normal, unitary, selfadjoint, and positive operators). An operator T ∈
L (H) is called:

• positive, if (T x|x)⩾ 0 for all x ∈ H;
• selfadjoint, if T = T ⋆;
• unitary, if T T ⋆ = T ⋆T = I;
• normal, if T T ⋆ = T ⋆T .

Every positive operator is selfadjoint: for if T is positive, then for all x ∈ H we have
(T x|x) ⩾ 0 and therefore (T ⋆x|x) = (x|T ⋆x) = (T x|x) = (T x|x). Proposition 8.1 now
implies that T = T ⋆. As the example preceding the statement of the proposition shows,
it is important here to work over the complex scalar field. Selfadjoint operators and
unitary operators are normal.

The classes of positive, selfadjoint, unitary, and normal operators can be viewed as
operator analogues of the positive real numbers, the real numbers, the complex numbers
of modulus one, and the complex numbers, respectively. A number of results support
this view:

– every selfadjoint operator is the difference of two positive operators;
– every invertible operator is the composition of an invertible positive operator and a

unitary operator;
– a bounded operator is unitary if and only if it is the complex exponential of a self-

adjoint operator.
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8.1 Selfadjoint, Unitary, and Normal Operators 261

The first result follows from the spectral theorem in the next chapter (see Problem 9.14),
the second and the ‘if’ part of the third is proved in the present chapter, and the ‘only
if’ part of the third is again a consequence of the spectral theorem (see Problem 9.15).

The following spectral characterisations will be proved in Corollary 9.18:

– a normal operator is unitary if and only if its spectrum is contained in the unit circle;
– a normal operator is selfadjoint if and only if its spectrum is contained in the real line;
– a normal operator is positive if and only if its spectrum is contained in [0,∞);
– a normal operator is an orthogonal projection if and only if its spectrum is contained

in {0,1}.

The last of these results indicated that orthogonal projections can be viewed as the ana-
logues to the ‘Boolean’ set {0,1}. It also implies that normal projections are orthogonal.

Let us begin by proving an operator analogue of the decomposition of a complex
number into real and imaginary parts.

Proposition 8.3. For every operator T ∈L (H) there exist unique selfadjoint operators
A,B ∈L (H) such that T = A+ iB.

Proof The operators A := 1
2 (T + T ⋆) and B := 1

2i (T − T ⋆) are selfadjoint and T =

A+ iB. Suppose we also have T = A′+ iB′ with A′ and B′ selfadjoint. Put U := B−B′.
Then (iU)⋆ =−iU⋆ =−iU and also iU = i(B−B′) = (T −A)− (T −A′) = A′−A, so
(iU)⋆ = (A′−A)⋆ = A′−A = iU . It follows that iU = −iU and therefore B = B′. This
in turn implies A = A′.

A complex number satisfies |z| = 1 if and only if there is a real number x such that
z = eix. The operator analogue of the ‘if’ part is contained in the next proposition.

Proposition 8.4. If T ∈L (H) is selfadjoint, then eiT is unitary.

Proof From the expansion eiT = ∑
∞
n=0

in
n! T n we see that

(eiT )⋆ =
∞

∑
n=0

(−i)n

n!
T n = e−iT.

It is elementary to check that eiT e−iT = e−iT eiT = I by writing out the defining power
series and multiplying them. Alternatively, this identity follows from the multiplicativity
of the entire calculus of T applied with f (z) = exp(iz) and g(z) = exp(−iz).

We have the following simple characterisation of unitary operators:

Proposition 8.5. For an operator U ∈L (H) the following assertions are equivalent:

(1) U is unitary;
(2) U is surjective and ∥Ux∥= ∥x∥ for all x ∈ H;
(3) U is surjective and (Ux|Uy) = (x|y) for all x,y ∈ H.
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262 Bounded Operators on Hilbert Spaces

Proof (1)⇒(3): If U is unitary, then U is invertible (with inverse U−1 = U⋆) and
therefore U is surjective. Moreover, (Ux|Uy) = (x|U⋆Uy) = (x|y).

(3)⇒(2): Take x = y.

(2)⇒(1): We have

(U⋆Ux|x) = (Ux|Ux) = ∥Ux∥2 = ∥x∥2 = (x|x)

for all x ∈ H and therefore U⋆U = I. It follows that U⋆ is a left inverse to U . The as-
sumptions further imply that U is surjective and injective, hence invertible. The inverse
must be equal to the left inverse, which is therefore U⋆. It follows that also UU⋆ = I.

The right shift on ℓ2 shows that the surjectivity assumption cannot be omitted from
(2) and (3).

Example 8.6. The left and right shifts on ℓ2(Z) are unitary. Indeed, the adjoint of the
left (right) shift is the right (left) shift, so in either case the adjoint equals the inverse.
Similarly, left and right translations on L2(R) are unitary.

Example 8.7. The Fourier–Plancherel transform on L2(Rd) is unitary; this follows from
Theorem 5.25 and Proposition 8.5.

Projections in Hilbert spaces are orthogonal if and only if they are selfadjoint:

Proposition 8.8. For a projection P ∈L (H) the following assertions are equivalent:

(1) P is orthogonal, that is, its null space and range are orthogonal;
(2) P is selfadjoint.

Proof (1)⇒(2): If P is orthogonal, then x− Px ⊥ Py for all x,y ∈ H, noting that
x−Px ∈ N(P) (since P(x−Px) = Px−P2x = Px−Px = 0) and Py ∈ R(P). Therefore,

(x|Py) = (Px|Py)+(x−Px|Py) = (Px|Py)

and similarly

(Px|y) = (Px|Py)+(Px|y−Py) = (Px|Py),

so (Px|y) = (x|Py) and P is selfadjoint.

(2)⇒(1): If P is a selfadjoint projection, then

(x−Px|Py) = (P⋆(x−Px)|y) = (P(x−Px)|y) = 0

since P = P2. Since every element in N(P) is of the form x−Px, this shows that N(P)⊥
R(P), that is, the projection P is orthogonal.
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We now turn to the study of some spectral properties of Hilbert space operators. From
Proposition 6.18 we recall that for every bounded operator T on a Banach space we have

σ(T ∗) = σ(T ).

A similar result holds for the spectrum of the Hilbert space adjoint T ⋆:

Proposition 8.9. For all T ∈L (H) we have

σ(T ⋆) = σ(T ),

where the bar denotes complex conjugation.

Proof The proof follows the lines of Proposition 6.18 but is simpler because of the
Riesz representation theorem. The idea is to prove that λ ∈ ρ(T ) if and only if λ ∈
ρ(T ⋆), and that in this case

(R(λ ,T ))⋆ = R(λ ,T ⋆).

First suppose that λ ∈ ρ(T ). Then

(λ −T ⋆)(R(λ ,T ))⋆ = (λ −T )⋆(R(λ ,T ))⋆ = (R(λ ,T )(λ −T ))⋆ = I⋆ = I.

In the same way it is shown that (R(λ ,T ))⋆(λ −T ⋆) = I. It follows that λ ∈ ρ(T ⋆) and
R(λ ,T ⋆) = (R(λ ,T ))⋆.

If λ ∈ ρ(T ⋆), applying what we just proved to T ⋆ gives λ ∈ ρ(T ⋆⋆) = ρ(T ) and
R(λ ,T ) = R(λ ,T ⋆⋆) = (R(λ ,T ⋆))⋆.

For unitary operators we have the following simple result.

Proposition 8.10. If U ∈L (H) is unitary, then σ(U) is contained in the unit circle.

Proof Since unitary operators are invertible, we have 0∈ ρ(U), and for nonzero λ ∈C
we have

λ −U is invertible⇐⇒ (λU⋆− I)U is invertible

⇐⇒U⋆−λ−1I is invertible.

If 0 < |λ | < 1, then |λ−1| > 1 and therefore U⋆−λ−1I is invertible by the Neumann
series, and consequently the equivalences just stated imply that λ −U is invertible; if
|λ |> 1, then λ −U is invertible by the Neumann series.

Alternatively one could observe that σ(U⋆) = σ(U−1) = (σ(U))−1 by the spectral
mapping theorem of the holomorphic calculus; yet another proof is outlined in Problem
8.2.

In the converse direction, a normal operator whose spectrum is contained in the unit
circle is unitary. The proof of this fact is harder and will be given in Corollary 9.18.

The next result describes the spectrum of selfadjoint operators.
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264 Bounded Operators on Hilbert Spaces

Theorem 8.11 (Spectrum of selfadjoint operators). An operator T ∈L (H) is selfad-
joint if and only if (T x|x) ∈ R for all x ∈ H. If T is selfadjoint on H, then

∥T∥= sup
∥x∥⩽1

|(T x|x)|= max{|m|, |M|}

and

{m,M} ⊆ σ(T )⊆ [m,M],

where m := inf∥x∥=1(T x|x) and M := sup∥x∥=1(T x|x).

Proof If (T x|x) ∈ R, then (T ⋆x|x) = (x|T ⋆x) = (T x|x) = (T x|x). Hence if (T x|x) ∈ R
for all x ∈ H, then T = T ⋆ by Proposition 8.1 applied to T −T ⋆. Conversely if T = T ⋆,
then (T x|x) = (x|T x) = (T x|x) and therefore (T x|x) ∈ R.

Next we prove that σ(T )⊆ R. To this end let λ = α + iβ with α,β ∈ R and β ̸= 0;
we wish to prove that λ ∈ ρ(T ). For all x ∈ H we have

∥(λ −T )x∥∥x∥⩾ |((λ −T )x|x)|=
∣∣α(x|x)− (T x|x)+ iβ (x|x)

∣∣⩾ |β |∥x∥2,

using that (T x|x) ∈ R in the last step. By Proposition 1.21 this implies that λ − T is
injective and has closed range. Replacing λ by λ , we also conclude that λ −T is injec-
tive and has closed range. By Proposition 4.31, this implies that λ −T = (λ −T )⋆ has
dense range. We conclude that λ −T is both injective and surjective, hence invertible,
and therefore λ ∈ ρ(T ).

By now we have shown that σ(T ) ⊆ R. Next we show that σ(T ) ⊆ [m,M]. Let λ =

M+δ with δ > 0. Then, by the definition of M, for all x ∈ H with ∥x∥= 1 we have

∥(λ −T )x∥∥x∥⩾ ((λ −T )x|x) = M(x|x)− (T x|x)+δ (x|x)⩾ δ (x|x) = δ∥x∥2.

The same argument as before shows that λ −T is both injective and surjective, hence
invertible, and therefore λ ∈ ρ(T ). This proves that (M,∞)⊆ ρ(T ). Applying this result
to −T (and replacing [m,M] with [−M,−m]) we also obtain (−∞,m) ⊆ ρ(T ). This
completes the proof that σ(T )⊆ [m,M].

We prove next that ∥T∥ = max{|m|, |M|}; this implies ∥T∥ = sup∥x∥⩽1 |(T x|x)|. Re-
placing T by −T if necessary, we may assume that |m| ⩽ |M|. Clearly we then have
|M| = sup∥x∥=1 |(T x|x)| ⩽ ∥T∥. To prove the converse inequality ∥T∥ ⩽ |M|, note that
for all x ∈ H with ∥x∥= 1 and all µ > 0 we have

4∥T x∥2 = (T (µx+µ
−1T x)|µx+µ

−1T x)− (T (µx−µ
−1T x)|µx−µ

−1T x)

⩽ |M|∥µx+µ
−1T x∥2 + |m|∥µx−µ

−1T x∥2

⩽ |M|∥µx+µ
−1T x∥2 + |M|∥µx−µ

−1T x∥2

= 2|M|
(

µ
2∥x∥2 +

1
µ2 ∥T x∥2

)
= 2|M|

(
µ

2 +
1

µ2 ∥T x∥2
)
,
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where the first inequality follows from the definitions of m and M and the next equality
uses the parallelogram identity. Taking µ2 = ∥T x∥we obtain, for all x∈H with ∥x∥= 1,

4∥T x∥2 ⩽ 2|M|(∥T x∥+∥T x∥) = 4|M|∥T x∥.

It follows that ∥T x∥⩽ |M| for all x ∈ H with ∥x∥= 1, so ∥T∥⩽ |M|.
The last thing to prove is that m,M ∈ σ(T ). We prove this for M; the result for m

follows by considering −T . Replacing T by T −m we may assume that 0 = m ⩽ M.
Then (T x|x)⩾ 0 for all x ∈ H and therefore

M = sup
∥x∥=1

(T x|x) = sup
∥x∥=1

|(T x|x)|= ∥T∥.

Choose a sequence (xn)n⩾1 of norm one vectors such that limn→∞(T xn|xn) = M. Then,

∥(M−T )xn∥2 = ((M−T )xn|(M−T )xn)

= M2∥xn∥2−2M(T xn|xn)+∥T xn∥2

⩽ M2−2M(T xn|xn)+∥T∥2 = M2−2M(T xn|xn)+M2,

which tends to M2− 2M2 +M2 = 0 as n→ ∞. This implies that M is an approximate
eigenvalue of T .

A short alternative proof of the spectral inclusion σ(T )⊆R is obtained by combining
Propositions 8.4 and 8.10 with the spectral mapping theorem: since T is selfadjoint, the
operator eiT is unitary; consequently, σ(eiT ) = eiσ(T ) is contained in the unit circle
and therefore σ(T ) must be real. Yet another proof, also based on Proposition 8.10, is
outlined in Problem 8.3.

In the converse direction, a normal operator whose spectrum is contained in the real
line is selfadjoint. This will be proved in Corollary 9.18.

It is an immediate consequence of Theorem 8.11 that the norm of a selfadjoint op-
erator equals its spectral radius. More generally this is true for normal operators; see
Proposition 8.13. This equality of norm and spectral radius can sometimes be used to
determine the norm of an operator. We illustrate this by determining the norm of the
Volterra operator.

Example 8.12 (Volterra operator). From Example 1.31 we recall that the Volterra op-
erator is the operator T ∈L (L2(0,1)) given by the indefinite integral

(T f )(s) :=
∫ s

0
f (t)dt, f ∈ L2(0,1), s ∈ (0,1).

The operator T fails to be selfadjoint (it even fails to be normal, see Problem 8.16), but
we have ∥T∥= ∥S∥, where S ∈L (L2(0,1)) is defined by

(S f )(s) :=
∫ 1−s

0
f (t)dt, f ∈ L2(0,1), s ∈ (0,1),
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266 Bounded Operators on Hilbert Spaces

as is immediate from the identity (S f )(s) = (T f )(1− s). This identity also implies

( f |S⋆g) = (S f |g) =
∫ 1

0
(T f )(1− s)g(s)ds =

∫ 1

0
(T f )(s)g(1− s)ds

=
∫ 1

0

∫ s

0
f (t)g(1− s)dt ds =

∫ 1

0

∫ 1

t
f (t)g(1− s)dsdt

=
∫ 1

0

∫ 1−t

0
f (t)g(s)dsdt =

∫ 1

0
f (t)T g(1− t)dt = ( f |Sg),

which shows that S is selfadjoint. By Example 7.7 S is compact, and therefore by Theo-
rem 7.11 every nonzero λ ∈ σ(S) is an eigenvalue. To compute the spectral radius r(S)
we therefore have to determine the set of nonzero eigenvalues of S.

Suppose that λ ̸= 0 is an eigenvalue of S and let f be an eigenfunction. Then

f (s) =
1
λ

∫ 1−s

0
f (t)dt (8.4)

for almost all s ∈ (0,1), and the right-hand side is a continuous function of s. It follows
that f ∈ C[0,1] and that (8.4) holds for all s ∈ [0,1]. Then the same argument shows
that in fact f ∈C1[0,1], and applying the same argument once more gives f ∈C2[0,1].
Differentiating (8.4) twice gives

λ
2 f ′′(s) =− f (s), s ∈ [0,1],

subject to the initial conditions f (1) = 0 and f ′(0) = 0. The reader may check that
this problem admit a solution if and only if 1

λ
= π

2 +πn for some n ∈ Z, and that the
solutions fn(s) = cos

(
(π

2 +πn)s
)

are indeed eigenfunctions of S. The largest eigenvalue
of S therefore equals 2

π
. We conclude that

∥T∥= ∥S∥= r(S) =
2
π
.

The remainder of this section is devoted to studying some spectral properties of nor-
mal operators. Our first aim is to prove that the spectral radius of a normal operator
equals the operator norm. For selfadjoint operators this has already been observed as
a consequence of Theorem 8.11, and for unitary operators this is an immediate conse-
quence of Proposition 8.10.

Proposition 8.13. An operator T ∈L (H) is normal if and only if

∥T x∥= ∥T ⋆x∥, x ∈ H.

If T is normal, then ∥T∥n = ∥T n∥ for all n ∈ N, and therefore r(T ) = ∥T∥.

Proof If T is normal, then

∥T x∥2 = (T x|T x) = (x|T ⋆T x) = (x|T T ⋆x) = (T ⋆x|T ⋆x) = ∥T ⋆x∥2.
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In the converse direction, the equality implies ((T ⋆T −T T ⋆)x|x) = 0 for all x ∈ H and
therefore T ⋆T −T T ⋆ = 0 by Proposition 8.1. This proves the first assertion.

If T is normal, then for all norm one vectors x ∈ H we have

∥T ⋆T x∥2 = ((T ⋆T )2x|x) = ((T ⋆)2T 2x|x) = ∥T 2x∥2

and therefore, since ∥T ⋆T∥= ∥T∥2 by (8.3),

∥T∥2 = ∥T ⋆T∥= ∥T 2∥. (8.5)

Suppose the identity ∥T n∥= ∥T∥n has been proved for n = 2, . . . ,k. For all norm one
vectors x ∈ H,

∥T kx∥2 = (T ⋆T kx|T k−1x)

⩽ ∥T ⋆T kx∥∥T k−1x∥= ∥T k+1x∥∥T k−1x∥⩽ ∥T k+1∥∥T k−1∥= ∥T k+1∥∥T∥k−1,

using (8.5). Taking the supremum over all x ∈ H with ∥x∥ ⩽ 1 and using the induc-
tive assumption, we obtain ∥T∥2k = ∥T k∥2 ⩽ ∥T k+1∥∥T∥k−1. This results in the iden-
tity ∥T∥k+1 ⩽ ∥T k+1∥. Since the reverse inequality holds trivially, we conclude that
∥T k+1∥= ∥T∥k+1.

The final assertion follows from the spectral radius formula (Theorem 6.24).

Recall that λ ∈ C is called an approximate eigenvalue of an operator T on a Banach
space X if there exists a sequence (xn)n⩾1 in X such that ∥xn∥ = 1 for all n ⩾ 1 and
limn→∞ ∥T xn−λxn∥ → 0. By Proposition 6.17 the boundary spectrum of any bounded
operator on X consists of approximate eigenvalues. For normal operators on Hilbert
spaces more is true:

Proposition 8.14. Every point in the spectrum of a normal operator T ∈L (H) is an
approximate eigenvalue.

Proof Suppose λ ∈C is not an approximate eigenvalue. Then λ−T is injective (other-
wise λ would be an eigenvalue), and ∥λx−T x∥= ∥λx−T ⋆x∥ implies that also (λ−T )⋆

is injective, that is, λ −T has dense range. Let us prove that λ −T has closed range.
Let (xn)n⩾1 be a sequence in H such that limn→∞(λ −T )xn = y in H. Then

lim
N→∞

sup
n,m⩾N

∥(λ −T )(xn− xm)∥= 0.

Unless we have limm,n→∞ ∥xn−xm∥= 0, normalisation allows us to construct an approx-
imate eigensequence to arrive at a contradiction. Thus limm,n→∞ ∥xn− xm∥ = 0, which
means that (xn)n⩾1 is Cauchy and therefore converges to a limit x. Then y = (λ −T )x.

We have shown that λ−T is surjective. Since this operator is also injective, it follows
that λ ∈ ρ(T ).
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Theorem 7.11 implies that every nonzero element of the spectrum of a compact oper-
ator is both an isolated point and an eigenvalue. The final result of this section states that
for normal operators on a Hilbert space, all isolated points in the spectrum are eigenval-
ues; no compactness assumption is needed. Normality cannot be omitted: the Volterra
operator has spectrum {0}, but 0 is not an eigenvalue (see Problem 8.16).

If T is a bounded operator on H, for λ ∈ C we set

Eλ := {x ∈ H : T x = λx}.

Thus λ is an eigenvalue for T if and only if Eλ is nonzero. We recall that spectral
projections have been defined in Theorem 6.23.

Theorem 8.15 (Isolated points are eigenvalues). Let T ∈L (H) be a normal operator
and let λ be an isolated point in σ(T ). Then λ is an eigenvalue for T and the spectral
projection P{λ} corresponding to {λ} equals the orthogonal projection Pλ onto Eλ .

The proof uses the following simple observation.

Lemma 8.16. Let T ∈L (H). If Y is a closed subspace of H, then:

(1) if Y is invariant under T , then Y⊥ is invariant under T ⋆;
(2) if Y is invariant under T and T ⋆, then Y⊥ is invariant under T and T ⋆ and

(T |Y )⋆ = T ⋆|Y and (T |Y⊥)
⋆ = T ⋆|Y⊥

as operators in L (Y ) and L (Y⊥), respectively.

In particular, if T is selfadjoint (respectively, normal) and Y is invariant under T (re-
spectively, under T and T ⋆), then T |Y and T |Y⊥ are selfadjoint (respectively, normal).

Proof If Y is invariant under T , then for all y ∈ Y and y⊥ ∈ Y⊥ we have (y|T ⋆y⊥) =
(Ty|y⊥) = 0. This proves (1). The first assertion of (2) follows as well, and if Y is
invariant under T and T ⋆, then for all y,y′ ∈ Y we have

(y|(T |Y )⋆y′) = (T |Y y|y′) = (Ty|y′) = (y|T ⋆y′) = (y|(T ⋆)|Y y′).

This proves the first identity of (2). The second is proved in the same way. The final
assertion is an immediate consequence of (2).

Proof of Theorem 8.15 Replacing T by T − λ we may assume that λ = 0. Let P{0}

denote the spectral projection corresponding to {0} and denote its range by E{0}. We
wish to prove that 0 is an eigenvalue for T , that E0 =E{0}, and that P{0} is an orthogonal
projection. Once these facts have been proved, it follows that P{0} and P0 are orthogonal
projections onto the same closed subspace of H and therefore are equal.

As we have seen in Theorem 6.23, T maps E{0} into itself, and if we denote by
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T {0} := T |E{0} the restriction of T to E{0}, then σ(T {0}) = {0}. In particular this implies
that E{0} ̸= {0} (trivially, every operator on {0} has empty spectrum).

Since T is normal, the formula for the spectral projection of Theorem 6.23 implies

T ⋆P{0}x =
1

2πi

∫
Γ

T ⋆R(λ ,T )xdλ =
1

2πi

∫
Γ

R(λ ,T )T ⋆xdλ = P{0}T ⋆x,

where Γ is a circular contour of small enough radius surrounding 0. This shows that T ⋆

leaves E{0} invariant. Hence by Lemma 8.16, the restricted operator T {0} is normal as
an operator on E{0}. By Proposition 8.13, ∥T {0}∥= r(T {0}) = 0 and therefore T {0} = 0.
This means that T x0 = T {0}x0 = 0 for all x0 ∈ E{0}, so E{0} ⊆ E0. Moreover, since E{0}

is nontrivial, 0 is an eigenvalue of T .
For all y ∈ E0 we have Ty = 0 and therefore

P{0}y =
1

2πi

∫
Γ

R(λ ,T )ydλ =
1

2πi

∫
Γ

R(λ ,T )(I−λ
−1T )ydλ =

1
2πi

∫
Γ

λ
−1ydλ = y

with Γ as before. It follows that y∈R(P{0})=E{0}. This proves the inclusion E0⊆E{0}.
It remains to be shown that P{0} equals the orthogonal projection onto E0. Since P{0}

is normal (this follows from the integral formula for P{0}), this is a consequence of
Corollary 9.18. The reader may check that no circularity is introduced; the proof of this
corollary does not depend on the present result.

Corollary 8.17. The geometric and algebraic multiplicity of every nonzero element in
the spectrum of a compact normal operator coincide.

This justifies the terminology multiplicity to denote the geometric and algebraic mul-
tiplicity of such a point.

We have the following commutation theorem for normal operators.

Theorem 8.18 (Fuglede–Putnam–Rosenblum). If T ∈L (H) is normal and S ∈L (H)

is bounded and satisfies

ST = T S,

then

ST ⋆ = T ⋆S.

Proof We prove the more general result that if T1,T2 are normal and S is bounded such
that ST1 = T2S, then ST ⋆

1 = T ⋆
2 S.

Step 1 – Let V ∈L (H) be an arbitrary bounded operator. Expanding the exponential
as a power series and taking adjoints termwise, we obtain

[exp(V ⋆−V )]⋆ = exp(V −V ⋆) = [exp(V ⋆−V )]−1

and therefore exp(V −V ⋆) is unitary.
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270 Bounded Operators on Hilbert Spaces

Step 2 – By induction, the assumption ST1 = T2S implies ST n
1 = T n

2 S for all n ∈
N and therefore Sexp(T1) = exp(T2)S. Since the normality of an operator T implies
exp(T ⋆−T ) = exp(T ⋆)exp(−T ), this identity and the result of Step 1 imply

exp(T ⋆
2 )Sexp(−T ⋆

1 ) = exp(T ⋆
2 −T2)exp(T2)Sexp(−T ⋆

1 )

= exp(T ⋆
2 −T2)Sexp(T1)exp(−T ⋆

1 )

= exp(T ⋆
2 −T2)Sexp(T1−T ⋆

1 ).

Since the two exponentials on the right-hand side are unitary, this gives

∥exp(T ⋆
2 )Sexp(−T ⋆

1 )∥= ∥S∥.

Applying this inequality to the normal operators zT1 and zT2 it follows that

∥exp(zT ⋆
2 )Sexp(−zT ⋆

1 )∥= ∥S∥,

so the entire function f (z) = exp(zT ⋆
2 )Sexp(−zT ⋆

1 ) is bounded. By Liouville’s theorem
it is constant, so in particular

exp(T ⋆
2 )Sexp(−T ⋆

1 ) = f (1) = f (0) = S,

that is, Sexp(T ⋆
1 ) = exp(T ⋆

2 )S. Expanding the exponentials as power series and compar-
ing terms we obtain ST ⋆

1 = T ⋆
2 S.

We finish with an observation about relative spectra. Let A ⊆ L (H) be a unital
closed ⋆-subalgebra, that is, A is a unital subalgebra of L (H) closed under taking
adjoints. For such subalgebras we have the following improvement to Proposition 6.19:

Proposition 8.19. Let A ⊆L (H) be a unital closed ⋆-subalgebra and let T ∈A . Then

σA (T ) = σ(T ).

Proof By Proposition 6.19 and the observation preceding it, for all T ∈A we have

∂σA (T )⊆ σ(T )⊆ σA (T ).

First let S ∈ A be a selfadjoint operator. We claim that σA (S) ⊆ R. Indeed, if we
had λ ∈ σA (S) with λ ̸∈ R, then σA (S) would have boundary points not belonging to
R. But ∂σA (S)⊆ σ(S)⊆R since S is selfadjoint. This proves the claim. It implies that
∂σA (S) = σA (S), and since also ∂σA (S)⊆ σ(S)⊆ σA (S) we obtain σA (S) = σ(S).

Suppose next that T ∈A is invertible in L (H). Then also T ⋆ is invertible in L (H),
and hence so is S = T ⋆T . Moreover, since A is closed under taking adjoints and com-
positions, the operator S := T ⋆T belongs to A . By what we just proved, σA (S) = σ(S),
so T ⋆T is invertible in A . But then T−1 = (T ⋆T )−1T ⋆ belongs to A as well.

We have shown that if T ∈L (H) and 0∈ ρ(T ), then 0∈ ρA (T ). Applying this result
to λ −T gives the inclusion ρ(T )⊆ ρA (T ), that is, σA (T )⊆ σ(T ).
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8.2 The Continuous Functional Calculus

In Chapter 6 we have seen how to associate a bounded operator f (T ) with a bounded
operator T when f is holomorphic in an open neighbourhood of σ(T ). Here we will
prove that for normal operators T acting on a Hilbert space, the functional calculus
f 7→ f (T ) can be extended to continuous functions on σ(T ).

8.2.a The Continuous Functional Calculus for Selfadjoint Operators

We begin with the case of selfadjoint operators.

Theorem 8.20 (Continuous functional calculus for selfadjoint operators). Let T ∈
L (H) be a selfadjoint operator. Then there exists a unique continuous linear mapping
f 7→ f (T ) from C(σ(T )) to L (H) with the following properties:

(i) if f (z) = zn with n ∈ N, then f (T ) = T n;
(ii) for all f ,g ∈C(σ(T )) we have ( f g)(T ) = f (T )g(T );

(iii) for all f ∈C(σ(T )) we have f (T ) = ( f (T ))⋆;
(iv) for all f ∈C(σ(T )) we have ∥ f (T )∥= ∥ f∥∞.

The operators f (T ) are normal, and f (T ) is selfadjoint if and only if f is real-valued.

Proof For polynomials p(z) = ∑
N
n=0 cnzn we define p(T ) := ∑

N
n=0 cnT n. These opera-

tors are normal and satisfy (i), (ii), and (iii). Moreover, by the spectral mapping theorem
for the holomorphic calculus,

∥p(T )∥= sup{|λ | : λ ∈ σ(p(T ))}= sup{|λ | : λ ∈ p(σ(T ))}= ∥p∥∞

and therefore (iv) holds.
By the Weierstrass approximation theorem, the polynomials are dense in C(σ(T )).

Therefore, by (iv) and an approximation argument, the mapping p 7→ p(T ) has a unique
extension to an isometry from C(σ(T )) into L (H), and (ii)–(iv) again hold.

Since normality is inherited in passing to operator norm limits, the operators f (T )
are normal. Property (iii) implies that if f is real-valued, then f (T ) is selfadjoint.
Conversely, if f (T ) is selfadjoint, then f (T ) = f (T ) by property (iii) and therefore
∥ f − f∥C(σ(T )) = 0 by property (iv), so f = f is real-valued.

8.2.b The Continuous Functional Calculus for Normal Operators

Every polynomial in the real variables x and y can be written as a polynomial in the
variables z and z by substituting z = x+ iy, z = x− iy. For example, x2 + y2 = zz. For
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polynomials p(z,z) = ∑
k
i, j=0 ci jziz j and normal operators T ∈L (H), we define

p(T,T ⋆) :=
k

∑
i, j=0

ci jT iT ∗ j.

The crucial result that enables us to extend the continuous functional calculus to normal
operators is the following spectral mapping theorem.

Proposition 8.21. If T ∈L (H) is normal and p is a polynomial in z and z, then

σ(p(T,T ⋆)) = {p(λ ,λ ) : λ ∈ σ(T )}.

Proof By Proposition 8.14, every λ ∈ σ(T ) is an approximate eigenvalue of T , that
is, there exists a sequence (xn)n⩾1 of norm one vectors such that limn→∞ T xn−λxn = 0.
Then limn→∞ T ⋆xn− λxn = 0 by Proposition 8.13. This implies limn→∞ p(T,T ⋆)xn−
p(λ ,λ )xn = 0, so p(λ ,λ ) is an approximate eigenvalue for p(T,T ⋆). In particular,
p(λ ,λ ) ∈ σ(p(T,T ⋆)). This proves the inclusion ‘⊇’.

For the inclusion ‘⊆’, fix an arbitrary µ ∈ σ(p(T,T ⋆)). We wish to prove the exis-
tence of a λ ∈ σ(T ) such that p(λ ,λ ) = µ .

Step 1 – Fixing ε > 0, we claim that there is a nonzero closed subspace Y of H,
invariant under both T and T ⋆, such that∥∥(p(T,T ⋆)−µI)|Y

∥∥< ε. (8.6)

To prove the claim, let S := p(T,T ⋆)−µI. This operator is normal and we have 0 ∈
σ(S). Let R := S⋆S. Arguing as above, we find that 0 ∈ σ(R). Consider the continuous
function f : [0,∞)→ [0,1] given by

f (t) :=


1, 0 ⩽ t ⩽ ε/2;

2(1− t/ε), ε/2 ⩽ t ⩽ ε;

0, t ⩾ ε,

and let f (R) be the selfadjoint operator obtained from the continuous functional calculus
for selfadjoint operators (Theorem 8.20). We will show that

Y := {x ∈ H : f (R)x = x}

has the desired properties.
Since T commutes with R, it commutes with f (R), and therefore Y is invariant un-

der T . By the same reasoning, Y is invariant under T ⋆. Moreover, by the properties of
continuous functional calculus, for all y ∈ Y we have

∥Ry∥= ∥R f (R)y∥⩽
∥∥t 7→ t f (t)

∥∥
C(σ(R))∥y∥=

∥∥t 7→ t f (t)
∥∥

C[0,ε]∥y∥⩽ ε∥y∥.
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8.2 The Continuous Functional Calculus 273

This implies

∥Sy∥2 = (Ry|y)⩽ ∥Ry∥∥y∥⩽ ε∥y∥2.

This gives (8.6). The claim will be proved once we have checked that Y is nonzero. If
f (2t) ̸= 0 for some t ⩾ 0, then 2t ⩽ ε and therefore f (t) = 1. By multiplicativity,

∥(I− f (R)) f (2R)∥=
∥∥t 7→ (1− f (t)) f (2t)

∥∥
C(σ(R)) = 0,

where f (2R) := g(R) with g(t) := f (2t). It follows that R( f (2R)) ⊆ Y . But R( f (2R))
is nonzero since

∥ f (2R)∥=
∥∥t 7→ | f (2t)|

∥∥
C(σ(R)) ⩾ | f (0)|= 1.

Step 2 – Given ε > 0, let Y be the closed subspace of Step 1. Since Y is nonzero we
have σ(T |Y ) ̸=∅ by Theorem 6.11. Pick an arbitrary λ ∈ σ(T |Y ). Since Y is invariant
under both T and T ⋆, the restricted operator T |Y is normal as an operator in L (Y ) by
Lemma 8.16, and therefore λ is an approximate eigenvalue of T |Y and hence of T . In
particular, we can find a norm one vector y ∈ Y such that ∥Ty−λy∥< ε .

Step 3 – Up to this point, ε > 0 was fixed. Applying Step 2 to a sequence εn ↓ 0, we
obtain nonzero closed subspaces Yn of H, norm one vectors yn ∈ Yn, and points λn ∈
σ(T ) such that Tyn−λnyn → 0 as n→ ∞. Passing to a subsequence, we may assume
that λn → λ , and then Tyn− λyn → 0 as n→ ∞. It follows that λ is an approximate
eigenvalue of T , with approximate eigensequence (yn)n⩾1. By the argument of the first
part of the proof,

lim
n→∞

p(T,T ⋆)yn− p(λ ,λ )yn = 0.

On the other hand, by the inequality of Step 1 applied to εn, we also have

∥p(T,T ⋆)yn−µyn∥< εn

for every n ⩾ 1, and therefore we must have p(λ ,λ ) = µ .

With this theorem at hand we can extend the continuous functional calculus to normal
operators. Repeating the proof of Theorem 8.20 we obtain the following result.

Theorem 8.22 (Continuous functional calculus for normal operators). Let T ∈L (H)

be a normal operator. Then there exists a unique continuous linear mapping f 7→ f (T )
from C(σ(T )) to L (H) with the following properties:

(i) if f (z) = zmzn with m,n ∈ N, then f (T ) = T mT ∗n;
(ii) for all f ,g ∈C(σ(T )) we have ( f g)(T ) = f (T )g(T );

(iii) for all f ∈C(σ(T )) we have f (T ) = ( f (T ))⋆;
(iv) for all f ∈C(σ(T )) we have ∥ f (T )∥= ∥ f∥∞.

The operators f (T ) are normal, and f (T ) is selfadjoint if and only if f is real-valued.
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274 Bounded Operators on Hilbert Spaces

The next theorem extends Proposition 8.21 to continuous functions defined on σ(T ).

Theorem 8.23 (Spectral mapping theorem). If T ∈L (H) is normal, then for all f ∈
C(σ(T )) we have

σ( f (T )) = f (σ(T )).

Proof The proof of the inclusion σ( f (T )) ⊆ f (σ(T )) follows the lines of Theorem
6.21. Indeed, if λ ̸∈ f (σ(T )), the function gλ = 1/ fλ with fλ (z) := λ − f (z) is contin-
uous on σ(T ), and by multiplicativity we obtain

gλ (T )(λ − f (T )) = (λ − f (T ))gλ (T ) = ( fλ gλ )(T ) = 1(T ) = I,

so λ ∈ ρ( f (T )) and R(λ , f (T )) = gλ (T ). This gives the stated inclusion.
For the converse inclusion, let λ ∈ σ(T ) be arbitrary and fixed and let µ = f (λ ).

Using the Stone–Weierstrass theorem, choose polynomials pn such that

lim
n→∞

sup
z∈σ(T )

|pn(z,z)− f (z)|= 0.

We may assume that pn(λ ,λ ) = µ . Then, by Proposition 8.21, µ ∈ σ(pn(T,T ⋆)). Also,
by property (iv) of the functional calculus, limn→∞ ∥pn(T,T ⋆)− f (T )∥ = 0. By lower
semicontinuity (Proposition 6.15), this implies µ ∈ σ( f (T )).

Corollary 8.24. Let T ∈L (H) be a normal operator and let f ∈C(σ(T )). Then f (T )
is positive if and only if f is nonnegative.

Proof If f is nonnegative, the spectral mapping theorem gives σ( f (T )) = f (σ(T ))⊆
[0,∞), and therefore the selfadjoint operator f (T ) is positive by Theorem 8.11. Con-
versely, if f (T ) is positive, then σ( f (T )) ⊆ [0,∞) by Theorem 8.11, and therefore
f (σ(T ))⊆ [0,∞) by the spectral mapping theorem.

The next theorem extends Proposition 6.22 to continuous functions defined on σ(T ).

Theorem 8.25 (Composition). Let T ∈ L (H) be normal. For all f ∈ C(σ(T )) and
g ∈C( f (σ(T ))) =C(σ( f (T ))) we have g◦ f ∈C(σ(T )) and

g( f (T )) = (g◦ f )(T ).

Proof First let p(z) = zmzn with m,n ∈ N. Then, by the properties of the continuous
calculus,

p( f (T )) = ( f (T ))m( f (T ))n = ( f m f n
)(T ) = (p◦ f )(T ).

By linearity, this identity extends to polynomials p. If g ∈ C(σ( f (T ))) is an arbitrary
continuous function, the identity follows by approximating g uniformly by polynomials
pn via the Stone–Weierstrass theorem to obtain

∥pn( f (T ))−g( f (T ))∥= ∥pn−g∥C(σ( f (T )))→ 0 as n→ ∞
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8.2 The Continuous Functional Calculus 275

and

∥(pn ◦ f )(T )− (g◦ f )(T )∥= ∥pn ◦ f −g◦ f∥C(σ(T ))→ 0 as n→ ∞.

We finally check consistency with the holomorphic calculus.

Theorem 8.26. Let T ∈L (H) be normal. If f ∈H(Ω), where Ω is an open set contain-
ing σ(T ), then f (T ) agrees with the operator defined through the holomorphic calculus.

K1 K2

U1 U2

Γ1 Γ2

Figure 8.1 Proof of Theorem 8.26: σ(T ) = K1∪K2, Γ = Γ1∪Γ2

Proof The set Ω is the union of at most countably many disjoint connected open sets,
and by compactness the set σ(T ) is contained in finitely many of them. Hence there is
no loss of generality in assuming that σ(T ) =

⋃k
j=1 K j ⊆

⋃k
j=1 Ω j = Ω, with the sets

K j compact and contained in the connected open sets Ω j, which are disjoint. Choose
bounded open sets U j such that K j ⊆ U j ⊆ U j ⊆ Ω j, k = 1, . . . ,k, in such a way that
C\

⋃k
j=1 U j is the union of at most finitely many disjoint connected open sets. Finally,

let Γ =
⋃k

j=1 Γ j be an admissible contour for σ(T ) in the sense described in Section 6.2,
with Γ j contained in U j.

By Runge’s theorem there exists a sequence of rational functions rn such that rn→ f
uniformly in U , where U =

⋃k
j=1 U j. The operators rn(T ) agree in the continuous calcu-

lus and the holomorphic calculus because this equality holds in the case of polynomials
and for resolvents, and equality for rational functions follows from this by the multi-
plicativity of both calculi. Denoting by f (c)(T ) and f (h)(T ) the operators defined by the
continuous calculus and the holomorphic calculus, respectively, it follows that

f (c)(T ) = lim
n→∞

rn(T ) = f (h)(T )

with convergence in operator norm; the first equality is a consequence of property (iv)
and the second follows from the estimate

∥rn(T )− f (h)(T )∥⩽ 1
2π

∫
Γ

|rn(z)− f (z)|∥R(z,T )∥|dz|

⩽
|Γ|
2π
∥rn− f∥C(U) sup

z∈Γ

∥R(z,T )∥,
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with |Γ| the length of Γ.

8.2.c Applications of the continuous functional calculus

We now turn to some applications of the continuous functional calculus.

Proposition 8.27 (Square roots). If T ∈L (H) is positive, there exists a unique positive
operator S ∈L (H) such that S2 = T .

Henceforth, this operator S will be denoted by T 1/2.

Proof Since T is positive, T is selfadjoint and its spectrum is contained in [0,∞) by
Theorem 8.11. Hence, f (t) =

√
t is a well-defined continuous function on σ(T ). The

operator S := f (T ) is positive by Corollary 8.24, and it satisfies S2 = T by the properties
of the continuous functional calculus. It remains to prove uniqueness. Suppose S̃ is
another positive operator with the property that S̃2 = T . With f (t) =

√
t, g(t) = t2, and

h(t) = t we have, by the properties of the continuous functional calculus and Theorem
8.25,

f (S̃2) = f (g(S̃)) = ( f ◦g)(S̃) = h(S̃) = S̃.

It follows that S= f (S2) = f (T ) = f (S̃2) = S̃. This completes the uniqueness proof.

Definition 8.28 (Modulus of an operator). The modulus of an operator T ∈L (H) is
the positive operator |T | := (T ⋆T )1/2.

Corollary 8.29. If T ∈L (H) is normal operator, then |T |= f (T ), where f (z) := |z|.

Proof Let g(z) := zz. Then f 2 = g and therefore |T |2 = T ⋆T = g(T ) = f 2(T ) =
( f (T ))2 by the multiplicativity of the continuous functional calculus. Since by Corol-
lary 8.24 the operator f (T ) is positive, the result follows by taking square roots.

We continue with a polar decomposition result. In view of future applications we
phrase it for bounded operators T ∈L (H,K), where H and K are Hilbert spaces. The
modulus of such an operator is the positive operator |T | := (T ⋆T )1/2 on H. An operator
U ∈L (H,K) will be called unitary if it is isometric and surjective. A partial isome-
try is a bounded operator V ∈ L (H,K) for which there exists orthogonal direct sum
decomposition H = H0⊕H⊥0 such that V is isometric from H0 into K and zero on H⊥0 .

Theorem 8.30 (Polar decomposition). Let T ∈ L (H,K). The following assertions
hold:

(1) T admits a representation T =U |T |, with U a partial isometry from H to K which
is isometric from R(|T |) onto R(T );

(2) if T is invertible, then T admits a unique representation T = U |T | with U unitary
from H onto K.
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Proof (1): From

∥T x∥2 = (T ⋆T x|x) =
(
|T |x

∣∣|T |x)= ∥∥|T |x∥∥2

it follows that the mapping U0 : |T |x 7→ T x, viewed as a linear operator from R(|T |)
onto R(T ), is well defined and isometric, and by density it extends to an isometry from
R(|T |) onto R(T ). Moreover, T = U0|T |. Along the orthogonal decomposition H =

R(|T |)⊕ (R(|T |))⊥ we extend U0 identically zero on (R(|T |))⊥ to obtain the desired
partial isometry U .

(2): The operator T ⋆T is positive and invertible. Hence |T |= (T ⋆T )1/2 is invertible
as well, by the spectral mapping theorem. Set U := T |T |−1. From

U⋆U = |T |−1T ⋆T |T |−1 = |T |−1|T |2|T |−1 = I

and the fact that U is invertible it follows that U⋆ = U−1 and U is unitary. To prove
that U is unique suppose that T =U |T |= Ũ |T | with both U and Ũ unitary. Then |T |=
U⋆U |T | = U⋆Ũ |T |, and since |T | is invertible this implies U⋆Ũ = I. Multiplying both
sides with U gives Ũ =U .

8.3 The Sz.-Nagy Dilation Theorem

The last section of this chapter is devoted to a proof of the celebrated Sz.-Nagy dilation
theorem, which asserts that every Hilbert space contraction has a unitary dilation. Since
it poses no additional difficulties, we take a rather general approach starting from an
arbitrary group G with unit element e; the Sz.-Nagy dilation theorem is obtained by
considering G = Z.

Definition 8.31 (Positive definiteness). A mapping T : G→ L (H) is called positive
definite if for all finite choices of g1, . . . ,gN ∈ G and h1, . . . ,hN ∈ H we have

N

∑
m,n=1

(T (g−1
m gn)hn|hm)⩾ 0.

Definition 8.32 (Representations, unitary representations). A mapping U : G→L (H)

is called a representation of G on H if U(e) = I and U(g1)U(g2) = U(g1g2) for all
g1,g2 ∈ G. A unitary representation is a representation whose constituting operators
are unitaries.

The following result connects these two notions.

Proposition 8.33. Let U : G→ L (H̃) be a unitary representation of G on a Hilbert
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278 Bounded Operators on Hilbert Spaces

space H̃. Let J : H→ H̃ be an isometric embedding of another Hilbert space H into H̃.
Then the function T : G→L (H) given by

T (g) := J⋆U(g)J,

is positive definite and satisfies T (e) = I and T ⋆(g) = T (g−1) for all g ∈ G.

Proof The identity T (e) = I follows from U(e) = I and J⋆J = I, and the identity
U(g−1) = (U(g))⋆ implies

T ⋆(g) = J⋆U⋆(g)J = J⋆(U(g))−1J = J⋆U(g−1)J = T (g−1).

To prove positive definiteness, let g1, . . . ,gN ∈ G and h1, . . . ,hN ∈ H. Then

N

∑
m,n=1

(T (g−1
m gn)hn|hm) =

N

∑
m,n=1

(U(g−1
m )U(gn)Jhn|Jhm) =

∥∥∥ N

∑
n=1

U(gn)Jhn

∥∥∥2
⩾ 0.

The next theorem establishes that, conversely, every positive definite function T :
G→L (H) satisfying T (e) = I and T ⋆(g) = T (g−1) for all g ∈ G arises in this way.

Theorem 8.34 (Unitary dilations). Let T : G→L (H) be a positive definite function
satisfying T (e) = I and T ⋆(g) = T (g−1) for all g ∈ G. There exist a Hilbert space H̃,
an isometric embedding J : H → H̃, and a unitary representation U : G→L (H̃) such
that

T (g)h = J⋆U(g)Jh, h ∈ H.

Proof Let V be the vector space of all functions f : G→H that vanish outside a finite
set. We claim that

( f1| f2) := ∑
g,g′∈G

(T (g−1g′) f1(g′)| f2(g))

defines a sesquilinear mapping from V ×V to C. Writing fm = ∑
k
j=1 1{g j}⊗ h(m)

j , m =

1,2 (allowing the possibility that some of the h(i)j are zero), we have

( f1| f2) = ∑
g,g′∈G

k

∑
i, j=1

1{gi}(g
′)1{g j}(g)(T (g

−1g′)h(1)i |h
(2)
j ) =

k

∑
i, j=1

(T (g−1
j gi)h

(1)
i |h

(2)
j ).

(8.7)
We claim that ( f1| f2) = ( f2| f1) for all f1, f2 ∈V and ( f | f )⩾ 0 for all f ∈V . A similar
computation as above gives

( f2| f1) =
k

∑
i, j=1

(h(1)i |T (g
−1
i g j)h

(2)
j ). (8.8)
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Since T ⋆(g) = T (g−1) for all g ∈ G, the right-hand sides of (8.7) and (8.8) are equal,
thus proving the identity ( f1| f2) = ( f2| f1). Positive definiteness implies ( f | f )⩾ 0.

The properties established in the claim suffice for the validity of the Cauchy–Schwarz
inequality. It may happen, however, that ( f | f ) = 0 for certain nonzero functions f in V ,
so this sesquilinear form may fail to be an inner product. For this reason we consider
the vector space quotient V/N, where

N = { f ∈V : ( f | f ) = 0}.

Let us prove that N is indeed a subspace of V . It is clear that c f ∈ N for all c ∈ C and
f ∈ N. Furthermore, if f , f ′ ∈ N, then ( f | f ′) = 0 by the Cauchy–Schwarz inequality,
and from this it follows that f + f ′ ∈ N.

On the quotient space V/N, the sesquilinear mapping (·|·) induces the inner product

( f +N|g+N) := ( f |g).

Define H̃ to be the Hilbert space completion of V/N with respect to this inner product.
To realise H as a closed subspace of H̃ we identify elements h∈H with the class modulo
N of the functions fh : G→ H given by fh = 1{e}⊗h. Then

( fh1 | fh2) = ∑
g,g′∈G

(T (g−1g′) fh1(g
′)| fh2(g)) = (T (e)h1|h2) = (h1|h2)

since T (e) = I. This implies that the mapping J : h 7→ fh +N is isometric from H into
H̃.

The linear mapping U : V →V given by

(U(g) f )(g′) := f (g−1g′), f ∈V, g,g′ ∈ G,

is well defined and preserves inner products; in particular it maps N into itself. Indeed,
if f ∈ N, then by a change of variables we have

(U(g) f1|U(g) f2) = ∑
g′,g′′∈G

(T (g′−1g′′) f1(g−1g′′)| f2(g−1g′))

= ∑
g′,g′′∈G

(T ((g−1g′)−1g−1g′′) f1(g−1g′′)| f2(g−1g′))

= ∑
g′′,g′′′∈G

(T (g′′−1g′′′) f (g′′′)| f (g′′)) = ( f1| f2),

and the asserted properties follow. Moreover,

U(g1)U(g2) f (g) = f (g−1
2 g−1

1 g) = f ((g1g2)
−1g) =U(g1g2) f (g). (8.9)

Upon passing to the quotient, we obtain a well-defined linear mapping, denoted by
Ũ(g), on V/N which preserves inner products. Therefore Ũ(g) extends to an isometry
from H̃ into itself, which we once again denote by Ũ(g), and by passing to the quotient
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280 Bounded Operators on Hilbert Spaces

in (8.9) we see that Ũ(g1)Ũ(g2) = Ũ(g1g2), that is, the resulting mapping Ũ : G→
L (H̃) is a homomorphism. Since each operator Ũ(g) preserves inner products, in order
to prove that Ũ(g) is unitary it suffices to prove that it is surjective, and for this it
suffices to prove that each U(g) is surjective. However, the latter is immediate from the
definition, which implies that every finitely supported H-valued function on G is in the
range of U(g). It follows that Ũ is a unitary representation of G on H̃.

This representation has the desired properties: for all g,g′ ∈ G and h,h′ ∈ H we have

U(g) fh(g′) = (U(g)(1{e}⊗h))(g′) = 1{e}(g−1g′)h = (1{g}⊗h)(g′)

and consequently, by (8.7),

(J⋆Ũ(g)Jh|h′) = (Ũ(g) fh| fh′) = (1{g}⊗h|1{e}⊗h′) = (T (g)h|h′).

The theorem will be applied in the following situation:

Lemma 8.35. If T ∈L (H) is a contraction, the mapping S : Z→L (H) defined by

S(n) :=


T n, n ⩾ 1,

I, n = 0,

(T ⋆)−n, n ⩽−1,

is positive definite and satisfies S⋆(n) = S(−n) for all n ∈ Z.

Proof Since T is a contraction, from ((I−T ⋆T )x|x) = ∥x∥2−∥T x∥2 ⩾ 0 it follows that
I−T ⋆T is a positive operator. As consequence, by Proposition 8.27 the defect operator

DT := (I−T ⋆T )1/2

is well defined and positive, and we have

∥DT x∥2 = ((I−T ⋆T )1/2x|(I−T ⋆T )1/2x) = ((I−T ⋆T )x|x) = ∥x∥2−∥T x∥2.

Define

ℓ2(H) :=
{

h = (hn)n⩾1 ⊆ H : ∑
n⩾1
∥hn∥2 < ∞

}
.

With respect to the inner product (g|h) := ∑n⩾1(gn|hn), ℓ2(H) is a Hilbert space; com-
pleteness is proved in the same way as for ℓ2. We define the operator T̃ on ℓ2(H) by

T̃ : h 7→ (T h1,DT h1,h2,h3, . . .).

Clearly

∥T̃ h∥2
ℓ2(H) = ∥T h1∥2 +∥DT h1∥2 + ∑

n⩾2
∥hn∥2 = ∥h∥2,
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so T̃ is isometric. Define S̃ : Z→L (H) by

S̃(n) :=


T̃ n, n ⩾ 1;

I, n = 0;

(T̃ ⋆)−n, n ⩽−1,

where T̃ ⋆ is the Hilbert space adjoint of T̃ . We make the trivial but crucial observation
that

(S(n−m)h|h′) = (S̃(n−m)Jh|Jh′), h,h′ ∈ H, m,n ⩾ 1,

where J : H → ℓ2(H) is defined by Jh := (h,0,0, . . .). It follows that for all choices of
h1, . . . ,hN ∈ H we have (with the convention T̃ 0 = I)

N

∑
m,n=1

(S(n−m)hn|hm) =
N

∑
m,n=1

(S̃(n−m)Jhn|Jhm)

= ∑
1⩽m⩽n⩽N

(T̃ n−mJhn|Jhm)+ ∑
1⩽n<m⩽N

((T̃ ⋆)m−nJhn|Jhm)

= ∑
1⩽m⩽n⩽N

(T̃ n−mJhn|Jhm)+ ∑
1⩽n<m⩽N

(Jhn|T̃ m−nJhm)

(∗)
= ∑

1⩽m⩽n⩽N
(T̃ nJhn|T̃ mJhm)+ ∑

1⩽n<m⩽N
(T̃ nJhn|T̃ mJhm)

=
∥∥∥ N

∑
k=1

T̃ kJhk

∥∥∥2
⩾ 0,

where (∗) uses that T̃ is an isometry and consequently (T̃ g|T̃ h) = (g|h). This proves
that S is positive definite.

The identity S⋆(n) = S(−n) for n ∈ Z is clear from the definition.

Combining the lemma with the theorem, we arrive at the following result.

Theorem 8.36 (Sz.-Nagy dilation theorem). If T ∈L (H) is a contraction, then there
exist a Hilbert space H̃, an isometric embedding J : H → H̃, and a unitary operator
U ∈L (H̃) such that

T n = J⋆UnJ, n ∈ N.

In this context the operator U is said to be a unitary dilation of T . As a simple exam-
ple, the left (right) shift on ℓ2(Z) is a unitary dilation of the left (right) shift on ℓ2.
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Problems

8.1 Prove the Hellinger–Toeplitz theorem: If T : H→H is a linear mapping satisfying

(T x|y) = (x|Ty), x,y ∈ H,

then T is bounded.
Hint: Apply the uniform boundedness theorem to the operators Tx : H→K given
by Tyx := (x|Ty).

8.2 Deduce Proposition 8.10 from Corollary 6.14.
8.3 Let T ∈L (H) be selfadjoint. The aim of this problem is to deduce the inclusion

σ(T )⊆ R in an elementary way from Proposition 8.10. Fix λ ∈ σ(T ).

(a) Show that

eiλ − eiT = eiλ (λ −T )
( ∞

∑
n=1

in

n!
(T −λ )n−1

)
and conclude that eiλ − eiT fails to be invertible.

(b) Combine this with Proposition 8.10 to conclude that λ ∈ R.

8.4 Show that two orthogonal projections P and Q commute if and only if PQ is an
orthogonal projection.

8.5 Show that a projection P ∈L (H) is an orthogonal projection if and only if

∥Ph∥⩽ ∥h∥, h ∈ H.

Hint: The latter condition implies that ∥P(g+ch)∥2 ⩽ ∥g+ch∥2 for all c ∈K and
g,h ∈ H. Now consider g ∈ R(P) and h ∈ N(P), and vary c.

8.6 Let H0 be a closed subspace of H and let T ∈L (H). Prove that if both T and T ⋆

leave H0 invariant, then σ(T |H0)⊆ σ(T ).
8.7 Using Proposition 4.28, prove that if A is a d×d matrix with complex coefficients,

viewed as a bounded operator on Cd, then

∥A∥2 = max{λ ⩾ 0 : λ is an eigenvalue of A⋆A}.

8.8 Show that the norm of an operator T ∈L (H) is given by

∥T∥2 = inf{λ ⩾ 0 : T ⋆T ⩽ λ I},

where T ⋆T ⩽ λ I means that λ −T ⋆T is positive.
8.9 Let T ∈L (H) be selfadjoint and let λ ∈ R.

(a) Show that if σ(T ) = {λ}, then T = λ I.
(b) Show that if σ(PT P) = {λ}, where P is an orthogonal projection with N(P)

finite-dimensional, then λ I−T is compact; if, in addition, P ̸= I, then λ = 0
and T is compact.
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8.10 Show that if T ∈L (H) is a positive operator, then for all x,y ∈ H we have the
Cauchy–Schwarz type inequality

|(T x|y)|2 ⩽ (T x|x)(Ty|y).

8.11 The numerical range of an operator T ∈L (H) is the set

W (T ) := {(T x|x) : ∥x∥= 1}.

The numerical radius of T is defined by

w(T ) := sup{|λ | : λ ∈W (T )}.

Prove the following assertions:

(a) We have
1
2
∥T∥⩽ w(T )⩽ ∥T∥.

Hint: To prove the first inequality use the identity

4(T x|y) = (T (x+ y)|x+ y)− (T (x− y)|x− y)

+ i(T (x+ iy)|x+ iy)− i(T (x− iy)|x− iy).

(b) T is selfadjoint if and only if W (T )⊆ R.
Hint: Consider the operator i(T −T ⋆).

(c) If W (T ) = {λ} for some λ ∈ C, then T = λ I.

8.12 This problem proves the Toeplitz–Hausdorff theorem, which asserts that the nu-
merical range of any operator T ∈L (H) is a convex subset of C.

(a) Show that for all λ ,µ ∈ C we have

W (λT +µI) = λW (T )+µ.

Conclude that in order to prove the Toeplitz–Hausdorff theorem it suffices to
establish that {0,1} ⊆W (T ) implies [0,1]⊆W (T ).

In what follows we fix an operator T ∈L (H) such that {0,1}⊆W (T ), and prove
that [0,1]⊆W (T ).

Choose norm one vectors x,y ∈ H such that (T x|x) = 0 and (Ty|y) = 1.

(b) Define g : [0,2π]→ C by

g(t) := e−it(T x|y)+ eit(Ty|x).

Using that g(t +π) = −g(t) for t ∈ [0,π], show that either there exists t0 ∈
[0,π] such that g(t0) = 0 or else there exists t0 ∈ [0,2π] such that g(t0)> 0.

Set ỹ := eit0y.

(c) Show that x and ỹ are linearly independent.
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284 Bounded Operators on Hilbert Spaces

Define z : [0,1]→ H and f : [0,1]→ C by

z(t) :=
(1− t)x+ tỹ
∥(1− t)x+ tỹ∥

, f (t) := (T z(t)|z(t)).

These functions are well defined by part (c).

(d) Show that f is continuous, real-valued, and satisfies f (0) = 0 and f (1) = 1.
Deduce that [0,1]⊆W (T ).

8.13 Prove that for all T ∈L (H) we have

σ(T )⊆W (T ).

Hint: First prove that approximate eigenvalues belong to W (T ). Then apply the
Toeplitz–Hausdorff theorem in combination with Proposition 6.17.

8.14 Show that if the operators S1,S2 ∈ L (H) satisfy 0 ⩽ S1 ⩽ S2, then for all T ∈
L (H) we have 0 ⩽ T ⋆S1T ⩽ T ⋆S2T .
Hint: Write S2−S1 = B⋆B for some B ∈L (H).

8.15 Show that if S,T ∈L (H) are positive operators, then σ(ST )⊆ [0,∞).
Hint: Apply the result of Problem 6.14 to the operators S1/2 and S1/2T .

8.16 Consider the Volterra operator T on L2(0,1) of Example 1.31:

(T f )(t) =
∫ t

0
f (s)ds, f ∈ L2(0,1), t ∈ [0,1].

We sketch two proofs that σ(T ) = {0}.
(a) Show that for all 0 ̸= λ ∈ C and g ∈ L2(0,1) the equation (λ −T ) f = g has

a unique solution in L2(0,1). Deduce that σ(T ) = {0}.
A second proof is obtained by estimating the norm of T n:

(b) Show that ∥T n∥⩽ 1
n! for all n = 1,2, . . .

Hint: First show that

(T n f )(t) =
∫ t

0

∫ tn−1

0
· · ·
∫ t1

0
f (s)dsdt1 · · · dtn−1

=
∫ t

0
f (s)

∫ t

s

∫ tn−1

s
· · ·
∫ t2

s
dt1 · · · dtn−2 dtn−1 ds.

(c) Using Theorem 6.24, conclude that σ(T ) = {0}.
(d) Show that 0 is not an eigenvalue of T .
(e) Deduce from (a) or (c) that T is not normal.

8.17 Let Tm be a Fourier multiplier operator on L2(Rd) with symbol m ∈ L∞(Rd).

(a) Show that Tm is normal.
(b) Show that if f is a continuous function on the essential range of m (see Prob-

lem 6.5), then f (Tm) is well defined through the continuous functional cal-
culus and equal to the Fourier multiplier Tf◦m with symbol f ◦m ∈ L∞(Rd).
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(c) Compare this result with Problem 6.6.

8.18 Consider a nonzero operator T ∈L (H). Show that the following assertions are
equivalent:

(a) T is positive;
(b) T is selfadjoint and there exists a bounded S such that T = S⋆S;
(c) T is selfadjoint and there exists a selfadjoint S such that T = S2;
(d) T is selfadjoint and

∥∥I−T/∥T∥
∥∥⩽ 1.

8.19 Show that for all T ∈L (H) we have

R(T ) = R((T T ∗)1/2).

Hint: Apply the result of Problem 4.13.
8.20 For θ ∈ R show that the rotation operator on L2(T) defined by

Rθ f (eix) := f (ei(x−θ))

is unitary, and find its spectrum.
Hint: Distinguish the cases θ/2π ∈Q and θ/2π ̸∈Q.

8.21 Prove that if T ∈L (H) is an isometry, then there exist Hilbert spaces G and K
such that we have an isometric isomorphism of Hilbert spaces

H ≃ ℓ2(G)⊕K,

where ℓ2(G) is the Hilbert space of all square summable sequences g = (gn)n⩾1

in G with norm ∥g∥2
ℓ2(G)

= ∑n⩾1 ∥gn∥2 and that along this decomposition we have

T ≃ S⊕U,

where S is the right shift on ℓ2(G), that is, S maps the sequence g1,g2, . . . to
0,g1,g2, . . . and U is a unitary operator on K. This decomposition is known as the
Wold decomposition.
Hint: For n ∈ N let Hn := R(T n), and for n ⩾ 1 let Gn denote the orthonormal
complement of Hn in Hn−1. Show that the spaces Gn are all isometric as Hilbert
spaces and set K :=

⋂
n∈N Hn.

8.22 This problem sketches an alternative proof of the Sz.-Nagy dilation theorem. Let
T ∈L (H) be a contraction and DT = (I−T ⋆T )1/2 the associated defect operator.

A dilation of a bounded operator T on H is a bounded operator T̃ on a Hilbert
space H̃ containing H isometrically as a closed subspace such that

T n = PT̃ nJ, n ∈ N,

where J is the inclusion mapping from H into H̃ and P = J⋆ is the orthogonal
projection of H̃ onto H, viewed as a mapping from H̃ onto H.

(a) Show that T DT = DT ⋆T .
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286 Bounded Operators on Hilbert Spaces

On the Hilbert space

ℓ2(H) :=
{

h = (hn)n⩾1 ⊆ H : ∑
n⩾1
∥hn∥2 < ∞

}
we consider the operator S : h 7→ (T h1,DT h1,h2,h3, . . .).

(b) Show that S is an isometry, that is, ∥Sh∥= ∥h∥ for all h ∈ ℓ2(H).
(c) Show that T n = J⋆SnJ for all n ∈ N, where J : H → ℓ2(H) is given by h 7→

(h,0,0, . . .). Conclude that S is a dilation of T .
(d) Show that a dilation of a dilation is a dilation.

To complete the proof of the theorem it suffices to show that every isometry has a
unitary dilation. Accordingly, in the rest of the problem we consider an isometry
S on a Hilbert space G.

(e) Show that under these assumptions we have DS = 0.

On the Hilbert space direct sum G⊕G define the operator

U :=
(

S DS⋆

DS −S⋆

)
=

(
S DS⋆

0 −S⋆

)
.

(f) Show that

U⋆ =

(
S⋆ 0

DS⋆ −S

)
.

(g) Show that S⋆DS⋆ = DSS⋆ = 0 and use this to prove that U is unitary.
(h) Show that U is a dilation of S.

Hint: First compute U2 and use this for finding U2k and U2k+1.
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9
The Spectral Theorem for Bounded Normal Operators

In this chapter we show that normal operators admit a spectral representation as sums
or integrals of orthogonal projections. We begin by showing that every compact normal
operator T admits the spectral decomposition

T = ∑
n⩾1

λnPn,

where (λn)n⩾1 is the sequence of eigenvalues of T and (Pn)n⩾1 is the sequence of or-
thogonal projections onto the corresponding eigenspaces. For arbitrary bounded normal
operators T , the main result of this chapter, the spectral theorem for bounded normal
operators, provides an analogous representation as an integral

T =
∫

σ(T )
λ dP(λ ).

9.1 The Spectral Theorem for Compact Normal Operators

Throughout this chapter, H is a complex Hilbert space.
From Linear Algebra we know that normal matrices can be orthogonally diago-

nalised. This result admits the following extension to compact normal operators on H:

Theorem 9.1 (Spectral theorem for compact normal operators). Let T ∈ L (H) be a
compact normal operator and let (λn)n⩾1 be the (finite or infinite) sequence of its dis-
tinct eigenvalues. Let (En)n⩾1 be the corresponding sequence of eigenspaces, and let
(Pn)n⩾1 be the associated sequence of orthogonal projections. Then:

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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288 The Spectral Theorem for Bounded Normal Operators

(1) the spaces En are pairwise orthogonal and have dense linear span;
(2) we have

T = ∑
n⩾1

λnPn

with convergence in the operator norm of L (H).

Proof The proof of the theorem uses the properties of spectra of compact operators
on Banach spaces established in Theorem 7.11. In the present situation, where the com-
pact operator acts on a Hilbert space, the proof of this theorem can be considerably
shortened; see Problem 9.2.

(1): From Proposition 8.13 (applied to T −λ ) we see that T x−λx = 0 if and only if
T ⋆x−λx = 0, so λ is an eigenvalue for T if and only if λ is an eigenvalue for T ⋆ and
the eigenspaces coincide.

If ym ∈ Em and yn ∈ En are nonzero vectors, then

λm(ym|yn) = (Tym|yn) = (ym|T ⋆yn) = (ym|λnyn) = λn(ym|yn).

If λm ̸= λn, then this is possible only if (ym|yn) = 0. This gives En ⊥ Em for n ̸= m.
Let E :=

⊕
n⩾1 En denote the closed linear span of the spaces En, n ⩾ 1. We wish

to prove that E = H. Suppose the contrary. Then E⊥ is a nonzero closed subspace
of H. Since T En ⊆ En for all n ⩾ 1 we have T E ⊆ E. Furthermore, if x ∈ En, then
T ⋆x = λ nx ∈ En, so T ⋆En ⊆ En. This being true for all n ⩾ 1, it follows that T ⋆E ⊆ E.
Hence, by Lemma 8.16 we have T E⊥ ⊆ E⊥ and the restriction T⊥ of T to E⊥ is normal.
Moreover, by the very construction of E, T⊥ has no eigenvalues. By Theorem 7.11,
this implies that σ(T⊥) ⊆ {0}, and since σ(T⊥) ̸= ∅ it follows that σ(T⊥) = {0}.
Now Proposition 8.13 implies that T⊥ = 0. This means that every element of E⊥ is an
eigenvector of T⊥ with eigenvalue 0. This contradicts the observation just made that
that T⊥ has no eigenvalues and completes the proof that E = H.

(2): Let Pn denote the orthogonal projection onto En. Then for all x ∈ H we have
x = ∑n⩾1 Pnx with convergence in H. This is clear for every x ∈ En, and since the span
of the spaces En is dense in H and the operators ∑

N
n=1 Pn are orthogonal projections

and hence have norm one, the convergence extends to all x ∈ H by Proposition 1.19. It
follows that the sum ∑n⩾1 T Pnx converges as well, with sum T x.

Fix ε > 0. The set Λε := {n ⩾ 1 : |λn|> ε} is finite by Theorem 7.11. Let N ⩾ 1 be
so large that Λε ⊆ {1,2, . . . ,N}. Fixing x ∈ H and writing xn := Pnx, by orthogonality
we have ∥∥∥T x−

N

∑
n=1

λnPnx
∥∥∥2

=
∥∥∥∑

n⩾1
T xn−

N

∑
n=1

λnxn

∥∥∥2
=
∥∥∥ ∑

n⩾N+1
λnxn

∥∥∥2

= ∑
n⩾N+1

|λn|2∥xn∥2 ⩽ ε
2

∑
n⩾N+1

∥xn∥2 ⩽ ε
2∥x∥2.
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9.1 The Spectral Theorem for Compact Normal Operators 289

Taking the supremum over all x ∈ H with ∥x∥⩽ 1 we obtain∥∥∥T −
N

∑
n=1

λnPn

∥∥∥2
⩽ ε

2.

This completes the proof.

Let H and K be Hilbert spaces. For h ∈ H and k ∈ K we denote by k ⊗̄h the operator
in L (H,K) defined by

(k ⊗̄h)x := (x|h)k, x ∈ H.

If H = K and h ∈ H has norm one, then h⊗̄h is the orthogonal projection onto the sub-
space spanned by h. If T ∈L (H) is a compact normal operator, the eigenspaces cor-
responding to nonzero eigenvalues are finite-dimensional. Choosing orthonormal bases
for each of them, from Theorem 9.1 we obtain a representation

T = ∑
n⩾1

λnhn ⊗̄hn

with convergence in the operator norm, where now (λn)n⩾1 is the sequence of nonzero
eigenvalues of T repeated according to multiplicities and (hn)n⩾1 is an associated or-
thonormal sequence of eigenvectors. Strictly speaking, the spectral theorem gives con-
vergence of sum for ‘blockwise’ summation ‘per eigenspace’, but the proof of the the-
orem may be repeated to obtain the convergence as stated. The geometric and algebraic
multiplicities of the eigenvalues coincide by Corollary 8.17, so we can unambiguously
speak about their multiplicity.

Theorem 9.1 allows us to deduce the following general representation theorem for
compact operators acting on a Hilbert space. It strengthens Proposition 7.6 which as-
serted that such operators can be approximated in operator norm by finite rank operators.

Theorem 9.2 (Singular value decomposition). Let T ∈L (H,K) be a compact operator,
where K is another Hilbert space. Then T admits a decomposition

T = ∑
n⩾1

µnkn ⊗̄hn

with convergence in the operator norm, where (µn)n⩾1 is the sequence of nonzero
eigenvalues of the compact operator (T ⋆T )1/2 repeated according to multiplicities, and
(hn)n⩾1 and (kn)n⩾1 are orthonormal sequences in H and K respectively, the former
consisting of eigenvectors of (T ⋆T )1/2.

The proof depends on the following lemma.

Lemma 9.3. If S ∈L (H) is a positive compact operator, then its square root S1/2 is
compact.
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Proof By Theorem 9.1 we have S = ∑n⩾1 νnQn, with (νn)n⩾1 the (nonnegative) se-
quence of distinct nonzero eigenvalues of S and (Qn)n⩾1 the sequence of orthogonal
projections onto the corresponding eigenspaces. Fix ε > 0 and let N ⩾ 1 be so large that
νn ⩽ ε for all n ⩾ N. Then for N′ ⩾ N and x ∈ H we have, by orthogonality,∥∥∥ N′

∑
n=N

ν
1/2
n Qnx

∥∥∥2
=

N′

∑
n=N

νn∥Qnx∥2 ⩽ ε

N′

∑
n=N
∥Qnx∥2 ⩽ ε∥x∥2.

This implies that the sum R := ∑n⩾1 ν
1/2
n Qn converges in operator norm. We have R ⩾ 0

and R2 = ∑n⩾1 νnQn = S, so R = S1/2. This operator is the limit in operator norm of the
finite rank operators ∑

N
n=1 ν

1/2
n Qn, N ⩾ 1, and therefore it is compact.

Proof of Theorem 9.2 By Theorem 9.1, applied to |T | := (T ⋆T )1/2, which is compact
by Lemma 9.3, we arrive at a representation

|T |= ∑
n⩾1

µnhn ⊗̄hn,

with convergence in the operator norm, where (µn)n⩾1 is the sequence of nonzero eigen-
values of |T | repeated according to multiplicities and the orthonormal sequence (hn)n⩾1

consists of eigenvectors of |T |. Let T = U |T | with U an isometry from R(|T |) onto
R(T ) as in Theorem 8.30. The sequence (kn)n⩾1 defined by kn := Uhn is orthonormal
in K and

T = ∑
n⩾1

µnkn ⊗̄hn

with convergence in the operator norm.

As a second application of Theorem 9.1 we record the following formulas for the
eigenvalues of a compact positive operator.

Theorem 9.4 (Min-max theorem). Let T ∈ L (H) be compact and positive, and let
λ1 ⩾ λ2 ⩾ · · · ⩾ 0 be the sequence of its nonzero eigenvalues repeated according to
multiplicities. Then for all n ⩾ 1 we have

λn = inf
Y⊆H

dim(Y )=n−1

sup
∥y∥=1
y⊥Y

(Ty|y) = inf
Y⊆H

dim(Y )=n−1

sup
∥y∥=1
y⊥Y

∥Ty∥

where the infima are taken over all subspaces Y of H of dimension n−1.

Proof For n= 1 the only subspace Y to be considered is {0}. In this case both suprema
are taken over all norm one vectors y ∈ H and are equal to ∥T∥ = sup∥y∥⩽1 ∥Ty∥ =
sup∥y∥⩽1(Ty|y) = λ1 by Theorem 8.11; here we use that T is positive. In the remainder
of the proof we may therefore assume that n ⩾ 2.

Using Theorem 9.1 we select an orthonormal basis (h j) j⩾1 for H such that T h j =
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λ jh j for all j ⩾ 1. Let Y ⊆ H be any subspace of dimension n− 1 and let Hn denote
the linear span of the vectors h1, . . . ,hn. Then Y⊥∩Hn is a nonzero subspace of H, so it
contains a norm one vector y. Writing y = ∑

n
j=1 c jh j with ∑

n
j=1 |c j|2 = 1, we have

(Ty|y) =
n

∑
j=1

λ j|c j|2 ⩾ λn

n

∑
j=1
|c j|2 = λn.

This proves the inequality

λn ⩽ inf
Y⊆H

dim(Y )=n−1

sup
∥y∥=1
y⊥Y

(Ty|y).

The inequality

inf
Y⊆H

dim(Y )=n−1

sup
∥y∥=1
y⊥Y

(Ty|y)⩽ inf
Y⊆H

dim(Y )=n−1

sup
∥y∥=1
y⊥Y

∥Ty∥

holds trivially. To prove the inequality

inf
Y⊆H

dim(Y )=n−1

sup
∥y∥=1
y⊥Y

∥Ty∥⩽ λn,

let y⊥ Hn−1 have norm one. Then y = ∑ j⩾n(y|h j)h j and ∑ j⩾n |(y|h j)|2 = 1. Hence,

∥Ty∥2 =
∥∥∥∑

j⩾n
λ j(y|h j)h j

∥∥∥2
= ∑

j⩾n
λ

2
j |(y|h j)|2 ⩽ λ

2
n ∑

j⩾n
|(y|h j)|2 = λ

2
n ,

and the result follows.

Corollary 9.5. If S,T ∈ L (H) are compact operators satisfying 0 ⩽ S ⩽ T , and if
λ1 ⩾ λ2 ⩾ · · · > 0 and µ1 ⩾ µ2 ⩾ · · · > 0 are their sequences of nonzero eigenvalues,
both repeated according to multiplicities, then for all n ⩾ 1 we have λn ⩽ µn.

9.2 Projection-Valued Measures

This section and the next deal with the preliminaries needed to state and prove the
spectral theorem for bounded normal operators.

Let (Ω,F ) be a measurable space.

Definition 9.6 (Projection-valued measures). A projection-valued measure on a mea-
surable space (Ω,F ) is a mapping P : F → L (H) that assigns to every set F ∈ F

an orthogonal projection PF := P(F) ∈ L (H) such that the following conditions are
satisfied:

(i) PΩ = I;
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(ii) for all x ∈ H the mapping

F 7→ (PF x|x), F ∈F,

defines a measure on (Ω,F ).

For x ∈ H the measure defined by (ii) is denoted by Px. Thus, for all F ∈F,

(PF x|x) = Px(F) =
∫

Ω

1F dPx.

From

Px(Ω) = (PΩx|x) = (x|x) = ∥x∥2

we see that Px is a finite measure.
We make some easy observations:

• P∅ = 0.

Indeed, the additivity of Px, applied to Ω = Ω∪∅ implies

(x|x) = Px(Ω) = Px(Ω∪∅) = Px(Ω)+Px(∅) = (x|x)+Px(∅)

and therefore (P∅x|x) = Px(∅) = 0 for all x ∈ H.

• If F1,F2 ∈F are disjoint, then the ranges of PF1 and PF2 are orthogonal.

Since PF1∪F2 is an orthogonal projection and the sets F1 and F2 are disjoint, for all x ∈H
we have

∥PF1∪F2x∥2 = (PF1∪F2x|x) = (PF1x|x)+(PF2x|x).

By polarisation (Proposition 8.1), the second identity furthermore implies that

PF1∪F2 = PF1 +PF2 ,

and therefore

∥PF1∪F2x∥2 = ∥(PF1 +PF2)x∥
2 = ∥PF1x∥2 +2 Re(PF1x|PF2x)+∥PF2x∥2.

Comparing the two expressions for ∥PF1∪F2x∥2, and noting as before that ∥PFk x∥2 =

(PFk x|x) for k = 1,2, we deduce that

Re(PF1x|PF2x) = 0 for all x ∈ H.

By polarization, it then follows that

(PF1x|PF2y) = 0 for all x,y ∈ H.

This shows that the ranges of PF1 and PF2 are orthogonal.

• For all F1,F2 ∈F we have PF1∩F2 = PF1PF2 = PF2PF1 .
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In the special case of disjoint sets this has just been proved, with all three expressions
equal to 0. From this special case it follows that

PF1PF2 = (PF1\F2 +PF1∩F2)(PF2\F1 +PF1∩F2)

= PF1\F2PF2\F1 +PF1∩F2PF2\F1 +PF1\F2PF1∩F2 +P2
F1∩F2

= 0+0+0+PF1∩F2 .

Reversing the roles of F1 and F2 gives the other identity.

Example 9.7. If T ∈ L (H) is a compact normal operator, Theorem 9.1 implies that
the mapping {λ} 7→ Pλ , where Pλ is the orthogonal projection onto the eigenspace of
λ , extends to a projection-valued measure on σ(T ).

9.3 The Bounded Functional Calculus

Let (Ω,F ) be a measurable space. The Banach space of all bounded measurable func-
tions f : Ω→C, endowed with the supremum norm ∥ f∥∞ = supω∈Ω | f (ω)|, is denoted
by Bb(Ω).

Theorem 9.8 (Bounded functional calculus). Let P : F → L (H) be a projection-
valued measure. There exists a unique linear mapping Φ : Bb(Ω)→ L (H) with the
following properties:

(i) for all F ∈F we have Φ(1F) = PF ;
(ii) for all f ,g ∈ Bb(Ω) we have Φ( f g) = Φ( f )Φ(g);

(iii) for all f ∈ Bb(Ω) we have Φ( f ) = (Φ( f ))⋆;
(iv) for all f ∈ Bb(Ω) we have ∥Φ( f )∥⩽ ∥ f∥∞;
(v) for all fn, f ∈ Bb(Ω), if supn⩾1 ∥ fn∥∞ < ∞ and fn→ f pointwise on Ω, then for

all x ∈ H we have Φ( fn)x→Φ( f )x.

Moreover, for all x ∈ H and f ∈ Bb(Ω) we have

(Φ( f )x|x) =
∫

Ω

f dPx (9.1)

and

∥Φ( f )x∥2 =
∫

Ω

| f |2 dPx. (9.2)

The operators Φ( f ) are normal, and if f is real-valued (respectively, takes values in
[0,∞)) they are selfadjoint (respectively, positive).



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
294 The Spectral Theorem for Bounded Normal Operators

Proof For F ∈ F we set Φ(1F) := PF , which is (i), and extend this definition by
linearity to simple functions f . It is routine to verify that Φ( f ) is well defined for such
functions and that (ii) and (iii) hold.

If f = ∑
k
j=1 c j1Fj is a simple function with disjoint supporting sets Fj ∈F, the or-

thogonality of the vectors PFj x gives

∥Φ( f )x∥2 =
k

∑
j=1
|c j|2∥PFj x∥

2 ⩽ max
1⩽ j⩽k

|c j|2∥x∥2 = ∥ f∥2
∞∥x∥2.

It follows that ∥Φ( f )∥⩽ ∥ f∥∞. For general f ∈ Bb(Ω) we can find a sequence of sim-
ple functions fn converging to f uniformly on Ω and satisfying ∥ fn∥∞ ⩽ ∥ f∥∞. From
∥Φ( fn)−Φ( fm)∥ ⩽ ∥ fn− fm∥∞ we infer that the operators Φ( fn) form a Cauchy se-
quence in L (H). It follows that the limit

Φ( f ) := lim
n→∞

Φ( fn)

exists, with convergence in the operator norm, and it is routine to check that the limit is
independent of the choice of approximating sequence. Moreover,

∥Φ( f )∥⩽ limsup
n→∞

∥ fn∥∞ ⩽ ∥ f∥∞,

which gives (iv). The general case of (ii) and (iii) now follows by approximation.
To prove (v) we first establish (9.1) and (9.2). If f = ∑

k
j=1 c j1Fj is a simple function

with disjoint supporting sets Fj ∈F, then

(Φ( f )x|x) =
k

∑
j=1

c j(PFj x|x) =
k

∑
j=1

c jPx(Fj) =
∫

Ω

f dPx.

This gives (9.1) for simple functions. The general case follows by approximation and
dominated convergence. Similarly,

∥Φ( f )x∥2 =
k

∑
j=1
|c j|2∥PFj x∥

2 =
k

∑
j=1
|c j|2(PFj x|x) =

∫
Ω

| f |2 dPx.

This gives (9.2) for simple functions. Again the general case follows by approximation
and dominated convergence. Property (v) follows from (9.2), applied to the functions
fn− f , and dominated convergence.

To prove normality of Φ( f ), note that (i) and (iii) imply

(Φ( f ))⋆Φ( f ) = Φ( f )Φ( f ) = Φ(| f |2) = Φ( f )Φ( f ) = Φ( f )(Φ( f ))⋆.

Selfadjointness (respectively, positivity) for real-valued (respectively, nonnegative) f is
immediate from (iii) (respectively, (9.1)).
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It remains to prove the uniqueness assertion. Assume that Φ1,Φ2 : Bb(Ω)→L (H)

are two linear maps satisfying properties (i)–(v) of Theorem 9.8, and that

Φ1(1F) = Φ2(1F), for all F ∈F .

Let f ∈ Bb(Ω) and let ( fn)n⩾1 be a sequence of simple functions converging uniformly
to f with ∥ fn∥∞ ⩽ ∥ f∥∞ for all n. Then Φ1( fn) = Φ2( fn) for all n, and property (v)
implies

∥Φi( f )−Φi( fn)∥⩽ ∥ f − fn∥∞, i = 1,2.

It follows that Φi( fn) converges in operator norm to Φi( f ) as n→∞, and hence Φ1( f )=
Φ2( f ). Since f ∈ Bb(Ω) was arbitrary, we conclude that Φ1 = Φ2.

In what follows we shall write

Φ( f ) =
∫

Ω

f dP =
∫

Ω

f (λ )dP(λ )

for functions f ∈ Bb(Ω); the rigorous interpretation of these integrals is through (9.1).

Proposition 9.9 (Substitution). Let (Ω,F ) and (Ω′,F ′) be measurable spaces and let
f : Ω→Ω′ be a measurable mapping. If P : F →L (H) is a projection-valued measure,
then the mapping Q : F ′→L (H) defined by

QF ′ := Pf−1(F ′), F ′ ∈F ′,

is a projection-valued measure. Denoting by Φ and Ψ the bounded functional calculi of
P and Q, for all g ∈ Bb(Ω

′) we have

Φ(g◦ f ) = Ψ(g).

Proof The elementary verification that Q is a projection-valued measure is left as an
exercise. For all F ′ ∈F ′ and x ∈ H,∫

Ω

1F ′ ◦ f dPx =
∫

Ω

1 f−1(F ′) dPx = (Pf−1(F ′)x|x) = (QF ′x|x) =
∫

Ω′
1F ′ dQx.

By linearity and monotone convergence, it follows that for nonnegative functions g ∈
Bb(Ω

′) and x ∈ H we have ∫
Ω

g◦ f dPx =
∫

Ω′
gdQx,

that is, (Φ(g ◦ f )x|x) = (Ψ(g)x|x). For nonnegative g ∈ Bb(Ω
′) the result now follows

from Proposition 8.1. For general g∈ Bb(Ω
′) the result follows by splitting into real and

imaginary parts and considering their positive and negative parts.

Due to the absence of a reference measure µ on Ω we had to work with the Banach
space Bb(Ω) rather than with a Lebesgue space L∞(Ω,µ). However, the projection-
valued measure P can be used to define a Lebesgue-type space L∞(Ω,P) as follows.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
296 The Spectral Theorem for Bounded Normal Operators

Definition 9.10 (P-Essential boundedness). A measurable function f : Ω→ C is said
to be P-essentially bounded if P({| f |> r}) = 0 for some r ⩾ 0. We define L∞(Ω,P) to
be the space of all equivalence classes of P-essentially bounded measurable functions,
identifying the functions f and g when P({ f ̸= g}) = 0.

With respect to the norm

∥ f∥L∞(Ω,P) := inf
{

r ⩾ 0 : P({| f |> r}) = 0
}

the space L∞(Ω,P) is easily checked to be a Banach space.
For functions f ∈ L∞(Ω,P) we obtain a well-defined bounded operator Φ( f ), the

properties (i) and (ii) holds again, and (iv) improves to equality:

Proposition 9.11. If P : F →L (H) is a projection-valued measure, then for all f ∈
L∞(Ω,P) we have

∥Φ( f )∥= ∥ f∥L∞(Ω,P).

Proof The upper bound ‘⩽’ is an immediate consequence of part (ii) of Theorem
9.8. The lower bound ‘⩾’ is proved by observing that the definition of the P-essential
supremum implies that for all ε > 0 the projection PFε

is nonzero, where

Fε :=
{
| f |> (1− ε)∥ f∥L∞(Ω,P)

}
.

Then, for all x ∈ R(PFε
),

∥Φ( f )x∥2 =
∫

Ω

| f |2 dPx ⩾ (1− ε)2∥ f∥2
L∞(Ω,P)

∫
Ω

1Fε
dPx

= (1− ε)2∥ f∥2
L∞(Ω,P)∥PFε

x∥2 = (1− ε)2∥ f∥2
L∞(Ω,P)∥x∥

2.

This shows that ∥Φ( f )∥ ⩾ (1− ε)∥ f∥L∞(Ω,P). Since ε > 0 was arbitrary, the result fol-
lows from this.

We now turn to the special case of projection-valued measures defined on the Borel
σ -algebra B(K) of a compact subset K of the complex plane. In that case we can
consider the function

id(λ ) := λ .

The properties of the operator Φ(id) are summarised in the next proposition.

Proposition 9.12. Let K ⊆ C be compact and let P : B(K)→L (H) be a projection-
valued measure. Define the bounded operator TP ∈L (H) by TP := Φ(id), that is,

TP := Φ(id) =
∫

K
λ dP(λ ).

Then:

(1) TP is normal;
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(2) the spectrum of TP is contained in K;
(3) the support of P equals σ(TP) in the following sense:

(i) PK∩U ̸= 0 for all open sets U ⊆ C such that σ(TP)∩U ̸=∅;
(ii) PB = 0 for all Borel sets B⊆ K such that σ(TP)∩B =∅.

The operator TP is selfadjoint if K ⊆ R, positive if K ⊆ [0,∞), unitary if K ⊆ T, and an
orthogonal projection if K ⊆ {0,1}.

Proof Let Φ : Bb(K)→L (H) be the bounded functional calculus associated with P
and write TP =: T for brevity.

Part (1) is immediate from the properties of the bounded calculus.

If λ0 ∈ ∁K, the functions λ 7→ λ0− λ and λ 7→ (λ0− λ )−1 are bounded on K and
multiply to 1. In view of Φ(1) = PK = I we have λ0−T = Φ(λ0− id), and property (iii)
of the bounded calculus shows that λ0−T is a two-sided inverse of Φ((λ0− id)−1). It
follows that λ0 ∈ ρ(T ) and R(λ0,T ) = Φ((λ0− id)−1). This proves (2).

Next we show that PB = 0 for all Borel sets B⊆ K such that σ(T )∩B =∅.

Step 1 – Suppose first, for a contradiction, that there is a Borel set B ⊆ K such that
B∩ σ(T ) = ∅ and PB = 1B(T ) ̸= 0. By the additivity of P, there exists a half-open
rectangle R1 of sufficiently small diameter ρ > 0 such that R1 ∩σ(T ) = ∅ and PB1 =

1B1(T ) ̸= 0, where B1 = B∩R1. Proceeding inductively we obtain a sequence of nested
half-open rectangles R1 ⊇ R2 ⊇ . . . such that diam(Rn)⩽ 2−n+1ρ , Rn∩σ(T ) =∅, and
PBn = 1Bn(T ) ̸= 0 for Bn := B∩Rn. Let

⋂
n⩾1 Rn =: {λ0} and note that λ0 ∈ B.

Let xn ∈ R(1Bn(T )) have norm one. Since 1Bn(T ) is a projection we have xn =

1Bn(T )xn, and for all y ∈ H we obtain, using the multiplicativity of Φ,

∥T xn−λ0xn∥2 = ((T −λ0)
⋆(T −λ0)1Bn(T )xn|xn) =

∫
K
|λ −λ0|21Bn(λ )dPxn(λ )

and therefore

∥T xn−λ0xn∥2 ⩽ sup
λ∈K
|λ −λ0|2(PBnxn|xn)⩽ diam2(Bn)⩽ 2−2n+2.

This means that λ0 is an approximate eigenvalue for T , so λ0 ∈ σ(T ). We also have
λ0 ∈ B and B∩ σ(T ) = ∅. This contradiction proves that PB = 0 for all Borel sets
B⊆ K whose closure is disjoint of σ(T ).

Step 2 – Now consider a general Borel set B⊆ K disjoint with σ(T ). The Borel set

B(n) := B∩
{

λ ∈ K : d(λ ,σ(T ))⩾
1
n

}
has closure disjoint from σ(T ) and consequently PB(n) = 0 for all n ⩾ 1 by what we
already proved. In particular we have Px(B(n)) = 0 for all x ∈ H, and by monotone
convergence it follows that Px(B) = (PBx|x) = 0 for all x ∈ H. This implies PB = 0.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
298 The Spectral Theorem for Bounded Normal Operators

This completes the proof of the support property (i). It implies that there is no loss of
generality in assuming that K = σ(T ). Assuming this in the rest of the proof, we now
turn to the proof of the support property (ii).

Let U ⊆ C be an open set such that σ(T )∩U ̸= ∅ and suppose, for a contradic-
tion, that Pσ(T )∩U = 0. Then PB = 0 for all Borel sets B ⊆ σ(T )∩U . This implies that∫

σ(T ) f dP = 0 for all simple functions f supported on such sets, and by approximation
the same is true for all bounded Borel functions supported in σ(T )∩U . In particular,∫

σ(T )
1σ(T )∩U λ dP(λ ) = 0.

Let P̃ : σ(T )\U →L (H) be the restriction of P to σ(T )\U . Since

P̃σ(T )\U = Pσ(T )\U = Pσ(T ) = I,

P̃ is a projection-valued measure. Denoting T̃ := Φ̃(id) the associated operator, we have

T̃ =
∫

σ(T )\U
λ dP̃(λ ) =

∫
σ(T )

1σ(T )\U λ dP(λ ) =
∫

σ(T )
λ dP(λ ) = T

and therefore σ(T ) = σ(T̃ )⊆ σ(T )\U by (2), which is absurd.

If K ⊆ R (respectively K ⊆ [0,∞)), then (T x|x) ∈ R (respectively (T x|x) ∈ [0,∞))
for all x ∈ H and therefore T is selfadjoint (respectively positive). If K ⊆ T, then T is
invertible by part (2) and

T ⋆ =
∫

K
λ dP(λ ) =

∫
K

λ
−1 dP(λ ) = T−1

and therefore T is unitary. If K ⊆ {0,1}, then T = 0 if K = {0} and T =
∫

K λ dP(λ ) =
P{1} if 1 ∈ K. In both cases we see that T is an orthogonal projection.

It follows from the proposition that P restricts to a projection-valued measure on
σ(TP) in a natural way. Accordingly we have

TP =
∫

σ(TP)
λ dP(λ ).

The spectral theorem for bounded normal operators, which will be proved in Section
9.4, asserts that conversely for every normal operator T ∈L (H) there exists a unique
projection-valued measure P on σ(T ) such that T = TP, that is,

T =
∫

σ(T )
λ dP(λ ).

This will allow us to prove converses to the four implications in the final assertion in
the proposition (see Corollary 9.18).

We have the following uniqueness result:
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Proposition 9.13 (Uniqueness). Let P and P̃ be projection-valued measures on a com-
pact set K ⊆ C and define the operators TP and TP̃ as before. If TP = TP̃, then P = P̃.

Proof Let us write T := TP = TP̃. Then T = Φ(id) = Φ̃(id) and T ⋆ = Φ(id) = Φ̃(id),
where Φ and Φ̃ are the bounded calculi associated with P and P̃, respectively, and
id(λ ) = λ . By the multiplicativity of the calculi,

T mT ⋆n = Φ(idmidn
) = Φ(id)m

Φ(id)n = Φ̃(id)m
Φ̃(id)n = Φ̃(idmidn

).

It follows that p(T ) = Φ(p) = Φ̃(p) for all functions p(z) = q(z,z) with q a polynomial
in two variables, and then f (T ) = Φ( f ) = Φ̃( f ) for all f ∈C(σ(T )) by approximation
using the Stone–Weierstrass theorem (Theorem 2.5). This means that∫

σ(T )
f dP =

∫
σ(T )

f dP̃, f ∈C(σ(T )).

If R is an open rectangle in C, and if 0 ⩽ fn ↑ 1R pointwise on K with each fn continuous
on K, we find that

Px(σ(T )∩R) =
∫

σ(T )
1R dPx = lim

n→∞

∫
σ(T )

fn dPx

= lim
n→∞

∫
σ(T )

fn dP̃x =
∫

σ(T )
1R dP̃x = P̃x(σ(T )∩R).

This means that Px(σ(T )∩R) = P̃x(σ(T )∩R) for all open rectangles R. By Dynkin’s
lemma (Lemma E.4), this implies that Px(B) = P̃x(B) and therefore

(PBx|x) = Px(B) = P̃x(B) = (P̃Bx|x)

for all x ∈ H and Borel subsets B of σ(T ). It follows that PB = P̃B for all Borel subsets
B of σ(T ). Since P and P̃ are supported on σ(T ) this completes the proof.

9.4 The Spectral Theorem for Bounded Normal Operators

We are now ready to state and prove the spectral theorem for bounded normal operators.

Theorem 9.14 (Spectral theorem for bounded normal operators). Let T ∈L (H) be a
normal operator. There exists a unique projection-valued measure P on σ(T ) such that

T =
∫

σ(T )
λ dP(λ ).

For the proof of Theorem 9.14 we need the following elementary consequence of the
Riesz representation theorem.
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Proposition 9.15. Let a : H×H→C be a sesquilinear mapping with the property that
there exists a constant C ⩾ 0 such that

|a(x,y)|⩽C∥x∥∥y∥, x,y ∈ H.

Then there exists a unique operator A ∈L (H) such that

a(x,y) = (Ax|y), x,y ∈ H.

Moreover, ∥A∥⩽C, where C is the boundedness constant of a.

Proof For all y ∈ H, the mapping x 7→ a(x,y) is a bounded functional on H, and the
Riesz representation theorem gives a unique w = w(y) ∈ H satisfying

a(x,y) = (x|w(y)), x ∈ H.

Let B : y 7→ w = w(y) be the resulting mapping. Then,

a(x,y) = (x|By), x,y ∈ H.

We claim that B : H→H is a bounded operator. Indeed if c1,c2 ∈K and y1,y2 ∈H, for
all x ∈ H we have

(x|B(c1y1 + c2y2)) = a(x,c1y1 + c2y2) = c1a(x,y1)+ c2a(x,y2)

= c1(x|By1)+ c2(x|By2) = (x|c1By1 + c2By2).

Since this equality holds for all x ∈ H it follows that B is linear. Furthermore,

∥Bx∥2 = (Bx|Bx) = |(Bx|Bx)|= |a(Bx,x)|⩽C∥Bx∥∥x∥.

Consequently ∥Bx∥⩽C∥x∥ for all x ∈ H, so B is bounded with ∥B∥⩽C. The operator
A := B⋆ has the required properties.

Proof of Theorem 9.14 We begin with existence. For x,y ∈H consider the linear map-
ping φx,y : C(σ(T ))→ C,

φx,y( f ) := ( f (T )x|y),

where f (T ) is given by the continuous functional calculus of T . The bound ∥ f (T )∥ ⩽
∥ f∥∞ implies that φx,y is bounded and

∥φx,y∥⩽ ∥x∥∥y∥.

By the Riesz representation theorem (Theorem 4.2) there exists a unique complex Borel
measure Px,y on σ(T ) such that

( f (T )x|y) =
∫

σ(T )
f dPx,y, f ∈C(σ(T )). (9.3)
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Note that

∥Px,y∥= sup
∥ f∥∞⩽1

|( f (T )x|y)|⩽ ∥x∥∥y∥

since ∥ f (T )∥ ⩽ ∥ f∥∞. Hence by Proposition 9.15, for all f ∈ Bb(σ(T )) there exists a
unique bounded operator on H, which we denote by f (T ), such that

( f (T )x|y) =
∫

σ(T )
f dPx,y (9.4)

for all x,y ∈ H. The bound on the norm of Px,y implies

∥ f (T )∥⩽ ∥ f∥∞, f ∈ Bb(σ(T )).

For f ∈C(σ(T )), (9.4) is consistent with (9.3). Taking f (λ ) = λ and x = y, and noting
that Px := Px,x is a finite Borel measure on σ(T ), we obtain the identity in the statement
of the theorem,

(T x|x) =
∫

σ(T )
λ dPx(λ ),

except that it remains to be proved that the measures Px come from a projection-valued
measure. The remainder of the proof is devoted to showing that this is indeed the case.

For all f ,g ∈ C(σ(T )) and x,y ∈ H, by the multiplicativity of the continuous func-
tional calculus of T we have∫

σ(T )
f dPg(T )x,y = ( f (T )g(T )x|y) = (( f g)(T )x|y) =

∫
σ(T )

f gdPx,y.

By the Riesz representation theorem (Theorem 4.2), this implies that Pg(T )x,y = gPx,y

as finite Borel measures on σ(T ). This, in turn, implies that for all f ∈ Bb(σ(T )),
g ∈C(σ(T )), and x,y ∈ H, we have

( f (T )g(T )x|y) =
∫

σ(T )
f dPg(T )x,y =

∫
σ(T )

f gdPx,y = (( f g)(T )x|y).

Starting from this identity, and interchanging the roles of f and g in the preceding
argument, we obtain that the preceding identity holds for all f ,g ∈ Bb(σ(T )) and x,y ∈
H, and therefore, for all f ,g ∈ Bb(σ(T )),

f (T )g(T ) = ( f g)(T ) (9.5)

For Borel sets B⊆ σ(T ) we define the bounded operator PB ∈L (H) by

PB := 1B(T ).

This operator is positive since 1B is nonnegative, contractive, and for all x ∈ H we have

(PBx|x) =
∫

σ(T )
1B dPx = Px(B).
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By (9.5), P2
B = 1B(T )1B(T ) = 1B(T ) = PB. It follows that PB is a projection, and this

projection is orthogonal by selfadjointness.
Uniqueness follows from Proposition 9.13.

Example 9.16. On L2(0,1), the position operator X is defined by

X f (x) := x f (x), x ∈ (0,1), f ∈ L2(0,1).

We have σ(X) = [0,1], and the projection-valued measure of X is given by

PB f = 1B f

for all f ∈ L2(0,1) and Borel subsets B of [0,1] (see Problem 9.11). In particular,
1B(X) = 0 for any Borel null set B of [0,1]. As a consequence, for all φ ∈ L∞(0,1)
the operator φ(X) is well defined as a bounded operator on L2(0,1). In fact we have
φ(X) = Tφ , where Tφ f (x) := φ(x) f (x). The operators φ(X) arise quite naturally as fol-
lows:

Proposition 9.17. An operator S ∈L (L2(0,1)) commutes with the operator X (that is,
SX = XS) if and only if there exists φ ∈ L∞(0,1) such that S = φ(X).

Proof The ‘if’ part being easy, we concentrate on the ‘only if’ part. Let S∈L (L2(0,1))
be such that SX = XS. To show that there exists φ ∈ L∞(0,1) such that S = φ(X), a
natural candidate for φ is the function S1 (which a priori is an element of L2(0,1)). For
fn(x) := xn with n ∈ N we have fn = Xn f0 = Xn1 and therefore

S fn = SXn1 = XnS1 = Xn
φ = [x 7→ fn(x)φ(x)].

By the Weierstrass approximation theorem, the polynomials are dense in C[0,1] and
hence in L2(0,1) (as C[0,1] is dense in L2(0,1)). By a limiting argument we conclude
that S f = [x 7→ f (x)φ(x)]. The boundedness of S implies the boundedness of the multi-
plier f 7→ φ f , which in turn implies that φ ∈ L∞(0,1) (cf. Remark 2.27).

We are now in a position to prove the assertions made in Section 8.1.

Corollary 9.18. Let T ∈L (H) be a normal operator.

(1) T is selfadjoint if and only if σ(T )⊆ R;
(2) T is positive if and only if σ(T )⊆ [0,∞);
(3) T is unitary if and only if σ(T )⊆ T;
(4) T is an orthogonal projection if and only if σ(T )⊆ {0,1}.

Furthermore, if T is a projection, then it is an orthogonal projection.

Proof The ‘only if’ statements have already been proved in Chapter 8. The ‘if’ state-
ments follow from Theorem 9.14, either by combining it with the final assertion of
Proposition 9.12 or by the following direct reasoning.
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Write T =
∫

σ(T ) λ dP(λ ) as in Theorem 9.14. If σ(T ) is contained in the real line,
then, by Theorem 9.8,

T ⋆ =
∫

σ(T )
λ dP(λ ) =

∫
σ(T )

λ dP(λ ) = T.

If σ(T ) is contained in the nonnegative half-line, then for all x ∈ H we have

(T x|x) =
∫

σ(T )
λ dPx(λ )⩾ 0.

If σ(T ) is contained in the unit circle, then T is invertible and

T ⋆ =
∫

σ(T )
λ dP(λ ) =

∫
σ(T )

λ
−1 dP(λ ) = T−1.

If T is a projection, then σ(P)⊆ {0,1} and

T =
∫
{0,1}

λ dP(λ ) = 0 ·P{0}+1 ·P{1} = P{1},

which is an orthogonal projection.

As the example of the Volterra operator V shows (see Example 8.12 and Problem
8.16), normality cannot be omitted in parts (1), (2), and (4). The operator I +V shows
that normality cannot be omitted in part (3).

For normal operators T ∈L (H) and functions f ∈ Bb(σ(T )), the operator Φ( f ) ∈
L (H) defined in terms of the projection-valued measure of T by is denoted by f (T ),

f (T ) := Φ( f ) =
∫

σ(T )
f dP.

The properties of the bounded calculus for Φ translate into corresponding properties for
the mapping f 7→ f (T ):

Theorem 9.19 (Bounded functional calculus for normal operators). Let T ∈L (H) be
normal. Then:

(i) for f (z) = zmzn we have f (T ) = T mT ⋆n;
(ii) for all f ,g ∈ Bb(σ(T )) we have ( f g)(T ) = f (T )g(T );

(iii) for all f ∈ Bb(σ(T )) we have f (T ) = ( f (T ))⋆;
(iv) for all f ∈ Bb(σ(T )) we have ∥ f (T )∥⩽ ∥ f∥∞;
(v) for all fn, f ∈ Bb(σ(T )), if supn⩾1 ∥ fn∥∞ < ∞ and fn → f pointwise on σ(T ),

then for all x ∈ H we have fn(T )x→ f (T )x.

Moreover, for all x ∈ H and f ∈ Bb(σ(T )) we have

( f (T )x|x) =
∫

σ(T )
f dPx
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and

∥ f (T )x∥2 =
∫

σ(T )
| f |2 dPx.

The operators f (T ) are normal, and if f is real-valued (respectively, nonnegative) they
are selfadjoint (respectively, positive).

Proof Everything but (i) follows from Theorem 9.8; (i) follows from (ii) and (iii).

Theorem 9.20 (Composition). Let T ∈L (H) be a normal operator. If either

(i) f ∈ Bb(σ(T )) and g ∈C(σ( f (T ))), or
(ii) f ∈C(σ(T )) and g ∈ Bb( f (σ(T ))),

then (g◦ f )(T ) = g( f (T )).

Proof (i): By multiplicativity, this is clear for polynomials g in z and z. The general
case follows by approximation using the Stone–Weierstrass theorem.

(ii): Let Q be the projection-valued measure of S := f (T ). For Borel sets B∈B(σ(S))
define Q′B := (1B ◦ f )(T ). We claim that Q′ is a projection-valued measure on σ(S)
with the property that S =

∫
σ(S) λ dQ′(λ ). Once this has been shown, by uniqueness

(Proposition 9.13) we infer that Q′ = Q and therefore

1B( f (T )) = 1B(S) =
∫

σ(S)
1B dQ =

∫
σ(S)

1B dQ′ = Q′B = (1B ◦ f )(T ).

The identity (g◦ f )(T ) = g( f (T )) then follows by a standard approximation argument.
It remains to prove the claim. The properties of the Borel calculus of T imply that

each operator Q′B is an orthogonal projection and that the mappings B 7→ (Q′Bx|x) are
countably additive. To prove that Q′

σ(S) = I, let P be the projection-valued measure
associated with T . If λ ∈ σ(S), then f (λ )∈ f (σ(T )) = σ( f (T )) (here we use Theorem
8.23), and therefore (1σ( f (T )) ◦ f )(λ ) = 1. It follows that

Q′
σ(S) = (1σ(S) ◦ f )(T ) =

∫
σ(T )

1σ(S) ◦ f dP =
∫

σ(T )
1σ( f (T )) ◦ f dP =

∫
σ(T )

1dP = I.

For any Borel set B∈B(σ(S)) we have
∫

σ(S) 1B dQ′=Q′B = 1B◦ f (T ) =
∫

σ(T ) 1B◦ f dP,
and therefore, by linearity and approximation, for any g ∈ Bb(σ(S)),∫

σ(S)
gdQ′ =

∫
σ(T )

g◦ f dP.

For g(λ ) = λ this gives
∫

σ(S) λ dQ′(λ ) =
∫

σ(T ) f dP = f (T ) = S as desired.

It is of some interest to revisit the case of a compact normal operator T . The spectrum
of T is then a finite or infinite sequence (λn)n⩾1 with 0 as its only possible limit point.
In Theorem 8.15 we have already shown that for any nonzero λ ∈ σ(T ), the orthogonal
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projection Pλ onto the corresponding eigenspace equals the spectral projection P{λ} of
Theorem 6.23.

Proposition 9.21. Let T ∈ L (H) be a compact normal operator and let P be its
projection-valued measure. Then for all nonzero λ ∈ σ(T ),

P{λ} = P{λ} = Pλ .

Proof Putting P̃{λ} := Pλ and extending this definition by putting P̃{0} := 0 if 0 is not
an eigenvalue, the spectral theorem for compact normal operators implies that P̃ defines
a projection-valued measure and

(T x|x) = ∑
λ∈σ(T )

λ (Pλ x|x) = ∑
λ∈σ(T )\{0}

λ (Pλ x|x)

=
∫

σ(T )\{0}
λ dP̃x(λ ) =

∫
σ(T )

λ dP̃x(λ ).

Hence, by the uniqueness theorem for projection-valued measures, P̃ = P.

Further results along this line are given in Problem 9.9 and Theorem 10.58.
We conclude this section with two famous results due to von Neumann.

Theorem 9.22 (von Neumann). If T ∈L (H) is a contraction, then for all polynomials
p in one complex variable we have

∥p(T )∥⩽ sup
|z|=1
|p(z)|.

Proof First suppose that U is a unitary operator. Then σ(U) is contained in the unit
circle. Since unitaries are normal, by Theorem 9.14 we have U =

∫
σ(U) λ dP(λ ), where

P is the projection-valued measure of U . By Theorem 8.22 and the fact that σ(U)⊆ T,

∥p(U)∥= sup
z∈σ(U)

|p(z)|⩽ sup
|z|=1
|p(z)|. (9.6)

Next let T be a contraction. By the Sz.-Nagy dilation theorem (Theorem 8.36), T has
a unitary dilation U , so that T n = J⋆UnJ for some isometric operator J and all n ∈ N.
Then p(T ) = J⋆p(U)J, so ∥p(T )∥⩽ ∥p(U)∥ and the result follows from (9.6).

As an application of the spectral theorem for normal operators we prove von Neu-
mann’s theorem on pairs of commuting selfadjoint operators. Two projection-valued
measures P : F →P(H) and P′ : F →P(H) are said to commute if PF and P′F ′
commute for all F,F ′ ∈F .

Lemma 9.23. Let P1, . . . ,Pk be commuting projection-valued measures on compact
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Hausdorff spaces K1, . . . ,Kk, respectively. There exists a unique projection-valued mea-
sure P on K = K1×·· ·×Kk such that

PB1×···×Bk = P1
B1
◦ · · · ◦Pk

Bk

for all Borel sets B j ⊆ K j, j = 1, . . . ,k.

Proof For Borel sets B j ⊆ K j, j = 1, . . . ,k, and f := 1B1×···×Bk define

Φ( f ) := P1
B1
◦ · · · ◦Pk

Bk
.

We extend this definition by linearity to functions f on K which are linear combinations
of Borel rectangles. Using the commutativity assumptions it is easily checked that this
is well defined and that for such f we have

∥Φ( f )∥⩽ ∥ f∥∞.

We may use this to define, for functions f ∈ C(K), a well-defined bounded operator
Φ( f ), by uniform approximation by simple functions of the above form. In the same
way as in the proof of Theorem 9.14, there exists a projection-valued measure P on K
such that (9.3) holds for all f ∈C(K) and x ∈ H, that is,

(Φ( f )x|x) =
∫

K
f dPx, f ∈C(K), x ∈ H.

This projection-valued measure has the desired properties. Its uniqueness can be proved
using the method of Proposition 9.13.

Theorem 9.24 (von Neumann). Two selfadjoint operators T1,T2 ∈L (H) commute if
and only if there exist a normal operator S ∈L (H) and continuous functions f1, f2 :
σ(S)→ R such that

T1 = f1(S), T2 = f2(S).

Proof The ‘if’ part follows from the multiplicativity of the Borel calculus of S. The
point is to prove the ‘only if’ part. To this end let P1 and P2 denote the projection-valued
measures of T1 and T2 on σ(T1) and σ(T2) respectively, and let P be the projection-
valued measure on K := σ(T1)× σ(T2) ⊆ R2 as in Lemma 9.23. Let L := {z ∈ C :
Rez∈σ(T1), Imz∈σ(T2)}⊆C, that is, we identify K with a rectangle L in the complex
plane. Under this identification, P induces a projection-valued measure on L, denoted
by Q. The operator

S := TQ =
∫

L
λ dQ(λ )

is normal. We will prove that T1 = f1(S) and T2 = f2(S) with f1(z) = Rez and f2(z) =
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Imz. We claim that the image measure of Qx under f1 equals P1
x . Indeed, for all Borel

sets B1 ⊆ σ(T1) we have

f1(Qx)(B1) = Qx(B1 + iσ(T2)) = (QB1+iσ(T2)x|x)
= (PB1×σ(T2)x|x) = ((P1

B1
◦P2

σ(T2)
)x|x) = (P1

B1
x|x) = P1

x (B1),

where we used that P2
σ(T2)

= I. This proves the claim. It now follows that

( f1(S)x|x) =
∫

L
f1(λ )dQx(λ ) =

∫
σ(T1)

µ dP1
x (µ) = (T1x|x).

This being true for all x ∈ H, we conclude that f1(S) = T1. The identity f2(S) = T2 is
proved similarly.

9.5 The Von Neumann Bicommutant Theorem

In this section we prove a result of fundamental importance in the theory of operator
algebras, von Neumann’s celebrated bicommutant theorem. We also identify the bi-
commutant of a single normal operator on a separable Hilbert space as being precisely
the bounded functional calculus of this operator.

John von Neumann, 1903–1957

We begin by introducing the relevant termi-
nology.

Definition 9.25 (Commutant). The commutant
of a subset T ⊆L (H) is the set

T ′ := {S ∈L (H) : ST = T S for all T ∈T }.

The bicommutant of a subset T ⊆L (H) is the
set T ′′ :=(T ′)′. Higher commutants are defined
inductively.

It is an immediate consequence of this defi-
nition that for any subset T ⊆ L (H) we have
T ′ = T ′′′.

Definition 9.26 (Strong and weak operator
topologies). The strong operator topology on
L (H) is the smallest topology τ on L (H) with the property that the linear mappings
T 7→ T x are continuous for all x ∈ H. The weak operator topology on L (H) is the
smallest topology τ on L (H) with the property that the linear mappings T 7→ (T x|y)
are continuous for all x,y ∈ H.
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Definition 9.26 has natural counterparts for L (X) with X a Banach space, but these
will not be needed.

In the same way as was explained in Section 4.6 for the weak and weak∗ topologies,
the strong operator topology is generated by the sets of the form

{T ∈L (H) : ∥(T −T0)x∥< ε}

with ε > 0, x∈H, and T0 ∈L (H), and likewise the weak operator topology is generated
by the sets of the form

{T ∈L (H) : |((T −T0)x|y)|< ε}

with ε > 0, x,y ∈ H, and T0 ∈L (H).
For every set T ⊆L (H), the commutant T ′ is closed in the weak operator topology.

To see this, suppose that T0 ̸∈T ′. Then there exist an operator S ∈T , vectors x,y ∈ H,
and a number δ > 0 such that |(T0Sx|y)− (ST0x|y)|= δ . The set

U := {T ∈L (H) : |((T0−T )Sx|y)|< δ/2, |((T0−T )x|S⋆y)|< δ/2}

is open in the weak operator topology, contains T0, and every T ∈U fails to commute
with S. It follows that U ∩T ′ =∅.

Recall that a subalgebra of L (H) is a subspace of L (H) closed under taking compo-
sitions. A ⋆-subalgebra of L (H) is a subalgebra of L (H) closed under taking Hilbert
space adjoints. A subalgebra is said to be unital if it contains the identity operator.

Theorem 9.27 (von Neumann bicommutant theorem). For a unital ⋆-subalgebra A of
L (H) the following assertions are equivalent:

(1) A = A ′′;
(2) A is weakly closed;
(3) A is strongly closed.

A ⋆-subalgebra A of L (H) which is closed with respect to the operator norm is
called a C⋆-algebra. This is not the commonly used definition (the standard definition
is mentioned in the Notes to Chapter 7), but one of the main theorems on the structure
of C⋆-algebras establishes that this definition is equivalent to the standard one. A unital
⋆-subalgebra A of L (H) satisfying the equivalent conditions of Theorem 9.27 is called
a von Neumann algebra.

Proof The implications (1)⇒(2)⇒(3) are clear.

(3)⇒(1): We proceed in two steps.

Step 1 – Fix x0 ∈ H and let P denote the orthogonal projection in H onto the closure
Y of the subspace {T x0 : T ∈A }. Since I ∈A we have Px0 = x0.

We claim that Y is invariant under all T ∈ A : for if T ∈ A and y ∈ Y , say y =
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limn→∞ Tnx0 with Tn ∈A for all n ⩾ 1, then Ty = limn→∞ T Tnx0 with T Tn ∈A for all
n ⩾ 1, and therefore Ty ∈ Y . Similarly Y⊥ is invariant under all T ∈ A : for if T ∈ A

and x∈Y⊥, then for all y∈Y we have (T x|y) = (x|T ⋆y) = 0 since T ⋆ ∈A and therefore
T ⋆y ∈ Y .

By the claim, for all T ∈ A and x ∈ H we have T Px ∈ Y and T (I−P)x ∈ Y⊥, and
therefore

T Px = PT Px = PT (Px+(I−P)x) = PT x, x ∈ H.

We conclude that T P = PT for all T ∈A , that is, P ∈A ′.
Let T0 ∈ A ′′ be fixed. Then PT0 = T0P since P ∈ A ′, and this implies that T0x0 =

T0Px0 = PT0x0 ∈ Y . By the definition of Y this means that for all ε > 0 there exists an
element T ∈A such that

∥T0x0−T x0∥< ε.

Step 2 – To show that every strongly open set containing the operator T0 ∈A ′′ inter-
sects A it suffices to show that, for any choice of x1, . . . ,xk ∈ H and ε > 0, there exists
T ∈A such that

∥(T0−T )x j∥< ε, j = 1, . . . ,k. (9.7)

In what follows we set x0 := (x1, . . . ,xk).
For S ∈L (H) let ρ(S) ∈L (Hk) be given by

ρ(S)(h1, . . . ,hk) := (Sh1, . . . ,Shk).

We claim that

ρ(T0) ∈ (ρ(A ))′′.

Indeed, suppose that S = (Si j)
k
i, j=1 ∈ (ρ(A ))′. This means that Sρ(T )y = ρ(T )Sy for

all T ∈A and y = (y1, . . . ,yk) ∈ Hk, that is,

k

∑
j=1

Si jTy j =
k

∑
j=1

T Si jy j, i = 1, . . . ,k, y1, . . . ,yk ∈ H,

which implies that for all 1 ⩽ i, j ⩽ k we have Si j ∈ {T}′ for all T ∈ A , so Si j ∈ A ′.
But this clearly implies that ρ(T0) commutes with S.

We now apply Step 1, with H, A , and T0 replaced by Hk, ρ(A ), and ρ(T0) respec-
tively. This gives an operator T ∈A such that ∥(ρ(T0)−ρ(T ))x0∥< ε , that is,

k

∑
j=1
∥(T0−T )x j∥2 < ε

2.

In particular, (9.7) follows from this.
We have shown that every strongly open set containing an element from A ′′ intersects
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A . This means that A is strongly dense in A ′′. Since A was assumed to be strongly
closed, it follows that A = A ′′.

The next theorem establishes a beautiful connection between bicommutants and the
bounded functional calculus.

Theorem 9.28 (von Neumann, bicommutant of a normal operator). Let H be separable
and let T ∈L (H) be normal. Then

{T}′′ =
{

f (T ) : f ∈ Bb(σ(T ))
}
.

Proof of the inclusion ‘⊇’ This inclusion holds for arbitrary Hilbert spaces H and is
proved as follows. The Fuglede–Putnam–Rosenblum theorem (Theorem 8.18) implies
that T ⋆ ∈ {T}′′. It follows that every operator of the form p(T,T ⋆), with p a polynomial
in z and z, is contained in {T}′′. By the Stone–Weierstrass theorem, the same is true
for every function f ∈ C(σ(T )). By pointwise approximation from below, the result
extends to indicator functions f = 1U with U ⊆ σ(T ) relatively open. For all x ∈ H,
the outer regularity of Px implies that PBx = limn→∞ PUnx whenever the relatively open
sets U1 ⊇U2 ⊇ ·· · ⊇ B satisfy limn→∞ Px(Un \B) = 0. Applying this to Sx and x with
S ∈ {T}′, as a consequence we obtain

PBSx = lim
n→∞

PUnSx = lim
n→∞

SPUnx = SPBx, x ∈ H,

which shows that PB ∈ {S}′ for all S ∈ {T}′, that is, PB ∈ {T}′′. This, in turn, implies
that if f ∈ Bb(σ(T )) and S ∈ {T}′, then, upon approximating f with simple functions,

S f (T ) = S
(∫

σ(T )
f dP

)
=
(∫

σ(T )
f dP

)
S = f (T )S

and therefore f (T ) ∈ {T}′′ for all f ∈ Bb(σ(T )).

For the proof of the inclusion ‘⊆’ we need to delve deeper into the structure of
projection-valued measures and the von Neumann algebras they generate.

When (Pn)n⩾1 is a sequence of orthogonal projections in a Hilbert space H, for any
subset F of the set of indices {n ⩾ 1}we denote by

∨
n∈F Pn the orthogonal projection in

H onto the closed span of
⋃

n∈F{Pnx : x ∈H}, and by
∧

n∈F Pn the orthogonal projection
in H onto the closed subspace

⋂
n∈F{Pnx : x ∈ H}. We write P1 ∧P2 =

∧
n∈{1,2}Pn and

P1∨P2 =
∨

n∈{1,2}Pn.
In the next two results, (Ω,F ) is a measurable space, P : F →P(H) is a projection-

valued measure, and

P := {PF : F ∈F}

denotes the range of the projection-valued measure P. Note that in this situation, for all
F,F ′ ∈F we have PF ∨PF ′ = PF∪F ′ and PF ∩PF ′ = PF∩F ′ .
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Proposition 9.29. Let (Fn)n⩾1 be a sequence in F which is a monotone, and set Pn :=
PFn for each n ⩾ 1. Then the strong limit limn→∞ PFnx exists for every x ∈ H. More
precisely, if (Fn)n⩾1 is increasing and F =

⋃
n⩾1 Fn, then

lim
n→∞

Pnx =
(∨

n⩾1

Pn

)
x = PF x, x ∈ H;

if (Fn)n⩾1 is decreasing and F =
⋂

n⩾1 Fn, then

lim
n→∞

Pnx =
(∧

n⩾1

Pn

)
= PF x, x ∈ H.

In particular, the orthogonal projections
∨

n⩾1 Pn and
∧

n⩾1 Pn belong to P.

The final assertion extends to arbitrary sequences (Pn)n⩾1 in P. Indeed, the se-
quence (Qn)n⩾1 defined by Qn := P1 ∨ . . .∨ Pn belongs to P and is increasing, and
clearly

∨
n⩾1 Pn =

∨
n⩾1 Qn. This shows that

∨
n⩾1 Pn ∈P. In the same way we see that∧

n⩾1 Pn ∈P.

Proof First assume that (Fn)n⩾1 is increasing. Let P :=
∨

n⩾1 Pn, and let ε > 0 and
x∈H be arbitrary. Since the range PH is the closed span of the ranges PnH, n ⩾ 1, there
exists a vector y = ∑

N
j=1 z j and indices n j ⩾ 1 such that Pn j z j = z j for j = 1, . . . ,N and

∥Px− y∥< ε.

If n ⩾ n j for all j = 1, . . . ,N, then Pny = y. Since PnP = Pn, it follows that if n ⩾ n j for
all j = 1, . . . ,N, then

∥Pnx−Px∥⩽ ∥Pnx− y∥+∥y−Px∥= ∥Pn(Px− y)∥+∥y−Px∥< 2ε.

This proves that limn→∞ Pnx=Px. Furthermore, the countable additivity of the measures
Px implies

(Px|x) = lim
n→∞

(Pnx|x) = lim
n→∞

Px(Fn) = Px(F) = (PF x|x),

where F =
⋃

n⩾1 Fn. By Proposition 8.1, this shows that P = PF . This completes the
proof for increasing sequences. The corresponding result for decreasing sequences now
follows from this via the identity

∧
n⩾1 Pn = I−

∨
n⩾1(I−Pn).

Theorem 9.30. If the Hilbert space H is separable, then every orthogonal projection
in the von Neumann algebra generated by P is already contained in P.

Proof The ⋆-algebra A(P) generated by P coincides with the linear span of P in
L (H). By the bicommutant theorem, the von Neumann algebra generated by P equals
the closure of A(P) in L (H) with respect to the strong operator topology. Therefore,
to prove the theorem, it suffices to fix an arbitrary orthogonal projection P in this closure
and show that it belongs to P.
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Step 1 – In this step we let y and z be fixed elements of R := PH and N := (I−P)H,
respectively, and show that there exists a projection Q ∈P such that

Qy = y and Qz = 0.

This step does not require H to be separable.
Let ε > 0 be given and fixed. Since P belongs to the strong operator closure of the

linear span of P, there exists an operator of the form S = ∑
N
j=1 c jPj, with each Pj in P,

such that

∥y−Sy∥< ε, ∥Sz∥< ε.

There is no loss of generality in assuming the orthogonal projections Pj to be pairwise
orthogonal, and by adding one orthogonal projection with coefficient 0 to the sum we
may assume without loss of generality that

N

∑
j=1

Pj = I, PjPk = 0 for all 1 ⩽ j ̸= k ⩽ N.

Let E ∈P be the orthogonal projection defined by

E := ∑
|c j |⩾ 1

2

Pj.

For all x ∈H we have, by the pairwise orthogonality of the ranges of the projections Pj,∥∥∥( ∑
|c j |⩾ 1

2

c−1
j Pj

)
x
∥∥∥⩽ ∥∥∥ ∑

|c j |⩾ 1
2

2Pjx
∥∥∥⩽ 2

∥∥∥ N

∑
j=1

Pjx
∥∥∥= 2∥x∥.

It follows that ∥∑|c j |⩾ 1
2

c−1
j Pj∥⩽ 2 and therefore

∥Ez∥=
∥∥∥( ∑
|c j |⩾ 1

2

c−1
j Pj

)
Sz
∥∥∥< 2ε.

In the same way it is seen that

∥y−Ey∥=
∥∥∥ ∑
|c j |< 1

2

Pjy
∥∥∥= ∥∥∥( ∑

|c j |< 1
2

(1− c j)
−1Pj

)
(y−Sy)

∥∥∥< 2ε.

Applying this reasoning with εn = 2−n−1, n ⩾ 1, we obtain a sequence (En)n⩾1 in P

with

∥y−Eny∥< 1
2n , ∥Enz∥< 1

2n . (9.8)

For m ⩾ 1 let the orthogonal projections Enm ∈P be defined by

Enm =
n+m−1∨

k=n

Ek.
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Then Enm ⩾ En, I−Enm ⩽ I−En, and thus y−Enmy = (I−Enm)(I−En)y, from which
it follows that

∥y−Enmy∥< 1
2n . (9.9)

Since

En,m+1 = Enm +(I−Enm)En+m+1,

it follows inductively from (9.8) that

∥Enmz∥< 1
2n +

1
2n+1 + · · ·+ 1

2n+m−1 <
1

2n−1 . (9.10)

For each n ⩾ 1 the sequence (Enm)m⩾1 is increasing in m, and the sequence( ∞∨
m=1

Enm

)
k⩾1

=
( ∞∨

k=n

Ek

)
n⩾1

is decreasing in n. Thus, by Proposition 9.29,

Q :=
∞∧

n=1

∞∨
m=1

Enm = lim
n→∞

lim
m→∞

Enm

belongs to P, with convergence of the right-hand side in the strong operator topology
of L (H). By (9.9) and (9.10) we have Qy = y and Qz = 0.

Step 2 – Since H is separable, we may fix sequences (ym)m⩾1 and (zn)n⩾1 that are
dense sequences in R = PH and z ∈N = (I−P)H, respectively. By Step 1, all n,m ⩾
1 there exists a projection Qnm ∈P such that Qnmym = ym and Qnmzn = 0. By the
observation after the statement of Proposition 9.29, the orthogonal projection

Q̃ :=
∧
n⩾1

∨
m⩾1

Qnm

belongs to P. Since (
∨

m⩾1 Qnm)y j = y j for all j ⩾ 1 and (
∨

m⩾1 Qnm)zn = 0 for all
n ⩾ 1, it follows that Q̃y j = y j = Py j for all j ⩾ 1 and Q̃zk = 0 = Pzk for all k ⩾ 1.
Since the set of all sums y j + zn is dense in H, we conclude that P = Q̃, and therefore P
belongs to P.

We are now ready to complete the proof of Theorem 9.28.

Proof of the inclusion ‘⊆’ of Theorem 9.28 Let P : B(σ(T ))→L (H) be the projection-
valued measure associated with T , and let P = {PF : F ∈B(σ(T ))} as before.

Let S ∈ {T}′′. It is immediate from the bicommutant theorem that {T}′′ is a commu-
tative ⋆-algebra, and therefore S is normal. Therefore, by the spectral theorem,

S =
∫

σ(S)
id(λ )dQ(λ )
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for some projection valued measure Q on B(σ(S)), where id(λ ) = λ . Let B∈B(σ(S))
be any Borel set. The proof of the inclusion ‘⊇’ shows that the orthogonal projection
QB belongs to {S}′′. Therefore, by the general properties of commutants, from S∈ {T}′′
and T ∈P it follows that QB ∈ {T}′′′′ = {T}′′ ⊆P ′′. We are now in a position to apply
Theorem 9.30 and obtain that QB ∈P. Thus, for any B ∈B(σ(S)) there exists a (P-
essentially unique) set F ∈F such that QB = PF .

Choose a sequence of simple functions fn = ∑
Nn
j=1 c jn1B jn such that 0 ⩽ fn→ id uni-

formly as n→ ∞. With the notation just introduced,

S =
∫

σ(S)
id(λ )dQ(λ )

(∗)
= lim

n→∞

∫
σ(S)

fn dQ = lim
n→∞

Nn

∑
j=1

c jnQB jn

= lim
n→∞

Nn

∑
j=1

c jnPFjn = lim
n→∞

∫
σ(T )

Nn

∑
j=1

c jn1Fjn dP,

(9.11)

with convergence in the operator norm of L (H) in all expressions. In this computation,
(∗) is justified by Lemma 9.11, from which it also follows that∥∥∥ Nn

∑
j=1

c jn1Fjn −
Nm

∑
j=1

c jm1Fjm

∥∥∥
L∞(σ(T ),P)

=
∥∥∥ Nn

∑
i=1

cinPFin −
Nm

∑
j=1

c jmPFjm

∥∥∥.
By (9.11), the right-hand side converges to 0 in L (H) and m,n→ ∞. This shows that
the functions ∑

Nn
j=1 c jn1Fjn form a Cauchy sequence in the Banach space L∞(σ(T ),P).

Consequently, they converge to a function G ∈ L∞(σ(T ),P). If g ∈ Bb(σ(T )) is any
element of its equivalence class, by (9.11) we have S = Φ(g), where Φ is the Borel
functional calculus of T .

9.6 Application to Orthogonal Polynomials

In this final section we present an interesting application of the spectral theorem to or-
thogonal polynomials. Let µ be a Borel measure on the real line satisfying the condition∫

∞

−∞

|x|n dµ(x)< ∞, n ∈ N. (9.12)

We further assume that the support of µ is not a finite set. Suppose that (pn)n∈N is a se-
quence of polynomials with real coefficients satisfying the following two assumptions:

(i) for all n ∈ N we have deg(pn) = n;
(ii) for all m,n ∈ N with m ̸= n we have the orthogonality relation∫

∞

−∞

pm(x)pn(x)dµ(x) = 0. (9.13)



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
9.6 Application to Orthogonal Polynomials 315

For n = 0, (i) is understood to mean that p0 ̸≡ 0. By linearity, (i) and (ii) imply∫
∞

−∞

xm pn(x)dµ(x) = 0 whenever m < n.

Proposition 9.31. Let µ be a Borel measure on the real line with the properties stated
above. For any sequence of polynomials (pn)n∈N with real coefficients satisfying the
conditions (i) and (ii), there exist real numbers An,Bn,Cn (n ∈N) satisfying C0 = 0 and
An−1Cn > 0 (n ⩾ 1) such that, with p−1 ≡ 0,

xpn = An pn+1 +Bn pn +Cn pn−1, n ∈ N.

Proof Since xpn is a polynomial of degree n+ 1, it is of the form xpn = ∑
n+1
j=0 c j,n p j

with all coefficients c j,n real-valued. Setting c j,n := 0 for j ⩾ n+2, (9.13) implies∫
∞

−∞

xpn(x)pm(x)dµ(x) = cm,nNm, where Nm =
∫

∞

−∞

p2
m(x)dµ(x).

Since the support of µ is not finite we have Nm ̸= 0 for all m ∈ N. For n ∈ N the poly-
nomial pn(x) is orthogonal to xpm(x) for all m = 0,1, . . . ,n−2. This forces cm,n = 0 for
all m = 0,1, . . . ,n−2. This, in turn, implies

xpn = cn+1,n pn+1 + cn,n pn + cn−1,n pn−1, n ∈ N.

This gives the three point recurrence relation with An = cn+1,n, Bn = cn,n, and Cn =

cn−1,n, with convention C0 = c−1,0 = 0, say. Since the degree of xpn is n+ 1 we have
An ̸= 0. Also, for n ⩾ 1,

An−1Nn = cn,n−1Nn =
∫

∞

−∞

xpn(x)pn−1(x)dµ(x)

=
∫

∞

−∞

xpn−1(x)pn(x)dµ(x) = cn−1,nNn−1 =CnNn−1,
(9.14)

and therefore An−1Cn > 0 for n ⩾ 1.

The polynomial pn has norm one in L2(R,µ) if and only if Nn = 1. Hence if the
pn are orthonormal, (9.14) gives 0 ̸= An−1 = Cn for all n ⩾ 1. As an application of the
spectral theorem we show that, conversely, for every sequence of polynomials satisfying
the three point recurrence relation subject to the conditions 0 ̸= An−1 =Cn for all n ⩾ 1,
and satisfying the additional boundedness assumption

sup
n∈N

max{|An|, |Bn|, |Cn|}< ∞,

there exists a finite Borel measure µ on the real line with respect to which the polyno-
mials are orthonormal.
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Theorem 9.32 (Three-point recurrence). For every sequence (pn)n∈N of polynomials
satisfying the three point recurrence relation

xpn = An pn+1 +Bn pn +Cn pn−1, n ∈ N,

with p−1 ≡ 0, subject to the conditions 0 ̸= An−1 =Cn for all n ⩾ 1 and

sup
n∈N

max{|An|, |Bn|, |Cn|}< ∞,

there exists a finite Borel measure µ on the real line which satisfies (9.12) and such that
the sequence (pn)n∈N is orthonormal in L2(R,µ).

Proof Without loss of generality we may assume p0 ≡ 1.
On the Hilbert space ℓ2(N) we consider the bounded operator

Ten := Anen+1 +Bnen +Cnen−1, n ∈ N,

with the understanding that Te0 := A0e1 +B0e0; boundedness of T is a consequence of
the boundedness assumption on An, Bn, and Cn. Since An−1 =Cn, from

(en|T ⋆em) = Anδm,n+1 +Bnδm,n +An−1δm,n−1

= Am−1δm−1,n +Bmδm,n +Amδm+1,n = (en|Tem)

(which is checked by hand also to hold if n = 0 or m = 0) we see that T is selfadjoint.
Let P be its projection-valued measure and define µ := Pe0 . Then µ is a finite measure
supported on σ(T ), which is a compact set since T is bounded.

Define a linear operator from ℓ2
00(N), the span of the vectors en in ℓ2(N), into L2(R,µ)

by setting Uen := pn for n ∈N. We further define the bounded operator M : L2(R,µ)→
L2(R,µ) by M f (x) := x f (x); the boundedness of M follows from the fact that µ is
supported in a bounded interval I. From

UTen = An pn+1 +Bn pn +An−1 pn−1 = xpn = MUen

we see that UT = MU as linear operators from ℓ2
00(N) to L2(R,µ). By a simple induc-

tion argument, UT n = MnU for all n ∈ N.
We claim that U extends to a unitary operator from ℓ2(N) to L2(R,µ). First we

check that U has dense range. By the Stone–Weierstrass theorem, the functions εk(x) :=
e2πikx/|I|, k ∈ Z, can be uniformly approximated by polynomials, and the injectivity of
the Fourier transform of finite Borel measures (Theorem 5.31) implies that the span
of the functions εk, k ∈ Z, is dense in L2(I,µ), hence in L2(R,µ). These observations
imply that U has dense range. Next, from UT ne0 = Mn p0 = xn and µ = Pe0 we obtain

(UT me0|UT ne0) = (xm|xn) =
∫

I
xm+n dPe0(x) = (T m+ne0|e0) = (T me0|T ne0)
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using the functional calculus of T . The span of the vectors T ne0, n ∈ N, being dense in
ℓ2(N), this concludes the proof that U extends to a unitary operator. It now follows from

(pm|pn) = (Uem|Uen) = (em|en) = δmn

that the polynomials pn are orthonormal in L2(R,µ).

Example 9.33. We have already encountered two examples of orthogonal polynomials.

(i) The Hermite polynomials Hn, n ∈N, have been introduced in Section 3.5.b. They
are orthogonal with respect to the Gaussian measure 1√

2π
exp
(
− 1

2 x2
)

dx on the
real line and satisfy the three point recurrence relation H0(x) = 1, H1(x) = x, and

Hn+2(x) = xHn+1(x)− (n+1)Hn(x), n ∈ N.

(ii) The monic Laguerre polynomials Ln, n ∈ N, have been introduced in Problem
3.16 as a scaled version of the Laguerre polynomials. They are orthogonal with
respect to the measure 1R+(x)exp(−x) on the real line and satisfy the three point
recurrence relation L0(x) = 1, L1(x) = x−1, and

Ln+2(x) = (x−2n+3)Ln+1(x)− (n+1)2Ln(x), n ∈ N.

Problems

9.1 Let T ∈L (H) be a compact normal operator with spectral decomposition

T = ∑
n⩾1

λnPn,

where (λn)n⩾1 is the (finite or infinite) sequence of eigenvalues of T . Prove that if
f : σ(T )→ C is a bounded function, then for all x ∈ H we have

f (T )x = ∑
n⩾1

f (λn)Pnx

with convergence in H. Does the sum ∑n⩾1 f (λn)Pn converge to f (T ) in L (H)?
9.2 Let T ∈L (H) be a compact normal operator. Give a direct proof (that is, without

invoking Theorem 7.11) of the following two statements:

(a) If λ is a nonzero element of σ(T ), then λ is an eigenvalue.
Hint: Use the fact that R(λ−T ) is closed (Lemma 7.9) to establish the equiv-
alences N(λ −T ) = {0}⇔ N(λ −T ⋆) = {0}⇔ R(λ −T ) = H.

(b) If T has infinitely many distinct eigenvalues λn, then limn→∞ λn = 0.
Hint: Choose eigenvectors T hn = λnhn and define H0 := {0} and Hn :=
span{h1, . . . ,hn} for n = 1,2, . . . Show that Hn−1 ⊊ Hn and choose norm one
vectors xn ∈ Hn∩H⊥n−1. Show that if n > m, then ∥T xm−T xn∥⩾ |λn|.
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9.3 Let T ∈L (H) be a selfadjoint operator with projection-valued measure P. Prove
the following results.

(a) If t ∈ R, then for all x ∈ H we have

lim
ε→0

iεR(t + iε,T )x = P{t}x.

(b) If a,b ∈ R with a < b, then for all x ∈ H we have Stone’s formula

lim
ε↓0

1
2πi

∫ b

a
R(t− iε,T )x−R(t + iε,T )xdt =

1
2
(P[a,b]x+P(a,b)x).

Hint: Show first that

lim
ε↓0

1
2πi

∫ b

a

1
λ − iε− t

− 1
λ + iε− t

dt =


0, t ̸∈ [a,b],
1
2 , t ∈ {a,b},
1, t ∈ (a,b).

9.4 Let T1, T2 ∈L (H) be selfadjoint operators with projection-valued measures P(1)

and P(2), respectively. Prove that the following assertions are equivalent:

(1) the projection-valued measures P(1) and P(2) commute, that is, for all Borel
sets B1,B2 in R we have

P(1)
B1

P(2)
B2

= P(2)
B2

P(1)
B1

;

(2) the resolvents of T1 and T2 commute, that is, for all λ1 ∈ ρ(T1) and λ2 ∈ ρ(T2)

we have

R(λ1,T1)R(λ2,T2) = R(λ2,T2)R(λ1,T1);

(3) for all t1, t2 ∈ R we have

exp(it1T1)exp(it2T2) = exp(it2T2)exp(it1T1).

Hint: For implication (3)⇒(1) write exp(it1T1) and exp(it2T2) as spectral integrals
with respect to P(1) and P(2) and use the properties of the Fourier–Plancherel
transform to deduce that for all f ,g ∈F 2(R) we have f̂ (T1)ĝ(T2) = ĝ(T2) f̂ (T1)

and hence, for all f ,g ∈F 2(R),

f (T1)g(T2) = g(T2) f (T1).

By approximation with functions in F 2(R), deduce that

P(1)
(a1,b1)

P(2)
(a2,b2)

= P(2)
(a2,b2)

P(1)
(a1,b1)

for all a1,a2,b1,b2 ∈ R with a1 < b1 and a2 < b2.
9.5 Show that for every positive operator T ∈L (H) one has T ⩽ ∥T∥I.

Hint: If f is bounded and real-valued, then f ⩽ ∥ f∥∞ almost everywhere.
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9.6 Let S,T ∈L (H) satisfy 0 ⩽ S ⩽ T .

(a) Show that ∥S∥⩽ ∥T∥.
Hint: Use the result of the preceding problem.

(b) Show that if S and T are invertible, then 0 ⩽ T−1 ⩽ S−1.
Hint: Observe that T−1/2ST−1/2 ⩽ I by Problem 8.14. Deduce from this that
S1/2T−1S1/2 ⩽ I and use Problem 8.14 once more.

9.7 Let T ∈L (H) be a normal operator with projection-valued measure P. Let B be
a Borel subset of σ(T ).

(a) Show that T leaves the range of PB invariant.
(b) Show that σ(T |R(PB))⊆ B.

9.8 Prove that if T ∈L (H) is normal, then

∥T∥= sup{|(T x|x)| : ∥x∥= 1}.

Hint: Fix λ0 ∈ σ(T ) with |λ0| = ∥T∥ (why does such λ0 exist?) and ε > 0, and
consider the projection PB(λ0;ε), where P is the projection-valued measure of T .
Show that if x ∈ B(λ0;ε) has norm one, then |(T x|x)|⩾ ∥T∥− ε .

9.9 Let T ∈L (H) be a normal operator with projection-valued measure P.

(a) Show that N(T ) = R(P{0}).
Hint: For the inclusion⊆, write σ(T )\{0} as a countable union of Borel sets
Bn, each of which has the property that inf{|λ | : λ ∈ Bn}> 0, and consider

fn(z) =

{
1/ f (z), z ∈ Bn,

0, z ∈ σ(T )\Bn.

(b) Conclude that if λ ∈ σ(T ) is an eigenvalue, then P{λ} equals the orthogonal
projection Pλ onto the eigenspace Eλ .

(c) Conclude that if λ ∈ σ(T ) is an isolated point, then λ is an eigenvalue and
P{λ} = Pλ equals the spectral projection associated with {λ}.

9.10 Show that the space L∞(Ω,P) introduced in Definition 9.10 is a Banach space.
9.11 Prove the following two claims made in Example 9.16:

(a) The position operator X on H = L2(0,1) defined by

X f (x) := x f (x), x ∈ (0,1), f ∈ L2(0,1),

has spectrum σ(X) = [0,1].
(b) The projection-valued measure of X is given by PB f = 1B f for all Borel

subsets B of [0,1] and f ∈ L2(0,1).

9.12 Find the projection-valued measures of the following unitary operators:

(a) the right shift on ℓ2(Z);
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(b) translation over t on L2(R);
(c) rotation over θ on L2(T);
(d) the Fourier transform on L2(Rd).

Hint: For parts (c) and (d) revisit Problems 8.20 and 6.11, respectively.
9.13 Let k ∈ L2((0,1)× (0,1)) satisfy k(s, t) = k(t,s) almost everywhere. Find the

projection-valued measure of the selfadjoint integral operator T on L2(0,1),

T f (t) :=
∫ 1

0
k(t,s) f (s)ds, f ∈ L2(0,1).

9.14 Let T ∈L (H) be selfadjoint.

(a) Show that there exist positive operators T+ and T− such that T = T+−T−.
Hint: Consider the functions f+(t) := t+ and f−(t) := t−.

(b) Show that these operators are unique if we also ask that T+T− = T−T+ = 0.

9.15 Prove that if U ∈L (H) is unitary, there exists a selfadjoint operator T such that
U = eiT and σ(T )⊆ [−π,π]. Is this operator T unique?
Hint: Write U =

∫
σ(T ) λ dP(λ ) as in Theorem 9.14. Find a projection-valued mea-

sure Q on [0,1] whose image under t 7→ eit is P.
9.16 This problem outlines another proof of the spectral theorem for normal operators.

(a) Explain how the proof of the spectral theorem for normal operators simplifies
for selfadjoint operators.

(b) Deduce the spectral theorem for normal operators T from the selfadjoint case
by considering the selfadjoint operators 1

2 (T +T ⋆) and 1
2i (T −T ⋆), and ap-

plying Lemma 9.23 to their projection-valued measures.

9.17 Show that if S,T ∈ L (H) are contractions and 1
2 (S+ T ) = I, then S = T = I.

Deduce from this that I is an extreme point of the closed unit ball of L (H).
Hint: First consider the case that S and T are selfadjoint. For the general case,
observe that 1

2 (
1
2 (S+S⋆)+ 1

2 (T +T ⋆)) = I.
9.18 Show that for any subset T ⊆L (H) we have T ′ = T ′′′.

9.19 Find K (H)′ and K (H)′′, where K (H) is the space of compact operators on H.
9.20 Let T ∈ L (H) be a normal operator with projection-valued measure P, and let

P = {PB : B ∈B(σ(T ))} be its range.

(a) Show that {T}′ = {P}′.
(b) Show that {T}′′ = {P}′′ = span(P), the closure being taking with respect

to the operator norm of L (H).
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10
The Spectral Theorem for Unbounded Normal

Operators

Up to this point we have been dealing exclusively with bounded operators. In order
to make the functional analytic apparatus applicable to the study of partial differential
equations we need to accommodate differential operators into the theory. This leads
to the notion of an unbounded operator as a linear operator defined only on a suitable
subspace, the domain of the operator. Of special interest are unbounded selfadjoint and
normal operators, and the main goal of this chapter is to extend the spectral theorems of
the preceding chapter to these classes of operators.

10.1 Unbounded Operators

Throughout this chapter, X and Y are Banach spaces.

Definition 10.1 (Linear operators). A linear operator from X to Y is a pair (A,D(A)),
where D(A) is a subspace of X and A : D(A)→ Y is a linear operator. The subspace
D(A) is called the domain of A. A linear operator is densely defined when D(A) is a
dense subspace of X .

When no confusion is likely to arise, we omit the domain from the notation and write
A instead of (A,D(A)).

It is perfectly allowable that D(A) = X , so in particular every bounded operator A :
X → Y is a linear operator in the sense of the above definition. More generally it may
happen that there exists a constant C ⩾ 0 such that ∥Ax∥ ⩽ C∥x∥ for all x ∈ D(A). In
this situation, A admits a unique extension to a bounded operator (of norm at most C)

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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322 The Spectral Theorem for Unbounded Normal Operators

defined on the closure of D(A). The interest in the above definition arises from the
fact that many interesting examples of unbounded linear operators exist, that is, linear
operators for which such a constant C does not exist. Typical examples, treated in more
detail below, include differential operators and multiplication operators with unbounded
multipliers.

The terms ‘linear operators’ and ‘unbounded operators’ are often used interchange-
ably. With the latter terminology, however, it becomes somewhat ambiguous whether
bounded operators are to be considered as special cases of unbounded operators. To
avoid such trivial issues we generally prefer the terminology ‘linear operator’, which is
neutral in this respect.

10.1.a Closed Operators

A (globally defined) linear operator from X to Y is bounded if and only if its graph
is closed in X ×Y , the ‘if’ part being the content of the closed graph theorem. This
motivates the following definition.

Definition 10.2 (Closed operators). A linear operator A from X to Y is called closed
when its graph

G(A) := {(x,Ax) : x ∈ D(A)}

is closed in X×Y .

Every bounded operator from X to Y is closed, and by the closed graph theorem a
closed operator with domain D(A) = X is bounded.

If A is a linear operator with domain D(A), then A is bounded (in fact, contractive) as
an operator defined on the normed space D(A) endowed with the graph norm

∥x∥D(A) := ∥x∥+∥Ax∥, x ∈ D(A).

This follows from the trivial inequality

∥Ax∥⩽ ∥x∥+∥Ax∥= ∥x∥D(A).

The following proposition gives a necessary and sufficient condition for closedness in
terms of the graph norm.

Proposition 10.3. A linear operator is closed if and only if its domain is a Banach
space with respect to its graph norm.

Proof ‘If’: Suppose that the domain D(A) of the linear operator A is complete with
respect to its graph norm. To prove that A is closed we must show that its graph is
closed, or equivalently, sequentially closed, in X ×Y . Let ((xn,Axn))n⩾1 be a sequence
converging to some limit (x,y) in X×Y . We must check that (x,y) belongs to the graph
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of A. By the properties of product norms, we have xn → x in X and Axn → y in Y .
In particular, the sequences (xn)n⩾1 and (Axn)n⩾1 are Cauchy in X and Y respectively.
Then the sequence (xn)n⩾1 is Cauchy in D(A) since

∥xn− xm∥D(A) = ∥xn− xm∥+∥Axn−Axm∥→ 0 as m,n→ ∞.

By the completeness of D(A), the sequence (xn)n⩾1 converges in D(A), say xn→ x′ in
D(A). This means that xn→ x′ in X and Axn→ Ax′ in Y . Comparing limits we find that
x′ = x and Ax′ = y. This means that (x,y) = (x′,Ax′) belongs to the graph of A.

‘Only if’: Assume now that A is closed and that (xn)n⩾1 is a Cauchy sequence in
D(A), so (xn)n⩾1 is a Cauchy sequence in X and (Axn)n⩾1 is a Cauchy sequence in Y .
Then ((xn,Axn))n⩾1 is a Cauchy sequence in X×Y . This Cauchy sequence is contained
in the graph of A. This graph is closed by our assumption, and since closed subspaces
of Banach spaces are Banach spaces, this Cauchy sequence converges in X ×Y to a
limit contained in the graph of A, say (xn,Axn)→ (x,Ax) in X ×Y . This implies that
xn→ x in X and Axn→ Ax in Y , which is the same as saying that xn→ x in D(A) with
respect to the graph norm. We have thus shown that every Cauchy sequence in D(A) is
convergent.

The following proposition gives a convenient sequential restatement of the definition
of a closed linear operator, which was already implicit in the proof of Proposition 10.3.

Proposition 10.4. A linear operator A with domain D(A) is closed if and only if the
following holds: whenever xn→ x in X, with xn ∈D(A) for all n, and Axn→ y in Y , then
x ∈ D(A) and Ax = y.

This criterion is used to prove closedness in the next two examples.

Example 10.5. The derivative operator, as a linear operator in C[0,1] with domain
C1[0,1], is densely defined and closed. The density of C1[0,1] in C[0,1] is clear (by the
Weierstrass approximation theorem we can even approximate continuous functions with
polynomials). To prove closedness, suppose that fn→ f in C[0,1], with fn ∈C1[0,1] for
all n, and f ′n→ g in C[0,1]. We must prove that f ∈C1[0,1] and f ′ = g. For all x ∈ [0,1]
we have

f (x)− f (0) = lim
n→∞

fn(x)− fn(0) = lim
n→∞

∫ x

0
f ′n(y)dy =

∫ x

0
g(y)dy,

using the uniform convergence of f ′n to g in the last step. The right-hand side is a con-
tinuously differentiable function, with derivative g. This proves that f ∈ C1[0,1] and
f ′ = g.

An analogous result holds for weak derivatives in Lp(D), where D is an open subset
of Rd ; see Section 11.1.a.
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Example 10.6. Let (Ω,F,µ) be a measure space and let 1⩽ p⩽∞. Given a measurable
function m : Ω→K we may define

D(Am) := { f ∈ Lp(Ω) : m f ∈ Lp(Ω)},
Am f := m f , f ∈ D(Am).

We claim that the linear operator Am is closed. Moreover, if 1 ⩽ p < ∞, then Am is
densely defined.

To prove closedness, let fn → f in Lp(Ω) with each fn in D(Am) and Am fn → g in
Lp(Ω). We must show that f ∈ D(Am) and Am f = g. By passing to a subsequence we
may assume that both convergences also hold pointwise µ-almost everywhere. Then,
for µ-almost all ω ∈Ω,

g(ω) = lim
n→∞

Am fn(ω) = lim
n→∞

m(ω) fn(ω) = m(ω) f (ω).

This proves that m f ∈ Lp(Ω) and m f = g µ-almost everywhere, hence as elements of
Lp(Ω). Equivalently, this says that f ∈ D(Am) and Am f = g.

Now let 1 ⩽ p < ∞. By dominated convergence, limN→∞ 1{|m|⩽N} f = f for all f ∈
Lp(Ω), with convergence in the norm of Lp(Ω). Since 1{|m|⩽N} f ∈ D(Am), this shows
that D(Am) is dense in Lp(Ω).

Example 10.7. If A is a closed operator and B is bounded, then the operator A+B with
domain D(A+B) := D(A) defined by (A+B)x := Ax+Bx for x ∈ D(A) is closed. The
easy proof is left as an exercise.

Example 10.8. If A is an injective closed operator (in particular, if A is an injective
bounded operator), its inverse A−1, with domain D(A−1) = R(A), is closed. This is im-
mediate by noting that the graph of A−1 equals

{(y,A−1y) : y ∈ D(A−1)}= {(Ax,x) : x ∈ D(A)}

and that the latter is closed in Y ×X since {(x,Ax) : x ∈ D(A)} is closed in X×Y .

Further examples will be given later on. We highlight two of them:

Example 10.9. The adjoint A∗ of a densely defined linear operator A acting between Ba-
nach spaces is closed by Proposition 10.18. Likewise, by Proposition 10.22, the Hilber-
tian adjoint A⋆ of a densely defined linear operator A acting between Hilbert spaces is
closed.

Example 10.10. Generators of C0-semigroups are closed by Proposition 13.4.

It frequently happens that linear operators are initially defined on a ‘too small’ domain
to be closed, but can be extended to a closed operator on a larger domain. Typical
examples of this situation arise in connection with differential operators, which initially
can be defined on compactly supported smooth functions only.
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When A and B are linear operators satisfying D(A) ⊆ D(B) and Ax = Bx for all x ∈
D(A), we call B an extension of A, notation:

A⊆ B.

Definition 10.11 (Closability and closure). A linear operator is said to be closable if
it has a closed extension, or equivalently, if the closure of its graph is the graph of a
linear operator. The unique linear operator A whose graph is the closure of the graph of
a closable operator A is called the closure of A; it is the smallest closed extension of A.

We have the following analogue of Proposition 10.4:

Proposition 10.12. A linear operator A with domain D(A) is closable if and only if the
following holds: whenever xn → 0 in X and Axn → y in Y , with all xn in D(A), then
y = 0.

Proof We only need to prove the ‘if’ part, the ‘only if’ part being trivial. Denote the
closure of G(A) by G. We must prove that, under the stated condition, G is the graph of
a linear operator B. This is the case if and only if (x,y1)∈G, (x,y2)∈G implies y1 = y2,
for in that case we may define D(B) to be the set of all x ∈ X such that (x,y) ∈ G; for
x ∈ D(B) we may then define Bx := y, where y ∈ Y is the unique element such that
(x,y) ∈ G. By a limiting argument, the linearity of A implies that the operator B thus
defined is linear. Clearly it extends A and its graph G(B) = G is closed.

Suppose, therefore, that (x,y1) ∈ G and (x,y2) ∈ G. Then (0,y1− y2) ∈ G since G
is a linear subspace of X ×Y , and this means that there exists a sequence (xn,Axn)→
(0,y1−y2) in X×Y . But then xn→ 0 in X and Axn→ y1−y2 in Y . By our assumption,
this forces y1− y2 = 0.

Example 10.13. In the setting of Examples 10.5 and 10.6, a closable operator is ob-
tained by replacing the domain D(A) of the operator A by any smaller subspace Y . The
closure of the operator thus obtained equals A if and only if Y is dense in D(A) with
respect to the graph norm.

Example 10.14. It is shown in Proposition 10.36 in the next section that every densely
defined symmetric operator acting in a Hilbert space is closable.

Example 10.15. Let D be a nonempty open subset of Rd, let 1 ⩽ p ⩽ ∞, and let α ∈Nd

be a multi-index. In Lp(D) we consider the linear operator A with domain C∞
c (D) defined

by

A f := ∂
α f , f ∈C∞

c (D),

where ∂ α = ∂
α1
1 ◦· · ·◦∂

αd
d , with ∂ j = ∂/∂x j the jth directional derivative. We claim that

A is closable. Indeed, suppose the functions fn ∈C∞
c (D) satisfy fn→ 0 and A fn→ g in
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Lp(D). Integrating by parts, for all φ ∈C∞
c (D) we obtain∫

D
gφ dx = lim

n→∞

∫
D
(∂ α fn)φ dx = (−1)|α| lim

n→∞

∫
D

fn∂
α

φ dx = 0, (10.1)

where |α| = α1 + · · ·+αd ; the last step follows by Hölder’s inequality (cf. Corollary
2.25). It is shown in Proposition 11.5 in the next chapter that (10.1) implies g = 0
almost everywhere.

Example 10.16. Let D be a nonempty open subset of Rd and let 1 ⩽ p ⩽ ∞. In Lp(D)

we consider the linear operator A with domain C∞
c (D) defined by

A f := ∆ f , f ∈C∞
c (D),

where ∆ f = ∂ 2
1 f + · · ·+ ∂ 2

d f is the Laplacian of f . In the same way as in the previous
example one shows that this operator is closable. Various explicit descriptions of its
closure can be given, some of which are discussed in Chapters 11–13; see in particular
Sections 11.1.e, 12.3, and 13.6.c.

10.1.b The Adjoint Operator

When A is a densely defined linear operator from X to Y , we may uniquely define a
linear operator A∗ from Y ∗ to X∗ by defining its domain D(A∗) to be the set of all
y∗ ∈ Y ∗ with the property that there exists an element x∗ ∈ X∗ such that

⟨x,x∗⟩= ⟨Ax,y∗⟩, x ∈ D(A).

Since D(A) is dense in X , the element x∗ ∈ X∗ (if it exists) is unique and we can set

A∗y∗ := x∗, y∗ ∈ D(A∗).

Thus, by definition, we have the identity

⟨Ax,y∗⟩= ⟨x,A∗y∗⟩, x ∈ D(A), y∗ ∈ D(A∗).

Definition 10.17 (Adjoint operator). The operator A∗ is called the adjoint of A.

The adjoint of a closable densely defined operator A equals the adjoint of the clo-
sure A, for if x∗ ∈ X∗ and y∗ ∈ Y ∗ are such that ⟨x,x∗⟩ = ⟨Ax,y∗⟩ for all x ∈ D(A), by
continuity this identity extends to all x ∈ D(A).

Proposition 10.18. If A is a densely defined linear operator from X to Y , then A∗ is
weak∗ closed in the sense that its graph is weak∗ closed in Y ∗×X∗ and we have

G(A∗) = (J(G(A)))⊥,

where J : X ×Y → Y ×X is defined by J(x,y) = (−y,x). If A is densely defined and
closed, then A∗ is weak∗ densely defined in the sense that its domain is weak∗ dense.
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Proof The pairing

⟨(y,x),(y∗,x∗)⟩ := ⟨y,y∗⟩+ ⟨x,x∗⟩

allows us to identify Y ∗×X∗ with the dual of Y ×X . By the definition of the adjoint
operator we have (y∗,x∗) ∈ G(A∗) if and only if

⟨(−Ax,x),(y∗,x∗)⟩= 0, x ∈ D(A).

This proves the identity G(A∗) = (J(G(A)))⊥. Since annihilators are weak∗ closed, this
proves that A∗ is weak∗ closed.

If D(A∗) is not weak∗ dense, then by Proposition 4.46 there exists a nonzero element
y0 ∈ Y such that ⟨y0,y∗⟩= 0 for all y∗ ∈ D(A∗). By assumption G(A) is closed in X×Y
and (0,y0) ̸∈ G(A). It follows that J(G(A)) is a closed subspace of Y ×X not containing
J(0,y0) = (−y0,0), so by the Hahn–Banach theorem there exists an element (y∗0,x

∗
0) ∈

Y ∗×X∗ annihilating J(G(A)) but not (−y0,0). In other words,

⟨x,x∗0⟩= ⟨Ax,y∗0⟩, x ∈ D(A),

and

⟨y0,y∗0⟩ ̸= 0.

The first equality implies that y∗0 ∈ D(A∗), so the second one implies that y0 does not
vanish against every element of D(A∗), contradicting the choice of y0.

If the linear operators A and B act from X to Y , we define the operator A+B acting
from X to Y by

D(A+B) := D(A)∩D(B),
(A+B)x := Ax+Bx, x ∈ D(A+B).

If A acts from X to Y and B acts from Y to another Banach space Z, we define the
operator BA acting from X to Z by

D(BA) := {x ∈ D(A) : Ax ∈ D(B)},
BAx := B(Ax) x ∈ D(BA).

There is of course a priori no guarantee that D(A+B) and D(BA) contain any nontrivial
elements even when both A and B are densely defined.

Proposition 10.19. Let A and B be densely defined operators acting in the ways indi-
cated above. Then:

(1) if A⊆ B, then B∗ ⊇ A∗;
(2) if A+B is densely defined, then A∗+B∗ ⊆ (A+B)∗, with equality if B is bounded;
(3) if BA is densely defined, then A∗B∗ ⊆ (BA)∗, with equality if B is bounded.
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Proof Part (1) is immediate from the definitions.
If y∗ ∈ D(A∗+B∗) = D(A∗)∩D(B∗), then for all x ∈ D(A+B) = D(A)∩D(B) we

have ⟨(A+B)x,y∗⟩ = ⟨Ax,y∗⟩+ ⟨Bx,y∗⟩ = ⟨x,A∗y∗+B∗y∗⟩, so y∗ ∈ D((A+B)∗) and
(A+B)∗y∗ = A∗y∗+B∗y∗. If B is bounded and y∗ ∈D((A+B)∗), then for all x ∈D(A+

B) =D(A) we have ⟨Ax,y∗⟩= ⟨(A+B)x,y∗⟩−⟨Bx,y∗⟩= ⟨x,(A+B)∗y∗⟩−⟨x,B∗y∗⟩, so
that y∗ ∈ D(A∗) = D(A∗+B∗) and A∗y∗ = (A+B)∗y∗−B∗y∗. This gives (2).

If z∗ ∈ D(A∗B∗), then z∗ ∈ D(B∗) and B∗z∗ ∈ D(A∗), and for all x ∈ D(BA) we have
⟨(BA)x,z∗⟩= ⟨Ax,B∗z∗⟩= ⟨x,A∗B∗z∗⟩, so that z∗ ∈ D((BA)∗) and (BA)∗z∗ = A∗B∗z∗. If
B is bounded and z∗ ∈ D((BA)∗), then for all x ∈ D(BA) = D(A) we have ⟨Ax,B∗z∗⟩=
⟨BAx,z∗⟩ = ⟨x,(BA)∗z∗⟩, so B∗z∗ ∈ D(A∗) and z∗ ∈ D(A∗B∗) and A∗B∗z∗ = (BA)∗z∗.
This gives (3).

We have the following useful duality criterion to decide whether an element belongs
to the domain of an operator.

Proposition 10.20. Let A be a densely defined closed operator from X to Y . If x ∈ X
and y∈Y are such that ⟨y,y∗⟩= ⟨x,A∗y∗⟩ for all y∗ ∈D(A∗), then x ∈D(A) and Ax = y.

Proof By the Hahn–Banach theorem, the result follows once we have checked that
⟨(x,y),(x∗,y∗)⟩= 0 for all (x∗,y∗) ∈ (G(A))⊥. Indeed, this gives

(x,y) ∈ ⊥((G(A))⊥) = G(A)
weak

= G(A),

where the first identity follows from Proposition 4.47 and the second from the fact
that closed subspaces are weakly closed by the Hahn–Banach theorem (see Proposition
4.44).

Fix an arbitrary (x∗,y∗) ∈ (G(A))⊥. For all x ∈ D(A) we have (x,Ax) ∈ G(A) and
therefore

0 = ⟨(x,Ax),(x∗,y∗)⟩= ⟨x,x∗⟩+ ⟨Ax,y∗⟩.

This means that y∗ ∈ D(A∗) and A∗y∗ =−x∗. Hence,

⟨(x,y),(x∗,y∗)⟩= ⟨x,−A∗y∗⟩+ ⟨y,y∗⟩= 0.

In what follows we let H and K be Hilbert spaces. When A is a densely defined
operator acting from H to K, the Riesz representation theorem may be used to identify
the adjoint A∗, which acts from K∗ to H∗, with a linear operator A⋆ acting from K to
H. Thus, by definition, an element k ∈ K belongs to D(A⋆) if there exists a (necessarily
unique) element h ∈ H such that

(x|h) = (Ax|k), x ∈ D(A),
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and in that case A⋆k = h. Thus we have the identity

(x|A⋆k) = (Ax|k), x ∈ D(A), k ∈ D(A⋆).

Definition 10.21 (Hilbert space adjoint). The operator A⋆ is called the Hilbert space
adjoint of A.

Proposition 10.18 admits the following Hilbertian version. We denote by H⊕K the
Hilbert space obtained by endowing the cartesian product H×K with the inner product

((h,k)|(h′,k′)) := (h|h′)+(k|k′).

Proposition 10.22. If A is a densely defined linear operator from H to K, then A⋆ is
closed and we have

G(A⋆) = (J(G(A)))⊥

in the sense of orthogonal complements, where J : H ⊕K → K⊕H is defined by
J(x,y) := (−y,x). If A is densely defined and closed, then A⋆ is densely defined.

Proof In Hilbert spaces the weak topology and the weak∗ topology agree, and a sub-
space is weakly dense (respectively, weakly closed) if and only if it is dense (respec-
tively, closed). Hence everything follows from Proposition 10.18, except the statement
that G(A⋆) is the orthogonal complement of J(G(A)) in K⊕H. This follows from

(k,h) ∈ G(A⋆)⇔ (Ax|k) = (x|h) for all x ∈ D(A)

⇔ (k,h)⊥ (−Ax,x) for all x ∈ D(A)⇔ (k,h)⊥ J(G(A)).

Mutatis mutandis, Proposition 10.19 admits a Hilbertian version as well; we leave
this as an exercise to the reader.

Proposition 10.23. If A is a densely defined closed operator acting from H to K, then
A = A⋆⋆ with equality of domains.

Proof If Z is a subspace of H⊕K, then

(k,h)⊥ J(Z)⇔ J(h,k) ∈ Z⊥⇔ (k,h) ∈ J(Z⊥),

which shows that (J(Z))⊥ = J(Z⊥). Using Proposition 10.22 it follows that G(A⋆) =

(J(G(A)))⊥ = J((G(A))⊥) and

G(A⋆⋆) = (J(G(A⋆)))⊥ = (JJ((G(A))⊥))⊥ = (G(A))⊥⊥ = G(A).

For operators acting in Hilbert spaces we have the following extension of Proposition
4.31, the proof of which is almost verbatim the same:
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Proposition 10.24. If A is a densely defined closed operator from H into another
Hilbert space K, then H and K admit orthogonal decompositions

H = N(A)⊕R(A⋆), K = N(A⋆)⊕R(A).

In particular,

(1) A is injective if and only if A⋆ has dense range;
(2) A has dense range if and only if A⋆ is injective.

10.1.c The Spectrum

The spectrum of a linear operator is defined in the same way as for bounded operators,
except that explicit attention has to be paid to domains. Throughout this section, all
vector spaces are complex.

Definition 10.25 (Resolvent and spectrum). The resolvent set of a linear operator A
acting in a Banach space X is the set ρ(A) consisting of all λ ∈C for which the operator
λ I−A has a two-sided inverse, that is, there exists a bounded operator U on X such that:

(i) for all x ∈ D(A) we have U(λ I−A)x = x;
(ii) for all x ∈ X we have Ux ∈ D(A) and (λ I−A)Ux = x.

The spectrum of A is defined as the complement of the resolvent set of A:

σ(A) := C\ρ(A).

We emphasise that, although A is allowed to be unbounded, the two-sided inverse
U = (λ I−A)−1 is required to be bounded. It is customary to write

R(λ ,A) := (λ −A)−1

for λ ∈ ρ(A). As in the bounded case the resolvent identity holds: if λ ,µ ∈ ρ(A), then

R(λ ,A)−R(µ,A) = (µ−λ )R(λ ,A)R(µ,A). (10.2)

By the observations in Examples 10.7 and 10.8, a linear operator A in X with non-
empty resolvent set is closed. The proofs of Lemmas 6.7, the holomorphy of the re-
solvent (contained as part of Lemma 6.10), and Propositions 6.12 and 6.17 carry over
verbatim, and Proposition 1.21 carries over with an obvious adaptation of the proof. For
the reader’s convenience we state the results here:

Proposition 10.26. If A is closed and satisfies ∥Ax∥ ⩾ C∥x∥ for some C > 0 and all
x ∈ D(A), then A is injective and has closed range.
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Proposition 10.27. The spectrum σ(A) is a closed subset of C. More precisely, if λ ∈
ρ(A), then B(λ ;r) ⊆ ρ(A) with r = 1/∥R(λ ,A)∥. Moreover, if |λ − µ| ⩽ δ r with 0 ⩽
δ < 1, then

∥R(µ,A)∥⩽ 1
1−δ

∥R(λ ,A)∥.

Proposition 10.28. The function λ 7→ R(λ ,A) is holomorphic on ρ(A), and its complex
derivative is given by −R(λ ,A)2.

Proposition 10.29. If λn→ λ in C, with each λn ∈ ρ(A) and with λ ∈ ∂ρ(A), then

lim
n→∞
∥R(λn,A)∥= ∞.

The following proposition gives a simple but powerful uniqueness result:

Proposition 10.30. Let A and B be linear operators acting in a Banach space X. If
ρ(A)∩ρ(B) ̸=∅ and B is an extension of A, then A = B with equality of domains.

Proof Fix an arbitrary λ ∈ ρ(A)∩ρ(B). Then for all x∈X we have R(λ ,A)x∈D(A)⊆
D(B) and

(λ −B)R(λ ,A)x = (λ −A)R(λ ,A)x = x.

Multiplying both sides from the left with R(λ ,B) gives R(λ ,A)x=R(λ ,B)x. Since x∈X
was arbitrary, we conclude that R(λ ,A) = R(λ ,B) and therefore D(A) = D(B).

The following result is proved in the same way as Propositions 6.18 and 8.9.

Proposition 10.31. If A is a densely defined operator in a Banach space X, then

σ(A∗) = σ(A).

If A is a densely defined operator in a Hilbert space H, then

σ(A⋆) = σ(A).

For later use we compute the spectrum of a simple diagonal operator.

Proposition 10.32. Let A be a densely defined closed operator in a separable Hilbert
space H with an orthonormal basis (hn)n⩾1 of eigenvectors. If ρ(A) ̸=∅ and the corre-
sponding eigenvalue sequence (λn)n⩾1 satisfies limn→∞ |λn|= ∞, then

σ(A) = {λn : n ⩾ 1}.

Proof Let µ ̸∈ {λn : n ⩾ 1}. The assumption |λn| → ∞ implies that infn⩾1 |µ−λn|=:
δ > 0, and therefore the mapping

Rµ : hn 7→
1

µ−λn
hn
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has a unique extension to a bounded operator on H of norm at most 1/δ . It is clear that
this operator is injective, so its inverse R−1

µ is closed. Hence the operator B := µ−R−1
µ

with domain D(B) := R(Rµ) is closed. Clearly µ ∈ ρ(B) and R(µ,B) = Rµ . Moreover,

Bhn = µhn− (µ−λn)hn = λnhn = Ahn, n ⩾ 1.

We claim that the linear span Y of the vectors hn, n ⩾ 1, is dense in D(B) with re-
spect to the graph norm. Indeed, let g ∈ D(B). Then g ∈ R(Rµ), say g = Rµ h with
h = ∑ j⩾1 c jh j ∈ H. Let Pk denote the orthogonal projection onto the span of h1, . . . ,hk.
Then Pkg→ g in H as k→ ∞. Also, PkRµ = Rµ Pk implies Pkg ∈ R(Rµ) = D(B) and

(µ−B)Pkg = (µ−B)PkRµ h

= (µ−B)
k

∑
j=1

c j

µ−λ j
h j =

k

∑
j=1

c jh j→ h = R−1
µ g = (µ−B)g

as k→ ∞. This implies BPkg→ Bg. It follows that Pkg→ g in D(B) as claimed. Since
Y is contained in D(A) and A is closed, it follows that B⊆ A.

Now let µ0 ∈ ρ(A). Then µ0 ̸∈ {λn : n ⩾ 1} since every λn is an eigenvalue for A, and
therefore µ0 ∈ ρ(B) by what we just proved. Proposition 10.30 now implies A = B. But
then, by what we already proved for B, every µ ̸∈ {λn : n ⩾ 1} belongs to ρ(A).

We conclude this section with two useful elaborations on Proposition 10.27. In the
first, we write Σϕ := {z ∈C\{0} : |arg(z)|< ϕ}, the argument being taken in (−π,π).

Lemma 10.33. Let A be a linear operator acting in a Banach space X. If the open
half-line (0,∞) is contained in ρ(A) and

sup
λ>0
∥λR(λ ,A)∥=: M < ∞,

then M ⩾ 1, and for all ϕ ∈ (0, 1
2 π) with sinϕ < 1/M we have Σϕ ⊆ ρ(A) and

sup
λ∈Σϕ

∥λR(λ ,A)∥⩽ M
1−M sinϕ

.

Proof For x ∈ D(A) we have λR(λ ,A)x = x+R(λ ,A)Ax→ x as λ → ∞, from which
it follows that M ⩾ 1.

Proposition 10.27 implies that for every µ > 0 the open ball with centre µ and radius
1/∥R(µ,A)∥ is contained in ρ(A). The union of these balls is a sector; we shall now
verify that the sine of its angle equals at least 1/M.

Let ϕ ∈ (0, 1
2 π) satisfy sinϕ < 1/M. Fix λ ∈ Σϕ and let µ > 0 be determined by

the requirement that the triangle spanned by 0, λ , µ has a right angle at λ (thus, by
Pythagoras, |λ − µ|2 + |λ |2 = |µ|2, so µ = |λ |2/|Reλ |). Let θ denote the angle of λ

with the positive real line. See Figure 10.1. Then |λ − µ|/|µ| = sinθ < sinϕ < 1/M,



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
10.1 Unbounded Operators 333

µ

θ ϕ

λ

Figure 10.1 The proof of Lemma 10.33

so |λ −µ|< |µ|/M ⩽ 1/∥R(µ,A)∥. Hence λ ∈ ρ(A), and estimating for the Neumann
series gives

∥R(λ ,A)∥⩽ ∥R(µ,A)∥
∞

∑
n=0

|λ −µ|n

|µ|n
∥µR(µ,A)∥n

⩽
M
|µ|

∞

∑
n=0

(sinϕ)nMn ⩽
M

1−M sinϕ
· 1
|λ |

.

A typical application of this lemma is the second part of the next corollary, which
extends a uniform bound on λR(λ ,A) on a half-plane to a larger sector. For reasons of
completeness we also include its counterpart for uniform bounds on R(λ ,A).

Lemma 10.34. Suppose that the half-plane C+ = {Reλ > 0} = {|arg(λ )| < 1
2 π} is

contained in the resolvent set ρ(A) of the linear operator A acting in a Banach space
X. Then:

(1) if supλ∈C+
∥R(λ ,A)∥< ∞, then there exists a δ > 0 such that {Reλ >−δ} ⊆ ρ(A)

and

sup
Reλ>−δ

∥R(λ ,A)∥< ∞;
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(2) if supλ∈C+
∥λR(λ ,A)∥ < ∞, then there exists a δ > 0 such that {|argλ | < 1

2 π +

δ} ⊆ ρ(A) and

sup
|argλ |< 1

2 π+δ

∥λR(λ ,A)∥< ∞.

Proof Proposition 10.29 implies that in case (1) we have iR ⊆ ρ(A), and that in case
(2) we have iR\{0} ⊆ ρ(A). The result now follows from Proposition 10.27 applied to
the points λ ∈ iR (in case (1)) and Lemma 10.33 applied to the operators ±iA (in case
(2)).

10.2 Unbounded Selfadjoint Operators

In what follows we let H be a complex Hilbert space.

Definition 10.35 (Symmetric and positive operators). A linear operator A acting in H
is called:

• symmetric, if for all x,y ∈ D(A) we have (Ax|y) = (x|Ay).
• positive, if for all x ∈ D(A) we have (Ax|x)⩾ 0.

Over the complex scalars, positive operators are symmetric. Indeed, if A is positive,
then for all x ∈ D(A) we have (Ax|x) = (Ax|x) = (x|Ax). By polarisation (as in the
proof of Proposition 8.1, this requires working over the complex scalars) this implies
(Ax|y) = (x|Ay) for all x,y ∈ D(A).

It is an immediate consequence of Definition 10.35 and the definition of A⋆ that if A
is densely defined and symmetric, then D(A) ⊆ D(A⋆) and Ax = A⋆x for all x ∈ D(A),
that is, A⋆ is an extension of A. Since A⋆ is closed, we have shown:

Proposition 10.36. If A is a densely defined symmetric operator, then A is closable and
A⋆ is a closed extension of A.

In general, D(A) may be strictly smaller than D(A⋆). A simple example is the Laplace
operator ∆ on L2(Rd) with domain C∞

c (Rd): this operator is densely defined and sym-
metric but not closed, and therefore ∆⋆ is a proper extension of ∆. This motivates the
following definition.

Definition 10.37 (Selfadjoint operators). A densely defined operator A in H is called
selfadjoint if A = A⋆, that is, if D(A) = D(A⋆) and Ah = A⋆h for all h ∈ D(A) = D(A⋆).
The operator A is called essentially selfadjoint if it is closable and its closure A is self-
adjoint.

By Propositions 10.23 and 10.36, a densely defined symmetric operator A is selfad-
joint if and only if A⋆ is symmetric.
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Example 10.38 (Multipliers). Let (Ω,F,µ) be a measure space and let m : Ω→ C be
a measurable function. It has been shown in Example 10.6 that the linear operator Mm

in L2(Ω) defined by

D(Mm) := { f ∈ L2(Ω) : m f ∈ L2(Ω)},
Mm f := m f , f ∈ D(Mm),

is densely defined and closed. It is immediate from the definition of the Hilbert space
adjoint that M⋆

m = Mm with equality of domains D(Mm) = D(Mm). As a consequence,
Mm is selfadjoint in L2(Ω) if and only if m is real-valued µ-almost everywhere.

Example 10.39 (Fourier multipliers). Let m : Rd → R be real-valued and measurable,
and let Am denote the (possibly unbounded) Fourier multiplier in L2(Rd) defined by

D(Am) := { f ∈ L2(Rd) : m f̂ ∈ L2(Rd)},

Am f := (m f̂ )

̂
, f ∈ D(Am).

(10.3)

Let us prove that Am is selfadjoint in L2(Rd). The symmetry of the multiplier Mm con-
sidered in the previous example implies that Am is symmetric: for all f ,g ∈ D(Am) we
have f̂ , ĝ ∈ D(Mm) and, by the Plancherel theorem,

(Am f |g) = (Mm f̂ |ĝ) = ( f̂ |Mmĝ) = ( f |Amg).

By Proposition 10.36 this implies D(Am)⊆D(A⋆
m). Conversely, if g∈D(A⋆

m) and A⋆
mg=

h, then for f ∈ D(Am) we have, since f̂ ∈ D(Mm),

( f̂ |ĥ) = ( f |h) = (Am f |g) = (Âm f |ĝ) = (Mm f̂ |ĝ).

This means that ĝ ∈ D(M⋆
m). Hence, by the previous example, ĝ ∈ D(Mm). This means

that mĝ ∈ L2(Rd) and therefore g ∈ D(Am).

Two special cases are of special interest:

Example 10.40 (The momentum operator). The multiplier m(ξ ) = ξ gives rise to the
operator 1

i
d
dx on L2(R). With the domain given by (10.3) this operator is selfadjoint.

With the notation and techniques developed in Section 11.1.e this domain is seen to be
the Sobolev space H1(R) =W 1,2(R).

Example 10.41 (The Laplacian). The multiplier m(ξ ) =−|ξ |2 gives rise to the Laplace
operator ∆ = ∑

d
j=1

∂ 2

∂x2
j

on L2(Rd). With the domain given by (10.3) this operator is

selfadjoint. With the notation and techniques developed in Section 11.1.e this domain is
seen to be the Sobolev space H2(Rd) =W 2,2(Rd).

The following version of Theorem 8.11 holds.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
336 The Spectral Theorem for Unbounded Normal Operators

Proposition 10.42. If A is selfadjoint, then σ(A)⊆R. If, in addition, A is positive, then
σ(A)⊆ [0,∞).

Proof This may be established by repeating parts of the proof of Theorem 8.11, using
Propositions 10.26 and 10.24 instead of Proposition 1.21 and 4.31, respectively.

The following proposition provides a sufficient condition for selfadjointness.

Proposition 10.43. If A is densely defined and symmetric and ρ(A)∩R ̸=∅, then A is
selfadjoint.

Proof The nonemptiness of the resolvent set implies that A is closed (cf. Example
10.8). The operator A⋆ is closed as well. The symmetry of A implies D(A)⊆D(A⋆), and
if λ ∈ ρ(A)∩R, then λ ∈ ρ(A⋆) in view of Proposition 10.31. The identity A = A⋆ with
equality of domains therefore follows from Proposition 10.30.

An efficient proof of the next proposition is obtained by noting that Proposition 10.22
implies the following criterion for selfadjointness: a densely defined operator A in H is
selfadjoint if and only if

(J(G(A)))⊥ = G(A),

where J(x,y) = (−y,x) for x,y ∈ H.

Proposition 10.44. If the linear operator A in H is selfadjoint, injective, and has dense
range, then its inverse A−1 with domain D(A−1) = R(A) is selfadjoint.

Proof From

(x,y) ∈ G(A−1) ⇔ (y,x) ∈ G(A) ⇔ J(x,−y) ∈ G(A)

⇔ (x,−y) = J(G(A)) ⇔ (x,y) = J(G(−A))

we see that G(A−1) = J(G(−A)). Applying J to both sides gives J(G(A−1)) = G(−A).
Hence, since −A is selfadjoint, by the above criterion

G(A−1) = J(G(−A)) = (G(−A))⊥ = (J(G(A−1)))⊥.

Applying the criterion once more, this proves that A−1 is selfadjoint.

As a simple application of Proposition 10.44 we record the following result.

Corollary 10.45. Let A be a densely defined closed positive operator in H. If I+A has
dense range, then A is selfadjoint.

Proof From ∥(I +A)x∥∥x∥ ⩾ ((I +A)x|x) ⩾ ∥x∥2 we see that ∥(I +A)x∥ ⩾ ∥x∥ for
all x ∈ D(A). Since A (and hence I +A) is closed, by Proposition 10.26 this implies
that I +A is injective and has closed range. Since I +A also has dense range, I +A
is surjective and the inverse (I +A)−1 is well defined as a linear operator. The bound
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∥(I +A)x∥ ⩾ ∥x∥ implies that (I +A)−1 is bounded (and in fact contractive). At the
same time, this bounded operator is positive and therefore selfadjoint. Proposition 10.44
therefore implies that I +A, hence also A, is selfadjoint.

As an application of Corollary 10.45 we have the following sufficient condition for
selfadjointness.

Theorem 10.46 (Selfadjointness of A⋆A). If A is a densely defined closed operator from
H into another Hilbert space K, then:

(1) the operator A⋆A is selfadjoint and positive;
(2) D(A⋆A) is dense in D(A) with respect to the graph norm.

This operator will be revisited in Proposition 12.18 in connection with the theory of
forms.

Proof (1): We check that the operator A⋆A, which is obviously positive, satisfies the
assumptions of Corollary 10.45.

By Proposition 10.22 we have the orthogonal decomposition

H⊕K = G(A⋆)⊕ J(G(A)).

Hence for any u ∈ K we can find x ∈ D(A) and y ∈ D(A⋆) such that

(0,u) = (y,A⋆y)+ J(x,Ax) = (y−Ax,A⋆y+ x).

It follows that y = Ax, which implies x ∈ D(A⋆A), and u = A⋆y+ x = (I +A⋆A)x. This
proves that I +A⋆A is surjective.

(2): To prove density of D(A⋆A) in D(A) with respect to the graph norm, suppose
that x ∈ D(A) is such that (x|y)D(A) = 0 for all y ∈ D(A⋆A), where (x|y)D(A) := (x|y)+
(Ax|Ay) is the inner product of D(A), viewed as a Hilbert space with respect to this inner
product (completeness being a consequence of the closedness of A; see Proposition
10.3). Then

0 = (x|y)+(x|A⋆Ay) = (x|(I +A⋆A)y)

for all y∈D(A⋆A). Since I+A⋆A is surjective, this means that (x|z) = 0 for all z∈D(A),
so x = 0.

We finish this section with another useful criterion for selfadjointness.

Theorem 10.47. For a densely defined symmetric operator A in H the following asser-
tions are equivalent:

(1) A is selfadjoint;
(2) A is closed and N(A⋆+ i) = N(A⋆− i) = {0};
(3) R(A+ i) = R(A− i) = H.
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Proof (1)⇒(2): If A is selfadjoint, then A = A⋆ is closed by Proposition 10.23. If
x ∈ D(A⋆) satisfies (A⋆+ i)x = 0, then x ∈ D(A) and Ax = A⋆x =−ix, and

−i(x|x) = (Ax|x) = (x|A⋆x) = i(x|x)

implies x = 0. In the same way (A⋆− i)x = 0 implies x = 0.

(2)⇒(3): By the same argument as in the proof of Proposition 4.31, the injectivity
of (A± i)⋆ = A⋆∓ i implies that A± i has dense range (and conversely; this will be
used in the proof of the next implication). By the same argument as in the proof of
Theorem 8.11, the symmetry of A implies ∥(A± i)x∥⩾ ∥x∥ for all x ∈ D(A), and since
A is closed, Proposition 10.26 implies that the ranges of A± i are closed. We conclude
that both ranges equal H.

(3)⇒(1): Fix an arbitrary h ∈D(A⋆). The assumption R(A− i) = H implies that there
exists an h′ ∈ D(A) such that (A− i)h′ = (A⋆− i)h. Since A⋆ extends A, we have h′ ∈
D(A⋆) and A⋆h′ = Ah′. It follows that (A⋆− i)h′ = (A⋆− i)h. As was noted in the proof
of the previous implication, the assumption R(A+ i) = H implies that A⋆− i is injective.
It follows that h = h′. Since h′ ∈ D(A), this implies that h ∈ D(A) and Ah = A⋆h, the
latter since A⋆ extends A.

This shows that A extends A⋆. Since A⋆ extends A, these operators are equal.

The theory of selfadjoint operators is taken up again in Section 12.2 in connection
with the theory of forms.

10.3 Unbounded Normal Operators

Having dealt with unbounded selfadjoint operators, we now turn to unbounded normal
operators. We fix a complex Hilbert space H.

10.3.a Definition and General Properties

Definition 10.48 (Normal operators). A linear operator A in H is said to be normal if it
is closed, densely defined, and satisfies

A⋆A = AA⋆.

The equality A⋆A = AA⋆ is shorthand for equality of the domains

D(A⋆A) := {x ∈ D(A) : Ax ∈ D(A⋆)},
D(AA⋆) := {x ∈ D(A⋆) : A⋆x ∈ D(A)},

along with equality

A⋆Ax = AA⋆x
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for all x in this common domain.
Since A⋆⋆ = A by Proposition 10.23, a densely defined closed operator A is normal if

and only if its adjoint A⋆ is normal.

Proposition 10.49. If A is a normal operator, then:

(1) D(A) = D(A⋆);
(2) ∥Ax∥= ∥A⋆x∥ for all x ∈ D(A) = D(A⋆);
(3) if A⊆ B with B normal, then A = B.

Proof (1) and (2): The normality of A implies that if x ∈ D(A⋆A) = D(AA⋆), then
x ∈ D(A), x ∈ D(A⋆), and

∥Ax∥2 = (A⋆Ax|x) = (AA⋆x|x) = ∥A⋆x∥2.

By Theorem 10.46, D(A⋆A) is dense in D(A), so for any x ∈ D(A) we may choose a
sequence xn→ x with each xn ∈ D(A⋆A) = D(AA⋆) and with convergence in the graph
norm of D(A). Then xm,xn ∈ D(A⋆), and from

lim
n,m→∞

∥A⋆xn−A⋆xm∥= lim
n,m→∞

∥Axn−Axm∥= 0

we infer that A⋆xn→ y for some y ∈ H. From the closedness of A⋆ (Proposition 10.23)
we infer that x ∈ D(A⋆) and A⋆x = y. This argument shows that D(A)⊆ D(A⋆).

Since A⋆ is normal, what we just proved can be applied to A⋆. This, together with
Proposition 10.23, gives the reverse inclusion D(A⋆)⊆ D(A⋆⋆) = D(A).

(3): If A ⊆ B with A and B normal, then by (1), Proposition 10.19(1), and another
application of (1),

D(B) = D(B⋆)⊆ D(A⋆) = D(A).

Together with the assumption D(A)⊆ D(B) this implies D(A) = D(B).

10.3.b The Measurable Functional Calculus

Projection-valued measures give rise to normal operators:

Theorem 10.50 (Measurable functional calculus). Let (Ω,F ) be a measurable space,
let P : F →L (H) be a projection-valued measure, and let f : Ω→C be a measurable
function. There exists a unique normal operator Φ( f ) in H satisfying

D(Φ( f )) =
{

x ∈ H :
∫

Ω

| f |2 dPx < ∞

}
,

(Φ( f )x|x) =
∫

Ω

f dPx, x ∈ D(Φ( f )).
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For all x ∈ D(Φ( f )) we have

∥Φ( f )x∥2 =
∫

Ω

| f |2 dPx. (10.4)

Furthermore, if fn, f ,g : Ω→ C are measurable functions, then:

(1) Φ( f )Φ(g)⊆Φ( f g) with D(Φ( f )Φ(g)) = D(Φ( f g))∩D(Φ(g));
(2) Φ( f )⋆ = Φ( f );
(3) if 0 ⩽ | fn|⩽ | f | and limn→∞ fn = f pointwise on Ω, then D(Φ( f ))⊆D(Φ( fn)) and

lim
n→∞

Φ( fn)x = Φ( f )x, x ∈ D(Φ( f )).

The operator Φ( f ) is selfadjoint if and only if f is real-valued Px-almost everywhere for
all x ∈ H.

It follows from (1) that

Φ( f )Φ(g) = Φ( f g) ⇔ D(Φ( f g))⊆ D(Φ(g)). (10.5)

This is trivially the case if g is bounded, for then D(Φ(g)) = H. In that case Φ(g) is
bounded and equals the operator given by the bounded calculus of Theorem 9.8. This
fact, and the properties of the bounded calculus, will be frequently used in the proof
below.

Example 10.51. Under the above assumptions, it follows from (10.5) that

Φ( f n) = (Φ( f ))n, n = 1,2, . . .

To prove this, proceeding by induction it suffices to check that Φ( f k+1) = Φ( f k)Φ( f )
for all k = 1,2, . . . By (10.5), this operator identity holds if and only if D(Φ( f k+1)) ⊆
D(Φ( f )). If x ∈ D(Φ( f k+1)), then

∫
Ω
| f |2k+2 dPx < ∞. Since Px is a finite measure, this

implies
∫

Ω
| f |2 dPx < ∞, that is, x ∈ D(Φ( f )).

Proof of Theorem 10.50 For the moment define D f to be the set {x∈H :
∫

Ω
| f |2 dPx <

∞}.
If x,y∈D f and g=∑

k
j=1 c j1B j is a simple function satisfying 0⩽ g⩽ | f |2, with c j ⩾ 0

and disjoint sets B j ∈F, then by the Cauchy–Schwarz inequality for the sesquilinear
forms (x,y) 7→ (PB j x|y),∫

Ω

gdPx+y =
k

∑
j=1

c j(PB j(x+ y)|x+ y)

⩽
k

∑
j=1

c j
(
(PB j x|x)+2(PB j x|x)

1/2(PB j y|y)
1/2 +(PB j y|y)

)
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⩽ 2
k

∑
j=1

c j
(
(PB j x|x)+(PB j y|y)

)
= 2

∫
Ω

gdPx +2
∫

Ω

gdPy ⩽ 2
∫

Ω

| f |2 dPx +2
∫

Ω

| f |2 dPy.

Taking the supremum over all such simple functions g, we obtain∫
Ω

| f |2 dPx+y ⩽ 2
∫

Ω

| f |2 dPx +2
∫

Ω

| f |2 dPy.

This shows that D f is closed under addition. The identity∫
Ω

| f |2 dPcx = |c|2
∫

Ω

| f |2 dPx

is evident for simple functions f , follows for general functions f by approximation, and
shows that D f is also closed under scalar multiplication. It follows that D f is a linear
subspace of H.

To prove that D f is dense in H fix an arbitrary x ∈ H and for n = 1,2, . . . let Bn :=
{| f |⩽ n}. Then for all x ∈ R(PBn) and B ∈F,∫

Ω

1B dPx = (PBx|x) = (PBPBnx|x) = (PB∩Bnx|x) =
∫

Bn

1B dPx,

so by linearity and monotone convergence,∫
Ω

| f |2 dPx =
∫

Bn

| f |2 dPx ⩽ n2Px(Bn)⩽ n2Px(Ω) = n2∥x∥2.

This implies that R(PBn) is contained in D f . Since Ω =
⋃

n⩾1 Bn, monotone convergence
implies that ∥PBnx∥2 = (PBnx|x) =

∫
Ω

1Bn dPx→
∫

Ω
1dPx = ∥x∥2 and therefore

∥x−PBnx∥2 = ∥x∥2−2(PBnx|x)+∥PBnx∥2→ 0

as n→ ∞. This proves that x belongs to the closure of D f .
For simple functions g = ∑

k
j=1 c j1B j we set

Φ(g) :=
k

∑
j=1

c jPB j .

It is routine to check that this is well defined and that (10.4) holds for g. If x ∈ D f , then
f ∈ L2(Ω,Px). If gn→ f in L2(Ω,Px) with each gn simple, then

∥Φ(gn)x−Φ(gm)x∥2 =
∫

Ω

|gn−gm|2 dPx→ 0 as n,m→ ∞.

Consequently for x ∈ D f we may define

Φ( f )x := lim
n→∞

Φ(gn)x.

This is well defined, and the validity of (10.4) for gn implies the validity of (10.4) for f .
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In this way we obtain a well-defined linear operator Φ( f ) : D f →H. In what follows
we view Φ( f ) as a linear operator in H with domain D(Φ( f )) = D f . The closedness
of Φ( f ) follows from (2) applied to f and Proposition 10.18. Normality of Φ( f ) is an
easy consequence of (1) applied with g = f , noting that D(Φ(| f |2))⊆D(Φ( f )) follows
from Hölder’s inequality or noting that

∫
Ω
| f |2 dPx ⩽

∫
Ω

1+ | f |4 dPx.

By (2), Φ( f ) is selfadjoint if and only if Φ( f )⋆ = Φ( f ), and by (10.4) applied to
f − f , this holds if and only if f is real-valued Px-almost everywhere for all x ∈ H.

(3): By (10.4) applied to f − fn, for x ∈ D(Φ( f )) we have x ∈ D(Φ( f − fn)) and

lim
n→∞
∥Φ( f )x−Φ( fn)x∥= lim

n→∞

∫
Ω

| f − fn|2 dPx = 0

by dominated convergence, so limn→∞ Φ( fn)x = Φ( f )x.

In what follows, for n = 1,2, . . . let

fn := 1{| f |⩽n} f .

(1): First let f be bounded and measurable and g be measurable. For all x ∈D(Φ(g))
we have x∈D(Φ( f g)), and using (3), the boundedness of Φ( f ), and the multiplicativity
of the Borel calculus for bounded normal operators,

Φ( f )Φ(g)x = lim
n→∞

Φ( f )Φ(gn)x = lim
n→∞

Φ( f gn)x = Φ( f g)x.

Hence by (10.4) , ∫
Ω

| f |2 dPΦ(g)x =
∫

Ω

| f g|2 dPx.

This being true for all bounded measurable functions f , by monotone convergence it is
true for all measurable functions f . Hence, if f and g are measurable, we infer that for
elements x ∈ D(Φ(g)) we have Φ(g)x ∈ D(Φ( f )) if and only if x ∈ D(Φ( f g)). This is
the same as saying that (1) holds.

(2): Let x ∈ D(Φ( f )) and y ∈ D(Φ( f )) = D(Φ( f )). Then, by (3) and the properties
of the Borel calculus for bounded normal operators,

(Φ( f )x|y) = lim
n→∞

(Φ( fn)x|y) = lim
n→∞

(x|Φ( fn)y) = (x|Φ( f )y).

This shows that y ∈D(Φ( f )⋆) and Φ( f )⋆y = Φ( f )y. We have thus proved the inclusion
Φ( f ) ⊆ Φ( f )⋆. For the converse inclusion let y ∈ D(Φ( f )⋆). We wish to prove that
y ∈ D(Φ( f )) = D(Φ( f )), that is, that

∫
Ω
| f |2 dPy < ∞.

Let z := Φ( f )⋆y. We claim that

Φ(1{| f |⩽n})z = Φ( fn)y. (10.6)

It follows from (1), applied with g = 1{| f |⩽n}, that for all x ∈ H we have

Φ(1{| f |⩽n})x ∈ D(Φ( f )) and Φ( f )Φ(1{| f |⩽n})x = Φ( fn)x.
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Then, for all x ∈ H,

(x|Φ(1{| f |⩽n})z) = (Φ(1{| f |⩽n})x|Φ( f )⋆y)

= (Φ( f )Φ(1{| f |⩽n})x|y) = (Φ( fn)x|y) = (x|Φ( fn)y),

using the conjugation property of the Borel calculus for bounded normal operators in
the last step. This proves the claim (10.6).

By (10.4) and (10.6),∫
Ω

| fn|2 dPy = ∥Φ( fn)y∥2 = ∥Φ(1{| f |⩽n})z∥2 =
∫

Ω

1{| f |⩽n} dPz

and therefore∫
Ω

| f |2 dPy = lim
n→∞

∫
Ω

| fn|2 dPy = lim
n→∞

∫
Ω

1{| f |⩽n} dPz ⩽
∫

Ω

1dPz = ∥z∥2,

so that y ∈ D(Φ( f )). This completes the proof of the identity Φ( f ) = Φ( f )⋆.

The following substitution rule extends Proposition 9.9.

Proposition 10.52. Let (Ω,F ) and (Ω′,F ′) be measurable spaces and let f : Ω→Ω′

be a measurable mapping. If P : F →L (H) is a projection-valued measure, then the
mapping Q : F ′→L (H) defined by

QB := Pf−1(B), B ∈F ′,

is a projection-valued measure. Denoting by Φ and Ψ the measurable functional calculi
of P and Q, for all measurable functions g : Ω′→ C we have

Φ(g◦ f ) = Ψ(g)

with equality of domains.

Proof The proof is the same as that of Proposition 9.9, except that some domain issues
have to be taken care of. Following this proof, for all nonnegative measurable functions
g on Ω′ and x ∈ X we obtain ∫

Ω

g◦ f dPx =
∫

Ω′
gdQx, (10.7)

the finiteness of one of these integrals implying the finiteness of the other. Applying
this with g replaced by |g|2, it follows that x ∈ D(Φ(g◦ f )) if and only if x ∈ D(Ψ(g)).
For all x in this common domain, (10.7) can be rewritten as (Φ(g◦ f )x|x) = (Ψ(g)x|x),
and by polarisation this implies that for all x,y in this common domain we have (Φ(g◦
f )x|y) = (Ψ(g)x|y). The operator Ψ(g), being normal, is densely defined and therefore
this identity holds for all y ∈ H. The result now follows.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
344 The Spectral Theorem for Unbounded Normal Operators

10.4 The Spectral Theorem for Unbounded Normal Operators

The proof of the spectral theorem for unbounded normal operators proceeds by a reduc-
tion to the bounded case. The basic idea is to exploit the fact that the mapping

ζ : z 7→ z
(1+ |z|2)1/2

maps the complex plane bijectively onto the open unit disc D. This suggests that if A is
a normal operator, then

ZA := A(I +A⋆A)−1/2

is a normal contraction on H. This is indeed the case, as will be proved in Proposition
10.55. It follows that σ(ZA)⊆D. By the spectral theorem for bounded normal operators,
there exists a projection-valued measure Q on D such that

ZA =
∫
D

λ dQ(λ ).

We now define a projection-valued measure P on C by setting PB := Qζ (B) for Borel
sets B⊆ C, and use Proposition 10.52 to show that

A =
∫
C

λ dP(λ ).

In the same way, the uniqueness of P for representing A is reduced to the uniqueness of
Q for representing ZA.

Some technical details need to be addressed to turn this simple idea into a rigorous
proof: one has to deal with subtle domain issues and with the fact that ζ maps C onto
the open unit disc, whereas Q is supported on the closed unit disc.

We start with the proof that ZA is well defined as a contractive normal operator on H.
This is accomplished in Proposition 10.55, for which we need two lemmas.

Lemma 10.53. Let A be a closed operator in H, let T ∈L (H), and let f ∈C(σ(T )).
Then:

(1) if T is selfadjoint and TA⊆ AT , then f (T )A⊆ A f (T );
(2) if T is normal and TA⊆ AT and T ⋆A⊆ AT ⋆ , then f (T )A⊆ A f (T ).

Proof We only prove the second assertion, the first being an immediate consequence.
We have T 2A = T (TA)⊆ T (AT ) = (TA)T ⊆ (AT )T = AT 2. Continuing by induction

we see that T kA ⊆ AT k for all k ∈ N. In the same way it is seen that (T ⋆)kA ⊆ A(T ⋆)k

for all k ∈ N. These inclusions imply that

p(T,T ⋆)A⊆ Ap(T,T ⋆)

for all polynomials p in the variables z and z; notation is as in Section 8.2.b. By the
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Stone–Weierstrass theorem there exist polynomials pn in the variables z and z such
that pn(z,z)→ f (z) uniformly with respect to z ∈ σ(T ). Then, by the properties of the
continuous functional calculus for normal operators (Theorem 8.22),

∥pn(T,T ⋆)− f (T )∥= sup
z∈σ(T )

|pn(z,z)− f (z)| → 0 as n→ ∞.

The inclusions pn(T )A⊆ Apn(T ) imply that if x ∈ D(A), then pn(T )x ∈ D(A) and

lim
n→∞

Apn(T )x = lim
n→∞

pn(T )Ax = f (T )Ax.

Since also limn→∞ pn(T )x = f (T )x, the closedness of A implies that f (T )x ∈ D(A) and
A f (T )x = f (T )Ax. This gives the result.

We have seen in Theorem 10.46 that if A is a densely defined closed operator in H,
then A⋆A is selfadjoint, and by Proposition 10.42 we have σ(A⋆A)⊆ [0,∞). This allows
us to define

TA := (I +A⋆A)−1.

This operator is bounded and positive, and if A is normal we have TA = TA⋆ .

Lemma 10.54. If A is normal, then for all x ∈ D(A) we have TAx ∈ D(A) and

ATAx = TAAx.

Proof Let x∈D(A). Then y := TAx∈D(A⋆A)⊆D(A), Ay=ATAx∈D(A⋆), and A⋆Ay=
x− TAx ∈ D(A), so Ay ∈ D(AA⋆) = D(A⋆A). Combining this with (I +AA⋆)A = A+

(AA⋆)A = A+A(A⋆A) = A(I +A⋆A), it follows that

ATAx = [TA(I +AA⋆)]ATAx = TAA[(I +A⋆A)TA]x = TAAx.

Proposition 10.55. If A is a normal operator, then:

(1) the range of T 1/2
A is densely contained in D(A);

(2) the operator ZA := AT 1/2
A is contractive and we have TA = I−Z⋆

AZA;
(3) ZA is normal and Z⋆

A = ZA⋆ .

Proof (1) and (2): We have R(TA)⊆D(A⋆A)⊆D(A) and therefore the operator ATA is
well defined on all of H. As a composition of a bounded operator and a closed operator,
it is closed and therefore bounded by the closed graph theorem. The operator TA is
bounded and positive, and the injectivity of TA implies the injectivity of its square root
T 1/2

A . By selfadjointness and Proposition 4.31, this square root has dense range. For
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y = T 1/2
A x in this range we have T 1/2

A y = TAx ∈ D(A⋆A)⊆ D(A), so y ∈ D(ZA) := {h ∈
H : T 1/2

A h ∈ D(A)} and

∥ZAy∥2 = ∥ATAx∥2 = (A⋆ATAx|TAx) = (x|TAx)− (TAx|TAx)⩽ (x|TAx) = (y|y) = ∥y∥2.

Since the range of T 1/2
A is dense, so is D(ZA) and therefore, with respect to the norm

of H, ZA is contractive from its dense domain into H. The operator ZA is also closed,
for if yn → y in H with yn ∈ D(ZA) and ZAyn = AT 1/2

A yn → y′ in H, the closedness of
A implies T 1/2

A y ∈ D(A) and AT 1/2
A y = y′; but then y ∈ D(ZA) and ZAy = y′. Thus ZA

is closed, densely defined, and contractive with respect to the norm of H. This forces
D(ZA) = H.

We have already shown that the range of T 1/2
A is contained in D(A). To see that

this inclusion is dense with respect to the graph norm it suffices to note that R(TA) =

D(A⋆A) is dense in D(A) with respect to the graph norm of D(A) by Theorem 10.46. The
inclusions R(TA)⊆ R(T 1/2

A )⊆D(A) therefore imply that the inclusion R(T 1/2
A )⊆D(A)

is dense with respect to the graph norm of D(A).
By Lemma 10.54, for x∈D(A) we have TAx∈D(A) and ATAx = TAAx, so TAA⊆ ATA,

and then Lemma 10.53 implies

T 1/2
A A⊆ AT 1/2

A . (10.8)

Also, for x ∈ D(A),

(Z⋆
AZAx|x) = (AT 1/2

A x|AT 1/2
A x) = (T 1/2

A Ax|T 1/2
A Ax)

= (TAAx|Ax) = (ATAx|Ax) = (A⋆ATAx|x) = ((I−TA)x|x).

Since both TA and ZA are bounded, the identity (Z⋆
AZAx|x) = ((I− TA)x|x) extends to

arbitrary x ∈ H. This implies the operator identity TA = I−Z⋆
AZA.

(3): Since A is normal we have TA⋆ = TA. Since this operator is selfadjoint and A⋆ is
normal, it follows that

ZA⋆ = A⋆T 1/2
A⋆ = A⋆T 1/2

A = A⋆(T 1/2
A )⋆

(i)
= (T 1/2

A A)⋆
(ii)
⊇ (AT 1/2

A )⋆ = Z⋆
A,

where both (i) and (ii) follow from Proposition 10.19 and (10.8). Both ZA and ZA⋆ are
bounded (the latter by Proposition 10.55 applied to A⋆), and therefore

ZA⋆ = Z⋆
A.

Normality of ZA now follows from

(Z⋆
AZAx|x) = (ZAx|ZAx) = (AT 1/2

A x|AT 1/2
A x) = (A⋆AT 1/2

A x|T 1/2
A x)

and

(ZAZ⋆
Ax|x) = (Z⋆

Ax|Z⋆
Ax) = (ZA⋆x|ZA⋆x) = (AA⋆T 1/2

A⋆ x|T 1/2
A⋆ x),
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observing that the two right-hand sides are equal since A is normal.

Now we are ready for stating and proving the main result of this section.

Theorem 10.56 (Spectral theorem for normal operators). For every normal operator A
there exists a unique projection-valued measure P on σ(A) such that

A =
∫

σ(A)
λ dP(λ ).

Proof Consider the mapping

ζ : z 7→ z
(1+ |z|2)1/2 (10.9)

which maps the complex plane bijectively onto the open unit disc D, with inverse

ζ
−1 : w 7→ w

(1−|w|2)1/2 .

Define the projection-valued measure P on C by

PB := Qζ (B), B ∈B(C),

where Q is the projection-valued measure of the normal contraction ZA, which is sup-
ported on σ(ZA). Since ZA is contractive, σ(ZA) is contained in D. It will be convenient
to think of Q as supported on D. The proof that P has the desired properties and is
unique is carried out in several steps.

In what follows we let Φ and Ψ denote the measurable functional calculi of P and Q.

Step 1 – Let id(λ ) := λ . We begin by proving the inclusion

R(T 1/2
A )⊆ D(Φ(id)),

where id(λ ) = λ and Φ(id) =
∫
C λ dP(λ ).

Let ρ ∈ Cc(C) satisfy 0 ⩽ ρ ⩽ 1 pointwise. Using Proposition 10.52, the fact that
ρ ◦ζ−1 has compact support in D, and the fact that Q is supported on σ(ZA)⊆ D,∫

C
ρ(z)|z|2 dPx(z) =

∫
D

ρ(ζ−1(λ ))|ζ−1(λ )|2 dQx(λ )

=
∫
D

ρ(ζ−1(λ ))|ζ−1(λ )|2 dQx(λ )

=
∫

σ(ZA)
ρ(ζ−1(λ ))|ζ−1(λ )|2 dQx(λ ) = (φ(ZA)x|x),

where φ ∈C(σ(ZA)) is the function

φ(λ ) = ρ(ζ−1(λ ))|ζ−1(λ )|2 = ρ(ζ−1(λ ))|λ |2(1−|λ |2)−1.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
348 The Spectral Theorem for Unbounded Normal Operators

Suppose now that x ∈ R(T 1/2
A ), say

x = T 1/2
A y = (I−|ZA|2)1/2y (10.10)

for some y ∈ H; the second identity follows from TA = I−Z⋆
AZA = I−|ZA|2. Using the

multiplicativity of the continuous calculus of ZA twice, with ψ(λ ) := ρ(ζ−1(λ ))|λ |2
we have

(φ(ZA)x|x) = (φ(ZA)(I−|ZA|2)y|y) = (ψ(ZA)y|y) = (ρ(ζ−1(ZA))|ZA|2y|y)

and therefore∫
C

ρ(z)|z|2 dPx(z) = (φ(ZA)x|x) = (ρ(ζ−1(ZA))|ZA|2y|y) = ∥ρ1/2(ζ−1(ZA))ZAy∥2

⩽ ∥λ 7→ ρ
1/2(ζ−1(λ ))∥∞∥ZAy∥2 ⩽ ∥ZAy∥2 = ∥Ax∥2,

keeping in mind that x ∈ R(T 1/2
A ) ⊆ D(A). Applying this to a sequence ρn ∈ Cc(C)

satisfying 0 ⩽ ρn ↑ 1 pointwise as n→ ∞, by monotone convergence we obtain∫
C
|id|2 dPx =

∫
C
|z|2 dPx(z)⩽ ∥Ax∥2 < ∞.

This proves that x ∈ D(Φ(id)).

Step 2 – We now prove that for x = T 1/2
A y ∈ R(T 1/2

A ) we have∫
C

λ dPx(λ ) = (Ax|x).

Repeating the reasoning in Step 1 with ρ ∈Cc(C) as before, with

φ̃(λ ) := ρ(ζ−1(λ ))ζ−1(λ ) = ρ(ζ−1(λ ))λ (1−|λ |2)−1/2

we obtain ∫
C

ρ(z)zdPx(z) = (φ̃(ZA)x|x) = (ρ(ζ−1(ZA))ZA(I−|ZA|2)1/2y|y).

Applying this to a sequence ρn ∈Cc(C) satisfying 0 ⩽ ρn ↑ 1 pointwise as n→ ∞, by
dominated convergence, the convergence property of the bounded functional calculus,
and (10.10), we obtain∫

C
zdPx(z) = lim

n→∞

∫
C

ρn(z)zdPx(z) = lim
n→∞

(ρn(ζ
−1(ZA))ZA(I−Z⋆

AZA)
1/2y|y)

= (ZA(I−Z⋆
AZA)

1/2y|y) = (ZAT 1/2
A y|y) = (Ax|x).

Step 3 – Since both A and Φ(id) are closed, and since R(T 1/2
A ) is dense in D(A) by

Proposition 10.55, the result of Step 2 implies that A⊆Φ(id). Since both operators are
normal, the identity A = Φ(id) =

∫
C λ dP(λ ) follows from Proposition 10.49.
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Step 4 – It remains to prove the uniqueness of P. We will do so by reducing matters
to the uniqueness of Q.

Suppose that

A =
∫

σ(A)
λ dP̃(λ )

for a projection-valued measure P̃ on σ(A). Let Φ̃ denote the measurable calculus as-
sociated with P̃. We have Φ̃(id) = A and Φ̃(id) = A⋆ by Theorem 10.50(2). By the
multiplicativity,

Φ̃(1{|id|⩽n}|id|2) = Φ̃(1{|id|⩽n}id)Φ̃(1{|id|⩽n}id).

Taking limits n→ ∞ using Theorem 10.50(3), for x ∈ D(A⋆A) we have x ∈ D(Φ̃(|id|2))
and

Φ̃(|id|2)x = Φ̃(id)Φ̃(id)x = A⋆Ax.

Similar arguments show that

Φ̃((1+ |id|2)−1)x = (Φ̃(1+ |id|2))−1x = (I +A⋆A)−1x = TAx.

Since D(A⋆A) is dense, this identity extends to arbitrary x ∈H. Then, as in Step 1 of the
proof of Theorem 10.56, the multiplicativity for the measurable calculus for bounded
selfadjoint operators and the uniqueness of positive square roots gives

Φ̃((1+ |id|2)−1/2) = T 1/2
A .

Hence,

Φ̃(ζ )x = Φ̃(id(1+ |id|2)−1/2)x = AT 1/2
A x = ZAx, (10.11)

where ζ : C→ D is the bijection of (10.9). Since D(A⋆A) is dense in H, this identity
extends to arbitrary x ∈ H.

Consider the projection-valued measure Q̃ on D given by Q̃B := P̃ζ−1(B). In what
follows we view ζ as a measurable mapping from C to D. With ρ ∈Cc(C) as before,
by (10.11) and Proposition 10.52 we have

(Φ̃(ρ)ZAx|x) = (Φ̃(ρ)Φ̃(ζ )x|x) = (Φ̃(ρζ )x|x)

= lim
n→∞

∫
C

1{|ζ |⩽n}ρζ dP̃x = lim
n→∞

∫
D

1{|µ|⩽n}ρ(ζ
−1(µ))µ dQ̃x(µ)

=
∫
D

ρ(ζ−1(µ))µ dQ̃x(µ) =
∫
D

ρ(ζ−1(µ))µ dQ̃x(µ).

Applying this to a sequence ρn ∈Cc(C) satisfying 0⩽ ρn ↑ 1 pointwise as n→∞, by the
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convergence property of the bounded functional calculus and dominated convergence
we obtain

(ZAx|x) = lim
n→∞

(Φ̃(ρn)ZAx|x) = lim
n→∞

∫
D

ρn(ζ
−1(µ))µ dQ̃x(µ) =

∫
D

µ dQ̃x(µ).

By Proposition 9.12, the support of Q̃ is contained in σ(ZA), and therefore we have

ZA =
∫

σ(ZA)
µ dQ̃(µ).

This shows that Q̃ is the projection-valued measure of ZA. Now Proposition 9.13 implies
that Q̃ = Q and hence P̃ = P.

For normal operators A and measurable functions f : σ(A)→ C, the operator Φ( f )
defined in terms of the projection-valued measure P of A by the calculus of Theorem
10.50 will be denoted by f (A):

f (A) := Φ( f ) =
∫

σ(A)
f dP.

In the same way as for bounded normal operators in Theorem 9.19, the properties of
the bounded calculus Φ translate into corresponding properties for the mapping f 7→
f (A). The result of Example 10.51 says that for any normal operator A and measurable
function f : σ(A)→ C,

( f n)(A) = ( f (A))n, n = 1,2, . . .

If P is a projection-valued measure on a measurable space (Ω,F ) and f : Ω→ C is
measurable, the P-essential range of f is the set RP( f ) of all z ∈ C such that PEz,r ̸= 0
for all r > 0, where

Ez,r := {ω ∈Ω : | f (ω)− z|< r}.

It is easy to see that RP( f ) is a closed set contained in f (Ω).

Theorem 10.57 (Spectral mapping theorem). Let A be normal with projection-valued
measure P, and let f : σ(A)→ C be measurable. Then

σ( f (A)) = RP( f )⊆ f (σ(A)).

If f is continuous, then

σ( f (A)) = f (σ(A)).

Proof Let z ∈ ∁RP( f ). Since RP( f ) is closed, the function gz : λ 7→ (z− f (λ ))−1 is
well defined P-almost everywhere and bounded on σ(A), and therefore the operator
gz(A) is bounded. Moreover, (z− f (A))gz(A) = gz(A)(z− f (A)) = I by Theorem 10.50
and the boundedness of gz. It follows that gz(A) is a two-sided inverse for z− f (A). This
proves the inclusion σ( f (A))⊆ RP( f ).
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Suppose next that z ∈ RP( f ). Since P is supported on σ(A), for n = 1,2, . . . the
orthogonal projections PEz,1/n are nonzero, where Ez,1/n = {λ ∈ σ(A) : | f (λ )− z|< 1

n}.
In particular, Ez,1/n ̸=∅, and this implies that d(z, f (σ(A))< 1

n . This being true for all
n ⩾ 1, it follows that z ∈ f (σ(A)).

If f is continuous and µ ∈ C is such that f (µ) ̸∈ σ( f (A)) = RP( f ), then for ε > 0
small enough the relatively open set

N := {λ ∈ σ(A) : | f (λ )− f (µ)|< ε}

satisfies PN = 0. The continuity of f implies that B(µ;δ )∩σ(A) ⊆ N for some small
enough δ > 0. But then µ ̸∈ RP(id) = σ(id(A)) = σ(A). This proves the inclusion
f (σ(A)) ⊆ σ( f (A)), which self-improves to f (σ(A)) ⊆ σ( f (A)) since σ( f (A)) is
closed.

The following result gives necessary and sufficient conditions for the presence of
eigenvalues for the operators f (A).

Theorem 10.58 (Eigenvalues). Let A be a normal operator with projection-valued mea-
sure P, and let f : σ(A)→ C be measurable. For µ ∈ C let N f (µ) := {λ ∈ σ(A) :
f (λ ) = µ}. The following assertions are equivalent:

(1) µ is an eigenvalue of f (A);
(2) PN f (µ) ̸= 0.

In this situation, PN f (µ) is the orthogonal projection onto the corresponding eigenspace,
and for a vector x ∈ H the following assertions are equivalent:

(3) x ∈ D( f (A)) and f (A)x = µx;
(4) PN f (µ)x = x.

Proof Upon replacing f by f − µ we may assume that µ = 0. Set N f := N f (0) for
brevity.

If x ∈ D( f (A)) satisfies f (A)x = 0, then f (λ ) = 0 for Px-almost all λ ∈ σ(A) by
(10.4). This is equivalent to saying that Px-almost every point of σ(A) is contained in N f ,
that is, Px(σ(A)\N f ) = 0. This, in turn, is equivalent to saying that Pσ(A)\N f

x = 0, that
is, x−PN f x = 0. Conversely, if PN f x = x, or equivalently, if f = 0 Px-almost everywhere
on σ(A), then x ∈D(Φ( f )) =D( f (A)) by the definition of D(Φ( f )) in Theorem 10.50.

This proves the equivalence (3)⇔(4). This equivalence also establishes that PN f is the
orthogonal projection onto the eigenspace {x ∈ D( f (A)) : f (A)x = 0}. It further shows
that if 0 is an eigenvalue of f (A), with eigenvector x ∈ D( f (A)), then

PN f x = Pσ(A)x−Pσ(A)\N f
x = Pσ(A)x = ∥x∥2 ̸= 0

since x ̸= 0. This proves the implication (1)⇒(2). If (2) holds, there exists a nonzero
x ∈ H with PN f (µ)x = x, and (1) follows from the implication (4)⇒(3).
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Corollary 10.59. Let A be a normal operator and let f : σ(A)→ C be measurable. If
x ∈ D(A) satisfies Ax = λx, then x ∈ D( f (A)) and f (A)x = f (λ )x.

As in the bounded case, we can use the functional calculus to define square roots:

Proposition 10.60. If A is a positive selfadjoint operator, then A admits a unique posi-
tive selfadjoint square root A1/2.

Proof The operator f (A) with f (λ ) = λ 1/2 is selfadjoint and positive, and squares to
A by the result of Example 10.51. This proves existence.

To prove uniqueness, suppose that B is a positive selfadjoint operator satisfying B2 =

A. Let P and Q be the projection-valued measures of A and B; both are supported on
[0,∞) since A and B are selfadjoint and positive. Let R be the projection-valued measure
on [0,∞) defined by RC = QC2 for Borel sets C ⊆ [0,∞). By Theorem 10.52 and the
result of Example 10.51,∫

[0,∞)
λ dR =

∫
[0,∞)

λ
2 dQ = B2 = A =

∫
[0,∞)

λ dP.

It follows that both R and P are projection-valued measures representing A. By the
uniqueness part of Theorem 10.56 we therefore have R = P. But then

A1/2 =
∫
[0,∞)

λ
1/2 dP =

∫
[0,∞)

λ
1/2 dR =

∫
[0,∞)

λ dQ = B.

If A is normal, we may use the measurable calculus to define |A| := f (A), where
f (λ ) = |λ |. Furthermore, A⋆A is selfadjoint and positive, so it has a unique selfad-
joint and positive square root (A⋆A)1/2 by Proposition 10.60. The next corollary extends
Corollary 8.29 to unbounded normal operators:

Corollary 10.61. For every normal operator A we have D(|A|) = D(A) and

(A⋆A)1/2 = |A|.

Proof With id(λ ) = λ we have D(|A|) = D(Φ(|id|)) = D(Φ(id)) = D(A), the middle
identity being immediate from the definition of these domains. Applying the result of
Example 10.51 twice we obtain, with f (λ ) = |λ |,

|A|2 = f (A) f (A) = f 2(A) = (id◦ id)(A) = id(A)id(A) = A⋆A,

where the penultimate identity is proved as in Example 4.9. The identity |A|= (|A|2)1/2

now follows by taking positive square roots using Proposition 10.60.

We proceed with some examples.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
Problems 353

Example 10.62 (Multiplication operators). Let (Ω,F,µ) be a measure space and let
m : Ω→ C be a measurable function. The linear operator Am defined by

D(Am) := { f ∈ L2(Ω,µ) : m f ∈ L2(Ω,µ)},
Am f := m f , f ∈ D(Am),

is normal, its spectrum σ(Am) equals the µ-essential range of m, and its projection-
valued measure is given by

PB f = 1m−1(B) f

for B ∈B(σ(Am)) and f ∈ L2(Ω,µ).

Example 10.63 (Fourier multiplication operators). Let m : Rd → C be a measurable
function. The linear operator Tm defined by

D(Tm) := { f ∈ L2(Rd) : F f ∈ D(Am)},
Tm f := F−1AmF f , f ∈ D(Tm),

where Am is the operator of the preceding example, is normal, its spectrum equals
σ(Tm) = σ(Am), and its projection-valued measure is given by

PB f = F−1(1m−1(B)F f ) = T1m−1(B)

for B ∈B(σ(Tm)) and f ∈ L2(Rd). Thus, the projections in the range of the projection-
valued measure of the Fourier multiplier operator Tm are Fourier multiplier operators
themselves.

Problems

10.1 Let A be a linear operator in a Banach space X . Show that λ 7→ R(λ ,A) is holo-
morphic as an L (X ,D(A))-valued mapping.

10.2 Let A be a densely defined linear operator in a Banach space X which is bounded
with respect to the norm of X , that is, there is a constant C ⩾ 0 such that ∥Ax∥⩽
C∥x∥ for all x ∈D(A). Prove that A is closable, D(A) = X , and A is bounded with
∥Ax∥⩽C∥x∥ for all x ∈ X .

10.3 Let A be a densely defined closed operator in a Banach space X , and suppose
there is a subspace Y , contained in D(A) and dense in X , such that Ay = 0 for all
y∈Y . Does it follow that Ax = 0 for all x∈D(A)? What happens if the closedness
assumption is dropped?

10.4 Show that if A and B are linear operators in a complex Hilbert space such that
D(A) = D(B) and (Ax|x) = (Bx|x) for all x ∈ D(A) = D(B), then A = B.
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10.5 Define the linear operator A in L2(0,1) by D(A) :=C[0,1] and

A f := f (0)1, f ∈ D(A).

Show that A is densely defined but nonclosable.
10.6 Let A be any nonclosable operator in a Hilbert space H. Show that the operator B

on the Hilbert space direct sum H⊕H defined by D(B) := D(A)⊕{0} and

B(x,0) := (0,Ax), (x,0) ∈ D(B),

is symmetric and nonclosable. This example shows that the densely definedness
assumption cannot be omitted from Proposition 10.36.

10.7 Provide the details to Example 10.7.
10.8 Let M be an arbitrary nonempty closed subset of C. In the Banach space Cb(M)

of bounded continuous functions on M consider the linear operator A given by

D(A) := { f ∈Cb(M) : z 7→ z f (z) ∈Cb(M)},
A f (z) := z f (z), f ∈ D(A), z ∈M.

(a) Show that A is a closed operator.
(b) Show that σ(A) = M.

10.9 In C[0,1] consider the linear operators A1 f := f ′ and A2 f := f ′ with domains
D(A1) :=C∞[0,1] and D(A2) :=C∞

c (0,1).

(a) Show that A1 is closable and find the domain of its closure.
(b) Show that A2 is closable and find the domain of its closure.

10.10 Let A be a densely defined closed linear operator from a Banach space X to a
Banach space Y . Prove or disprove:

(a) for all T ∈ L (X), the operator AT with domain D(AT ) = {x ∈ X : T x ∈
D(A)} is closed;

(b) for all T ∈L (Y ) the operator TA with domain D(TA) = D(A) is closed.

10.11 Let A be a densely defined closed linear operator from a Banach space X to a
Banach space Y . Prove or disprove:

(a) for all T ∈L (X) we have D((AT )∗) = D(T ∗A∗);
(b) for all T ∈L (Y ) we have D((TA)∗) = D(A∗T ∗).

10.12 Give a direct proof of Proposition 10.44.
10.13 Give a proof of Proposition 10.24.
10.14 Let (Ω,F,µ) be a measure space, X be a Banach space, and suppose that f :

Ω→ X is Bochner integrable with respect to µ .
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(a) Prove Hille’s theorem: If A is a closed linear operator in a Banach space X , f
takes its values in D(A) µ-almost everywhere, and the µ-almost everywhere
defined function A f : Ω→ X is µ-Bochner integrable, then

∫
Ω

f dµ ∈ D(A)
and

A
∫

Ω

f dµ =
∫

Ω

A f dµ.

Hint: Show that ω 7→ ( f (ω),A f (ω)) is Bochner integrable as a function with
values in X ×X and hence, by the result of Problem 1.41, as a function with
values in the graph G(A).

(b) Justify the identity

∂

∂ t

∫ 1

0
f (t,s)ds =

∫ 1

0

∂

∂ t
f (t,s)ds

by providing conditions on f so that the result of part (a) can be applied.

10.15 Extend the results of Problems 9.3 and 9.4 to unbounded selfadjoint operators.
10.16 Prove the claims in Examples 10.62 and 10.63.
10.17 Combining Examples 10.41 and 10.63, find the projection-valued measure of the

Laplace operator ∆ on L2(Rd), viewed as a selfadjoint operator in this space with
domain D(∆) = H2(Rd).

10.18 Let A be a positive selfadjoint operator.

(a) Show that e−A is bounded and injective.
(b) Is e−A always invertible?

10.19 Let A be a normal operator in a Hilbert space H with projection-valued measure
P, and let B ⊆ σ(A) be a bounded Borel subset. Show that PBx ∈ D(A) for all
x ∈ H.

10.20 Let A be a selfadjoint operator with projection-valued measure P. Show that for
all µ ∈ C\R we have the following formula for the resolvent of A:

R(µ,A) =
∫

σ(A)

1
λ −µ

dP(λ ).

10.21 Let A be a normal operator with projection-valued measure P, and let f ,g ∈
Bb(σ(A)). Show that if f = g P-almost everywhere (in the sense that there is a
Borel set N such that PN = 0 and f = g on ∁N), then f (A) = g(A).

10.22 Let A be a normal operator.

(a) Show that A is bounded if and only if σ(A) is bounded.
(b) Find necessary and sufficient conditions on a given Borel function f on σ(A)

in order that f (A) be bounded.
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10.23 Let A be a normal operator and let f be a Borel function on σ(A). Show that
f (A) is injective with dense range if and only if f ̸= 0 P-almost everywhere,
where P is the projection-valued measure of A, and that in this case we have
( f (A))−1 = (1/ f )(A).
Hint: Explain how (1/ f )(A) can be defined through the measurable functional
calculus. Then use Theorem 10.50 to check that D((1/ f )(A)( f (A)) = D( f (A)).
Conclude that ( f (A))−1 ⊆ (1/ f )(A). To get the reverse inclusion consider f−1

instead of f .
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11
Boundary Value Problems

Having developed some of the core results of Functional Analysis, we now turn to
applications to partial differential equations. This chapter is concerned with boundary
value problems.

11.1 Sobolev Spaces

We begin by developing some elements of the theory of Sobolev spaces. Our aims are
relatively modest, in that we only discuss those aspects of the theory that are needed for
the purposes of the present chapter.

Throughout this chapter we assume that d ⩾ 1 is an integer and D is a nonempty open
subset of Rd.

Multi-Index Notation A d-tuple α = (α1, . . . ,αd) ∈ Nd is called a multi-index of di-
mension d. Its order is the nonnegative integer

|α| := α1 + · · ·+αd .

We also define

α! := α1! · · ·αd!.

We write α ⩽ β if α j ⩽ β j for all j = 1, . . . ,d, and in such cases we define α −β :=
(α1−β1, . . . ,αd−βd) and (

α

β

)
:=

α!
β !(α−β )!

.

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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358 Boundary Value Problems

For x ∈ Rd and α ∈ Nd we set

xα := xα1
1 · · ·x

αd
d .

Similarly we define

∂
α := ∂

α1
1 ◦ · · · ◦∂

αd
d ,

where ∂ j is the partial derivative in the jth direction. By a standard Calculus result, for
C|α|-functions the order in which the derivatives are taken is unimportant.

Test Functions By C∞(D) we denote the space of functions f : D→K having continu-
ous derivatives ∂ α f on D of all orders α ∈Nd, and by C∞

c (D) its subspace consisting of
all functions compactly supported in D; recall that this means that the closure of the set
{x ∈ D : f (x) ̸= 0} is a compact set contained in D. Elements of C∞

c (D) are referred to
as test functions on D. The existence of test functions with various additional properties
is established in Problem 2.9.

In the same way one defines the space Ck(D), k∈N, as the space of functions f : D→
K having continuous derivatives ∂ α f on D of all orders α ∈Nd satisfying |α|⩽ k (with
the convention that C0(D) =C(D)), and Ck

c(D) as its subspace of compactly supported
functions.

By C∞(D) we denote the space of all functions in C∞(D) and with the property that
∂ α f has a continuous extension to D for all α ∈ Nd. The spaces Ck(D) are defined
similarly, by considering only the multi-indices satisfying |α|⩽ k.

A measurable function f : D → K is called locally integrable if its restriction to
every open set U with compact closure contained in D is integrable. The space of all
locally integrable functions f : D→ K is denoted by L1

loc(D); as always we identify
functions that are equal almost everywhere. In our study of weak derivatives we need
the following result on convolutions.

Proposition 11.1. Let k be a nonnegative integer. If f ∈ L1
loc(Rd) and g ∈Ck

c(Rd), then
the convolution f ∗g is pointwise well defined and belongs to Ck(Rd), and we have

∂
α( f ∗g) = f ∗ (∂ α g)

for all multi-indices α ∈ Nd satisfying |α|⩽ k.

Proof First note that the convolution integrals defining f ∗ g and f ∗ (∂ α g) are point-
wise well defined as Lebesgue integrals.

Step 1 – We begin with the case k = 0. Let f ∈ L1
loc(Rd) and g ∈ Cc(Rd) be given.

Choose r > 0 such that the support of g is contained in the ball B(0;r). By uniform
continuity, given ε > 0 there exists δ > 0 such that for all u,u′ ∈ Rd with |u− u′| < δ
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we have |g(u)−g(u′)|< ε . Hence, for all x,x′ ∈ Rd with |x− x′|< δ ,

|( f ∗g)(x)− ( f ∗g)(x′)|⩽
∫
Rd
| f (y)||g(x− y)−g(x′− y)|dy

=
∫

B(x;r+δ )
| f (y)||g(x− y)−g(x′− y)|dy

⩽ ε

∫
B(x;r+δ )

| f (y)|dy,

noting that g(x− y) = g(x′− y) = 0 for y ̸∈ B(x;r + δ ). This proves the continuity of
f ∗g at the point x ∈ Rd.

Step 2 – Next consider the case k = 1. Fix 1 ⩽ j ⩽ d and let e j ∈ Rd denote the
unit vector along the jth coordinate axis. Let r > 0 be such that the support of g is
contained in the ball B(0;r). Given ε > 0, choose δ > 0 such that |u−u′| < δ implies
|∂ jg(u)−∂ jg(u′)|< ε . If 0 < h < δ , then for all y ∈ Rd we obtain∣∣∣1

h

(
g(y+he j)−g(y)

)
−∂ jg(y)

∣∣∣= ∣∣∣1
h

∫ h

0
∂ jg(y+ te j)−∂ jg(y)dt

∣∣∣
⩽

1
h

∫ h

0
|∂ jg(y+ te j)−∂ jg(y)|dt ⩽ ε.

Taking the supremum over y, this shows that

lim
h↓0

∥∥∥1
h

(
g(·+he j)−g(·)

)
−∂ jg(·)

∥∥∥
∞

= 0.

As a consequence, for all x ∈ Rd we have

lim
h→0

1
h
(( f ∗g)(x+he j)− ( f ∗g)(x))

= lim
h→0

1
h

∫
Rd

f (y)g(x+he j− y)−g(x− y))dy

= lim
h→0

1
h

∫
B(0;r+δ )

f (x− y)(g(y+he j)−g(y))dy

=
∫

B(0;r+δ )
f (x− y)∂ jg(y)dy =

∫
Rd

f (x− y)∂ jg(y)dy,

where the penultimate step is justified by the uniform convergence of the difference quo-
tient and the fact that f is integrable on bounded sets. This proves the differentiability
of f ∗g in the jth direction, with ∂ j( f ∗g) = f ∗ (∂ jg), and the derivative is continuous
by Step 1 applied to the function ∂ jg ∈Cc(Rd).

Step 3 – The result for k ⩾ 2 follows by repeating the argument of Step 2 inductively.

The following version of Theorem C.12 will be useful.
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Proposition 11.2 (Smooth partition of unity). Let

F ⊆U1∪·· ·∪Uk,

where F ⊆Rd is compact and the sets U j ⊆Rd are open for all j = 1, . . . ,k. Then there
exist nonnegative functions f j ∈C∞

c (U j), j = 1, . . . ,k, such that

f1 + · · ·+ fk ≡ 1 on F .

Here, we think of the functions f j as elements of C∞
c (Rd) with support in U j.

Proof Taking intersections with an open ball containing F , there is no loss of general-
ity in assuming that the sets U j are bounded. Since F is compact and the sets U j are open,
there exists a δ > 0 such that Fδ ⊆Uδ

1 ∪·· ·∪Uδ
k , where Fδ := {x ∈ Rd : d(x,F)⩽ δ}

and Uδ
j = {x ∈U j : d(x,∁U j)> δ}. Theorem C.12 provides us with nonnegative con-

tinuous functions g j : Rd → [0,1] supported in Uδ
j such that

g1 + · · ·+gk ≡ 1 on Fδ .

Choose a nonnegative test function φ ∈C∞
c (Rd) with compact support in the open ball

B(0;δ ) and satisfying
∫
Rd φ dx= 1. The functions f j := g j ∗φ are smooth by Proposition

11.1 and have the desired properties.

11.1.a Weak Derivatives

In order to make the body of theorems in Functional Analysis applicable to the theory of
partial differential equations it is desirable to be able to discuss derivatives of functions
in Lp(D). The difficulty is that for such functions, the classical pointwise definition of
differentiability through limits of difference quotients does not make sense since their
values are well defined only almost everywhere. This necessitates an approach that is
insensitive to redefining functions on sets of measure zero. Such an approach is provided
by the notion of a weak derivative. With the help of weak derivatives we then introduce
the class of Sobolev spaces, which provides the Lp-analogues of the classical spaces of
continuously differentiable functions.

If f ∈ Ck(D), then for all test functions φ ∈ C∞
c (D) and multi-indices α ∈ Nd with

|α|⩽ k we have the integration by parts formula∫
D

f (x)∂ α
φ(x)dx = (−1)|α|

∫
D

g(x)φ(x)dx, (11.1)

where g = ∂ α f . Using a smooth partition of unity (Proposition 11.2), the proof of this
identity can be reduced to the situation where the support of φ is contained in an open
rectangle contained within D; for such φ , the formula follows by separation of variables
and integration by parts on intervals in dimension one.

This motivates the following definition.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
11.1 Sobolev Spaces 361

Definition 11.3 (Weak derivatives). Let f ∈ L1
loc(D). A function g ∈ L1

loc(D) is said to
be a weak derivative of order α ∈ Nd of f if for all φ ∈C∞

c (D) we have∫
D

f (x)∂ α
φ(x)dx = (−1)|α|

∫
D

g(x)φ(x)dx. (11.2)

A function f ∈ L1
loc(D) is said to be weakly differentiable of order k if it has weak

derivatives ∂ α f ∈ L1
loc(D) for all multi-indices satisfying |α|⩽ k.

Remark 11.4. The definition of a weak derivative of order α can equivalently be stated
by using functions φ ∈ Ck

c(D) for any integer k ⩾ |α|. To see this, suppose that g ∈
L1

loc(D) is a weak derivative of order α for the function f ∈ L1
loc(D). We wish to prove

that the integration by parts formula (11.1) holds for functions φ ∈Ck
c(D). To this end

we claim that there exist functions φn ∈ C∞
c (D) such that φn → φ and ∂ α φn → ∂ α φ

uniformly. Once this has been shown, (11.2) follows from∫
D

f (x)∂ α
φ(x)dx = lim

n→∞

∫
D

f (x)∂ α
φn(x)dx

= (−1)|α| lim
n→∞

∫
D

g(x)φn(x)dx = (−1)|α|
∫

D
g(x)φ(x)dx.

To prove the claim, let η ∈C∞
c (Rd) be supported in the unit ball B(0;1) of Rd and satisfy∫

Rd η dx = 1. For n ⩾ 1 let η(n)(x) = ndη(nx). We extend φ identically zero outside D
and define, for y ∈ D,

φn(y) := η
(n) ∗φ(y) =

∫
Rd

η
(n)(y− x)φ(x)dx.

Since η(n) is supported in B(0; 1
n ), for sufficiently large n the functions φn are compactly

supported in D. They are also smooth and hence belong to C∞
c (D) by Proposition 11.1,

and the desired convergence properties follow by elementary calculus arguments.

The following proposition implies that weak derivatives, if they exist, are necessarily
uniquely defined up to a null set. This allows us to speak of the weak derivative of order
α of a function f , and denote it by ∂ α f . The proposition could be proved along the
lines of Lemma 4.59, but it will be instructive to present a proof based on mollification.

In what follows we write

U ⋐ D

to express that the closure of U is compact and contained in D.

Proposition 11.5. If a function g ∈ L1
loc(D) satisfies∫

D
g(x)φ(x)dx = 0

for all φ ∈C∞
c (D), then g = 0 almost everywhere on D.
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This proposition may be proved in exactly the same way as Lemma 4.59, but it is
instructive to give a proof by mollification here.

Proof Let B be any open ball such that B ⋐ D and let ψ ∈C∞
c (D) satisfy ψ ≡ 1 on B.

Pick a mollifier η ∈C∞
c (Rd) satisfying

∫
Rd η dx = 1. For y∈Rd set ηε,y(x) := ηε(y−x),

where ηε(x) = ε−dη(ε−1x) for x ∈ Rd. Extending ψ and g identically zero outside D
and noting that ηε,yψ ∈C∞

c (D), the assumption implies that for all y ∈ Rd we have

ηε ∗ (ψg)(y) =
∫
Rd

ηε(y− x)ψ(x)g(x)dx =
∫

D
ηε,y(x)ψ(x)g(x)dx = 0.

By Proposition 2.34 we have ηε ∗ (ψg)→ψg in L1(Rd) as ε ↓ 0. It follows that ψg = 0
almost everywhere on Rd and therefore g = 0 almost everywhere on B. Since this is true
for every open ball B ⋐ D, the result follows.

The following simple observation will be used repeatedly without further comment.

Lemma 11.6. If f ∈ L1
loc(D) and α ∈ Nd is a multi-index, then:

(1) if f has a weak derivative of order α and D′ is a nonempty open subset of D, then
f |D′ has a weak derivative of order α given by

∂
α( f |D′) = (∂ α f )|D′ ;

(2) if f has a weak derivative g of order α and g has weak derivative h of order β , then
f has a weak derivative of order α +β given by h, that is,

∂
β (∂ α f ) = ∂

α+β f .

Proof (1): We consider only test functions φ ∈ C∞
c (D

′) in (11.2). Extending them
identically 0 to test functions defined on all of D, we obtain∫

D′
f (x)∂ α

φ(x)dx =
∫

D
f (x)∂ α

φ(x)dx

= (−1)|α|
∫

D
g(x)φ(x)dx = (−1)|α|

∫
D′

g(x)φ(x)dx.

(2): For all φ ,ψ ∈C∞
c (D) we have∫
D

f (x)∂ α
φ(x)dx = (−1)|α|

∫
D

g(x)φ(x)dx

and ∫
D

g(x)∂ β
ψ(x)dx = (−1)|β |

∫
D

h(x)ψ(x)dx,

and the result follows by applying the first identity with φ = ∂ β ψ .
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Example 11.7. The classical integration by parts formula (11.1) says that functions in
Ck(D) are weakly differentiable of order k, with weak derivatives given by their classical
derivatives.

Example 11.8. The function f (x) = |x| has a weak derivative on R, given by

sign(x) =

{
1, x > 0,

−1, x < 0.

This follows from∫
∞

−∞

|x|φ ′(x)dx =
∫

∞

0
xφ
′(x)dx−

∫ 0

−∞

xφ
′(x)dx

=−
∫

∞

0
φ(x)dx+

∫ 0

−∞

φ(x)dx =−
∫

∞

−∞

sign(x)φ(x)dx.

A far-reaching generalisation of this example is given in Theorem 11.23.

Example 11.9. We claim that the function f (x) = sign(x) has no weak derivative on R.
Suppose, for a contradiction, that g ∈ L1

loc(R) is a weak derivative of f . The restrictions
of g to R+ and R− are weak derivatives of the corresponding restrictions of f . But
these restrictions, being constant functions, have classical derivatives both equal to 0.
Since classical derivatives are weak derivatives, it follows that g ≡ 0 on both R+ and
R− almost everywhere and therefore g ≡ 0 on R almost everywhere. We then arrive at
the contradiction that, for all test functions φ ∈C∞

c (R),

0 =−
∫

∞

−∞

g(x)φ(x) =
∫

∞

−∞

sign(x)φ ′(x)dx

=
∫

∞

0
φ
′(x)dx−

∫ 0

−∞

φ
′(x)dx = (0−φ(0))− (φ(0)−0) =−2φ(0).

This proves the claim.

We have the following version of Proposition 11.1. In its statement, we think of f as
being defined on Rd by zero extension.

Proposition 11.10. Let f ∈ L1
loc(D) have a weak derivative of order α on D. Suppose

that η ∈C∞
c (Rd) has support in B(0;r) for some r > 0, and let the open set U ⋐D satisfy

d(U,∂D)> r. Then the function η ∗ f has weak and classical derivatives of order α on
U, and both are given by

∂
α(η ∗ f ) = (∂ α

η)∗ f = η ∗ (∂ α f ). (11.3)

Proof Proposition 11.1 shows that η ∗ f ∈Ck(Rd) and the first equality in (11.3) holds.
For all φ ∈C∞

c (U) we have, using Fubini’s theorem twice,∫
U
(η ∗ f )(x)∂ α

φ(x)dx =
∫
Rd
(η ∗ f )(x)∂ α

φ(x)dx
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=
∫
Rd

(∫
Rd

η(y) f (x− y)dy
)

∂
α

φ(x)dx

=
∫
Rd

η(y)
(∫

Rd
f (x− y)∂ α

φ(x)dx
)

dy

(∗)
=
∫

B(0;r)
η(y)

(∫
D

f (x)∂ α
φ(x+ y)dx

)
dy

(∗∗)
= (−1)|α|

∫
B(0;r)

η(y)
(∫

D
∂

α f (x)φ(x+ y)dx
)

dy

= (−1)|α|
∫
Rd

η(y)
(∫

Rd
(∂ α f )(x− y)φ(x)dx

)
dy

= (−1)|α|
∫
Rd

φ(x)
(∫

Rd
η(y)(∂ α f )(x− y)dy

)
dx

= (−1)|α|
∫
Rd
(η ∗∂

α f )(x)φ(x)dx

= (−1)|α|
∫

U
(η ∗∂

α f )(x)φ(x)dx.

The identities (∗) and (∗∗) are justified by the assumptions that φ is supported in U ,
η is supported in B(0;r), and d(U,∂D) > r (and therefore φ(·+ y) ∈ Cc(D) for all
y ∈ B(0;r)) and f has a weak derivative of order α on D. This proves that η ∗ f has a
weak derivative of order α on U given by (11.3).

In the proof of the next proposition we will use the fact that for all 1 ⩽ p ⩽ ∞, the
operator

f 7→ ∂
α f

is closed as a linear operator in Lp(D) with domain

D(∂ α) := { f ∈ Lp(D) : f has a weak derivative of order α in Lp(D)}.

This domain of course depends on p, but we suppress this from the notation. To prove
that ∂ α is a closed operator, suppose that fn→ f in Lp(D), with fn ∈ D(∂ α) for all n,
and ∂ α fn→ g in Lp(D). We must prove that f ∈D(∂ α) and ∂ α f = g. For all φ ∈C∞

c (D)

we have ∫
D

fn∂
α

φ dx = (−1)|α|
∫

D
∂

α fnφ dx.

Passing to the limit n→ ∞ in this formula (which is possible by Hölder’s inequality,
thanks to the fact that test functions belong to Lq(D) with 1

p +
1
q = 1) we obtain∫

D
f ∂

α
φ dx = (−1)|α|

∫
D

gφ dx.

This means that the function g ∈ Lp(D) is a weak derivative of f of order α .
By Lp

loc(D) we denote the space of measurable functions whose restrictions to all sets
U ⋐ D belong to Lp(U), identifying functions that are equal almost everywhere on D.
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Proposition 11.11. Let 1 ⩽ p < ∞. A function f ∈ Lp
loc(D) admits a weak derivative of

order α in Lp
loc(D) if and only if there exist a sequence of functions fn ∈C∞

c (D) and a
function g ∈ Lp

loc(D) such that for all open sets U ⋐ D we have:

(i) fn→ f in Lp(U);
(ii) ∂ α fn→ g in Lp(U).

In this situation we have ∂ α f = g.

Proof ‘If’: Let U ⋐ D. Since ∂ α is closed as an operator in Lp(U), (i) and (ii) imply
that f ∈ D(∂ α) and ∂ α f = g. If U1 ⋐ D and U2 ⋐ D are open sets with nonempty
intersection, the resulting weak derivatives g1 ∈ Lp(U1) and g2 ∈ Lp(U2) agree on U1∩
U2 by Proposition 11.5. Hence by piecing together these weak derivatives we obtain a
well-defined function g ∈ Lp

loc(D). Since every test function is supported in one of the
sets U under consideration, g is seen to be a weak derivative of order α for f .

‘Only if: For r > 0 let Dr = {x ∈ D : d(x,∂D) > r}. For every ε > 0, choose ψε ∈
C∞

c (Rd) such that 0 ⩽ ψε ⩽ 1 pointwise, ψε ≡ 1 on D2ε , and ψε ≡ 0 on ∁Dε . Let
η ∈ C∞

c (Rd) have support in B(0;1) and satisfy
∫
Rd η dx = 1, and define ηε(x) :=

ε−dη(ε−1x). For n ⩾ 1 define

fn := ψ1/n · ( f ∗η1/n),

where we think of f as a function on Rd by zero extension. We will prove that the
functions fn have the required properties, with g = ∂ α f .

We have fn ∈C∞
c (D) and, by Proposition 11.10 and the classical product rule,

∂
α fn = ψ1/n · ((∂ α f )∗η1/n)+ ∑

0⩽β⩽α

β ̸=0

(
α

β

)
(∂ β

ψ1/n) ·∂ α−β ( f ∗η1/n).

Given an open set U ⋐ D, let N ⩾ 1 be so large that U ⊆ D2/N . For all n ⩾ N we have
ψ1/n ≡ 1 on U and

1U (x) · ( f ∗η1/n)(x) = 1U (x)
∫
Rd

f (x− y)η1/n(y)dy

= 1U (x)
∫
Rd

1U+B(0;1/N)(x− y) f (x− y)η1/n(y)dy

= 1U (x) · ((1U+B(0;1/N) f )∗η1/n)(x), x ∈ D.

with U +B(0;1/N)⋐ D. Since 1U+B(0;1/N) f ∈ Lp(D), by Proposition 2.34 we obtain

1U fn = 1U ψ1/n · ( f ∗η1/n) = 1U · ((1U+B(0;1/N) f )∗η1/n)→ 1U 1U+B(0;1/N) f = 1U f

as n→ ∞, with convergence in Lp(D). Also, for all n ⩾ N we have ∂ α( f ∗ η1/n) =
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(∂ α f )∗η1/n on U , as well as ∂ β ψ1/n ≡ 0 on U for all 0 ⩽ β ⩽ α with β ̸= 0. Therefore,
by the same reasoning,

1U ∂
α fn = 1U · ((1U+B(0;1/N)∂

α f )∗η1/n)→ 1U ∂
α f

as n→ ∞, with convergence in Lp(D).

As an application of this proposition we prove the following result on the existence
of lower-order weak derivatives.

Theorem 11.12 (Existence of lower order weak derivatives). If a function f ∈ L1
loc(D)

admits a weak derivative ∂ α f for some α ∈Nd, then it admits weak derivatives ∂ β f for
all β ∈ Nd satisfying 0 ⩽ β ⩽ α . If both f and ∂ α f belong to Lp(D), then so do the
weak derivatives ∂ β f .

For notational simplicity we give the proof only in dimension d = 1; the argument
carries over without difficulty to higher dimensions. The crucial step is contained in the
next lemma.

Lemma 11.13. For all k ⩾ 1 there is a constant Ck ⩾ 0 such that for all f ∈Ck
c(R) and

1 ⩽ p < ∞ we have

∥ f (k−1)∥p ⩽Ck(∥ f∥p +∥ f (k)∥p).

Proof Let ζ ∈C∞
c (R) satisfy ζ (0) = 1 and ζ ′(0) = · · ·= ζ (k)(0) = 0. Combining the

identity
d
dt
(ζ ′(t) f (x+ t)) = ζ

′(t) f ′(x+ t)+ζ
′′(t) f (x+ t),

which follows from d
dt f (x+ t) = f ′(x+ t), with the identity

d
dt
(ζ (t) f ′(x+ t)) = ζ (t) f ′′(x+ t)+ζ

′(t) f ′(x+ t),

which follows from d
dt f ′(x+ t) = f ′′(x+ t), we arrive at

d
dt
(ζ (t) f ′(x+ t)) = ζ (t) f ′′(x+ t)+

d
dt
(ζ ′(t) f (x+ t))−ζ

′′(t) f (x+ t).

Integrating and using that ζ is compactly supported and satisfies ζ (0)= 1 and ζ ′(0)= 0,

f ′(x) =−
∫

∞

0
ζ (t) f ′′(x+ t)dt +

∫
∞

0
ζ
′′(t) f (x+ t)dt.

If f ∈ C3
c (R) we can apply this identity with f replaced by f ′. Integrating by parts

and using that ζ ′′(0) = 0, we obtain

f ′′(x) =−
∫

∞

0
ζ (t) f ′′′(x+ t)dt +

∫
∞

0
ζ
′′(t) f ′(x+ t)dt
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=−
∫

∞

0
ζ (t) f ′′′(x+ t)dt−

∫
∞

0
ζ
′′′(t) f (x+ t)dt.

Continuing inductively, for f ∈Ck
c(R) with k ⩾ 2 we arrive at the identity

f (k−1)(x) =−
∫

∞

0
ζ (t) f (k)(x+ t)dt +(−1)k

∫
∞

0
ζ
(k)(t) f (x+ t)dt.

Taking Lp-norms and moving norms inside the integral using Proposition 1.44, we ob-
tain

∥ f (k−1)∥p ⩽
∫

∞

0
|ζ (t)|∥ f (·+ t)∥p + |ζ (k)(t)|∥ f (k)(·+ t)∥p dt

⩽ Lmax{∥ζ∥∞,∥ζ (k)∥∞}(∥ f∥p +∥ f (k)∥p),

where L is the length of a bounded interval containing the compact support of ζ .

Proof of Theorem 11.12 Again we limit ourselves to dimension d = 1 for notational
convenience, and set k := α . The cases k = 0,1 being trivial, we assume that k ⩾ 2.

Let f ∈ L1
loc(D) have weak derivative ∂ k f . We will prove that f has a weak derivative

∂ k−1 f ; once we know that, lower order weak derivative are obtained by repeatedly
applying this result.

Let ( fn)n⩾1 be a sequence in C∞
c (D) as stated in Proposition 11.11, that is, for all

open sets U ⋐ D we have:

(i) fn→ f in L1(U);
(ii) ∂ k fn→ g in L1(U).

By the lemma, for all 1 ⩽ p < ∞ we have

∥∂ k−1 fn−∂
k−1 fm∥1 ⩽Ck(∥ fn− fm∥1 +∥∂ k fn−∂

k fm∥p).

Since the right-hand side tends to 0 as m,n→∞, by completeness there exists a function
gU ∈ L1(U) such that limn→∞ ∂ k−1 fn = gU in L1(U). As in the proof of Proposition
11.11 these functions may be glued together to a well-defined function g ∈ L1

loc(D), and
this function is easily checked to be a weak derivative of order k−1 of f .

If f and ∂ k f belong to Lp(D), and ( fn)n⩾1 is a sequence in C∞
c (D) such that (i) and

(ii) hold with L1(U) replaced by Lp(U), then by the estimate of the lemma, the functions
gU belong to Lp(U) with norm ∥gU∥Lp(U) ⩽ Ck∥ f∥Lp(U) ⩽ ∥ f∥Lp(D). This implies that
also ∥g∥Lp(D) ⩽Ck∥ f∥Lp(D).

As an application we prove the following product rule.

Proposition 11.14 (Product rule). If f ∈ L1
loc(D) admits a weak derivative of order α ,

then so does the pointwise product ψ f for every ψ ∈C∞(D), and we have the Leibniz
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formula

∂
α( f ψ) = ∑

0⩽β⩽α

(
α

β

)
(∂ β f )(∂ α−β

ψ).

The lower-order weak derivatives ∂ β f exist thanks to Theorem 11.12. In most appli-
cations, however, the function f belongs to suitable Sobolev spaces and the existence
of all lower order weak derivatives is part of the assumptions. The proposition admits
variations in terms of the assumptions on f and ψ (see, for instance, Problem 11.12).

Proof We only need to prove this for multi-indices of order one, since the general
case then follows by induction on |α|. Fix 1 ⩽ j ⩽ d. Since for all φ ∈C∞

c (D) we have
φψ ∈C∞

c (D), the classical product rule for ψφ gives∫
D

(
ψ(x)∂ jφ(x)+∂ jψ(x)φ(x)

)
f (x)dx =−

∫
D

ψ(x)φ(x)∂ j f (x)dx.

After rearranging, this says that the weak derivative ∂ j(ψ f ) exists and is given by
(∂ jψ) f +ψ∂ j f .

For the proof of the next proposition we need a simple lemma on extensions.

Lemma 11.15. Let f ∈ L1
loc(D) be supported in an open set U ⋐ D and let D̃ be an

open set containing D. If f admits a weak derivative ∂ α f on D, then the zero extension
f̃ of f to D̃ admits a weak derivative ∂ α f̃ on D̃, given by the zero extension of ∂ α f .

Proof Fix an arbitrary test function η ∈C∞(D̃) with support in D and such that η ≡ 1
on U . For all φ ∈C∞

c (D̃), the (classical) derivatives ∂ α φ and ∂ α(ηφ) agree on U , and
therefore∫

D̃
f̃ ∂

α
φ dx =

∫
D

f ∂
α(ηφ)dx = (−1)|α|

∫
D
(∂ α f )ηφ dx = (−1)|α|

∫
D̃
(∂̃ α f )φ dx,

since ηφ ∈C∞
c (D).

The gradient of a weakly differentiable function f is the function ∇ f ∈ L1
loc(D;Kd)

defined by

∇ f := (∂1 f , . . . ,∂d f ).

An open subset U of Rd is said to be (pathwise) connected if any two points x,y ∈U
can be joined by a continuous curve in U , that is, there exists a continuous mapping
ϕ : [0,1]→U such that ϕ(0) = x and ϕ(1) = y.

Proposition 11.16. Let f ∈ L1
loc(D) be weakly differentiable. If ∇ f = 0 almost every-

where on an open connected subset U of D, then f is almost everywhere equal to a
constant on U.
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Proof Let B be an open ball whose closure is contained in U and choose a test function
ψ ∈C∞

c (D) such that ψ ≡ 1 on B. By Proposition 11.14, ψ f is weakly differentiable on
D and ∇(ψ f ) = f ∇ψ +ψ∇ f . In particular, ∇(ψ f )≡ 0 on B.

Extending f and ψ identically zero to all of Rd, by Lemma 11.15 the function ψ f is
weakly differentiable as a function on Rd, with a weak gradient in L1

loc(Rd) that equals
the zero extension of the weak gradient of ψ f on D. By slight abuse of notation, both
will be denoted by ∇(ψ f ).

Pick a mollifier η ∈C∞
c (Rd) satisfying

∫
Rd η dx = 1, and set ηε(x) := ε−dη(ε−1x),

x ∈ Rd for ε > 0. By Proposition 11.10 we have ηε ∗ (ψ f ) ∈C∞(Rd) and

∇(ηε ∗ (ψ f )) = ηε ∗∇(ψ f ) on Rd.

In particular, ∇(ηε ∗ (ψ f )) ≡ 0 on B. Since the function ηε ∗ (ψ f ) is C∞, classical cal-
culus arguments imply that this function is constant on B. Taking the L1(Rd)-limit as
ε ↓ 0 using Proposition 2.34, and passing to an almost everywhere convergent subse-
quence, it is seen that ψ f is constant almost everywhere on B. Indeed, this shows that f
is the almost everywhere limit of a sequence of functions each of which is constant on
B. Since ψ ≡ 1 on B it follows that f is constant almost everywhere on B. This being
true for every open ball B contained in U , this gives the result.

11.1.b The Sobolev Spaces W k,p(D)

By Hölder’s inequality, every f ∈ Lp(D) with 1 ⩽ p ⩽ ∞ belongs to L1
loc(D). This sug-

gests the following definition.

Definition 11.17 (Sobolev spaces). For k∈N and 1⩽ p⩽∞ the Sobolev space W k,p(D)

is the space of all f ∈ Lp(D) whose weak derivatives of all orders |α| ⩽ k exist and
belong to Lp(D).

Endowed with the norm

∥ f∥W k,p(D) := ∑
|α|⩽k
∥∂ α f∥Lp(D),

W k,p(D) is a Banach space. Indeed, if ( fn)n⩾1 is a Cauchy sequence in W k,p(D), then for
all |α|⩽ k the sequence of weak derivatives (∂ α fn)n⩾1 is a Cauchy sequence in Lp(D)

and hence convergent to some f (α) ∈ Lp(D). Set f := f (0). Using Hölder’s inequality
as in Corollary 2.25, we may pass to the limit n→ ∞ in the identity∫

D
fn(x)∂ α

φ(x)dx = (−1)|α|
∫

D
∂

α fn(x)φ(x)dx, φ ∈C∞
c (D).

It follows that f has weak derivatives of all orders |α|⩽ k given by ∂ α f = f (α). Having
observed this, it is clear that f ∈W k,p(D) and fn→ f in W k,p(D).
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For 1 ⩽ p < ∞, the linear operators ∂ α are closable as operators in Lp(D) with initial
domain C∞

c (D); this follows by an argument similar to the one just given. By Proposition
2.29, these operators are densely defined. This prompts the question which functions in
W k,p(D) can be approximated, in the norm of this space, by test functions. A first result
in this direction is the following lemma. We return to this question in Section 11.1.c.

Proposition 11.18 (Local approximation by test functions). For all f ∈W 1,p(D) with
1 ⩽ p < ∞ there exists a sequence of test functions fn ∈C∞

c (D) such that for every open
set U ⋐ D we have

lim
n→∞

fn|U = f |U in W 1,p(U).

Proof The functions fn constructed in the proof of Proposition 11.11 have the required
properties.

Proposition 11.19 (Chain rule). Let ρ : K→K be a C1-function with bounded deriva-
tive and satisfying ρ(0) = 0, and let 1 ⩽ p ⩽ ∞. For all f ∈W 1,p(D) we have ρ ◦ f ∈
W 1,p(D) and

∂ j(ρ ◦ f ) = (ρ ′ ◦ f )∂ j f , j = 1, . . . ,d.

Proof The condition ρ(0) = 0 and the boundedness of ρ ′ imply that |ρ(t)|⩽M|t|with
M := supt∈K |ρ ′(t)| and therefore f ∈ Lp(D) implies that ρ ◦ f ∈ Lp(D). The bound-
edness of ρ ′ implies that ρ ′ ◦ f is bounded and therefore ∂ j f ∈ Lp(D) implies that
(ρ ′◦ f )∂ j f ∈ Lp(D). To conclude the proof, it therefore suffices to check that (ρ ′◦ f )∂ j f
is a weak derivative in the jth direction of ρ ◦ f .

Fix φ ∈C∞
c (D) and let U ⋐ D be an open set containing the compact support of φ . By

Proposition 11.18 we can find functions fn ∈C∞
c (D) such that fn|U → f |U in W 1,p(U).

Since |ρ ◦ fn− ρ ◦ f | ⩽ M| fn− f | and fn → f in Lp(U), Hölder’s inequality and the
classical chain rule imply that∫

D
(ρ ◦ f )∂ jφ dx = lim

n→∞

∫
D
(ρ ◦ fn)∂ jφ dx =− lim

n→∞

∫
D
(ρ ′ ◦ fn)(∂ j fn)φ dx.

Upon passing to a subsequence if necessary, by Corollary 2.21 we may assume that fn→
f and ∂ j fn→ ∂ j f almost everywhere on D and that there exists a function 0⩽ g∈ Lp(U)

such that |∂ j fn| ⩽ g almost everywhere on U for every n. Then |(ρ ′ ◦ fn)(∂ j fn)φ | ⩽
M|g||φ | almost everywhere on U for every n, and since |g||φ | ∈ L1(U) we may use
dominated convergence to obtain

lim
n→∞

∫
D
(ρ ′ ◦ fn)(∂ j fn)φ dx =

∫
D
(ρ ′ ◦ f )(∂ j f )φ dx,

noting that on both sides the integrands vanish outside U . This completes the proof.

Proposition 11.20 (Substitution rule). Let D and D′ be nonempty open subsets of Rd

and suppose that ρ : D→ D′ is a Ck-diffeomorphism with k ⩾ 1. Let 1 ⩽ p < ∞. A
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function f ∈ L1
loc(D) is weakly differentiable if and only if f ◦ρ−1 ∈ L1

loc(D
′) is weakly

differentiable. Denoting the space variables of D and D′ by x and y, respectively, we
then have

∂i f =
d

∑
j=1

∂ρ j

∂xi
∂ j( f ◦ρ

−1)◦ρ.

Proof For smooth functions f this is the substitution rule from Calculus, and the gen-
eral case follows by local approximation with smooth functions.

11.1.c The Sobolev Spaces W 1,p
0 (D)

We now introduce a class of spaces which play an important role in the theory of partial
differential equations, where they provide the Lp-setting for studying boundary value
problems subject to Dirichlet boundary conditions.

Definition 11.21 (The spaces W 1,p
0 (D)). For 1 ⩽ p < ∞ we define W 1,p

0 (D) to be the
closure of C∞

c (D) in W 1,p(D).

The following result gives a simple sufficient condition for membership of W 1,p
0 (D):

Proposition 11.22. Let U ⋐ D be open and let 1 ⩽ p < ∞. If f ∈W 1,p(D) vanishes
outside U, then f ∈W 1,p

0 (D).

Proof Since U is compact and does not intersect ∂D we have δ := d(U ,∂D) > 0.
Fix a function η ∈ C∞

c (Rd) compactly supported in the ball B(0;1) and satisfying∫
Rd η dx = 1, and set ηε(x) := ε−dη(ε−1x) for 0 < ε < δ . Each ηε has compact support

in B(0;ε). Extending f identically zero outside D, the condition 0 < ε < δ implies that
the convolution ηε ∗ f is compactly supported in D.

As ε ↓ 0, by Proposition 2.34 we have

ηε ∗ f → f in Lp(Rd), and hence in Lp(D). (11.4)

By Proposition 11.10 the weak derivatives of ηε ∗ f are given by

∂ j(ηε ∗ f ) = ηε ∗∂ j f , j = 1, . . . ,d.

These weak derivatives belong to Lp(D), so ηε ∗ f restricts to an element of W 1,p(D).
By Proposition 2.34,

∂ j(ηε ∗ f ) = ηε ∗∂ j f → ∂ j f in Lp(Rd), and hence in Lp(D). (11.5)

By (11.4) and (11.5) we have ηε ∗ f → f in W 1,p(D). Finally we observe that each ηε ∗ f
is C∞ (by Proposition 11.1) and compactly supported in D.
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t

f (t) = t+

ρ1(t) = (t2 +1)1/2−1

ρ2(t) = (t2 + 1
4 )

1/2− 1
2

Figure 11.1 The functions ρn(t) = (t2 + 1
n2 )

1/2− 1
n

It is immediate that if f ∈W 1,p(D), then Re f , Im f ∈W 1,p(D), and similarly if f ∈
W 1,p

0 (D), then Re f , Im f ∈W 1,p
0 (D). The next proposition asserts that the positive part

f+ of a real-valued function f in W 1,p(D) belongs to W 1,p(D) and provides an explicit
expression for its weak derivatives; moreover, if f ∈W 1,p

0 (D), then f+ ∈W 1,p
0 (D). The

analogous results then also hold for the negative part f− = f+− f and the absolute
value | f |= f++ f−.

Theorem 11.23 (Positive parts). Let 1 ⩽ p < ∞. Then:

(1) for all real-valued functions f ∈W 1,p(D) we have f+ ∈W 1,p(D) and

∂ j f+ = 1{ f>0}∂ j f , j = 1, . . . ,d;

and if f ∈W 1,p
0 (D), then f+ ∈W 1,p

0 (D);
(2) the mapping f 7→ f+ is continuous with respect to the norm of W 1,p(D).

Proof The idea of the proof is to approximate the function ρ : t 7→ t+ =max{t,0}with
C1-functions ρn in such a way that for all t ∈ R we have

(i) 0 ⩽ ρn(t) ↑ t+;
(ii) 0 ⩽ ρ ′n(t) ↑ 1(0,∞)(t).

For instance, the choice ρn(t) = (t2 + 1
n2 )

1/2− 1
n for t > 0 and ρn(t) = 0 for t ⩽ 0 will

do; see Figure 11.1.

Step 1 – Let f be a real-valued function in W 1,p(D). By Proposition 11.19 we have
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ρn ◦ f ∈W 1,p(D) and, for test functions φ ∈C∞
c (D),

−
∫

D
(ρn ◦ f )(x)∂ jφ(x)dx =

∫
D
(ρ ′n ◦ f )(x)∂ j f (x)φ(x)dx.

By (i), (ii), and dominated convergence we obtain

−
∫

D
f+(x)∂ jφ(x)dx =

∫
D

1{ f>0}(x)∂ j f (x)φ(x)dx.

This proves the first part of (1).

Step 2 – To prove (2), let fn→ f in W 1,p(D) with all functions real-valued. We must
show that f+n → f+ in W 1,p(D). It is clear that f+n → f+ in Lp(D), so it remains to
show that ∂ j f+n → ∂ j f+ for all 1 ⩽ j ⩽ d. By Step 1 this is equivalent to showing that
1{ fn>0}∂ j fn→ 1{ f>0}∂ j f in Lp(D) for all 1 ⩽ j ⩽ d.

By Corollary 2.21 we can choose a subsequence such that fnk → f and | fnk | ⩽ g
almost everywhere, where 0 ⩽ g ∈ Lp(D), and ∂ j fnk → ∂ j f and |∂ j fnk |⩽ h j almost ev-
erywhere, where 0 ⩽ h j ∈ Lp(D), for all 1 ⩽ j ⩽ d. Then 1{ fnk>0}→ 1{ f>0} almost ev-
erywhere, so dominated convergence implies that 1{ fnk>0}∂ j fnk → 1{ f>0}∂ j f in Lp(D)

for all 1 ⩽ j ⩽ d.
Applying the above argument to subsequences of ( fn)n⩾1, we thus find that every

subsequence ( fnm)m⩾1 of ( fn)n⩾1 contains a further subsequence ( fnmk
)k⩾1 such that

f+nmk
→ f+ in W 1,p(D). This implies that f+n → f+ in W 1,p(D).

Step 3 – It remains to prove the second part of (1). Suppose that f ∈W 1,p
0 (D) is

real-valued; we must prove that f+ ∈W 1,p
0 (D). Choose functions fn ∈C∞

c (D) such that
fn → f in W 1,p(D). Then f+n → f+ in W 1,p(D) by Step 2. Thus it suffices to show
that every f+n can be approximated by functions in C∞

c (D). This is accomplished by a
mollifier argument.

Fix n ⩾ 1. Since fn is compactly supported in D, its support has positive distance
δn to the boundary of D. If η ∈ C∞

c (Rd) has compact support in B(0;1) and satisfies∫
Rd η dx = 1, then for 0 < ε < δn the function ηε ∗ f+n (where ηε(x) = ε−dη(ε−1x)) is

smooth by Proposition 11.10, has compact support in D, and by Proposition 2.34 we
have ηε ∗ f+n → f+n in Lp(D) as ε ↓ 0. Likewise, by (11.3) applied to f+n ,

∂ j(ηε ∗ f+n ) = ηε ∗ (∂ j f+n )→ ∂ j f+n

with convergence in Lp(D).

The following proposition connects the space W 1,p
0 (D) with Dirichlet boundary con-

ditions.

Theorem 11.24. Let D be bounded and let 1 ⩽ p < ∞. For all f ∈W 1,p(D)∩C(D) the
following assertions hold:

(1) if f |∂D ≡ 0, then f ∈W 1,p
0 (D);
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(2) if ∂D is C1 and f ∈W 1,p
0 (D), then f |∂D ≡ 0.

Proof (1): By considering real and imaginary parts separately we may assume that f
is real-valued, and by Theorem 11.23 we may even assume that f is nonnegative. Since
f − 1

k → f in W 1,p(D) as k→ ∞ and taking positive parts is continuous in W 1,p(D) by
Theorem 11.23, we see that fk := ( f − 1

k )
+→ f+ = f in W 1,p(D) as k→ ∞. Hence to

prove that f ∈W 1,p
0 (D) it suffices to prove that fk ∈W 1,p

0 (D) for all k ⩾ 1.
By continuity, each fk vanishes in a neighbourhood of the compact set ∂D. Then

Proposition 11.22 shows that fk can be approximated in W 1,p(D) by functions fk,n ∈
C∞

c (D).

(2): By the definition of a C1-boundary and a partition of unity argument, it suffices
to prove that for all f ∈W 1,p

0 (Rd
+)∩C(Rd

+) we have f |
∂Rd

+
≡ 0; here,

Rd
+ := {x ∈ Rd : xd > 0}.

Let φn→ f in W 1,p
0 (Rd

+) with φn ∈C1
c (Rd

+) for all n ⩾ 1. For all x = (x′,xd) ∈ Rd
+ =

Rd−1× (0,∞),

|φn(x′,xd)|⩽
∫ xd

0
|∂dφn(x′,y)|dy.

Integrating over |x′|< 1 and averaging over 0 < xd < ε with 0 < ε < 1, we obtain

1
ε

∫
ε

0

∫
{|x′|<1}

|φn(x′,xd)|dx′ dxd ⩽
1
ε

∫
ε

0

∫
{|x′|<1}

∫ xd

0
|∂dφn(x′,y)|dydx′ dxd

=
∫

ε

0

∫
{|x′|<1}

1
ε

∫
ε

xd

|∂dφn(x′,y)|dxd dx′ dy

⩽
∫

ε

0

∫
{|x′|<1}

|∂dφn(x′,y)|dx′ dy.

Letting n→ ∞, we obtain

1
ε

∫
ε

0

∫
{|x′|<1}

| f (x′,xd)|dx′ dxd ⩽
∫

ε

0

∫
{|x′|<1}

|∂d f (x′,y)|dx′ dy.

Letting ε ↓ 0, we obtain ∫
{|x′|<1}

| f (x′,xd)|dx′ = 0.

This implies f (x′,0) = 0 for almost all x′ ∈ Rd−1 and, since f is continuous on Rd
+,

f (x′,0) = 0 for all x′ ∈ Rd−1.

Theorem 11.25. For all 1 ⩽ p < ∞ we have

W 1,p
0 (Rd) =W 1,p(Rd).
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Proof Clearly, W 1,p
0 (Rd) ⊆W 1,p(Rd). To prove the reverse inclusion we must show

that every f ∈W 1,p(Rd) can be approximated in W 1,p(Rd) by functions in C∞
c (Rd).

Let ψn ∈C∞
c (Rd) satisfy 0 ⩽ ψn ⩽ 1 pointwise on Rd, ψn(x) = 1 for all |x|⩽ n, and

|∇ψn|⩽ 1 on Rd. Proposition 11.14 implies that the functions ψn f belong to W 1,p(Rd),
and by dominated convergence we have ψn f → f and ∂ j(ψn f ) =ψn∂ j f + f ∂ jψn→ ∂ j f
in Lp(Rd) as n→ ∞, using that ∂ jψn → 0 and ψn → 1 pointwise on Rd with uniform
bounds |∂ jψn|⩽ 1 and |ψn|⩽ 1 to justify dominated convergence. It follows that ψn f →
f in W 1,p(Rd).

Accordingly it suffices to prove that every compactly supported function in W 1,p(Rd)

can be approximated, in the norm of W 1,p(Rd), by test functions. This was accom-
plished in Proposition 11.22.

With the same method of proof one obtains the following density result.

Theorem 11.26. For all k ∈ N and 1 ⩽ p < ∞ the space C∞
c (Rd) is dense in W k,p(Rd).

11.1.d Extension Operators

Let k ∈ N be an integer that is kept fixed throughout this section. We say that D has a
Ck-boundary, if for every x0 ∈ ∂D there exist open sets U,V ⊆ Rd, with x0 ∈U , and a
Ck-diffeomorphism ρ : U →V with the following properties:

(i) ρ(D∩U) = {x ∈V : xd > 0};
(ii) ρ(∂D∩U) = {x ∈V : xd = 0};

(iii) there exists a constant C > 0 such that

C−1 ⩽ |det(Dρ(x))|⩽C, x ∈U,

where D is the total derivative of ρ .

See Figure 11.2.
In this situation, by Proposition 11.20 applied inductively, a function u ∈ L1

loc(U)

belongs to W k,p(U) if and only if the function v := u◦ρ−1 ∈ L1
loc(V ) belongs to W k,p(V ),

and in this case there exists a constant C > 0 such that

C−1∥v∥W k,p(V ) ⩽ ∥u∥W k,p(U) ⩽C∥v∥W k,p(V ). (11.6)

Theorem 11.27 (Density of C∞(D) in W k,p(D)). If D is bounded with Ck-boundary,
then for all 1 ⩽ p < ∞ the space C∞(D) is dense in W k,p(D).

We actually prove the stronger result that for any f ∈W k,p(D) there exists a sequence
of functions fn ∈C∞(Rd) whose restrictions to D satisfy limn→∞ ∥ fn− f∥W k,p(D) = 0.
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D

U

D∩U

ρ

V

ρ(D∩U)

Figure 11.2 The definition of a Ck-boundary

Proof The proof proceeds in three steps. The first step deals with the case where D
is (a bounded open subset of) Rd

+ := {x ∈ Rd : xd > 0}. The second step, commonly
referred to as ‘straightening the boundary’, uses the definition of a Ck-domain to carry
over the result of Step 1 to the open sets U in the definition. The third step patches
together the local results of Step 2 by means of a partition of unity argument.

Step 1 – In this first step we prove that if f ∈W k,p(Rd
+), then there exists a sequence of

functions fn ∈C∞
c (Rd) whose restrictions to Rd

+ satisfy fn→ f in W k,p(Rd
+) as n→ ∞.

Let ψ ∈C∞
c (Rd) satisfy 1B(0;1) ⩽ψ ⩽ 1B(0;2) and let M := sup|α|⩽k ∥∂ α ψ∥∞. Then for

all n ⩾ 1 the function ψn(x) := ψ(x/n) satisfies 1B(0;n) ⩽ ψn ⩽ 1B(0;2n) and ∥∂ α ψn∥∞ ⩽

n−|α|∥∂ α ψ∥∞ ⩽ M. By the product rule and dominated convergence, this implies that
ψn f → f in W k,p(Rd

+). It follows that we may assume that f has bounded support.
For t > 0 define the functions

ft(x) := f (x+ ted), x ∈ Rd
+,

where ed is the dth unit vector of Rd. Clearly we have ft ∈W k,p(Rd
+), with weak deriva-

tives

∂
α ft(x) = (∂ α f )(x+ ted), x ∈ Rd

+. (11.7)

The Lp-continuity of translations (Proposition 2.32) therefore implies that ft → f in
W k,p(Rd

+). As a result, it suffices to approximate each ft in W k,p(Rd
+) with functions in

C∞
c (Rd

+).
In the remainder of this step we fix t > 0. Let h ∈W k,p(Rd) be a function whose

restriction to {x ∈ Rd : xd > t} agrees with the restriction of f on that set. Such a
function may be found by multiplying f with a test function ψ ∈C∞

c (Rd
+) satisfying ψ ≡



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
11.1 Sobolev Spaces 377

1 on supp( f )∩{x∈Rd
+ : xd > t}; this results in a function with the desired properties by

Proposition 11.14 and Lemma 11.15. Letting ht(x) := h(x+ ted) for x ∈ Rd, it follows
that for almost all x ∈ Rd

+ we have

(∂ α ht)(x) = ∂
α h(x+ ted) = ∂

α f (x+ ted) = ∂
α ft(x).

Choose a mollifier η ∈C∞
c (Rd) satisfying

∫
Rd η dx = 1, and let ηε(x) := ε−dη(ε−1x)

for ε > 0 and x ∈ Rd. By Proposition 11.10, the functions ht,ε := ηε ∗ ht belong to
C∞(Rd) and for all multi-indices |α|⩽ k we have

∂
α ht,ε = ηε ∗ (∂ α ht). (11.8)

By (11.7), (11.8), and Proposition 2.34, for ε ↓ 0 we then obtain

∥∂ α ht,ε −∂
α ft∥Lp(Rd

+)
= ∥ηε ∗∂

α ht −∂
α ht∥Lp(Rd

+)
→ 0.

This gives the desired approximation.

Step 2 – Let x0 ∈ ∂D be fixed. Choose open sets U,V ⊆ Rd, with x0 ∈U , and a Ck-
diffeomorphism ρ : U→V with the properties (i)–(iii) in the definition of a Ck-domain.
In this step we assume that f ∈W k,p(D) has its support in an open set Ũ ⋐U .

Let g : V ∩Rd
+ → R be defined by g := f ◦ρ−1. Then g ∈W k,p(V ∩Rd

+) by (11.6).
Since ρ(Ũ)⋐V , the same argument as in the proof of Lemma 11.15 shows that the zero
extension g̃ of g to all of Rd

+ belongs to W k,p(Rd
+).

By Step 1 we may choose functions gn ∈C∞
c (Rd) such that gn→ g̃ in W k,p(Rd

+). Fix
a test function ζ ∈C∞

c (V ) such that ζ ≡ 1 on ρ(Ũ). Then also ζ gn→ ζ g̃ in W k,p(Rd
+),

and on V ∩Rd
+ we have ζ g̃ = g. Replacing gn by ζ gn if necessary, we may therefore

assume without loss of generality that gn ∈C∞
c (Ṽ ), where Ṽ ⋐ V contains the support

of ζ . Let fn := gn ◦ρ . Then fn ∈C∞
c (U). It follows that fn ∈C∞(Rd) by zero extension,

and fn→ f in W k,p(D) by (11.6).

Step 3 – Now let f ∈W k,p(D) be arbitrary. Since ∂D is compact, as in Step 1 we can
find open sets Um and Vm and Ck-diffeomorphisms ρm : Um→Vm, m = 1, . . . ,M, as well
as open sets Ũm ⋐Um, m = 1, . . . ,M, in such a way that ∂D⊆

⋃M
m=1 Ũm. By adding one

open set Ũ0 ⋐ D we may arrange that D⊆
⋃M

m=0 Ũm. Let (ηm)
M
m=0 be a smooth partition

of unity for D subordinate to this cover, that is, ηm ∈C∞
c (Ũm) for m = 0,1, . . . ,M and

M

∑
m=0

ηm ≡ 1 on D, 0 ⩽ ηm ⩽ 1, m = 0,1, . . . ,M.

Let f (m) := ηm f . By Lemma 11.15, the zero extension of f (0) belongs to W k,p(Rd),
and therefore by Theorem 11.25 we can find f (0)n ∈ C∞(Rd) such that f (0)n → f (0) in
W k,p(D). For 1 ⩽ m ⩽ M the function f (m) is supported in Ũm and by Step 2 we can find
f (m)
n ∈C∞(Rd) such that f (m)

n → f (m) in W k,p(D).
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378 Boundary Value Problems

Finally let fn := ∑
M
m=0 f (m)

n . Then fn ∈C∞(Rd) and, as n→ ∞,

∥ fn− f∥W k,p(D) ⩽
M

∑
m=0
∥ f (m)

n − f (m)∥W k,p(D)→ 0.

The restrictions of fn to D have the required properties.

The boundary of a Ck-domain is locally the graph of a Ck-function in d− 1 ‘hor-
izontal’ coordinates, and in fact this could be taken as an alternative definition of a
Ck-domain. By translating f in the remaining ‘vertical’ direction, the use of the Ck-
diffeomorphism ρ and the substitution rule can be avoided and all constructions can
be carried out directly in U . This is the reason we have been rather brief in explaining
the fine details of the substitution rule and its use in the present proof. Nevertheless we
prefer the approach presented here, as it brings out clearly the idea that constructions
involving the boundary can locally be reduced to hyperplanes {x ∈ Rd : xd = 0} using
Ck-diffeomorphisms. The advantage of this becomes even more clear in the proof of the
next theorem.

Theorem 11.28 (Extension operator). Let D be bounded and have a Ck-boundary. Then
there exists a linear mapping E : L1

loc(D)→ L1
loc(Rd) with the following properties:

(i) for all f ∈ L1
loc(D) we have (E f )|D = f ;

(ii) for all 1 ⩽ p < ∞ there exists a constant C ⩾ 0 such that for all ℓ = 0,1, . . . ,k,
and f ∈W ℓ,p(D) we have E f ∈W ℓ,p(Rd) and

∥E f∥W ℓ,p(Rd) ⩽C∥ f∥W ℓ,p(D), f ∈W ℓ,p(D).

Proof We proceed in three steps.

Step 1 – Let the integer 0⩽ ℓ⩽ k be fixed. For f ∈ L1
loc(Rd

+) and multi-indices |α|⩽ ℓ

define Eα f ∈ L1
loc(Rd) by

Eα f (x) :=


f (x), x ∈ Rd

+,
ℓ+1

∑
j=1

(− j)αd c j f (x1, . . . ,xd−1,− jxd), x ̸∈ Rd
+,

where the scalars c j are chosen in such a way that

ℓ+1

∑
j=1

(− j)mc j = 1, m = 0,1, . . . , ℓ.

By the theory of Vandermonde determinants this system of ℓ+1 equations is uniquely
solvable for c1, . . . ,cℓ+1.
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It is easily verified that if f ∈Cℓ(Rd
+), then E0 f ∈Cℓ(Rd) (due to the choice of the

coefficients c j) and ∂ α E0 f = Eα ∂ α f . Thus

∥∂ α E0 f∥p
Lp(Rd)

=
∫
Rd
+

|∂ α f |p dx+
∫
∁Rd

+

∣∣∣ℓ+1

∑
j=1

(− j)αd c j f (x1, . . . ,xd−1,− jxd)
∣∣∣p dx

⩽Cp
α,ℓ,p∥∂

α f∥p
Lp(Rd

+)
.

This gives the bound

∥E0 f∥W ℓ,p(Rd) ⩽Ck,ℓ,p∥ f∥W ℓ,p(Rd
+)
.

By Theorem 11.27 this bound extends to functions f ∈W ℓ,p(Rd
+).

Step 2 – Now let D be bounded and open. By Theorem 11.27 it suffices to prove the
existence of a linear mapping E : L1

loc(D)→ L1
loc(Rd) such that for all f ∈ L1

loc(D) we
have (E f )|D = f and for all 1 ⩽ p < ∞, ℓ= 0,1, . . . ,k, and f ∈C∞

c (D) we have

∥E f∥W ℓ,p(Rd) ⩽C∥ f∥W ℓ,p(D)

with a constant C ⩾ 0 depending only on ℓ, p, and D.
Let f ∈ L1

loc(D) and 0 ⩽ ℓ⩽ k be given. Using the notation of the proof of Theorem
11.27, set fm := ηm f , m = 0,1, . . . ,M. Let h0 be the zero extension of f0 to Rd and,
for m = 1, . . . ,M, let gm denote the zero extension to Rd

+ of the function fm ◦ ρ−1
m ∈

L1(Vm ∩Rd
+). Let E0 be the extension operator of Step 1 and define E f := ∑

M
m=0 hm,

where for m = 1, . . . ,M we set

hm :=

{
(E0gm)◦ρm on Um,

0 on ∁Um.

Then E f ≡ f on D. If we now assume that f ∈C∞(D) and fix 1⩽ p<∞, then f0 =η0 f ∈
C∞(D) and ∥h0∥W ℓ,p(Rd) ⩽ Cℓ,p,D∥ f∥W ℓ,p(D). For m = 1, . . . ,M we have hm ∈ C∞(Um)

with support in Ũm. Therefore hm ∈C∞(Rd) and, using (11.6) twice,

∥hm∥W ℓ,p(D) = ∥hm∥W ℓ,p(Um)
⩽C1∥E0gm∥W ℓ,p(Vm)

⩽C1∥E0gm∥W ℓ,p(Rd)

⩽C2∥gm∥W ℓ,p(Rd
+)

=C2∥gm∥W ℓ,p(Vm∩Rd
+)

⩽C3∥ fm∥W ℓ,p(Um∩D) ⩽C4∥ f∥W ℓ,p(D).

It follows that

∥E f∥W ℓ,p(Rd) ⩽
M

∑
m=0
∥hm∥W ℓ,p(Rd) ⩽C5∥ f∥W ℓ,p(D),

with all constants only depending on ℓ, p,D.
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11.1.e Bessel Potential Spaces

A function f ∈ Lp(D), with 1 ⩽ p ⩽ ∞, is said to admit a weak Lp-Laplacian if there
exists a function g ∈ Lp(D) such that for all test functions φ ∈C∞

c (D) we have∫
D

f ∆φ dx =
∫

D
gφ dx.

This defines a linear operator ∆p,D in Lp(D), the weak Lp-Laplacian on D, with domain

D(∆p,D) := { f ∈ Lp(D) : f admits a weak Lp-Laplacian on D}.

By the argument of Example 10.16, this operator is closed. In what follows we will
denote weak Laplacians simply by ∆.

Among other things, as an application of the Plancherel theorem the next theorem
establishes that the domain of the weak Laplacian in L2(Rd) equals W 2,2(Rd).

Theorem 11.29 (Fourier analytic characterisation, weak Laplacian). Let k ⩾ 0 be a
nonnegative integer. For a function f ∈ L2(Rd) the following assertions are equivalent:

(1) f belongs to W k,2(Rd);
(2) ξ 7→ (1+ |ξ |2)k/2 f̂ (ξ ) belongs to L2(Rd).

Moreover,

f 7→
∥∥ξ 7→ (1+ |ξ |2)k/2 f̂ (ξ )

∥∥
2

defines an equivalent norm on W k,2(Rd). For k = 2, (1) and (2) are equivalent to:

(3) f admits a weak Laplacian in L2(Rd).

Moreover, D(∆) = W 2,2(Rd) and f 7→ ∥ f∥2 + ∥∆ f∥2 defines an equivalent norm on
W 2,2(Rd).

Definition 11.30 (The Bessel potential spaces Hs(Rd)). For real numbers s ⩾ 0 the
subspace of all f ∈ L2(Rd) such that

ξ 7→ (1+ |ξ |2)s/2 f̂ (ξ )

belongs to L2(Rd) is denoted by Hs(Rd) and is called the Bessel potential space with
smoothness exponent s. With respect to the norm

∥ f∥Hs(Rd) :=
∥∥ξ 7→ (1+ |ξ |2)s/2 f̂ (ξ )

∥∥
L2(Rd)

(11.9)

this space is a Hilbert space. The easy verification is left as an exercise.

For noninteger values of s, the spaces Hs(Rd) play an important role in the regularity
theory for partial differential equations.

The equivalence of (1) and (2) of Theorem 11.29 asserts:
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Theorem 11.31 (W k,2(Rd) = Hk(Rd)). If k ⩾ 0 is a nonnegative integer, then

W k,2(Rd) = Hk(Rd)

with equivalence of norms.

The proof of Theorem 11.29 relies on the following lemma, where for vectors ξ ∈Rd

and multi-indices α ∈ Nd we use the short-hand notation

ξ
α := ξ

α1
1 · · ·ξ

αd
d .

Lemma 11.32. A function f ∈ L2(Rd) admits a weak derivative ∂ α f belonging to
L2(Rd) if and only if ξ 7→ ξ α f̂ (ξ ) belongs to L2(Rd), and in that case we have

∂̂ α f (ξ ) = i|α|ξ α f̂ (ξ )

for almost all ξ ∈ Rd.

Proof For test functions φ ∈C∞
c (Rd) and ξ ∈ Rd , an integration by parts gives

∂̂ α φ(ξ ) =
1

(2π)d/2

∫
Rd

exp(−ix ·ξ )∂ α
φ(x)dx

=
i|α|ξ α

(2π)d/2

∫
Rd

exp(−ix ·ξ )φ(x)dx = i|α|ξ α
φ̂(ξ ).

(11.10)

Also, by differentiating under the integral, we see that φ̂ is smooth and

∂
α

φ̂(ξ ) = (−i)|α|(xα
φ(x))̂(ξ ). (11.11)

‘If’: Suppose that ξ 7→ ξ α f̂ (ξ ) belongs to L2(Rd) and denote its inverse Fourier–
Plancherel transform by gα . Using the Plancherel isometry and (11.10), for real-valued
φ ∈C∞

c (Rd) we obtain

(−1)|α|
∫
Rd

f (x)∂ α
φ(x)dx = (−1)|α|( f |∂ α

φ) = (−1)|α|( f̂ |∂̂ α φ)

= i|α|
∫
Rd

ξ
α f̂ (ξ )φ̂(ξ )dξ = i|α|

∫
Rd

gα(x)φ(x)dx.

Considering real and imaginary parts separately, the identity extends to complex-valued
φ ∈C∞

c (Rd). This shows that f has weak derivative ∂ α f = i|α|gα in L2(Rd).

‘Only if’: Fix a test function φ ∈ C∞
c (Rd). Using Proposition 5.28 and (11.11) we

obtain∫
Rd

∂̂ α f (ξ )φ(ξ )dξ =
∫
Rd
(∂ α f )(ξ )φ̂(ξ )dξ = (−1)|α|

∫
Rd

f (ξ )∂ α
φ̂(ξ )dξ

= i|α|
∫
Rd

f (ξ )(xα
φ(x))̂(ξ )dξ = i|α|

∫
Rd

ξ
α f̂ (ξ )φ(ξ )dξ .

By Proposition 11.5 this implies ∂̂ α f (ξ ) = i|α|ξ α f̂ (ξ ) for almost all ξ ∈ Rd. Since by
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assumption ∂ α f ∈ L2(Rd), the Plancherel theorem implies that ∂̂ α f ∈ L2(Rd). This
shows that ξ 7→ ξ α f̂ (ξ ) belongs to L2(Rd).

Proof of Theorem 11.29 We begin with the proof of the equivalence (1)⇔(2) for gen-
eral integers k ⩾ 0. The heart of the matter is contained in the two-sided estimate

(1+ |ξ |2)k/2 ≂d,k

(
∑
|α|⩽k
|ξ α |2

)1/2
, (11.12)

which follows from the binomial identity. Here, the notation A ≂d,k B is short-hand
for the existence of constants cd,k,c′d,k ⩾ 0, both depending only on d and k, such that
A ⩽ cd,kB and B ⩽ c′d,kA.

(1)⇒(2): First let f ∈W k,2(Rd). By (11.12), Lemma 11.32, and Plancherel’s theorem,

∫
Rd
(1+ |ξ |2)k| f̂ (ξ )|2 dξ ≂d,k ∑

|α|⩽k

∫
Rd
|ξ α f̂ (ξ )|2 dξ

= ∑
|α|⩽k

∫
Rd
|∂̂ α f (ξ )|2 dξ

= ∑
|α|⩽k

∫
Rd
|∂ α f (x)|2 dx ≂d,k ∥ f∥2

W k,2(Rd)
.

This shows that ξ 7→ (1+ |ξ |2)k/2 f̂ (ξ ) belongs to L2(Rd), and that its L2-norm is equiv-
alent to the norm of f in W k,2(Rd).

(2)⇒(1): Suppose that f ∈ L2(Rd) is a function with the property that ξ 7→ (1+
|ξ |2)k/2 f̂ (ξ ) belongs to L2(Rd). Then ξ 7→ ξ α f̂ (ξ ) belongs to L2(Rd) for all multi-
indices α ∈ Nd satisfying |α| ⩽ k, and therefore f has weak derivatives ∂ α f for all
|α|⩽ k by Lemma 11.32. This shows that f ∈W k,2(Rd).

For k = 2, (1) obviously implies (3). Conversely, if (3) holds (with ∆ f = g), then by
the same argument as in the ‘only if’ part of Lemma 11.32 we find that ξ 7→ |ξ |2 f̂ (ξ )
belongs to L2(Rd) (and equals ĝ(ξ ) for almost all ξ ∈Rd), and therefore (2) holds. The
equivalence of norms again follows from the Plancherel theorem and (11.12).

11.2 The Poisson Problem −∆u = f

The results developed above are now applied to study the Poisson problem.
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11.2.a Dirichlet Boundary Conditions

We recall from Theorem 11.31 that Hk(Rd) = W k,2(Rd) with equivalent norms. For
nonempty open subsets D of Rd it is customary to define

Hk(D) :=W k,2(D), H1
0 (D) :=W 1,2

0 (D),

where W 1,2
0 (D) is the closure of C∞

c (D) in W 1,2(D). We endow Hk(D) with the norm

∥ f∥2
Hk(D)

:= ∑
|α|⩽k
∥∂ α f∥2

2,

where the summation extends over all multi-indices α ∈ Nd of order at most k. This
norm is associated with the inner product

( f |g)Hk(D) = ∑
|α|⩽k

(∂ α f |∂ α g)2

and it turns Hk(D) into a Hilbert space. As a closed subspace of H1(D), the space H1
0 (D)

is a Hilbert space as well.
Let us now take a look at the Poisson problem with Dirichlet boundary conditions:{

−∆u = f on D,

u|∂D = 0,
(11.13)

where f ∈ L2(D) is a given function and ∆ = ∑
d
i=1 ∂ 2

i is the Laplace operator. Multiply-
ing both sides of the equation (11.13) with a test function φ ∈C∞

c (D) and integrating,
we obtain the following integrated version of the problem:∫

D
(∆u)φ dx =−

∫
D

f φ dx,

which, after a formal integration by parts (which can be rigorously justified if u ∈
C2(D)), can be rewritten as ∫

D
∇u ·∇φ dx =

∫
D

f φ dx. (11.14)

This formal derivation justifies the following definition.

Definition 11.33 (Weak solutions). A function u ∈ H1
0 (D) is called a weak solution of

the Poisson problem with Dirichlet boundary conditions (11.13) if∫
D

∇u ·∇φ dx =
∫

D
f φ dx, φ ∈C∞

c (D).

The notion of weak solution makes sense for inhomogeneities f ∈ L2(D). In the spe-
cial case f ∈C(D), a classical solution may be defined as a function u ∈C2(D)∩C(D)

satisfying the equations of the Poisson problem,−∆u = f on D and u|∂D = 0 pointwise.
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Classical solutions may not exist, however, even when f ∈Cc(D) (see Problem 11.26).
The advantage of working with weak solutions is that the integrated equation in (11.14)
involves only the first derivative and both integrals in (11.14) can be interpreted as in-
ner products. This makes the problem of finding weak solutions amenable to Hilbert
space methods. The requirement that u be in H1

0 (D) implements the boundary condition
u|∂D = 0, as evidenced by Theorem 11.24.

Having admitted membership of H1
0 (D) as a valid way of implementing Dirichlet

boundary conditions, one may still be tempted to look for solutions in H1
0 (D)∩H2(D).

It can be shown that this works (in the sense that a unique weak solution in the sense
of Definition 11.33 belonging to this space exists) if D is assumed to be bounded with
C2-boundary (see Remark 11.38). Without additional assumptions on D, however, such
solutions need not exist.

Henri Poincaré, 1854–1912

Before attacking the problem (11.13) using
Hilbert space methods, we pause to emphasise
that in some special cases this problem is sim-
ple enough to admit a direct elementary solu-
tion. For instance, for d = 1 and D = (a,b) we
may integrate the equation twice and determine
the two integration constants by substituting the
boundary conditions, which take the form u(a)=
u(b) = 0. After some computations one arrives at

u(x) =
∫ b

a
k(x,y) f (y)dy, x ∈ (a,b),

where

k(x,y) =
1

b−a

{
(b− y)(x−a), x ⩽ y,

(b− x)(y−a), y ⩽ x,

is the so-called Green function for the Poisson problem on (a,b) with Dirichlet bound-
ary conditions. The reader may check (see Problem 11.25) that the function u thus
defined belongs to H1

0 (a,b) and is indeed a weak solution of (11.13).
It is unclear, however, how to extend this elementary method to higher dimensions.

In contrast, the Hilbert space method adopted here works in arbitrary dimensions. Our
main tool is the following inequality which is of interest in its own right.

Theorem 11.34 (Poincaré inequality). Let D be contained in R := (0,r)×Rd−1 and let
1 ⩽ p < ∞. Then the following estimate holds:

∥ f∥p ⩽ rp−1/p
∥∥∥ ∂ f

∂x1

∥∥∥
p
, f ∈W 1,p

0 (D).

As a consequence, ||| f |||W 1,p
0 (D)

:= ∥∇ f∥Lp(D;Kd) defines an equivalent norm on W 1,p
0 (D).
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Proof First assume that f ∈C∞
c (D). By extending f identically zero on R\D we may

view f as a function in C∞
c (R). For 1 ⩽ p < ∞ and x1 ∈ [0,r] we have, using Hölder’s

inequality and the fact that f (0,x2, . . . ,xd) = 0,

| f (x1,x2, . . . ,xd)|p =
∣∣∣∫ x1

0

∂ f
∂x1

(t,x2, . . . ,xd)dt
∣∣∣p ⩽ xp/q

1

∫ x1

0

∣∣∣ ∂ f
∂x1

(t,x2, . . . ,xd)
∣∣∣p dt,

where 1
p +

1
q = 1. Integrating both sides over R, we obtain

∥ f∥p
p =

∫
R
| f (x1,x2, . . . ,xd)|p dx

⩽
∫

R

(
xp/q

1

∫ r

0

∣∣∣ ∂ f
∂x1

(t,x2, . . . ,xd)
∣∣∣p dt

)
dx

=
∫ r

0
xp/q

1 dx1

∫
Rd−1

∫ r

0

∣∣∣ ∂ f
∂x1

(t,x2, . . . ,xd)
∣∣∣p dt dx2 · · · dxd

=
rp

p

∥∥∥ ∂ f
∂x1

∥∥∥p

p
.

Since C∞
c (D) is dense in W 1,p

0 (D), the estimate for a general f ∈W 1,p
0 (D) follows by

approximation.
The equivalence of the norms follows from

∥∇ f∥p ⩽ ∥ f∥p +∥∇ f∥p ⩽ (rp−1/p +1)∥∇ f∥p,

where we used the trivial estimate ∥ ∂ f
∂x1
∥p ⩽ ∥∇ f∥p.

We now take p = 2 and recall the notation H1(D) =W 1,2(D) and H1
0 (D) =W 1,2

0 (D).
Poincaré’s inequality then states that

||| f |||H1
0 (D) := ∥∇ f∥2, f ∈ H1

0 (D),

defines an equivalent norm on H1
0 (D). With respect to this norm, H1

0 (D) is again a
Hilbert space, this time with respect to the inner product

(( f1| f2))H1
0 (D) := (∇ f1|∇ f2)2.

Theorem 11.35 (Poisson problem, Dirichlet boundary conditions). If D is bounded,
then for every f ∈ L2(D) the Poisson problem (11.13) admits a unique weak solution
u ∈ H1

0 (D). Moreover, there exists a constant C ⩾ 0, independent of f , such that

∥u∥H1
0 (D) ⩽C∥ f∥2.

Proof By the Cauchy–Schwarz inequality and Poincaré’s inequality, the linear map-
ping L : g 7→

∫
D g f dx is bounded from H1

0 (D) to K:

|L(g)|⩽ ∥g∥2∥ f∥2 ⩽C∥∇g∥2∥ f∥2 =C|||g|||H1
0 (D)∥ f∥2.
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Therefore L defines a bounded functional on H1
0 (D). Hence, by the Riesz representation

theorem, there exists a unique u ∈ H1
0 (D) such that

L(g) = ((g|u))H1
0 (D), g ∈ H1

0 (D), (11.15)

and it satisfies |||u|||H1
0 (D) = ∥L∥ ⩽ C∥ f∥2. Writing out the identity (11.15), it takes the

form ∫
D

∇g ·∇udx =
∫

D
g f dx, g ∈ H1

0 (D). (11.16)

In particular, (11.16) holds for all g ∈C∞
c (D), since C∞

c (D) is contained in H1
0 (D). Re-

placing g by g and taking conjugates on both sides, we see that u is a weak solution of
(11.13).

If v ∈ H1
0 (D) is another weak solution, then∫

D
(∇u−∇v) ·∇φ dx = 0, φ ∈C∞

c (D).

Since C∞
c (D) is dense in H1

0 (D), it follows that∫
D
(∇u−∇v) ·∇gdx = 0, g ∈ H1

0 (D),

and applying this to g gives ((u−v|g))H1
0 (D) = 0 for all g∈H1

0 (D). This implies u−v= 0

in H1
0 (D).

We prove next that the weak solution actually belongs to H1
0 (D)∩H2

loc(D), where
H2

loc(D) is the space of all f ∈ L1
loc(D) with the property that f |U ∈ H2(U) for all open

sets U ⋐ D. Defining the space L2
loc(D) similarly, this will follow from the following

lemma.

Lemma 11.36. If f ∈ H1(D) admits a weak Laplacian in L2
loc(D), then f ∈ H2

loc(D).

Proof Let U,U ′ be bounded open sets such that U ⋐ U ′ ⋐ D, and let ψ ∈ C∞
c (U

′)

satisfy ψ ≡ 1 on U . It is routine to check that if we view ψ f as an element of L2(Rd),
it admits a weak Laplacian belonging to L2(Rd) given by the Leibniz formula

∆(ψ f ) = (∆ψ) f +ψh+
d

∑
j=1

(∂ jψ)g j,

where g j := ∂ j f ∈ L2(D) and h := ∆ f ∈ L2
loc(D) are the weak directional derivatives

and the weak Laplacian of f on D, respectively; we view all terms as functions defined
on all of Rd by zero extension.

Theorem 11.29 then implies that ψ f ∈ H2(Rd). Since (ψ f )|U = f |U , it follows that
f |U belongs to H2(U).
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Theorem 11.37. Let D be bounded. The weak solution u of the Poisson problem−∆u =

f with f ∈ L2(D), subject to Dirichlet boundary conditions, belongs to H1
0 (D)∩H2

loc(D).

Proof The very definition of a weak solution implies that u admits a weak Laplacian
belonging to L2(D), given by ∆u=− f . The result now follows from Lemma 11.36.

Remark 11.38. If D is bounded and has a C2-boundary, the weak solution belongs to
H2(D). This follows from Theorem 11.28 and Lemma 11.36.

The next proposition shows that a function in H1
0 (D) solves the Poisson problem with

Dirichlet boundary conditions if and only if it minimises a certain energy functional.

Theorem 11.39 (Variational characterisation). Let D be bounded and let f ∈ L2(D).
For a function u0 ∈ H1

0 (D) the following assertions are equivalent:

(1) u0 is the weak solution of the Poisson problem −∆u = f on D subject to Dirichlet
boundary conditions;

(2) u0 minimises the energy functional E : H1
0 (D)→ R defined by

E(u) :=
1
2

∫
D
|∇u|2 dx−Re

∫
D

u f dx.

Proof We use the notation

a(u,v) :=
∫

D
∇u ·∇vdx, L(u) :=

∫
D

u f dx.

With this notation, for all t ∈ R and u0,u ∈ H1
0 (D) we have

E(u0 + tu) = E(u0)+ t Re(a(u,u0)−Lu)+
1
2

t2a(u,u). (11.17)

(1)⇒(2): Suppose that u0 is a weak solution, that is, u ∈H1
0 (D) and a(φ ,u0) = L(φ)

for all φ ∈ C∞
c (D). By density, this identity extends to arbitrary φ ∈ H1

0 (D). Applying
the identity with φ = u and taking t = 1 in (11.17), for all nonzero u ∈H1

0 (D) we obtain

E(u0 +u) = E(u0)+
1
2
a(u,u)⩾ E(u0), (11.18)

and, by Poincaré’s inequality, the inequality is in fact strict. It follows that u0 is a min-
imiser of E in H1

0 (D).

(2)⇒(1): Suppose conversely that u0 minimises E in H1
0 (D). The identity (11.17)

implies that for all u ∈ H1
0 (D) the function t 7→ E(u0 + tu) is differentiable in t and

0 =
d
dt

∣∣∣
t=0

E(u0 + tu) = Re(a(u,u0)−Lu).

Over the real scalar field this implies that a(u,u0)−Lu = 0. Over the complex scalar
field we apply the preceding identity with u replaced by iu to find that also Im(a(u,u0)−
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Lu) = 0, and again it follows that a(u,u0)−Lu = 0. In both cases we conclude that u0

is a weak solution.

The existence and uniqueness of a weak solution implies that for each f ∈ L2(D) the
energy functional

E(u) :=
1
2

∫
D
|∇u|2 dx−Re

∫
D

u f dx

has a unique minimiser in H1
0 (D). In the above proof, uniqueness was reflected by the

strictness of the inequality in (11.18).
Theorem 11.39 is a special case of a more general result on the existence and unique-

ness of minimisers for suitable nonlinear functionals defined on Hilbert spaces; see
Problem 11.31.

11.2.b Neumann Boundary Conditions

Having dealt with Dirichlet boundary conditions, we shall now take a look at the Poisson
problem with Neumann boundary conditions:{

−∆u = f on D,
∂u
∂ν

= 0 on ∂D,
(11.19)

where ∂u
∂ν

:= ∇u · ν is the partial derivative in the direction of the outward normal ν

along ∂D and f ∈ L2(D) is a given function. The treatment of this example in higher
dimensions requires some familiarity with standard techniques from partial differential
equations, as the notion of an outward normal is meaningful only under some regu-
larity assumptions on the boundary ∂D. For the present treatment C1-regularity of the
boundary suffices.

To motivate the notion of weak solutions we need Green’s theorem: If D is bounded
with C1-boundary, then for all u ∈C2(D) and v ∈C1(D) we have∫

D
∇u ·∇vdx =−

∫
D

v∆udx+
∫

∂D
v

∂u
∂ν

dS,

where dS is the normalised surface measure on ∂D. We temporarily disregard the
boundary condition, and ask ourselves which information is conveyed by the integrated
equation ∫

D
∇u ·∇φ dx =

∫
D

f φ dx (11.20)

if it is to hold for all φ ∈ C∞(D) (and not just for all C∞
c (D), since that would ignore

what happens at the boundary). By Green’s theorem,∫
D

φ∆udx−
∫

∂D
φ

∂u
∂ν

dS =−
∫

D
f φ dx. (11.21)
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Since we wish to solve −∆u = f , we substitute this relation into (11.21) and find that∫
∂D

φ
∂u
∂ν

dS = 0.

This can only hold for all φ ∈C∞(D) if

∂u
∂ν

= 0 on ∂D,

that is, if Neumann boundary conditions hold.
By considering φ ≡ 1 we see that the identity (11.20) can only hold for all φ ∈C∞(D)

if f satisfies the compatibility condition∫
D

f dx = 0.

More generally the integral of f against every locally constant function should vanish.
Likewise, solutions of (11.20) cannot be unique: if u is a solution (in whatever weak
sense), then also u+C is a solution, for any locally constant function C. In order to
simplify matters we henceforth assume that D is connected, so that the only locally
constant functions are the constant functions. Under this assumption we get rid of inte-
gration constants by imposing the constraint∫

D
udx = 0,

that is, the average of u over D should vanish. Accordingly we define

H1
av(D) :=

{
u ∈ H1(D) :

∫
D

udx = 0
}
.

This discussion leads to the following weak formulation of the problem (11.19).

Definition 11.40 (Weak solutions). Let D be bounded and connected and let f ∈ L2(D)

satisfy
∫

D f dx = 0. A function u ∈ H1
av(D) is called a weak solution of the Poisson

problem (11.19) if ∫
D

∇u ·∇φ dx =
∫

D
f φ dx, φ ∈C∞(D).

Our treatment of the Poisson problem with Dirichlet boundary conditions crucially
depended on the Poincaré inequality for H1

0 (D). The treatment of Neumann boundary
conditions proceeds analogously, the role of H1

0 (D) being taken over by H1
av(D). We

will prove a version of the Poincaré inequality for this space in Theorem 11.42. Its
proof depends on the following compactness result.

Theorem 11.41 (Rellich–Kondrachov compactness theorem). If D is bounded and 1 ⩽
p < ∞, then:

(1) the inclusion mapping from W 1,p
0 (D) into Lp(D) is compact;
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(2) if D has C1-boundary, the inclusion mapping from W 1,p(D) into Lp(D) is compact.

Proof We first prove (1) and deduce (2) from it by means of the extension theorem.

(1): We must show that the unit ball of W 1,p
0 (D) is relatively compact in Lp(D). By

extending the elements of W 1,p
0 (D) identically zero outside D we may view this unit ball

as a bounded subset, which we denote by B, of Lp(Rd), and it suffices to prove that this
set is relatively compact in Lp(Rd). For this purpose we use the Fréchet–Kolmogorov
theorem, or rather, its corollary for bounded domains (Corollary 2.36). According to
this corollary we must check that

lim
|h|→0

sup
f∈B
∥τh f − f∥p = 0. (11.22)

Here, τh f is the translate of f over h, that is, τh f (x) = f (x+h). To prove this, first let
f ∈ B∩C∞

c (D) and extend f to identically zero to all of Rd. For r > 0 let Dr := {x∈Rd :
d(x,D) < r}. If |h| < 1

2 r, then by Hölder’s inequality, Fubini’s theorem, and a change
of variables,∫

Rd
|τh f − f |p dx =

∫
D 1

2 r

| f (x+h)− f (x)|p dx

⩽
∫

D 1
2 r

(∫ 1

0

∣∣∣ d
dt

f (x+ th)
∣∣∣dt
)p

dx

⩽
∫

D 1
2 r

∫ 1

0

∣∣∣ d
dt

f (x+ th)
∣∣∣p dt dx

⩽ |h|p
∫

D 1
2 r

∫ 1

0
|∇ f (x+ th)|p dt dx

= |h|p
∫ 1

0

∫
D 1

2 r

|∇ f (x+ th)|p dxdt

⩽ |h|p
∫ 1

0

∫
Dr

|∇ f (y)|p dydt

= |h|p
∫

D
|∇ f (y)|p dy ⩽ |h|p∥ f∥p

W 1
0 (D)

⩽ |h|p,

keeping in mind that ∥ f∥W 1
0 (D) ⩽ 1 since f ∈ B. The above estimate holds for any f ∈

B∩C∞
c (D). Since C∞

c (D) is dense in W 1,p
0 (D) this estimate extends to arbitrary f ∈ B.

This proves that if |h|< 1
2 r, then

sup
f∈B
∥τh f − f∥p ⩽ |h|

and (11.22) follows.
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(2): Let D ⋐ D′, where D′ ⊆ Rd is some larger bounded domain. Let ψ ∈ C∞
c (Rd)

be compactly supported in D′ and satisfy ψ ≡ 1 on D. As in Theorem 11.28 let ED :
W 1,p(D)→W 1,p(Rd) be a bounded extension operator, let Mψ : W 1,p(Rd)→W 1,p

0 (D′)
be the multiplier given by f 7→ ψ f (we use Proposition 11.22 to see that this operator
maps into W 1,p

0 (D′) as claimed), let iD′ : W 1,p
0 (D′)→ Lp(D′) be the inclusion mapping

(which is compact by Step 1), and let RD′,D : Lp(D′)→ Lp(D) the restriction operator
f 7→ f |D′ . Then the inclusion mapping jD : W 1,p(D)→ Lp(D) factors as

jD = RD′,D ◦ iD′ ◦Mψ ◦ED

and is therefore compact.

As an application of the Rellich–Kondrachov theorem we have the following variant
of Poincaré’s inequality. Define

W 1,p
av (D) :=

{
u ∈W 1,p(D) :

∫
D

udx = 0
}
.

Theorem 11.42 (Poincaré–Wirtinger inequality). Let D be bounded and connected with
C1-boundary. Let 1 ⩽ p < ∞. Then there exists a constant C = Cp,D such that for all
f ∈W 1,p

av (D) the following estimate holds:

∥ f∥p ⩽C∥∇ f∥p.

In particular, ||| f |||W 1,p
av (D)

:= ∥∇ f∥p defines an equivalent norm on W 1,p
av (D).

Proof We argue by contradiction. If the theorem were false we could find a sequence
( fn)n⩾1 in W 1,p

av (D) such that ∥ fn∥p ⩾ n∥∇ fn∥p for n = 1,2, . . . By scaling we may
assume that ∥ fn∥p = 1, so that ∥∇ fn∥p ⩽ 1

n .
Since ( fn)n⩾1 is bounded in W 1,p

av (D) we may use the Rellich–Kondrachov theorem
to extract a subsequence ( fnk)k⩾1 of ( fn)n⩾1 that converges, with respect to the norm of
Lp(D), to some f ∈ Lp(D). Also ∥∇ fnk∥p ⩽ 1

nk
→ 0 as k→∞, and therefore the closed-

ness of ∇ as an operator from Lp(D) to Lp(D;Kd) implies that f ∈ D(∇) = W 1,p(D)

and ∇ f = 0. In view of ∫
D

f dx = lim
k→∞

∫
D

fnk dx = 0 (11.23)

we even have f ∈W 1,p
av (D). But ∇ f = 0 implies, via Proposition 11.16, that f is a

constant almost everywhere. In view of (11.23) this is only possible if f = 0 almost
everywhere. We thus arrive at the contradiction 0 = ∥ f∥p = limk→∞ ∥ fnk∥p = 1.

We are now in a position to solve the Poisson problem with Neumann boundary
conditions.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
392 Boundary Value Problems

Theorem 11.43 (Poisson problem, Neumann boundary conditions). Let D be bounded
and connected with C1-boundary. For every f ∈ L2(D) satisfying∫

D
f dx = 0

the Poisson problem (11.19) admits a unique weak solution u∈H1
av(D). Moreover, there

exists a constant C ⩾ 0, independent of f , such that

∥u∥H1
av(D) ⩽C∥ f∥2.

Proof The argument follows the proof of Theorem 11.35 with minor adjustments.
By Theorem 11.42,

|||g|||H1
av(D) := ∥∇g∥2

defines an equivalent norm on H1
av(D). This norm arises from the inner product

((g|h))H1
av(D) := (∇g|∇h)2.

In the rest of the proof we shall consider H1
av(D) with this norm.

By the Cauchy–Schwarz inequality and the Poincaré–Wirtinger inequality, the linear
mapping L : g 7→

∫
D g f dx is bounded from H1

av(D) to K:

|L(g)|⩽ ∥g∥2∥ f∥2 ⩽C∥∇g∥2∥ f∥2 =C∥g∥H1
av(D)∥ f∥2.

Therefore L defines a bounded functional on H1
av(D). Hence, by the Riesz representation

theorem there exists a unique u ∈ H1
av(D) such that

L(g) = ((g|u))H1
av(D), g ∈ H1

av(D),

and it satisfies |||u|||H1
av(D) = ∥L∥⩽C∥ f∥2. Writing out this identity, it takes the form∫

D
∇g ·∇udx =

∫
D

g f dx, g ∈ H1
av(D). (11.24)

For an arbitrary g ∈ H1(D) we may write g = m+ (g−m) with m :=
∫

D gdx. Then
g−m ∈ H1

av(D). Since (11.24) also holds with g replaced by the constant function m,
it follows that (11.24) holds for all g ∈ H1(D). In particular it holds for all g ∈C∞(D),
since such functions belong to H1(D). Taking conjugates on both sides we see that u is
a weak solution of (11.19).

If v is another weak solution, then∫
D
(∇u−∇v) ·∇φ dx = 0, φ ∈C∞(D).

Since C∞(D) is dense in H1(D) by Theorem 11.27, ((u− v|g))H1
av(D) = 0 for all g ∈

H1
av(D). This implies that u− v = 0 in H1

av(D).
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The analogue of Theorem 11.37 holds, with the same proof:

Theorem 11.44. Let D be bounded and connected with C1-boundary and let f ∈ L2(D)

satisfy
∫

D f dx = 0. The weak solution of the Poisson problem −∆u = f , subject to Neu-
mann boundary conditions, belongs to H1(D)∩H2

loc(D).

If D is bounded and has a C2-boundary, the weak solution u can again be shown to
belong to H2(D).

A variational characterisation of weak solutions in the spirit of Theorem 11.39 can
be given:

Theorem 11.45 (Variational characterisation of the solution). Let D be bounded and
connected with C1-boundary, and let f ∈ L2(D) satisfy

∫
D f dx = 0. For a function u0 ∈

H1
av(D) the following assertions are equivalent:

(1) u0 is the weak solution of the Poisson problem −∆u = f on D subject to Neumann
boundary conditions;

(2) u0 minimises the energy functional E : H1(D)→ R defined by

E(u) :=
1
2

∫
D
|∇u|2 dx−Re

∫
D

u f dx.

Proof The proof is very similar to that in the case of Dirichlet boundary conditions.
We use the notation

a(u,v) :=
∫

D
∇u ·∇vdx, L(u) :=

∫
D

u f dx.

With this notation, for all t ∈ R and u0,u ∈ H1(D) we have

E(u0 + tu) = E(u0)+ t Re(a(u,u0)−Lu)+
1
2

t2a(u,u). (11.25)

(1)⇒(2): Suppose that u0 is a weak solution, that is, u0 ∈ H1
av(D) and a(φ ,u0) =

L(φ) for all φ ∈ C∞(D). By density, this identity extends to arbitrary φ ∈ H1(D) by
approximation. Applying the identity with φ = u and t = 1 in (11.25), for all nonzero
u ∈ H1(D) we obtain

E(u0 +u) = E(u0)+
1
2
a(u,u)⩾ E(u0),

and, by the Poincaré–Wirtinger inequality, the inequality is strict if u ∈ H1
av(D). It fol-

lows that u0 is a minimiser of E in H1(D).

(2)⇒(1): Suppose conversely that u0 ∈ H1
av(D) minimises E in H1(D). The identity

(11.25) implies that for all u ∈ H1
av(D) the function t 7→ E(u0 + tu) is differentiable in t

and

0 =
d
dt

∣∣∣
t=0

E(u0 + tu) = Re(a(u,u0)−Lu).
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Over the real scalar field this implies that a(u,u0)−Lu = 0. Over the complex scalar
field we apply the preceding identity with u replaced by iu to find that also Im(a(u,u0)−
Lu) = 0, and again it follows that a(u,u0)−Lu = 0. In both cases we conclude that u0

is a weak solution.

11.2.c The Elliptic Problem λu−∆u = f

The results of the preceding two sections admit straightforward modifications for the
elliptic problem

λu−∆u = f

for Reλ > 0 and f ∈ L2(D), subject to Dirichlet or Neumann boundary conditions.
As always we assume that D is open and bounded in Rd, and in the case of Neumann
boundary conditions we furthermore assume that D is connected and has C1-boundary.

To treat the case of Dirichlet boundary conditions we define a weak solution to be a
function u ∈ H1

0 (D) such that∫
D

λuφ +∇u ·∇φ dx =
∫

D
f φ dx, φ ∈C∞

c (D).

Repeating the steps of the proofs of Theorem 11.35 and 11.39 one obtains:

Theorem 11.46 (Elliptic problem, Dirichlet boundary conditions). If D is bounded, then
for all Reλ > 0 and f ∈ L2(D) the elliptic problem λu−∆u = f subject to Dirichlet
boundary conditions admits a unique weak solution. For λ > 0 this weak solution is the
unique minimiser of the energy functional E : H1

0 (D)→ R defined by

E(u) :=
1
2

∫
D
|∇u|2 +λ |u|2 dx−Re

∫
D

u f dx.

In the case of Neumann boundary conditions, the presence of additional term λu has
the effect of simplifying the heuristic reasoning motivating the definition of a weak solu-
tion in Section 11.2.b, in that the averaging conditions are no longer needed. Repeating
the argument, it is found that a weak solution should now be defined to be an element
u ∈ H1(D) such that

λ

∫
D

uφ +∇u ·∇φ dx =
∫

D
f φ dx, φ ∈C∞(D).

Repeating the steps of the proofs of Theorem 11.43 and 11.45 one obtains:

Theorem 11.47 (Elliptic problem, Neumann boundary conditions). If D is bounded
and connected with C1-boundary, then for all Reλ > 0 and f ∈ L2(D) the elliptic prob-
lem λu−∆u = f subject to Neumann boundary conditions admits a unique weak so-
lution. For λ > 0 this weak solution is the unique minimiser of the energy functional
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E : H1
0 (D)→ R defined by

E(u) :=
1
2

∫
D
|∇u|2 +λ |u|2 dx−Re

∫
D

u f dx.

We limit the present treatment of the elliptic problem to the above two theorems. In
the next two chapters we will develop powerful techniques that allow us to give precise
L2-estimates for the solutions u in terms of the data f and to extend these estimates to
Lp for 1 ⩽ p < ∞.

11.3 The Lax–Milgram Theorem

The considerations of the previous section depended crucially on the use of the Riesz
representation theorem as an abstract tool to prove the existence and uniqueness of
solutions. This technique can be generalised to more general classes of boundary value
problems by using a more flexible version of Riesz representation theorem, the so-called
Lax–Milgram theorem.

11.3.a The Theorem

In what follows, V is a Hilbert space. The reason for using the letter V is that in appli-
cations, typical choices are V = H1

0 (D) and V = H1(D), where D is an open subset of
Rd. In such settings the letter H will be reserved for the space L2(D). In order to prevent
possible confusion, the inner product and norm of V will be denoted by (·|·)V and ∥·∥V ,
respectively.

Definition 11.48 (Forms). A form on V is a sesquilinear mapping a : V ×V → K. A
form a on V is called bounded if there exists a constant C ⩾ 0 such that

|a(u,v)|⩽C∥u∥V∥v∥V , u,v ∈V.

In the language of forms, Proposition 9.15 asserts that if a : V ×V →K is a bounded
form, then there exists a unique bounded operator A on V such that

a(v,v′) = (Av|v′)V for all v,v′ ∈V.

Moreover, ∥A∥V ⩽C, where C is the boundedness constant of a.

Definition 11.49 (Accretive and coercive forms). A form a on V is called accretive if

Rea(v,v)⩾ 0, v ∈V,

and coercive if there exists a constant α > 0 such that

Rea(v,v)⩾ α∥v∥2
V , v ∈V.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
396 Boundary Value Problems

For bounded coercive forms we have the following version of Proposition 9.15.

Theorem 11.50 (Lax–Milgram). If a is a bounded coercive form on V , then:

(1) the bounded operator A associated with a is boundedly invertible and ∥A−1∥V ⩽
α−1, where α is the coercivity constant of a;

(2) for every bounded functional L : V →K there exists a unique v′ ∈V such that

L(v) = a(v,v′), v ∈V.

Moreover, ∥v′∥V ⩽ ∥A−1∥V∥L∥.

Proof We proceed in two steps.

Step 1 – Let A be the bounded operator provided by Proposition 9.15. The estimate

α∥v∥2 ⩽ Rea(v,v)⩽ |a(v,v)|= |(Av|v)V |⩽ ∥Av∥V∥v∥V

implies that α∥v∥V ⩽ ∥Av∥V for all v ∈ V . From this we infer that A is one-to-one and
has closed range R(A) in V (see Proposition 1.21). The operator A is also surjective, for
otherwise there exists a nonzero element v⊥ ∈ (R(A))⊥ and we arrive at the contradic-
tion

0 < α∥v⊥∥2
V ⩽ Rea(v⊥,v⊥) = Re(Av⊥|v⊥)V = 0.

By the open mapping theorem, A has a bounded inverse. The estimate α∥v∥V ⩽ ∥Av∥V
now implies that ∥A−1∥V ⩽ α−1.

Step 2 – Given a bounded functional L : V →K, by the Riesz representation theorem
there exists a unique v0 ∈V such that L(v) = (v|v0)V for all v ∈V . Moreover, it satisfies
∥v0∥V = ∥L∥. Since A, and hence A⋆, is boundedly invertible, there exists a unique v′ ∈V
satisfying A⋆v′ = v0. Then

L(v) = (v|v0)V = (v|A⋆v′)V = (Av|v′)V = a(v,v′), v ∈V,

and

∥v′∥V ⩽ ∥(A⋆)−1∥V∥v0∥V = ∥A−1∥V∥L∥.

This proves the existence part as well as the estimate for the norm of v′. To prove
uniqueness, suppose that also L(v) = a(v,v′′) for some v′′ ∈ V and all v ∈ V . Then
a(v,v′− v′′) = 0 for all v ∈ V . Taking v = v′− v′′, coercivity gives 0 ⩽ α∥v′− v′′∥2

V ⩽
Rea(v′− v′′,v′− v′′) = 0. This implies v′ = v′′.

Part (2) of the theorem provides a generalisation of the Riesz representation theorem
with the inner product replaced by a bounded coercive form a. If a is symmetric, that is,
a(v,v′) = a(v′,v) for all v,v′ ∈V (some authors refer to this as a being Hermitian), then
a(v,v′) defines an inner product on V generating an equivalent norm. In this situation
the Lax–Milgram theorem is an immediate consequence of the Riesz representation
theorem. The principal interest in the theorem lies in the nonsymmetric case.
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11.3.b The Sturm–Liouville Problem

As an application of the Lax–Milgram theorem, generalising the results on the Pois-
son problem we shall consider the Sturm–Liouville problem with Dirichlet boundary
conditions on a nonempty bounded open subset D of Rd :{

−div(a∇u)+qu = f on D,

u|∂D = 0,
(11.26)

where we make the following assumptions:

• the function f belongs to L2(D);
• the matrix-valued function a : D→Md(K) has bounded measurable coefficients and

is coercive in the sense that there is a constant α > 0 such that for almost all x ∈ D
we have

Re
d

∑
i, j=1

ai j(x)ξiξ j ⩾ α|ξ |2, ξ ∈Kd ;

• the function q : D→K is bounded and measurable and satisfies Req(x)⩾ 0 for almost
all x ∈ D.

A function u ∈ H1
0 (D) is called a weak solution of (11.26) if for all φ ∈ C∞

c (D) we
have ∫

D
a∇u ·∇φ dx+

∫
D

quφ dx =
∫

D
f φ dx.

Theorem 11.51 (Sturm–Liouville problem). Under the above assumptions on D, a,
q, and f , (11.26) admits a unique weak solution u in H1

0 (D). Moreover, there exists a
constant C ⩾ 0 independent of f such that

∥u∥H1
0 (D) ⩽C∥ f∥2.

Proof The proof is a straightforward adaptation of the proof of existence and unique-
ness for the Poisson problem with Dirichlet boundary conditions. This time we apply
the Lax–Milgram theorem to the form a : H1

0 (D)×H1
0 (D)→K,

a(u,v) :=
∫

D
a⋆∇u ·∇vdx+

∫
D

quvdx,

where a⋆i j = a ji. This form is bounded and coercive: boundedness follows from

|a(u,v)|⩽ ∥a∥∞∥∇u∥2∥∇v∥2 +∥q∥∞∥u∥2∥v∥2

⩽ 2max{∥a∥∞,∥q∥∞}∥u∥H1
0 (D)∥v∥H1

0 (D),

and coercivity from

Rea(v,v) = Re
∫

D
a⋆∇v ·∇vdx+Re

∫
D

q|v|2 dx
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⩾
∫

D
Rea⋆∇v ·∇vdx =

∫
D

Rea∇v ·∇vdx ⩾ α∥∇v∥2
2 = α|||v|||2H1

0 (D)
,

where |||v|||H1
0 (D) = ∥∇v∥2 is the equivalent norm on H1

0 (D) considered before.

The case of Neumann boundary conditions can be handled similarly and is left to the
reader (see Problem 11.30).

Problems

11.1 Show that for all f ∈ Lp(0,1) with 1 ⩽ p ⩽ ∞ the function

I f (x) :=
∫ x

0
f (y)dy, x ∈ (0,1),

belongs to W 1,p(0,1) and its weak derivative is given by ∂ I f = f . Moreover, the
mapping f 7→ I f from Lp(0,1) to W 1,p(0,1) is bounded.

11.2 Let f ∈W 1,p(0,1) with 1 ⩽ p ⩽ ∞.

(a) Show that f is equal almost everywhere to a (unique) continuous function
f̃ ∈C[0,1].
Hint: the function f −

∫ ·
0 f ′(y)dy has weak derivative 0.

(b) Show that the resulting mapping f 7→ f̃ from W 1,p(0,1) to C[0,1] is bounded.
(c) Show that a function f ∈W 1,p(0,1) with 1 ⩽ p < ∞ belongs to W 1,p

0 (0,1) if
and only if its continuous version f̃ satisfies f̃ (0) = f̃ (1) = 0.

11.3 Give a direct proof that C∞[0,1] is dense in W 1,p(0,1) for all 1 ⩽ p < ∞.
11.4 Fix 1 < p < ∞ and f ∈W 1,p(0,1), and let f̃ ∈ C[0,1] be its continuous version

(see Problem 11.2).

(a) Suppose that f̃ (0) = 0. Show that x 7→ f (x)
x belongs to Lp(0,1) with∥∥∥x 7→ f (x)

x

∥∥∥
p
⩽

p
p−1

∥ f ′∥p.

Hint: Use Young’s inequality for (R+,
dx
x ) from Problem 2.25 with

f (x) =

{
x1/p f ′(x), x ∈ [0,1],

0, x ∈ (1,∞).

(b) Suppose that x 7→ f (x)
x belongs to Lp(0,1). Show that f̃ (0) = 0.

Hint: Argue by contradiction.
(c) Define

f (x) =
1

1− logx
, x ∈ (0,1).
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Show that f ∈W 1,1(0,1) and f̃ (0) = 0, but f (x)
x /∈ L1(0,1).

11.5 Determine whether the function f ∈ L1((−1,1)× (−1,1)) given by

f (x,y) := |xy|, (x,y) ∈ (−1,1)× (−1,1)

has weak derivatives of order one. If ‘no’, provide a proof; if ‘yes’, compute the
weak derivatives ∂1 f and ∂2 f .

11.6 Let D be bounded and fix 1 ⩽ p < ∞. Let r ∈ R satisfy r > 1− d
p .

(a) Show that the function f (x) := |x|r belongs to W 1,p(D), and compute its
weak partial derivatives.

(b) Let {xn : n ⩾ 1} be a countable dense set in D. Show that the function

g(x) := ∑
n⩾1

1
2n |x− xn|r

belongs to W 1,p(D).
(c) Show that if d ⩾ 2 and 1− d

p < r < 0, then g is unbounded on every open
subset of D.

11.7 For 1 ⩽ p < ∞ we consider the weak derivative ∂ as a linear operator in Lp(0,1)
with domain D(∂ ) :=C∞

c (0,1).

(a) Show that ∂ is closable.
(b) Show that the domain of the closure of ∂ equals W 1,p

0 (D).
(c) Show that this closure has a proper closed extension, given by the weak

derivative with domain W 1,p(0,1).
(d) Why doesn’t this contradict the result of Proposition 10.30?

11.8 Show that if a function f ∈ L2
loc(D) admits a weak Laplacian in L2

loc(D), then f
belongs to H2

loc(D).
Hint: First prove that ψ f ∈ H1(D) for every test function ψ ∈C∞

c (D). Then use
Lemma 11.36.

11.9 Show that if f ∈W 1,p(D) with 1 < p < ∞, then ∇ f = 0 almost everywhere on the
set {x ∈ Rd : f (x) = 0}.
Hint: In the real-valued case, ∇ f = ∇( f+)−∇( f−).

11.10 Is H1(D) a Banach lattice?
11.11 Show that if a real-valued function f ∈ L1

loc(D) admits weak derivatives ∂ j f and
ρ : R → K is a C1-function with bounded derivative, then ρ ◦ f admits weak
derivatives given by

∂ j(ρ ◦ f ) = (ρ ′ ◦ f )∂ j f .
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11.12 Let 1 ⩽ p,q,r ⩽ ∞ satisfy 1
p +

1
q = 1

r . Prove that if f ∈W k,p(D) and g∈W k,q(D),
then f g ∈W k,r(D), and for all multi-indices α with |α| ⩽ k we have the Leibniz
formula

∂
α( f g) = ∑

0⩽β⩽α

(
α

β

)
(∂ β f )(∂ α−β g).

11.13 Does Theorem 11.41(2) extend to the case p = ∞?
11.14 Let 1 ⩽ p ⩽ ∞ and consider the inclusion mapping f 7→ f̃ from W 1,p(0,1) to

C[0,1] of Problem 11.2.

(a) Show that for 1 < p ⩽ ∞ the inclusion W 1,p(0,1)⊆C[0,1] is compact.
Hint: Use the Arzelà–Ascoli theorem.

(b) Show that the inclusion W 1,1(0,1)⊆C[0,1] fails to be compact.
Hint: Approximate 1( 1

2 ,1)
pointwise by a sequence of piecewise linear func-

tions that is bounded in W 1,1(0,1).

11.15 Show that the inclusion mapping W 1,2(R)⊆ L2(R) fails to be compact.
11.16 Let f ∈W 1,∞(D).

(a) Suppose that η ∈ L1(Rd) has support in the unit ball B(0;1) of Rd and satis-
fies

∫
Rd η(x)dx = 1. For ε > 0 denote ηε(x) := ε−dη(ε−1x). Show that the

convolution fε := ηε ∗ f satisfies the pointwise bound

|∇ fε(x)|⩽ ∥∇ f∥∞, x ∈ Dε ,

where Dε := {x ∈ D : d(x,∂D)> ε} and ∇ f is the weak gradient of f .
(b) Show that if D is convex, then

| fε(x)− fε(y)|⩽ ∥∇ f∥∞|x− y|, x,y ∈ Dε .

(c) Deduce that if D is convex, then for every f ∈W 1,∞(D) there exists a Lip-
schitz continuous function g : D→ K such that f = g almost everywhere,
with Lipschitz constant Lg ⩽ ∥∇ f∥∞.

(d) Show that the result of part (c) fails for the nonconvex open set in R2 obtained
by removing the nonnegative part of the x-axis from B(0;1).

11.17 Show that if f ∈W 1,p
0 (D) with 1 ⩽ p < ∞ and D′ is an open set containing D,

then the function f̃ : D′→K defined by

f̃ (x) :=

{
f (x), x ∈ D,

0, x ∈ D′ \D,

belongs to W 1,p
0 (D′).
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11.18 Show that there exists a constant C ⩾ 0 such that for all f ∈C∞
c (Rd) we have

∥∇ f∥2 ⩽C∥ f∥1/2
2 ∥∆ f∥1/2.

Show that this inequality extends to functions f ∈W 2,2(Rd).
Hint: Start by showing that

∥∇ f∥2 ⩽C(∥ f∥2 +∥∆ f∥)

for some (possibly different) constant C ⩾ 0. Then apply this inequality with f (cx)
in place of f (x) and optimise over c > 0.

11.19 For h ∈ Rd let

Dt
j f (x) :=

1
t
( f (x+ te j)− f (x)), 1 ⩽ j ⩽ d, t ∈ R\{0},

where e j is the jth standard unit vector of Rd.

(a) Prove that if f ∈W 1,p(Rd) with 1 ⩽ p ⩽ ∞, then

∥Dt
j f∥p ⩽ ∥∂ j f∥p, 1 ⩽ j ⩽ d, t ∈ R\{0},

where ∂ j f denotes the jth partial derivative of f .
(b) Prove that if 1 < p < ∞ and there exists a constant C ⩾ 0 such that for all

f ∈ Lp(Rd) we have

∥Dt
j f∥p ⩽C, 1 ⩽ j ⩽ d, t ∈ R\{0},

then f ∈W 1,p(Rd) and ∥∂ j f∥p ⩽C for all 1 ⩽ j ⩽ d.

11.20 Let 1 ⩽ p < ∞. The aim of this problem is to show that for all f ∈W 1,p(R) we
have f ′ = limh→0 Dh f in Lp(R), where

Dh f (x) :=
f (x+h)− f (x)

h
, x ∈ R, h ̸= 0.

(a) Let h ̸= 0. Show that

Th f (x) :=
1
h

∫ x+h

x
f (t)dt, x ∈ R,

defines a bounded operator on Lp(R) of norm ∥Th∥⩽ 1.
Hint: Show that Th f = 1

h 1[0,1](− 1
h ·) ∗ f , where ∗ denotes the convolution

product, and use Young’s inequality.
(b) Show that for all f ∈C1

c (R) we have f ′ = limh→0 Dh f in Lp(R).
(c) Deduce that for all f ∈W 1,p(R) we have f ′ = limh→0 Dh f in Lp(R).

11.21 Show that for all s ⩾ 0 the norm given by (11.9) turns Hs(Rd) into a Hilbert
space.
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11.22 Using Fourier analytic methods, prove the following special case of the Sobolev
embedding theorem: If k > d/2, then every f ∈ Hk(Rd) is equal almost ev-
erywhere to a function belonging to C0(Rd). Moreover, the inclusion mapping
Hk(Rd)⊆C0(Rd) is continuous.

11.23 The aim of this problem is to prove another special case of the Sobolev embed-
ding theorem. By completing the following steps, show that if d < p < ∞, then
every f ∈W 1,p(D) is equal almost everywhere to a continuous function on D.

(a) First let D = Rd. Show that if f ∈ C1
c (Rd) and η ∈ C1

c (0,∞) is such that∫
∞

0 η(r)dr = 1, then

f (0) =
∫

∞

0

∫
∂B(0;1)

η(r)
d

∑
j=1

y j∂ j f (ry)+η
′(r) f (ry) dS(y) dr,

where S is the surface measure, and hence

| f (0)|⩽C
∫

B(0;1)

1
|x|d

(|∇ f (x)|+ | f (x)|)dx

for some constant C ⩾ 0 independent of f .
(b) Apply Hölder’s inequality to obtain the bound

| f (0)|⩽C′∥ f∥W 1,p(Rd)

for some constant C′ ⩾ 0 independent of f .
(c) By translation, conclude that

∥ f∥∞ ⩽C′∥ f∥W 1,p(Rd).

Use a density argument to prove that if f ∈W 1,p(Rd), then it is equal almost
everywhere to a bounded continuous function.

(d) For general domains use a localisation argument.

11.24 This problem is a continuation of the preceding one.

(a) Show that if 1 ⩽ p,q < ∞ satisfy d( 1
p −

1
q ) < 1, then every f ∈W 1,p(Rd)

belongs to Lq(Rd) and

∥ f∥Lq(Rd) ⩽C∥ f∥W 1,p(Rd)

for some constant C ⩾ 0 independent of f .
Hint: Starting from the formulas of the preceding problem, use a translation
argument in combination with Young’s inequality (see the hint of Problem
11.20).

(b) By repeatedly applying the inequality of part (a), deduce an embedding result
for functions in W k,p(Rd) into the space of bounded continuous functions.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
Problems 403

11.25 Consider the Green function on the unit interval [0,1] (see Section 11.2.a):

k(x,y) :=

{
(1− x)y, 0 ⩽ y ⩽ x,

(1− y)x, x ⩽ y ⩽ 1.

(a) Show that the associated integral operator

Tk f (x) :=
∫ 1

0
k(x,y) f (y)dy

on L2(0,1) is compact and has eigenvalues 1/(nπ)2, n = 1,2,3 . . . with cor-
responding eigenfunctions x 7→ sin(nπx).

Let now f ∈ L2(0,1) be given and define u ∈ L2(0,1) by

u(x) := Tk f (x), x ∈ (0,1).

(b) Show that u ∈ H1
0 (0,1).

(c) Show that u is a weak solution of the Poisson problem with Dirichlet bound-
ary conditions {

−u′′ = f on (0,1),

u(0) = u(1) = 0.

11.26 In this problem we consider the Poisson problem with Dirichlet boundary condi-
tions on the unit disc D= B(0;1) in R2:{

−∆u = f on D,
u|∂D = 0.

(11.27)

If f ∈ L2(D), we know from Theorem 11.35 that (11.27) has a unique weak so-
lution u ∈ H1

0 (D). The aim of this problem is to show that, even for functions
f ∈Cc(D), (11.27) may not admit a classical solution u ∈C2(D)∩C(D).

Define v : B(0; 1
2 )\{0}→ R by

v(x,y) := (x2− y2) log
∣∣∣log

(
(x2 + y2)1/2

)∣∣∣, (x,y) ∈ B(0; 1
2 ).

(a) Show that v ∈C2(B(0; 1
2 )\{0}) and compute vx, vy, vxx, and vyy.

(b) Show that

lim
(x,y)→(0,0)

v(x,y) = lim
(x,y)→(0,0)

vx(x,y) = lim
(x,y)→(0,0)

vy(x,y) = 0.

Conclude v can be extended to a function in C1(B(0; 1
2 )).

Hint: For ε > 0 one has |logs|⩽ s−ε for s small and |logs|⩽ sε for s large.
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(c) Show that ∆v : B(0; 1
2 )\{0}→R has a continuous extension g : B(0; 1

2 )→R.
Moreover, show that∫

B(0; 1
2 )

v∆φ dx =
∫

B(0; 1
2 )

gφ dx, φ ∈C∞
c (B(0; 1

2 )).

Hint: Use Green’s theorem on B(0; 1
2 )\B(0;ε) with ε > 0 and let ε ↓ 0.

(d) Let η ∈ C∞
c (D) be compactly supported in B(0; 1

2 ) with η = 1 on B(0; 1
4 ).

Show that u := −ηv belongs to H1
0 (D) and is the weak solution of (11.27)

with f := ηg+2∇η ·∇v+(∆η)v.
(e) Show that limx→0 vxx(x,x) = ∞ and deduce from this that u /∈ C2(D). Con-

clude that (11.27) does not admit a classical solution u.
Hint: Use Theorem 11.35.

11.27 Prove Theorems 11.46 and 11.47.
11.28 The aim of this problem is to solve the Poisson problem with inhomogeneous

boundary conditions {
−∆u = f on D,

u|∂D = g,
(11.28)

where D ⊆ Rd is bounded and f ∈ L2(D) and g ∈ C(∂D) are given functions.
We assume the function g admits an H1(D)-extension, by which we mean that
there exists a function g̃ ∈ H1(D)∩C(D) such that g̃|∂D = g. Under these as-
sumptions, a function u∈H1(D) is called a weak solution of the Poisson problem
with Dirichlet boundary conditions (11.28) if∫

D
∇u ·∇φ dx =

∫
D

f φ dx, φ ∈C∞
c (D),

and u− g̃ ∈ H1
0 (D). The condition u− g̃ ∈ H1

0 (D) is the rigorous way to express
the boundary condition u|∂D = g.

(a) The condition u− g̃ ∈ H1
0 (D) explicitly refers to the extension g̃. By using

Theorem 11.24, show that the fulfilment of this condition does not depend
on the particular choice of the extension.

(b) Prove that for every f ∈ L2(D) the Poisson problem (11.28) has a unique
weak solution u ∈ H1(D).
Hint: For u ∈ H1

0 (D), show that

L(u) :=
∫

D
u f dx−

∫
D

∇u·∇g̃dx

defines a bounded functional on H1
0 (D) and apply the Riesz representation

theorem.
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11.29 Let D be a bounded and let g ∈C(∂D) be arbitrary. Let u be a classical solution
g of the Dirichlet problem, that is, the problem (11.28) with f ≡ 0. Prove that the
following assertions are equivalent:

(1) u has finite energy, that is,
∫

D |∇u|2 dx < ∞;
(2) u is a weak solution;
(3) g has an H1-extension.

Hint: For the proof of (3)⇒(2), let D′ ⋐ D. The function g′ := u|D′ has an H1(D′)-
extension, given by u|D′ . Hence by the result of the preceding problem, the prob-
lem {

∆v = 0 on D′,

v|∂D = g′,

has a unique weak solution ũ ∈ H1(D′). Prove that ũ = u almost everywhere on
D′ and that the restriction of ũ−u to D′ belongs to H1

0 (D
′).

11.30 Discuss the Sturm–Liouville problem with Neumann boundary conditions.
11.31 Let H be a Hilbert space and let h ∈H be a given element. Show that the nonlin-

ear functional E : H→ R defined by

E(u) :=
1
2
∥u∥2−Re(u|h)

has a unique minimiser by completing the following steps.

(a) Show that E is continuous and bounded from below, that is,

m := inf
u∈H

E(u)>−∞.

(b) Using the parallelogram identity, show that for all u,v ∈ H we have

1
4
∥u− v∥2 ⩽ (E(u)−α)+(E(v)−α).

(c) Deduce that if (un)n⩾1 is a sequence in H such that limn→∞ E(un) = m, then
this sequence is Cauchy.

(d) Prove that u := limn→∞ un is the unique element of H minimising E.

11.32 Let V be a Hilbert space and consider a bounded coercive form a : V ×V → K.
Let L : V → K be a bounded functional. By the Lax–Milgram theorem there is a
unique uV ∈V satisfying a(v,uV ) = L(v) for all v ∈V .

Suppose now that W is a closed subspace of V . By the Lax–Milgram theorem,
applied to the restriction of a to W ×W , there is a unique uW ∈W satisfying
a(w,uW ) = L(w) for all w ∈W .

(a) Show that a(uV −uW ,w) = 0 for all w ∈W .
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(b) Show that

∥uV −uW∥⩽Cα
−1 inf

w∈W
∥uV −w∥, (11.29)

with C ⩾ 0 and α > 0 the boundedness and coercivity constants of a.
(c) Show that if a is symmetric, that is, a(v1,v2) = a(v2,v1) for all v1,v2 ∈ V ,

then

∥uV −uW∥⩽
√

Cα−1 inf
w∈W
∥uV −w∥. (11.30)

The quasi-optimality estimates in (11.29) and (11.30) are known as Céa’s lemma.
11.33 In this problem we outline an application to the so-called finite element method

for the Poisson problem (11.13) on the unit interval (0,1) with datum f ∈ L2(0,1):{
−∆u = f on (0,1),

u(0) = u(1) = 0.
(11.31)

In what follows we endow V := H1
0 (0,1) with the norm ∥v∥H1

0 (0,1)
:= ∥v′∥2. By

the Poincaré inequality, this norm is equivalent to the Sobolev norm ∥v∥2+∥v′∥2.
Consider a partition π = {x0, . . . ,xN} of the interval [0,1], that is, we assume

that 0 = x0 < x1 < · · · < xN−1 < xN = 1. Let Vπ denote the closed subspace con-
sisting of all v ∈V that are linear on each of the intervals [xn−1,xn].

(a) Show that there exist unique elements u ∈ H1
0 (0,1) and uπ ∈Vπ such that

a(v,u) =
∫ 1

0
v(x) f (x)dx, v ∈V,

a(v,uπ) =
∫ 1

0
v(x) f (x)dx, v ∈Vπ .

(11.32)

Using the results of Problem 11.32, prove the quasi-optimality estimate

∥u−uπ∥H1
0 (0,1)

⩽ inf
v∈Vπ

∥u− v∥H1
0 (0,1)

.

(b) Show that for all v ∈ H1
0 (0,1)∩H2(0,1) we have πv ∈ H1(0,1) and

∥v−πv∥H1
0 (0,1)

⩽ hπ∥v′′∥L2(0,1),

where πv ∈ Vπ is obtained by piecewise linear interpolation of the values
v(xn), 0 ⩽ n ⩽ N and hπ := max1⩽n⩽N |xn− xn−1| is the mesh of π .
Hint: Fix x ∈ [0,1]\π and choose 1 ⩽ n ⩽ N such that xn−1 < x < xn. Then

(πv)′(x) =
v(xn)− v(xn−1)

xn− xn−1
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and, since v ∈ H2(0,1),

v(xn) = v(xn−1)+(xn− xn−1)v′(xn−1)+
∫ xn

xn−1

(xn− y)v′′(y)dy.

Rewriting the latter as

v′(xn−1)−
v(xn)− v(xn−1)

xn− xn−1
=−

∫ xn

xn−1

xn− y
xn− xn−1

v′′(y)dy

and using that | y−xn−1
xn−xn−1

|⩽ 1 and | xn−y
xn−xn−1

|⩽ 1, show that

|v′(x)− (πv)′(x)|⩽
∫ xn

xn−1

|v′′(y)|dy.

(c) Let the assumptions of Theorem 11.35 be satisfied with d = 1 and D= (0,1),
and let u ∈ H1

0 (0,1)∩H2(0,1) be the weak solution of the Poisson problem
(11.31) (see Theorem 11.37). Prove that

∥u−uπ∥H1
0 (0,1)

⩽ hπ∥u′′∥L2(0,1).

Since the norm ∥v∥H1
0 (0,1)

is equivalent to the Sobolev norm ∥v∥2 + ∥v′∥2, the
result of part (c) shows that uπ and its weak derivative u′π provide good approxi-
mations of u and its weak derivative u′ in the L2(0,1)-norm if hπ is small.

The approximate solution uπ can be constructed explicitly as follows. Every
u ∈ Vπ can be written uniquely as a finite linear combination u = ∑

N−1
n=1 cnψn,

where ψn ∈Vπ is the piece-wise linear function given by the requirements

ψn(xm) =

{
1, n = m,

0, n ̸= m,

since these functions form a basis for Vπ . By definition, uπ is the unique element
of Vπ solving (11.32) which, for our boundary value problem, takes the form∫ 1

0
v′u′π dx =

∫ 1

0
v f dx, v ∈Vπ .

Since the functions ψn form a basis for Vπ , this holds if and only if∫ 1

0
ψ
′
nu′π dx =

∫ 1

0
ψn f dx, n = 1, . . . ,N−1.

Writing uπ = ∑
N−1
m=1 cmψm, our task is reduced to determining the coefficients

c1, . . . ,cN−1 from the equation system of N−1 linear equations

N−1

∑
m=1

cm

∫ 1

0
ψ
′
mψ
′
n dx =

∫ 1

0
ψn f dx, n = 1, . . . ,N−1.

The functions ψ ′n take nonzero constant values on the intervals (xn−1,xn) and
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(xn,xn,n+1) and vanish on the remaining sub-intervals. It follows from this that∫ 1
0 ψ ′mψ ′n dx = 0 unless m− n ∈ {−1,0,1}. Therefore the computation of the co-

efficients cm reduces to a matrix problem of the form Sc = d, where the so-called
stiffness matrix S is the (N−1)× (N−1) matrix whose coefficients

snm =
∫ 1

0
ψ
′
nψ
′
m dx

vanish off the diagonal and the two neighbouring off-diagonals, and

dn =
∫ 1

0
ψn f dx.

This problem is easy to solve with numerical methods from Linear Algebra.
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12
Forms

This chapter develops elements of the theory of sesquilinear forms and uses it to define
and study certain bounded and unbounded operators, including second order differen-
tial operators such as the Laplace operator subject to Dirichlet and Neumann boundary
conditions.

12.1 Forms

In the previous chapter we proved existence and uniqueness of weak solutions of the
Poisson problem −∆u = f on a nonempty bounded open subset D ⊆ Rd for functions
f ∈H = L2(D) by exploiting the properties of the sesquilinear mapping a : V ×V →K,

a(u,v) 7→
∫

D
∇u ·∇vdx, (12.1)

where V = H1(D) or a suitable closed subspace thereof. If the matrix-valued function
a : D→Md(K) is coercive, the sesquilinear mapping

a(u,v) 7→
∫

D
a∇u ·∇vdx (12.2)

played the same role in solving the Sturm–Liouville problem. In each of these cases,
the key ingredient was the Poincaré inequality, which can be phrased in terms of a as

Rea(v,v)⩾ α∥v∥2, v ∈V,

where α > 0 is a positive constant and the norm is taken in H.

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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In order to study these matters from an abstract point of view it will be useful to
interpret a form a defined on a subspace V of a Hilbert space H as one in H with domain
D(a) =V , in the same way as the notion of a bounded operator has been generalised to
that of a linear (possibly unbounded) operator A defined on a domain D(A).

Definition 12.1 (Forms, accretivity and coercivity). A form in a Hilbert space H is a
pair (a,D(a)), where D(a) is a subspace of H, the domain of a, and a :D(a)×D(a)→K
is a sesquilinear mapping. A form (a,D(a)) is called accretive if

Rea(x,x)⩾ 0, x ∈ D(a),

and coercive if there exists a constant α > 0 such that

Rea(x,x)⩾ α∥x∥2, x ∈ D(a).

In what follows, H always denotes a Hilbert space. Definitions 11.48 and 11.49 are
recovered in the special case D(a) = H. When no confusion is likely to arise, we omit
D(a) from the notation and denote the form by a.

Example 12.2. The forms in H = L2(D) defined by (12.1) and (12.2) are accretive and
continuous on the domain D(a) = H1(D), and coercive on the domains D(a) = H1

0 (D)

and D(a) = H1
av(D).

If a is an accretive form in H, then

(x|y)a := Rea(x,y)+(x|y), x,y ∈ D(a), (12.3)

defines an inner product on D(a); here, (x|y) is the inner product of x and y in H and

Rea :=
1
2
(a+a⋆)

is the symmetric part of a, given by a⋆(x,y) := a(y,x). The inner product (12.3) induces
a norm on D(a) given by

∥x∥a = (x|x)1/2
a .

Warning:

Rea(x,y) =
1
2
(a(x,y)+a(y,x))

should not be confused with

Re(a(x,y)) =
1
2
(a(x,y)+a(x,y)).

The former defines a sesquilinear form, the real part of a, but the latter generally does
not. It is true, however, that Rea(x,x) = Re(a(x,x)) for all x ∈ D(a).
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From Definition 11.48 we recall that a sequilinear form a : V ×V →K is bounded if
there exists a constant C ⩾ 0 such that

|a(u,v)|⩽C∥u∥V∥v∥V , u,v ∈V.

This definition can be extended to forms in H as follows.

Definition 12.3 (Continuous forms). An accretive form a in H is called continuous if
there exists a constant C ⩾ 0 such that

|a(x,y)|⩽C∥x∥a∥y∥a, x,y ∈ D(a).

A sufficient condition for continuity will be given in Proposition 13.40.

12.1.a Closed Forms

The following definition is motivated by the simple fact, observed in Proposition 10.3,
that a linear operator A is closed if and only if its domain D(A) is a Banach space with
respect to the graph norm.

Definition 12.4 (Closed forms). An accretive form a in H is called closed if D(a) is a
Hilbert space with respect to the norm ∥ · ∥a.

The following two propositions express some robustness properties of closed forms.
Among other things, the first proposition clarifies the relation between Definition 12.1,
where accretivity of forms in H was defined through the condition

Rea(x,x)⩾ α∥x∥2, x ∈ D(a),

and Definition 11.49, where accretivity of a form on a Hilbert space V was defined
through the condition

Rea(x,x)⩾ α∥x∥2
V , x ∈V.

In the former case, one could view a as a form on V =D(a) and ask why norms are taken
in H rather than in V . As it turns out, except for the numerical value of the constant, this
leads to the same definition.

Proposition 12.5. A closed form a in H is accretive (respectively coercive, continu-
ous) if and only if a, as a form on the Hilbert space V = (D(a),∥ · ∥a), is accretive
(respectively coercive, bounded).

Proof Only the assertion concerning coercivity needs proof. We must prove that there
exists a constant α > 0 such that

Rea(x,x)⩾ α∥x∥2, x ∈ D(a), (12.4)
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if and only if there exists a constant β > 0 such that

Rea(x,x)⩾ β∥x∥2
a, x ∈ D(a). (12.5)

If (12.4) holds, then for all x∈D(a) we have (1+α)Rea(x,x)⩾α Rea(x,x)+α∥x∥2 =

α∥x∥2
a and therefore (12.5) holds with β = α

1+α
.

Conversely, if (12.5) holds, then for all x ∈ D(a) we have Rea(x,x) ⩾ β∥x∥2
a =

β (Rea(x,x)+∥x∥2). This forces 0 < β < 1 and (12.4) holds with α = β

1−β
.

Proposition 12.6. Let a be a closed accretive form in H. If V := D(a) admits an inner
product (·|·)V turning V into a Hilbert space such that the inclusion mapping from V
into H is bounded, then the associated norm ∥ · ∥V is equivalent to the norm ∥ · ∥a.

Proof Define a norm ||| · ||| on V by

|||v||| := ∥v∥V +∥v∥a, v ∈V.

We claim that V is complete with respect to ||| · |||. Indeed, if (vn)n⩾1 is a Cauchy se-
quence with respect to ||| · |||, then it is Cauchy with respect to both ∥ · ∥V and ∥ · ∥a. By
completeness there exist v′,v′′ ∈V such that limn→∞ ∥vn−v′∥V = limn→∞ ∥vn−v′′∥a= 0.
Since the inclusion mapping from V into H is bounded with respect to both norms,
we also have limn→∞ ∥vn− v′∥ = limn→∞ ∥vn− v′′∥ = 0 in H. It follows that v′ = v′′

as elements in H, hence also as elements of V . Setting v := v′ = v′′, we then have
limn→∞ |||vn−v|||= 0, proving the completeness of V with respect to ||| · |||. Since ∥u∥V ⩽
|||u||| and ∥u∥a ⩽ |||u||| for all u ∈ V , the open mapping theorem can be applied to find
that both ∥ · ∥V and ∥ · ∥a are equivalent to ||| · |||.

12.1.b Gelfand Triples

Motivated by Proposition 12.6 we shall now consider the abstract setting where we are
given a Hilbert space V which is continuously embedded into another Hilbert space H,
meaning that there exists a bounded injective operator i : V → H. We shall write

(·|·) and ∥ · ∥,

respectively

(·|·)V and ∥ · ∥V ,

for the inner products and norms of H and V . Identifying elements of V with their
images in H, without loss of generality we may (and will) assume that, as a set, V is a
subspace of H and i is the inclusion mapping. We write

V ↪→ H

to summarise this state of affairs.
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Definition 12.7 (Gelfand triples). A Gelfand triple is a triple (i,V,H), where H and V
are Hilbert spaces and i : V ↪→ H is a continuous and dense embedding.

Example 12.8 (Gelfand triples from closed forms). If a is a densely defined closed
accretive form in H, then (i,D(a),H), with i the inclusion mapping from D(a) into H,
is a Gelfand triple.

The concrete examples covered by Example 12.2 will be discussed in Section 12.3,
where the connection with weak solutions to boundary value problems will be made.
This connection will be made more explicit in operator theoretic terms in Section 12.4.

Our main aim is to connect Gelfand triples with the theory of closed operators. We
will prove that if (i,V,H) is a Gelfand triple and a is a bounded accretive form on V ,
then it is possible to associate a densely defined closed linear operator A with a such
that D(A)⊆V and

(Au|v) = a(u,v), u ∈ D(A), v ∈V.

Moreover, suitable bounds on the resolvent of A can be given.
We start with some preparations.

Definition 12.9 (Conjugate dual). The conjugate dual of a Hilbert space V is the vector
space V ′ of all mappings φ : V →K that are conjugate-linear in the sense that

φ(u+ v) = φ(u)+φ(v), φ(cv) = cφ(v), u,v ∈V, c ∈K,

and bounded in the sense that

|φ(v)|⩽C∥v∥V , v ∈V,

where C ⩾ 0 is a constant independent of v.

It is routine to check that the space V ′ is a Banach space in a natural way with norm

∥φ∥V ′ := sup
∥v∥V⩽1

|φ(v)|.

In the presence of a continuous embedding i : V ↪→ H, every element h ∈ H defines an
element φh ∈V ′ in a natural way by defining

φh(v) := (h|i(v)), v ∈V,

and we have

∥φh∥V ′ ⩽ sup
∥v∥V⩽1

∥h∥∥i(v)∥⩽ ∥i∥∥h∥. (12.6)

As a mapping from H to V ′, the mapping φ : h 7→ φh is linear. Additivity is clear, and for
the scalar multiplication we have

φch(v) = (ch|i(v)) = c(h|i(v)) = cφh(v),
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so φch = cφh. The estimate (12.6) shows that this mapping is bounded with norm ∥φ∥⩽
∥i∥. We claim that if the inclusion mapping i has dense range, then φ is injective. Indeed,
if φh = 0, then for all v ∈ V we have (h|i(v)) = φh(v) = 0, and since i has dense range
this is only possible if h = 0.

Composing i and φ , every v∈V defines an element j(v) := (φ ◦ i)v in V ′, and we have

j(v)(u) = φiv(u) = (i(v)|i(u)), u,v ∈V.

The mapping j : V →V ′ thus obtained is linear.

Proposition 12.10. If i : V ↪→ H has dense range, then the mapping φ : H → V ′ is
injective and has dense range.

Proof Injectivity has already been observed, so it remains to prove the dense range
property. The Riesz representation theorem sets up a norm-preserving conjugate-linear
bijection ρ : V → V ∗, and a norm-preserving conjugate-linear bijection σ : V ∗→ V ′ is
obtained by mapping a functional v∗ ∈V ∗ to the conjugate-linear mapping v′ ∈V ′ given
by v′(v) := ⟨v,v∗⟩. Combining these identifications, we obtain a norm-preserving linear
bijection σ ◦ρ : V →V ′. By Proposition 4.31 the injectivity of i implies that its adjoint
i⋆ has dense range in V , and σ ◦ρ maps this range to a dense subspace of V ′. The claim
follows from this by observing that φ = σ ◦ρ ◦ i⋆, since for all h ∈H and v ∈V we have

((σ ◦ρ ◦ i⋆)h)(v) = ⟨v,(ρ ◦ i⋆)h⟩= (v|i⋆h)V = (i⋆h|v)V = (h|i(v)) = φh(v).

From now on we assume that V is densely embedded in H, omit the mappings i, j,φ ,
and think of V as a dense subspace of H and H as a dense subspace of V ′.

Definition 12.11 (The linear operator associated with a form). The operator A associ-
ated with a densely defined form a in H is defined by

u ∈ D(A) and Au = h ⇔ u ∈ D(a) and (h|v) = a(u,v) for all v ∈ D(a).

Since D(a) is dense in H, the element h ∈ H is uniquely defined and thus A is well
defined as a linear operator in H, linearity being clear from the definition.

Without imposing further properties on a this definition is not very useful. Under
appropriate additional assumptions on a, the next theorem provides some interesting
properties of the associated operator.

Theorem 12.12 (Resolvent estimate – bounded coercive forms in V ). Let (i,V,H) be a
Gelfand triple and let A be the linear operator in H associated with a bounded coercive
form a on V . Then A is densely defined and closed, and for all λ ∈ C with Reλ > 0 we
have −λ ∈ ρ(A) and

∥(λ +A)−1∥⩽ 1
Reλ

, ∥(λ +A)−1∥⩽
(

1+
C
α

) 1
|λ |

,
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where C and α are the boundedness and coercivity constants of a.

Proof Fix λ ∈ C with Reλ > 0. As a form on V ,

aλ (u,v) := a(u,v)+λ (u|v), u,v ∈V,

is bounded and coercive: this follows from

|aλ (u,v)|⩽ |a(u,v)|+ |λ |∥u∥∥v∥⩽C∥u∥V∥v∥V + |λ |∥i∥2∥u∥V∥v∥V

and

Reaλ (v,v) = Rea(v,v)+Reλ (v|v)⩾ Rea(v,v)⩾ α∥v∥2
V. (12.7)

Denote by AV the bounded operator on V associated with a through Proposition 9.15,
so that (AV u|v)V = a(u,v) for all u,v ∈ V . The bounded operator on V associated with
aλ equals AV,λ := AV +λ i⋆i. By the Lax–Milgram theorem applied to the form aλ , AV,λ
is boundedly invertible with ∥A−1

V,λ∥L (V ) ⩽ α−1. Composing AV,λ with the isometric
isomorphism σ ◦ρ from V onto V ′ from the proof of Proposition 12.10, we may identify
AV,λ with a bounded operator A′V,λ from V to V ′ which is boundedly invertible and
satisfies ∥A′−1

V,λ ∥L (V ′,V ) ⩽ α−1.

Let Rλ denote the restriction of A′−1
V,λ to H, viewed as a bounded operator from H to

H. As such it is bounded and injective. Define the closed operator (Bλ ,D(Bλ )) in H by
D(Bλ ) := R(Rλ ) and Bλ := R−1

λ
−λ . To see that Bλ is densely defined in H, note that

D(Bλ ) = R(Rλ ) = R(A′−1
V,λ |H) = {A

′−1
V,λ h : h ∈ H}

is dense in V (and hence in H) since A′−1
V,λ : V ′→V is an isomorphism, V is dense in H,

and H is dense in V ′. For all u, f ∈ H,

u ∈ D(Bλ ) and Bλ u = f ⇔ u ∈ R(Rλ ) and R−1
λ

u = λu+ f

⇔ u ∈V and AV,λ u = λu+ f

⇔ u ∈V and ( f |v) = a(u,v) for all v ∈V

⇔ u ∈ D(A) and Au = f .

It follows that A = Bλ , so A is densely defined and closed, and λ +A = λ +Bλ = R−1
λ

.
This, in turn, implies that λ +A is injective and surjective (the latter since Rλ is defined
on all of H) and hence boundedly invertible.

For v ∈ D(A), the accretivity of a gives

∥(λ +A)v∥∥v∥⩾ |((λ +A)v|v)|
⩾ Re((λ +A)v|v) = Reλ∥v∥2 +Rea(v,v)⩾ Reλ∥v∥2.

This gives the first resolvent estimate.
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Fix an arbitrary h ∈ H. Defining u := (λ +A)−1h = Rλ h ∈ V and using that h =

(λ +A)u = R−1
λ

u = A′V,λ u = AV,λ u, we have

aλ (u,v) = a(u,v)+λ (u|v) = (AV,λ u|v) = (h|v), v ∈V. (12.8)

Taking v := u in (12.8), by (12.7) we obtain

α∥u∥2
V ⩽ Reaλ (u,u) = Re(h|u)⩽ ∥h∥∥u∥. (12.9)

By (12.8) and (12.9),

|λ |∥u∥2 ⩽ |(h|u)|+ |a(u,u)|⩽ ∥h∥∥u∥+C∥u∥2
V ⩽

(
1+

C
α

)
∥h∥∥u∥,

where C is the boundedness constant of a. Substituting back the definition of u we obtain
the bound

|λ |∥(λ +A)−1h∥⩽
(

1+
C
α

)
∥h∥, h ∈ H.

This gives the second resolvent estimate.

In applications, V often arises as the domain of a densely defined closed form a in H
(cf. Example 12.8). In this setting, Theorem 12.12 implies the following result.

Corollary 12.13. Let A be a linear operator in H associated with a densely defined
closed continuous accretive form a in H. Then A is densely defined and closed, for all
λ ∈ C with Reλ > 0 we have −λ ∈ ρ(A) and

∥(λ +A)−1∥⩽ 1
Reλ

, Reλ > 0,

and for all δ > 0 there exists a constant Cδ ⩾ 0 such that

∥(λ +A)−1∥⩽ Cδ

|λ |
, Reλ ⩾ δ .

Proof Consider the Hilbert space V = (D(a),∥ ·∥a) and let i : V ↪→H be the inclusion
mapping. By Proposition 12.5 and its proof, for all δ > 0 the form

aδ (u,v) := a(u,v)+δ (u|v) = a(u,v)+δ (i⋆iu|v)V , u,v ∈V,

is bounded and coercive as a form on V , with boundedness constant C + δ∥i⋆i∥ and
coercivity constant δ/(1+ δ ). The operator associated with aδ is A+ δ . By Theorem
12.12 this operator (and hence A itself) is densely defined and closed, and for all Reλ >

0 the operator λ +δ +A is boundedly invertible and satisfies the resolvent bounds

∥(λ +δ +A)−1∥⩽ 1
Reλ

, ∥(λ +δ +A)−1∥⩽
(

1+
C+δ∥i⋆i∥
δ/(1+δ )

) 1
|λ |

.

Since δ > 0 was arbitrary, the corollary follows from this.
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Further properties of the operators A in the theorem and its corollary will be obtained
in the next chapter (see Theorem 13.35). Without the continuity assumption it is still
possible to prove a version of the first resolvent estimate (see Theorem 13.34).

An elegant application of the corollary is the following duality result. Recall that if a
is a form in H, we define a⋆(x,y) := a(y,x) for x,y ∈ D(a).

Corollary 12.14 (A⋆ is associated with a⋆). Let A be a densely defined closed operator
in H, and suppose that one of the following two conditions is satisfied:

(1) A is the operator associated with a closed continuous accretive form a in H;
(2) A is the operator associated with a bounded coercive form a on V , where (i,V,H)

is a Gelfand triple.

Then A⋆ is the densely defined closed operator associated with the form a⋆.

Proof (1): Since A is densely defined, D(a) is dense. Since D(a⋆) = D(a) by defini-
tion, it follows that a⋆ is densely defined. From

(v|v)a⋆ = Rea(v,v)+(v|v) = Rea(v,v)+(v|v) = (v|v)a, v ∈V,

it follows that a⋆ is continuous and accretive. Let B denote the densely defined closed
operator associated with a⋆. If x ∈ D(B), then for all y ∈ D(A) we have

(y|Bx) = (Bx|y) = a⋆(x,y) = a(y,x) = (Ay|x).

It follows that x ∈ D(A⋆) and A⋆x = Bx. This shows that B⊆ A⋆.
Next let x ∈D(A⋆). By Corollary 12.13 applied to a∗, the operator I+B is invertible,

so there exists y ∈ D(B) such that (I +A⋆)x = (I +B)y. Since B ⊆ A⋆, we have y ∈
D(A⋆) and (I +A⋆)x = (I +A⋆)y. By Corollary 12.13 applied to a, the operator I +A is
invertible and therefore so is its adjoint I +A⋆. It follows that x = y ∈ D(B). This shows
that A⋆ ⊆ B.

(2): This is proved in the same way, this time using Theorem 12.12.

12.1.c Closable Forms

We return to the setting of forms in a Hilbert space H considered at the beginning of
Section 12.1.

Definition 12.15 (Closable forms). An accretive form a in H is called closable if there
exists a closed accretive form ã in H extending a, that is, ã is closed and accretive,
D(a)⊆ D(ã), and ã(u,v) = a(u,v) for all u,v ∈ D(a).

The following proposition, in which we view D(a) as a (not necessarily complete)
normed space with norm ∥ · ∥a, gives a useful necessary and sufficient condition for a
form a in H to be closable. It should be compared with Proposition 10.12.
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Proposition 12.16. For a continuous accretive form a in H the following assertions are
equivalent:

(1) a is closable;
(2) every Cauchy sequence in D(a) converging to 0 in H converges to 0 in D(a).

The hard implication is (2)⇒(1). It is tempting to try to prove it as follows. By con-
tinuity, a extends to an accretive form ã on the completion of D(a) with respect to the
norm ∥ · ∥a. It is not clear, however, whether the inclusion mapping of D(a) into H ex-
tends to an embedding of its completion into H. This difficulty explains why we have
to proceed more carefully.

Proof Set V := D(a) with norm ∥ · ∥V := ∥ · ∥a. We note that assertion (2) can be
equivalently stated as follows:

(2′) Whenever a sequence (vn)n⩾1 in V satisfies limn→∞ vn = 0 in H and

lim
m,n→∞

Rea(vm− vn,vm− vn) = 0,

then limn→∞ Rea(vn,vn) = 0.

(1)⇒(2): Suppose that a has a closed extension ã whose domain D(a) =: Ṽ is complete
with respect to ∥ · ∥ã. If (un)n⩾1 is a sequence in V such that limn→∞ un = 0 in H and
limm,n→∞ Rea(um−un,um−un) = 0, then the sequence (un)n⩾1 is Cauchy with respect
to ∥ · ∥a and hence, since ã extends a, with respect to ∥ · ∥ã. Since Ṽ is complete with
respect to the norm ∥ · ∥a, the sequence is convergent in Ṽ , say to ũ ∈ Ṽ . The sequence
(un)n⩾1 is Cauchy in H as well, and since Ṽ embeds in H we have un→ ũ in H. Since
we assumed that un→ 0 in H it follows that ũ = 0. Hence, limn→∞ un = 0 with respect
to ∥ · ∥a, and this in turn implies that limn→∞ Rea(un,un) = 0.

(2)⇒(1): The proof proceeds in three steps.

Step 1 – Define V to be the set of all v ∈ H for which there exists a Cauchy sequence
(vn)n⩾1 in V such that limn→∞ vn = v in H. In what follows we refer to a sequence with
these properties as an approximating sequence for v.

We begin by showing that the limit

a(u,v) := lim
n→∞

a(un,vn)

exists whenever (un)n⩾1 and (vn)n⩾1 are approximating sequences for u,v ∈V , and that
this limit is independent of the choice of approximating sequences.

To begin with the existence of the limit, we note that for all m,n ⩾ 1

|a(um,vm)−a(un,vn)|= |a(um−un,vm)+a(un,vm− vn)|
⩽C∥um−un∥a sup

m⩾1
∥vm∥a+C∥vm− vn∥a sup

n⩾1
∥un∥a (12.10)
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by the continuity of a. Since (un)n⩾1 and (vn)n⩾1 are Cauchy in V , they are bounded and
we conclude from (12.10) that (a(un,vn))n⩾1 is a Cauchy sequence, hence convergent.

As to the well-definedness of the limit, suppose that u and v are approximated by the
sequences (u′n)n⩾1 and (v′n)n⩾1 with the properties as stated. Then, by a similar estimate,

|a(un,vn)−a(u′n,v
′
n)|⩽C∥un−u′n∥a sup

m⩾1
∥vn∥a+C∥vn− v′n∥a sup

n⩾1
∥u′n∥a.

Now

∥un−u′n∥2
a = ∥un−u′n∥2 +Rea(un−u′n,un−u′n).

The first term on the right-hand side tends to 0 as n→ ∞ since un→ u and u′n→ u. The
second term tends to 0 because (un−u′n)n⩾1 is an approximating sequence for 0, so (2′)
can be applied with vn replaced by un−u′n; to see this, note that

Rea((um−u′m)− (un−u′n),(um−u′m)− (un−u′n))

= Rea((um−un)− (u′m−u′n),(um−un)− (u′m−u′n))

⩽C∥um−un∥2
a+2C∥um−un∥a∥u′m−u′n∥a+C∥u′m−u′n∥2

a

by the continuity of a, and all three terms on the right-hand side tend to 0 and m,n→
∞ since both (un)n⩾1 and (u′n)n⩾1 are approximating sequences for u, and therefore
Cauchy with respect to ∥ · ∥a. In the same way we obtain ∥vn− v′n∥2

a→ 0 and the proof
can be completed as before.

It is clear that V ⊆V and that the resulting mapping a : V ×V →C is sesquilinear, so
it defines a form, is continuous and accretive, and extends a.

Step 2 – We show that V is dense in V with respect to the norm ∥ · ∥a. To this end let
v ∈V and let (vn)n⩾1 be an approximating sequence. We claim that limn→∞ ∥vn−v∥a =
0. Since we already know that limn→∞ vn = v, it suffices to prove that limn→∞ Rea(vn−
v,vn− v) = 0. This follows from

lim
n→∞

Rea(vn− v,vn− v) = lim
n→∞

lim
m→∞

Rea(vn− vm,vn− vm) = 0,

the first of these identities being a consequence of the definition of a along with the fact
that vn−vm→ vn−v in H and Rea((vn−vm)− (vn−vℓ),(vn−vm)− (vn−vℓ))→ 0 as
ℓ,m→ ∞ by the continuity of a as in the previous step.

Step 3 – To prove that a is closed, suppose first that (vn)n⩾1 is a sequence in V which
is Cauchy with respect to ∥ · ∥a. This means that (vn)n⩾1 is Cauchy in H and

lim
m,n→∞

Rea(vm− vn,vm− vn) = 0.

Let limn→∞ vn =: v, the convergence being in H. Since a extends a we have

lim
m,n→∞

Rea(vm− vn,vm− vn) = 0.
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The very definition of V implies that v ∈V , and as in Step 2 we have

lim
n→∞
∥vn− v∥2

a = lim
n→∞

Rea(vn− v,vn− v)+∥vn− v∥2

= lim
n→∞

lim
m→∞

Rea(vn− vm,vn− vm)+∥vn− v∥2 = 0.

Suppose next that (vn)n⩾1 is a sequence in V which is Cauchy with respect to ∥ · ∥a.
Since V is dense in V by Step 2, we may choose elements vn ∈V such that ∥vn− vn∥<
1/n. Then (vn)n⩾1 is Cauchy in V , and by what we just proved it has a limit v in V . Then
v is also a limit for (vn)n⩾1.

The form a constructed in the above proof is called the closure of a. Further properties
of a are discussed in Problem 12.5.

12.2 The Friedrichs Extension Theorem

It has been shown in Corollary 10.45 that if A is a densely defined operator which is
positive in the sense that (Ax|x)⩾ 0 for all x ∈D(A) and has the property that I+A has
dense range, then A is selfadjoint. The next theorem states that if we give up the dense
range condition, selfadjoint extensions still exist.

Theorem 12.17 (Friedrichs extension). Let A be a densely defined positive operator
acting in a complex Hilbert space H. Then:

(1) the form a in H given by D(a) := D(A) and

a(x,y) := (Ax|y), x,y ∈ D(A),

is densely defined, positive, continuous, and closable;
(2) the operator associated with the closure of a is a positive selfadjoint extension of A.

Proof (1): It is clear that a is densely defined and positive, and continuity of a follows
from the Cauchy–Schwarz inequality (Proposition 3.3):

|a(x,y)|2 = |(Ax|y)|2 ⩽ |(Ax|x)||(Ay|y)|= a(x,x)a(y,y)⩽ ∥x∥2
a∥y∥2

a.

Here, the positivity of A was used to see that a(x,x) = (Ax|x) ⩾ 0 and hence a(x,x) =
Rea(x,x) ⩽ ∥x∥2

a. To prove that a is closable we check the criterion of Proposition
12.16. Keeping in mind that a(x,x) ⩾ 0 for all x ∈ D(A), pick a sequence (vn)n⩾1 in
D(a) such that limn→∞ vn = 0 in H and limm,n→∞ a(vm−vn,vm−vn) = 0. We must show
that limn→∞ a(vn,vn) = 0.

Given ε > 0, for large enough m,n we have

0 ⩽ a(vm− vn,vm− vn) = (Avm−Avn|vm− vn)
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= (Avm|vm)+(Avn|vn)−2Re(Avm|vn)< ε.

Fixing m, upon letting n→ ∞ and using that vn→ 0, we obtain

0 ⩽ (Avm|vm)+ limsup
n→∞

(Avn|vn)⩽ ε.

Since A is positive, this can only happen if limsupn→∞(Avn|vn) ⩽ ε , and since ε > 0
was arbitrary this forces limn→∞ a(vn,vn) = 0.

(2): By (1) the form a is densely defined, continuous, closable, and satisfies a(v,v)⩾
0 for all v∈D(a). Its closure a enjoys the same properties, and therefore Corollary 12.13
allows us to associate a positive operator B with σ(B) ⊆ {Reλ ⩾ 0}. By Proposition
10.43 (which applies since positive operators are symmetric; here we use the assumption
that the scalar field is complex, cf. the remark after Definition 10.35), this implies that B
is selfadjoint. Alternatively one may observe that the positivity of A implies that a⋆ = a

and hence a⋆ = a, and therefore B = B⋆ by Corollary 12.14.

If A is a densely defined closed operator from H to another Hilbert space K, then by
Theorem 10.46 the operator A⋆A with domain D(A⋆A) = {x ∈ D(A) : Ax ∈ D(A⋆)} is
positive and selfadjoint. The next result relates this operator with the theory of forms.

Proposition 12.18. Let A be a densely defined closed operator from H to another
Hilbert space K. The form a given by D(a) := D(A) and

a(u,v) := (Au|Av), u,v ∈ D(A),

is closed, continuous, and accretive, and A⋆A coincides with the operator associated
with a.

Proof Densely definedness, continuity, and accretivity are clear. For v∈D(a) we have

∥v∥2
a = ∥v∥2 +a(v,v) = ∥v∥2 +∥Av∥2,

from which we deduce that ∥·∥a is equivalent to the graph norm of A. Since A is closed,
D(a) = D(A) is complete with respect to ∥ · ∥a and the closedness of a follows.

Let B be the operator associated with a. Then (Bu|u) = a(u,u) = ∥Au∥2 ⩾ 0 for all
u ∈ D(B), so B is positive. By the definition of the domain of an operator associated
with a form we have

u ∈ D(B) ⇔ u ∈V and ∃ f ∈ D(a) : ( f |v) = a(u,v) for all v ∈ D(a)

⇔ u ∈V and ∃ f ∈ D(A) : ( f |v) = (Au|Av) for all v ∈ D(A)

⇔ u ∈ D(A), Au ∈ D(A⋆), and Bu = A⋆(Au).

This shows that B = A⋆A.
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12.3 The Dirichlet and Neumann Laplacians

We now turn to some examples that connect the theory developed in the preceding
sections to the boundary value problems studied in the previous chapter.

12.3.a The Laplace Operator

Let V := H1(Rd) =W 1,2(Rd) and consider the sesquilinear form a on V defined by

a(u,v) :=
∫
Rd

∇u ·∇vdx, u,v ∈V.

This form is bounded and positive on V ; the easy proof is left to the reader. We claim
that the densely defined closed operator A in L2(Rd) associated with a equals−∆, where
∆ is the weak Laplacian in L2(Rd) with domain D(−∆) = H2(Rd) (cf. Theorem 11.29).

To prove the claim we begin by noting that if u ∈ H2(Rd), then ∂ ju ∈ H1(Rd) =

W 1,2(Rd) by Theorems 11.29 and 11.31, and therefore

a(u,v) =−
d

∑
j=1

∫
Rd

∂
2
j u(x)v(x)dx =−(∆u|v) (12.11)

for all v ∈ C∞
c (Rd). By approximation this identity extends to all v ∈ H1(Rd). This

means that u ∈ D(A) and Au =−∆u.
Conversely, if u ∈ D(A), then u ∈ H1(Rd) and for all v ∈C∞

c (Rd) we have∫
Rd

Au(x)v(x)dx = (Au|v) = a(u,v) =
∫
Rd

∇u ·∇vdx =−
∫
Rd

u(x)∆v(x)dx

by the definition of weak derivatives. This shows that u admits a weak Laplacian given
by ∆u =−Au in the sense of Theorem 11.29, and therefore u∈H2(Rd) by this theorem.

Another description of the operator ∆ can be given on the basis of Theorem 10.46
and Proposition 12.18. These results identify the operator associated with the form a

defined by (12.11) to be −∇⋆∇ with domain D(∇⋆∇) = { f ∈ D(∇) : ∇ f ∈ D(∇⋆)},
where D(∇) = H1(Rd).

Summarising this discussion, we have proved:

Theorem 12.19. The following operators in L2(Rd) are equal, with equal domains:

(1) the weak Laplacian ∆ with domain

D(∆) = { f ∈ L2(Rd) : f admits a weak Laplacian in L2(Rd)};

(2) the operator −A, where A is the operator in L2(Rd) associated with the form a on
H1(Rd) given by

a(u,v) :=
∫
Rd

∇u ·∇vdx;
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(3) the operator −∇⋆∇ with domain

D(∇⋆
∇) = { f ∈ D(∇) : ∇ f ∈ D(∇⋆)},

where ∇ is the weak gradient, viewed as a densely defined closed operator from
L2(Rd) to L2(Rd,Cd) with domain D(∇) = H1(Rd).

A fourth description of ∆ will be added to this list in Section 13.6.c, namely, as the
generator of the heat semigroup on L2(Rd).

12.3.b The Dirichlet Laplace Operator

Let D be a nonempty bounded open subset of Rd. As before we write

H1
0 (D) :=W 1,2

0 (D).

Let V := H1
0 (D), viewed as a dense subspace of L2(D), and consider the form aDir on V

given by

aDir(u,v) :=
∫

D
∇u ·∇vdx, u,v ∈V. (12.12)

This form is bounded, positive, and coercive (by the Poincaré inequality) as a form on
V . The densely defined closed operator in L2(D) associated with it is denoted by−∆Dir.
The operator ∆Dir is called the Dirichlet Laplacian on L2(D).

To substantiate the claim that ∆Dir correctly models the Dirichlet boundary condition,
consider a function u ∈C2(D) which satisfies u|∂D = 0. If v ∈C2

c (D), an integration by
parts gives

(∆u|v) =
∫

D
(∆u)vdx =−

∫
D

∇u ·∇vdx =−aDir(u,v),

where the last identity is justified by the fact that u belongs to H1
0 (D) by Theorem 11.24.

Since C2
c (D) is dense in H1

0 (D) it follows that u ∈ D(∆Dir) and ∆Diru = ∆u.
Using Theorem 11.37 it follows that

D(∆Dir) = {u ∈ H1
0 (D)∩H2

loc(D) : ∆u ∈ L2(D)}, (12.13)

To prove this we must show that a function u ∈H1
0 (D) belongs to H2

loc(D) if and only if
there exists f ∈ L2(D) such that∫

D
f vdx =

∫
D

∇u ·∇vdx, v ∈ H1
0 (D). (12.14)

If such a function f exists, then u is the weak solution of the Poisson problem −∆u = f
and Theorem 11.37 implies that u ∈ H2

loc(D). In the converse direction, suppose that
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u ∈ H1
0 (D) belongs to H2

loc(D). If φ ∈C∞
c (D) is a given test function, select an open set

U ⋐ D containing the support of φ and use the fact that u ∈ H2(U) to see that∫
D

∇u ·∇φ dx =
∫

U
∇u ·∇φ dx =−

∫
U
(∆u)φ dx =−

∫
D
(∆u)φ dx.

Since ∆u ∈ L2(D), both sides depend continuously on φ with respect to the norm of
H1

0 (D). Since φ ∈ C∞
c (D) is dense in H1

0 (D), it follows that this identity extends to
arbitrary φ ∈ H1

0 (D). This proves that u satisfies (12.14) with f := ∆u ∈ L2(D).
The result of Remark 11.38 also implies, by the same reasoning, that if D has a C2-

boundary, this domain characterisation improves to

D(∆Dir) = H1
0 (D)∩H2(D).

12.3.c The Neumann Laplace Operator

As before we let D be a nonempty bounded open subset of Rd. As a variation of the
preceding example, we may take V := H1(D) = W 1,2(D), viewed as a dense subspace
of H := L2(D), and consider the form aNeum on V given by

aNeum(u,v) :=
∫

D
∇u ·∇vdx, u,v ∈V.

The only difference with (12.12) is the different choice of the space V . This form is
bounded and positive as a form on V . The densely defined closed operator in L2(D)

associated with it is denoted by −∆Neum. The operator ∆Neum is called the Neumann
Laplacian on L2(D).

To substantiate the claim that ∆Neum correctly models the Neumann boundary con-
dition, let us assume for the moment that D has a C1-boundary. Consider a function
u ∈C2(D) which satisfies ∂u

∂ν

∣∣
∂D = 0, where ν is the outward normal vector on ∂D. If

v ∈C2(D), using Green’s identity (which is valid under these assumptions) we obtain

(∆u|v) =
∫

D
(∆u)vdx =

∫
∂D

∂u
∂ν

vdS−
∫

D
∇u ·∇vdx

=−
∫

D
∇u ·∇vdx =−aNeum(u,v),

where S is the normalised surface measure on ∂D. Since C2(D) is dense in H1(D) by
Theorem 11.27, it follows that u ∈ D(∆Neum) and ∆Neumu = ∆u.

As for the Dirichlet Laplacian, Theorem 11.44 implies that

D(∆Neum) =
{

u ∈ H1(D)∩H2
loc(D) :

∆u ∈ L2(D),
∫

D
∆u ·φ dx =−

∫
D

∇u ·∇φ dx for all φ ∈ H1(D)
}
.

(12.15)
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If D has a C2-boundary, this characterization improves to the classical description:

D(∆Neum) =
{

u ∈ H2(D) :
∫

D
(∆u)φ dx =−

∫
D

∇u ·∇φ dx for all φ ∈ H1(D)
}
.

12.3.d Selfadjointness

The following result is an immediate consequence of Theorem 12.17 (noting that the
forms involved are closed):

Theorem 12.20 (Selfadjointness of the Laplacian). Let ∆ denote the Laplacian on
L2(Rd) or the Dirichlet or Neumann Laplacian on L2(D) with D ⊆ Rd nonempty,
bounded, and open. Then −∆ is positive and selfadjoint.

These three operators also fall into the setting of Theorem 10.46. Indeed, by Proposi-
tion 12.18, all three Laplacians are of the form ∇⋆∇, where ∇ is the gradient viewed as
a densely defined closed operator from H to K, where H = L2(U) and K = L2(U ;Rd)

with U ∈ {Rd,D}. This gives an alternative proof of their selfadjointness.

12.3.e Operators in Divergence Form

Let D be a nonempty bounded open subset of Rd and consider a matrix-valued function
a : D→Md(K) satisfying the following conditions:

(i) the coefficients ai j : D→K are measurable and bounded;
(ii) for all x ∈ D and ξ ∈Kd we have Re∑

d
i, j=1 ai j(x)ξiξ j ⩾ 0.

Condition (ii) is an accretivity condition and is more general than its coercive counter-
part used in our treatment of the Sturm–Liouville problem in the preceding chapter.

Under the assumptions (i) and (ii), a bounded accretive form aa on both V := H1
0 (D)

(in the case of Dirichlet boundary conditions) and V := H1(D) (in the case of Neumann
boundary conditions) can be defined by

aa(u,v) :=
∫

D
a∇u ·∇vdx, u,v ∈V.

The operator on L2(D) associated with aa is usually denoted by

−div(a∇)

in recognition of the fact that (at least formally) the Hilbert space adjoint of ∇ equals
−div. The operator div(a∇) is often referred to as a second order differential operator
in divergence form. This operator is selfadjoint if the coefficients satisfy the symmetry
condition ai j = a ji.
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12.4 The Poisson Problem Revisited

We now revisit the Poisson problem −∆u = f by viewing it as a special instance of the
abstract problem

Au = x,

where A is assumed to be a closed operator acting in a Banach space X , x ∈ X is a given
element, and u ∈ X is the unknown. One could define a strong solution as an element
u ∈ D(A) such that Au = x, but this is not what we did in Section 11.2. Instead, we
considered weak solutions defined in terms of the sesquilinear form with which A is
associated. A third option is to use duality to define a scalar solution to be an element
u ∈ X with the property that

⟨u,A∗x∗⟩= ⟨x,x∗⟩, x∗ ∈ D(A∗).

In line with standard functional analytic terminology it would be more appropriate to
call this a weak solution, but the usage of the term ‘weak solution’ in connection with
integration by parts using test functions is well established.

Proposition 12.21. Let A be a densely defined closed linear operator on a Banach
space X and let x∈ X be a given element. For an element u∈ X the following assertions
are equivalent:

(1) u is a strong solution of Au = x, that is, u ∈ D(A) and Au = x;
(2) u is a scalar solution of Au = x, that is, ⟨u,A∗x∗⟩= ⟨x,x∗⟩ for all x∗ ∈ D(A∗).

If X = H is a Hilbert space and A is the operator associated with a densely defined form
a in H, then (1) and (2) are equivalent to:

(3) u is a weak solution of Au = x, that is, u ∈ D(a) and a(u,v) = (x|v) for all v ∈V.

Proof The implications (1)⇒(2) and (1)⇒(3) are trivial. The implication (2)⇒(1) is
an immediate consequence of Proposition 10.20. Finally, if (3) holds, then by the defi-
nition of the associated operator we have u ∈ D(A) and Au = x, so (1) holds.

In the special case where A = ∆, with ∆ the Dirichlet or Neumann Laplacian, Propo-
sition 12.21 implies that every weak solution of the Poisson problem −∆u = f with
f ∈ L2(D) is in fact a strong solution. In view of the domain identifications (12.13) and
(12.15), this recovers the maximal regularity results of Theorems 11.37 and 11.44.

For the sake of completeness we also mention a maximal regularity result for the
Poisson problem on −∆u = f on the full space Rd.

Theorem 12.22 (Maximal regularity for Rd). Let f ∈ L2(Rd). If u is a weak solution of
the Poisson problem −∆u = f on Rd, then u ∈ H2(Rd).
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Proof If u is a weak solution, an integration by parts gives that u admits a weak Lapla-
cian. The result now follows from Theorem 11.29.

12.5 Weyl’s Theorem

This section is a digression from the main line of development and is dedicated to a
proof of Weyl’s celebrated asymptotic formula for the number of eigenvalues of Dirich-
let Laplacian.

12.5.a Spectrum of the Dirichlet and Neumann Laplacians

As a warm-up we compute the spectrum of ∆Dir and ∆Neum in L2(0,1).

Example 12.23. Both −∆Dir and −∆Neum are positive and selfadjoint as operators in
L2(0,1) (by Theorem 12.20) and their spectrum is contained in [0,∞) (by Theorem
12.17). We will use the fact that every u ∈ C2[0,1] is included in their domains, that
the Laplacians of such a function u are given by taking classical second derivatives
pointwise, and that a function u ∈ C2[0,1] belongs to H1

0 (0,1) if and only if u(0) =
u(1) = 0; we leave the elementary proof to the reader (see Problem 11.2 for a more
precise result).

The functions un(θ) = sin(πnθ), n ⩾ 1, satisfy −∆Dirun = −u′′n = π2n2un and obey
Dirichlet boundary conditions. Moreover, by Theorem 3.30, these functions form an
orthonormal basis for L2(0,1). By Proposition 10.32, this implies

σ(−∆Dir) =
{

π
2n2 : n = 1,2, . . .

}
.

with eigenfunctions un(θ) = sin(πnθ). Likewise, the functions vn(θ) = cos(πnθ), n ⩾
0, satisfy −∆Neumvn = −v′′n = π2n2vn and obey Neumann boundary conditions. Again
by Theorem 3.30, and form an orthonormal basis for L2(0,1). This implies

σ(−∆Neum) =
{

π
2n2 : n = 0,1,2, . . .

}
.

Turning to higher dimensions, begin with a simple observation.

Proposition 12.24. Let D be a nonempty bounded open subset of Rd.

(1) ∆Dir is both injective and surjective, and hence invertible;
(2) if, in addition, D is connected and has C1-boundary, the null space of ∆Neum consists

of the constant functions and its range is the orthogonal complement of the constant
functions. In particular, its range is closed and

dimN(∆Neum) = codimR(∆Neum) = 1.
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Extending the corresponding definition for bounded operators, a Fredholm operator
is a closed operator whose null space is finite-dimensional and whose range has finite
codimension. With the same proof as in the bounded case, the second condition implies
that the range is closed. The index of such an operator A is defined as

ind(A) := dimN(A)− codimR(A).

Proposition 12.24 implies that both ∆Dir and ∆Neum (the latter under the stated more
restrictive assumptions on D) are Fredholm operators with index 0.

Proof (1): If ∆Diru = 0 for some u ∈ D(∆Dir), then u ∈ H1
0 (D) and u is a strong

solution, and hence a weak solution, of the Dirichlet Poisson problem with f = 0. By the
uniqueness of weak solutions it follows that u = 0. Likewise surjectivity follows from
the existence of weak solutions for any f ∈ L2(D) combined with Proposition 12.21,
according to which weak solutions are strong solutions.

(2): This is proved in the same way, using that the problem −∆u = f with Neumann
boundary conditions has a weak solution for a given f ∈ L2(D) if and only if

∫
D f dx= 0,

and that uniqueness of weak solutions holds in H1
av(D)= {u∈H1(D) :

∫
D udx= 0}.

For the proof of the next theorem we isolate a lemma that will also be useful in the
next chapter.

Lemma 12.25. Let A be a closed operator on a Banach space X. Then for all λ ∈ ρ(A)
the following spectral mapping theorem holds:

σ(R(λ ,A))\{0}=
{ 1

λ −µ
: µ ∈ σ(A)

}
. (12.16)

If the resolvent set of A is nonempty and R(λ0,A) is compact for some λ0 ∈ ρ(A), then:

(1) for all λ ∈ ρ(A) the resolvent operator R(λ ,A) is compact;
(2) every µ ∈ σ(A) is an eigenvalue with finite multiplicity;
(3) for all µ ∈ σ(A), the eigenspace of the eigenvalue µ for A and the eigenspace of

the eigenvalue 1
λ−µ

for R(λ ,A) coincide;
(4) σ(A) is either finite, or it is a sequence diverging to ∞ in absolute value.

Proof Fix λ ∈ ρ(A) and let µ ∈ C satisfy µ ̸= λ .
The identity

1
λ −µ

−R(λ ,A) =
1

λ −µ
(µ−A)R(λ ,A)

implies that 1
λ−µ
−R(λ ,A) is injective (respectively, surjective) if and only if µ−A is

injective (respectively, surjective). This implies the first assertion.

(1): This is immediate from the resolvent identity.
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(2) and (3): For all x ∈ X and µ ∈ σ(A) we have x ∈D(A) and Ax = µx if and only if
R(λ ,A)x = 1

λ−µ
x. This gives (3). By (1) and the Riesz–Schauder theorem, σ(R(λ ,A))\

{0} consists of eigenvalues of finite multiplicity. If µ ∈ σ(A), then 1
λ−µ

is an eigenvalue
for R(λ ,A) of finite multiplicity by (12.16), and then (12.16) and (3) show that µ is an
eigenvalue for A of the same finite multiplicity.

(4): If σ(A) is an infinite set, then so is σ(R(λ ,A)). By the Riesz–Schauder theorem,
σ(R(λ ,A)) can only accumulate at 0, so σ(A) can only accumulate at infinity.

Theorem 12.26. Let D be a nonempty bounded open subset of Rd. Then:

(1) the spectrum of −∆Dir is of the form

σ(−∆Dir) = {λ1,λ2, . . .} with 0 < λ1 < λ2 < · · · → ∞;

(2) if, in addition, D is connected and has C1-boundary, the spectrum of −∆Neum is of
the form

σ(−∆Neum) = {λ1,λ2, . . .} with 0 = λ1 < λ2 < · · · → ∞.

In either case, each λ j is an eigenvalue with finite-dimensional eigenspace.

Proof Let A := −∆Dir (in the case of Dirichlet boundary conditions) or A := −∆Neum

(in the case of Neumann boundary conditions). We claim that, under the respective
assumptions on D, the resolvent operators R(λ ,A) are compact for all λ ∈ ρ(A). To
prove the claim we recall that D(A) is contained in V := H1

0 (D) (in the case of Dirichlet
boundary conditions), respectively in V := H1(D) (in the case of Neumann boundary
conditions). By the Rellich–Kondrachov theorem (Theorem 11.41), in either case the
inclusion mapping from V into L2(D) is compact. The compactness of R(λ ,A) now
follows by viewing it as the composition of three bounded operators, one of which
is compact: (i) R(λ ,A), viewed as a bounded operator from L2(D) to D(A), (ii) the
inclusion mapping from D(A) into V , which is bounded by the closed graph theorem,
the closedness of A, and the boundedness of the inclusion mappings from both D(A)
and V into L2(D), and (iii) the compact inclusion mapping from V into L2(D).

Since A is positive and selfadjoint (by Theorem 12.20) we have σ(A) ⊆ [0,∞) (by
Proposition 10.42). By Proposition 12.24 we have 0 ∈ ρ(−∆Dir) and 0 ∈ σ(−∆Neum).
The result now follows from Lemma 12.25.

As a variation on the min-max theorem for compact positive Hilbert space operators
(Theorem 9.4), we prove an explicit formula for the Dirichlet and Neumann eigenvalues
of the Laplace operator on a nonempty bounded open set D ⊆ Rd ; in the case of Neu-
mann boundary conditions we make the additional assumption that D is connected and
has C1-boundary. We denote by 0 < λ1 ⩽ λ2 ⩽ . . . and 0 = µ1 ⩽ µ2 ⩽ . . . the sequences
of eigenvalues of −∆Dir and −∆Neum, respectively, taking multiplicities into account.
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Theorem 12.27 (Courant–Fischer). With the notation just introduced,

(1) for all n ⩾ 1 we have

λn = inf
Y⊆H1

0 (D)
dim(Y )=n

sup
y∈Y
y̸=0

∥∇y∥2
L2(D)

∥y∥2
L2(D)

, (12.17)

where the infima are taken over all subspaces Y of dimension n;
(2) if, in addition, D is connected and has a C1-boundary, then for all n ⩾ 1 we have

µn = inf
Y⊆H1(D)
dim(Y )=n

sup
y∈Y
y̸=0

∥∇y∥2
L2(D)

∥y∥2
L2(D)

,

where the infima are taken over all subspaces Y of dimension n.

Proof We present the case of Dirichlet eigenvalues, the proof for Neumann eigenval-
ues being entirely similar (the zero eigenvalue µ1 does not create difficulties since it has
multiplicity 1; here we use the connectedness assumption).

We write ∆ := ∆Dir and choose an orthonormal basis (h j) j⩾1 in L2(D) such that
−∆h j = λ jh j for all j ⩾ 1. As was shown in the proof of Theorem 12.26, such a se-
quence exists by the spectral theorem applied to the compact positive operator ∆−1; this
theorem also implies that the span of this sequence is dense in L2(D).

Set H0 := H1
0 (D) and, for n ⩾ 1,

Hn :=
{

f ∈ H1
0 (D) : ( f |h j) = 0, j = 1, . . . ,n

}
.

Step 1 – Fix f ∈ L2(D) and set fn := ∑
n
j=1 c jh j with c j := ( f |h j). Since (h j) j⩾1 is an

orthonormal basis for L2(D) we have fn→ f in L2(D) as n→ ∞.

Clearly, f − fn ⊥ fn in L2(D). We claim that if f ∈ H1
0 (D), then also f − fn ⊥ fn in

H1
0 (D). In view of

(g|g′)H1
0 (D) = (g|g′)+(∇g|∇g′), g,g′ ∈ H1

0 (D),

this amounts to showing that

(∇( f − fn)|∇ fn) = 0.

For all j,k ⩾ 1 we have

(∇h j|∇hk) =−(∆h j|hk) = λ j(h j|hk) = λ jδ jk

and therefore

(∇ fn|∇ fn) =
n

∑
j=1
|c j|2λ j.
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Also, for j ⩾ 1 we have λ j ⩾ 0 and

(∇ f |∇h j) =−( f |∆h j) = λ j( f |h j) = c jλ j

and therefore

(∇ f |∇ fn) =
n

∑
j=1

c j(∇ f |∇h j) =
n

∑
j=1

c j · c jλ j =
n

∑
j=1
|c j|2λ j. (12.18)

It follows that

(∇( f − fn)|∇ fn) =
n

∑
j=1
|c j|2λ j−

n

∑
j=1
|c j|2λ j = 0.

This proves the claim.
By what we just proved,

∥∇ f∥2 = ∥∇( f − fn)∥2 +∥∇ fn∥2 ⩾ ∥∇ fn∥2.

This shows that the sequence ( fn)n⩾1 is bounded in H1
0 (D). By Proposition 3.16, some

subsequence ( fnk)k⩾1 converges weakly to a limit f in H1
0 (D). Since also fn → f in

L2(D) we must have f = f . Thus fnk→ f weakly in H1
0 (D). Since bounded operators are

weakly continuous and ∇ is bounded from H1
0 (D) to L2(D;Cd), this implies ∇ fnk →∇ f

weakly in L2(D;Cd). By (12.18) it then follows that

∥∇ f∥2 = lim
k→∞

(∇ f |∇ fnk) = lim
k→∞

nk

∑
j=1
|c j|2λ j = ∑

j⩾1
|c j|2λ j. (12.19)

Step 2 – Let Y ⊆ H1
0 (D) be any subspace of dimension n. Since Hn−1 has codimen-

sion n− 1 in H1
0 (D), the intersection Hn−1 ∩Y is a nonzero subspace of H1

0 (D) and
hence contains a nonzero element f . Applying the results of Step 1 to f and noting that
( f |h j) = c j = 0 for j = 1, . . . ,n−1, by (12.19) we have

∥∇ f∥2 = ∑
j⩾n

λ j|c j|2 ⩾ λn ∑
j⩾n
|c j|2 = λn∥ f∥2.

This proves the inequality ‘⩽’ in (12.17).

Step 3 – If f belongs to the span of {h1, . . . ,hn}, then

∥∇ f∥2 =
n

∑
j=1
|c j|2λ j ⩽ λn ∑

j⩾1
|c j|2 = λn∥ f∥2.

This proves the inequality ‘⩾’ in (12.17).

Corollary 12.28. For all n ⩾ 1 we have µn ⩽ λn.
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12.5.b Weyl’s theorem

The following celebrated theorem of Weyl gives an asymptotic expression for the num-
ber of Dirichlet eigenvalues in the interval [0,r] as r→ ∞.

Theorem 12.29 (Weyl). Let D be a nonempty bounded open subset of Rd satisfying
|∂D|= 0, let 0 < λ1 < λ2 < .. . the sequence of eigenvalues of −∆Dir on L2(D), taking
multiplicities into account, and for r > 0 let

ND(r) := max
{

n ⩾ 1 : λn ⩽ r
}
.

Then

lim
r→∞

ND(r)
rd/2 =

ωd

(2π)d |D|,

where ωd = πd/2/Γ(1+ 1
2 d) is the volume of the unit ball in Rd.

The condition |∂D|= 0 is satisfied if the boundary is a rectifiable curve.
Before turning to the proof it is instructive to revisit Example 12.23. For the Dirichlet

Laplacian in L2(0,1) we obtain

ND(r) = max
{

n ⩾ 1 : π
2n2 ⩽ r

}
.

On the other hand, ω1 = |(−1,1)|= 2 and |D|= |(0,1)|= 1. It follows that

lim
r→∞

ND(r)
r1/2 =

1
π
,

ω1

2π
|D|= 2

2π
·1 =

1
π
.

Hermann Weyl, 1885–1955

The main lemma needed for the proof of
Weyl’s theorem is a monotonicity result.

Lemma 12.30. Let D1 and D2 be nonempty
bounded open subsets of Rd with D1 ⊆D2. Then
the corresponding Dirichlet eigenvalues, taking
multiplicities into account, satisfy

λn,D1 ⩾ λn,D2 , n ⩾ 1.

As a consequence, ND1(r)⩽ ND2(r) for all r > 0.

Proof This follows from the Courant–Fischer
theorem, observing that zero extensions of func-
tions in H1

0 (D1) belong to H1
0 (D2).

The analogue of this lemma fails for Neumann boundary conditions. It is for this
reason that we only present Weyl’s theorem for Dirichlet eigenvalues. The case of Neu-
mann boundary conditions is discussed in the Notes to this chapter.
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Proof of Theorem 12.29 For an open subset U of Rd we denote the Dirichlet Laplacian
in L2(U) by ∆U .

Step 1 – The theorem is true if D = ∏
d
j=1(a j,b j) is an open rectangle. To prove this

there is no loss of generality in assuming that a j = 0 for all j = 1, . . . ,d. By the results
of Example 12.23 and Section 3.5.c, the eigenfunctions for −∆D are the functions

un(x) =
d

∏
j=1

sin(n jπx j/b j), x = (x1, . . . ,xd) ∈ D, (12.20)

where n = (n1, . . . ,nd) with each n j in N1 := {n∈N : n ⩾ 1}. The corresponding eigen-
values are the positive real numbers λn = π2

∑
d
j=1 n2

j/b2
j . Hence,

ND(r) = #
{

n ∈ Nd
1 :

d

∑
j=1

n2
j

b2
j
⩽

r
π2

}
.

As r→ ∞, this is asymptotic to 2−dπ−drd/2ωd ∏
d
j=1 b j, namely, a fraction 1/2d (the

‘positive quadrant’) of the volume enclosed by the ellipse ∑
d
j=1 x2

j/b2
j = r/π2. Thus,

lim
r→∞

ND(r)

rd/2ωd

(2π)d

d

∏
j=1

b j

= 1.

Since ∏
d
j=1 b j equals |D|, this is precisely what we wanted to prove.

Step 2 – Now let D ⊆ Rd be a bounded open set satisfying |∂D| = 0. Fix ε > 0. By
the inner and outer regularity of Lebesgue measure, there exist an open set U ⊇ D and
a compact set K ⊆ D such that |U \D|< ε and |D\K|< ε . Since we assume |∂D|= 0,
we actually have |U \D|< ε .

By covering K by finitely many open rectangles contained in D, and D with finitely
many open rectangles contained in U , and using again that |∂D| = 0, we obtain finite
unions of open rectangles Rin ⊆ D and Rout ⊇ D such that

|D\Rin|< ε and |Rout \D|< ε.

Now we apply Lemma 12.30 to obtain the inequalities

NRin(r)⩽ ND(r)⩽ NRout(r), for all r > 0.

Since Weyl’s law has already been established for finite unions of open rectangles in
Step 1, we have

lim
r→∞

NRin(r)
rd/2 =

ωd

(2π)d |Rin|, lim
r→∞

NRout(r)
rd/2 =

ωd

(2π)d |Rout|.
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Combining these inequalities, we obtain

ωd

(2π)d |Rin|⩽ liminf
r→∞

ND(r)
rd/2 ⩽ limsup

r→∞

ND(r)
rd/2 ⩽

ωd

(2π)d |Rout|.

But since |Rin|⩾ |D|− ε and |Rout|⩽ |D|+ ε , this implies

ωd

(2π)d (|D|− ε)⩽ liminf
r→∞

ND(r)
rd/2 ⩽ limsup

r→∞

ND(r)
rd/2 ⩽

ωd

(2π)d (|D|+ ε).

Since ε > 0 was arbitrary, we conclude that the limit exists and equals

lim
r→∞

ND(r)
rd/2 =

ωd

(2π)d |D|.

This completes the proof.

If one imagines a bounded open set D in Rd as a ‘drum’, the eigenvalues of the neg-
ative Dirichlet Laplacian on L2(D) can be interpreted as the ‘frequencies’ of the drum.
This prompted the famous question of Mark Kac: “Can one hear the shape of a drum?”.
In its mathematical formulation, the question is whether the shape of D, up to an isom-
etry of Rd, is determined by its sequence of frequencies. Without further assumptions
on D, in general the answer is negative. Nevertheless, Weyl’s theorem implies that the
volume |D| of D can be recovered from the spectrum.

Problems

12.1 Let (i,V,H) be a Gelfand triple and let A be the linear operator in H associated
with a bounded accretive form a on V . Prove that the inclusion mapping from
D(A) into V is bounded.

12.2 Let (i,V,H) be a Gelfand triple. A form a on V is said to be elliptic if there exist
λ > 0 and α > 0 such that

Rea(v,v)+λ∥v∥2 ⩾ α∥v∥2
V , v ∈V.

(a) Show that the form a on V is elliptic if and only if the form

aλ (u,v) := a(u,v)+λ (u|v), u,v ∈V,

is coercive on V .
(b) State and prove a version of Corollary 12.13 for operators A associated with

an elliptic form a on V .

12.3 Let (i,V,H) be a Gelfand triple, let a be a coercive form on V , and let B∈L (V,H)

be bounded. Show that the form aB on V defined by

aB(u,v) := a(u,v)+(Bu|v), u,v ∈V,
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is bounded and elliptic.
12.4 Revisiting the conditions imposed in the treatment of the Sturm–Liouville prob-

lem in Section 11.3.b, let D⊆Rd be open and bounded and let a : D→Md(C) be
a function with bounded measurable coefficients such that

Re
d

∑
i, j=1

ai j(x)ξiξ j ⩾ α|ξ |2, ξ ∈ Cd,

for some α > 0 and almost all x ∈ D. Let b : D→ Kd have bounded measurable
coordinate functions and let c : D→K be bounded and measurable. Show that the
form

a(u,v) :=
∫

D
a∇u ·∇vdx+

∫
D

b ·∇uvdx+
∫

D
cuvdx, u,v ∈ H1

0 (D),

is elliptic.
12.5 Prove that the form a constructed in the proof of Proposition 12.16 has the follow-

ing minimality property: If ã : Ṽ ×Ṽ →C is a closed form extending the closable
continuous accretive form a, then ã extends a.

12.6 Prove the following facts for d = 1 and D = (a,b):

(a) D(∆Dir) = { f ∈ H2(D) : f (a) = f (b) = 0};
(b) D(∆Neum) = { f ∈ H2(D) : f ′(a) = f ′(b) = 0}.

12.7 Let V be a Hilbert space, let a : V ×V → K be a bounded coercive form and let
L : V →K be a bounded functional.

(a) Show that the energy functional

E(x) :=
1
2

Rea(x,x)−ReL(x)

is bounded from below.

Fix a nonempty closed convex subset C of V .

(b) Let (xn)n⩾1 be a sequence in C such that

lim
n→∞

E(xn) = inf
x∈C

E(x) =: E >−∞.

Prove that this sequence is Cauchy in V .
Hint: The convexity of C implies that 1

2 (xn + xm) ∈C. Then use the identity

E(
1
2
(xn + xm)) =

1
2

E(xn)+
1
2

E(xm)−
1
8

Rea(xn− xm,xn− xm).

(c) Prove that x := limn→∞ xn is the unique element of C minimising E.
(d) Compare this result with Problem 11.31.

12.8 We take a look at Example 12.23 from a Calculus perspective.
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(a) For which λ ∈ R does the problem{
−u′′ = λu on (0,1),

u(0) = u(1) = 0,

admit a C2-solutions? For these values of λ , find all C2-solutions.
(b) Do the same for Neumann boundary conditions u′(0) = u′(1) = 0.
(c) Explain why this is not enough to determine the spectra of the Dirichlet and

Neumann Laplacians in L2(0,1).

12.9 Provide the details of the proof that all Dirichlet eigenfunctions on a cube are
given by (12.20).
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13
Semigroups of Linear Operators

In this chapter we set up a functional analytic framework for the study of linear and non-
linear initial value problems. This includes the treatment of parabolic problems such
as the heat equation and hyperbolic problems such as the wave equation. From the
operator-theoretic perspective the main challenge is to arrive at a thorough understand-
ing of linear equations. This is achieved through the theory of C0-semigroups developed
in the present chapter. Once this is done, nonlinear equations are handled by perturba-
tion techniques.

13.1 C0-Semigroups

Equations of mathematical physics describing systems involving time evolution can
often be cast in the abstract form{

u′(t) = Au(t)+ f (t,u(t)), t ∈ [0,T ],

u(0) = u0,

where the unknown is a function u from the time interval [0,T ] into a Banach space X ,
the operator A is a linear, usually unbounded, operator acting in X , f : [0,T ]×X → X is
a given function, and the initial value u0 is assumed to be an element of X . This initial
value problem is referred to as the abstract Cauchy problem associated with A and
f . In applications, typically X is a Banach space of functions suited for the particular
problem and A is a partial differential operator. For instance, for the heat equation on a
bounded open subset D of Rd subject to Dirichlet boundary conditions one could choose
X = L2(D) and take A to be the Dirichlet Laplacian studied in the previous chapter.

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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If A is a bounded operator, the unique solution u of the linear abstract Cauchy problem{
u′(t) = Au(t), t ∈ [0,T ],

u(0) = u0,
(ACP)

is given by

u(t) = etAu0 =
∞

∑
n=0

tn

n!
Anu0, t ∈ [0,T ].

The operators etA may be thought of as ‘solution operators’ mapping the initial value
u0 to the solution etAu0 at time t. For unbounded operators A this simple strategy does
not work since we run into convergence and domain issues. In the case of selfadjoint
operators A and, more generally, normal operators A acting in a Hilbert space, one could
instead use the functional calculus of Chapter 10 to define the exponentials etA. This
would still limit the scope and applicability of the theory considerably. In order to set
up a more general and flexible framework we take a more abstract approach which is
motivated by the properties of the exponentials etA for bounded operators A: they satisfy
e0A = I and etAesA = e(t+s)A, and the mapping t 7→ etA is continuous with respect to the
operator norm.

13.1.a Definition and General Properties

Throughout this chapter, X is a Banach space and H is a Hilbert space.
The preceding discussion suggests the following definition.

Definition 13.1 (C0-Semigroups). A family S = (S(t))t⩾0 of bounded operators acting
on X is called a C0-semigroup if the following three properties are satisfied:

(S1) S(0) = I;
(S2) (semigroup property) S(t)S(s) = S(t + s) for all t,s ⩾ 0;
(S3) (strong continuity) limt↓0 ∥S(t)x− x∥= 0 for all x ∈ X .

Its infinitesimal generator, or briefly the generator, is the linear operator A defined by

D(A) =
{

x ∈ X : lim
t↓0

1
t
(S(t)x− x) exists in X

}
,

Ax = lim
t↓0

1
t
(S(t)x− x), x ∈ D(A).

The idea is to interpret the orbit u(t) := S(t)u0 as the ‘solution’ of the linear problem
(ACP). To find a precise way to make this idea rigorous, and to subsequently cover also
nonlinear initial value problems, is among the main objectives of this chapter.
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Remark 13.2 (Strong convergence versus uniform convergence). The properties of etA

suggest replacing (S3) by the stronger condition limt↓0 ∥S(t)− I∥ = 0. As it turns out,
however, this condition forces the generator A to be bounded (see Problem 13.2). This
renders the theory useless, as it would fail to cover equations in which A is a differen-
tial operator acting in Banach space X of functions. In a sense the strong convergence
imposed in (S3) is also more natural, as it gives the continuity with respect to the norm
of X of the ‘solution’ u(t) = S(t)u0 (see Proposition 13.4).

The next two propositions collect some elementary properties of C0-semigroups and
their generators.

Proposition 13.3. Let S be a C0-semigroup on X. There exist M ⩾ 1 and ω ∈ R such
that ∥S(t)∥⩽ Meωt for all t ⩾ 0.

Proof There exists a number δ > 0 such that supt∈[0,δ ] ∥S(t)∥ =: σ < ∞. Indeed, oth-
erwise we could find a sequence tn ↓ 0 such that limn→∞ ∥S(tn)∥ = ∞. By the uniform
boundedness theorem, this implies the existence of an x∈X such that supn⩾1 ∥S(tn)x∥=
∞, contradicting the strong continuity assumption (S3).

By the semigroup property (S2), for t ∈ [(k−1)δ ,kδ ] it follows that ∥S(t)∥ ⩽ σ k ⩽
σ1+t/δ , where the second inequality uses that σ ⩾ 1 by (S1). This proves the proposi-
tion, with M = σ and ω = 1

δ
logσ .

We will frequently use the trivial observation that if A generates the C0-semigroup
(S(t))t⩾0, then for all scalars µ the linear operator A− µ generates the C0-semigroup
(e−µtS(t))t⩾0. For µ > ω , with ω as in Proposition 13.3, this rescaled semigroup has
exponential decay in operator norm.

Proposition 13.4. Let S be a C0-semigroup on X with generator A. The following as-
sertions hold:

(1) for all x ∈ X the orbit t 7→ S(t)x is continuous for t ⩾ 0;
(2) for all x ∈D(A) the orbit t 7→ S(t)x is continuously differentiable for t ⩾ 0, we have

S(t)x ∈ D(A), and

d
dt

S(t)x = AS(t)x = S(t)Ax, t ⩾ 0;

(3) for all x ∈ X and t ⩾ 0 we have
∫ t

0 S(s)xds ∈ D(A) and

A
∫ t

0
S(s)xds = S(t)x− x,

and if x ∈ D(A), then both sides are equal to
∫ t

0 S(s)Axds;
(4) the generator A is a densely defined closed operator.
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Proof The proof uses the calculus rules for Banach space-valued Riemann integrals
(Proposition 1.45).

(1): Right continuity of t 7→ S(t)x follows from the right continuity at t = 0 (S3) and
the semigroup property (S2). For left continuity, observe that by the semigroup property,
for 0 < h < t we have

∥S(t)x−S(t−h)x∥⩽ ∥S(t−h)∥∥S(h)x− x∥⩽ sup
s∈[0,t]

∥S(s)∥∥S(h)x− x∥,

where the supremum is finite by Proposition 13.3.

(2): Fix x ∈ D(A) and t ⩾ 0. By the semigroup property we have

lim
h↓0

1
h
(S(t +h)x−S(t)x) = S(t) lim

h↓0

1
h
(S(h)x− x) = S(t)Ax.

This proves all assertions except left differentiability. For t > 0 we note that

lim
h↓0

1
h
(S(t)x−S(t−h)x) = lim

h↓0
S(t−h)

(1
h
(S(h)x− x)

)
= S(t)Ax,

where we used that x ∈ D(A) and the fact that the convergence limh↓0 S(t−h)y = S(t)y
for all y ∈ X implies convergence uniformly on compact sets by Proposition 1.42.

(3): The first identity follows from

lim
h↓0

1
h
(S(h)− I)

∫ t

0
S(s)xds = lim

h↓0

1
h

(∫ t

0
S(s+h)xds−

∫ t

0
S(s)xds

)
= lim

h↓0

1
h

(∫ t+h

t
S(s)xds−

∫ h

0
S(s)xds

)
= S(t)x− x,

where we first did a substitution and then used the continuity of t 7→ S(t)x. The identity
for x ∈ D(A) follows by integrating the identity of part (2), or by noting that

lim
h↓0

1
h
(S(h)− I)

∫ t

0
S(s)xds = lim

h↓0

∫ t

0
S(s)

(1
h
(S(h)x− x)

)
ds =

∫ t

0
S(s)Axds,

where the convergence under the integral is justified by the fact that the convergence
of the difference quotients 1

h (S(h)x− x) to Ax implies uniform convergence of the inte-
grands on [0, t].

(4): Denseness of D(A) follows from (1) and the first part of (3): for any x ∈ X ,
the latter implies that

∫ t
0 S(s)xds ∈ D(A) for all t > 0, while the former implies that

limt↓0
1
t
∫ t

0 S(s)xds = x.
To prove that A is closed we must check that the graph G(A) = {(x,Ax) : x ∈ D(A)}
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is closed in X ×X . Suppose that (xn)n⩾1 is a sequence in D(A) such that limn→∞ xn = x
and limn→∞ Axn = y in X . Then, by the second part of (3),

1
h
(S(h)x− x) = lim

n→∞

1
h
(S(h)xn− xn) = lim

n→∞

1
h

∫ h

0
S(s)Axn ds =

1
h

∫ h

0
S(s)yds.

Passing to the limit for h ↓ 0, this gives x ∈ D(A) and Ax = y.

We have just seen that the generator of a C0-semigroup is always densely defined and
closed. As a consequence of the latter, D(A) is a Banach space with respect to its graph
norm. In various applications it is of interest to know when a subspace Y, which is dense
in X and contained in D(A), is dense as a subspace of D(A). If this is the case, Y is
called a core for A. The next result gives a simple sufficient condition.

Proposition 13.5. Let S be a C0-semigroup with generator A on X. If Y is a subspace
of D(A) which is dense in X and invariant under each operator S(t), t ⩾ 0, then Y is
dense in D(A).

Proof The operator A−λ is the generator of the C0-semigroup (e−λ tS(t))t⩾0. Hence,
by the exponential boundedness of S, replacing A by A−λ for sufficiently large λ > 0
we may assume that limt→∞ ∥S(t)∥= 0.

Fix x ∈D(A) and choose a sequence (yn)n⩾1 in Y such that limn→∞ yn = Ax in X . Fix
t > 0. Then

lim
n→∞

∫ t

0
S(s)yn ds =

∫ t

0
S(s)Axds = S(t)x− x

in X and

lim
n→∞

A
∫ t

0
S(s)yn ds = lim

n→∞
S(t)yn− yn = S(t)Ax−Ax.

It follows that

lim
n→∞

∫ t

0
S(s)yn ds = S(t)x− x in D(A).

The identity

∥S(t)x− x∥D(A) = ∥S(t)x− x∥+∥S(t)Ax−Ax∥

implies that the restriction of S to D(A) is strongly continuous with respect to the graph
norm of D(A), and for this reason we may approximate the integrals

∫ t
0 S(s)yn ds by

Riemann sums in the norm of D(A). By the invariance of Y under S, these Riemann
sums belong to Y . It follows that for each t > 0 and ε > 0 there is a yt,ε ∈ Y such that

∥(S(t)x− x)− yt,ε∥D(A) < ε.

As t→∞, ∥S(t)x∥D(A) = ∥S(t)x∥+∥S(t)Ax∥→ 0, and therefore, for large enough t > 0,

∥yt,ε − x∥D(A) ⩽ ε +∥S(t)x∥D(A) < 2ε.
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This shows that x can be approximated in D(A) by elements of Y .

This proposition is often helpful in determining the domain of the generator explicitly
when the semigroup is given; see for instance Section 13.6.b.

The proof of the next proposition uses the following version of the product rule. It is
proved in the same way as the product rule in calculus; uniform convergence on compact
sets follows from Proposition 1.42.

Lemma 13.6. Let I ⊆ R be an interval of positive length and let S : I → L (X) and
T : I→L (X) be strongly continuous functions. Let t0 ∈ I and x ∈ X be fixed. If

(i) t 7→ S(t)x is differentiable at t0, with derivative

d
dt

∣∣
t=t0

S(t)x =: S′(t0)x,

(ii) t 7→ T (t)S(t0)x is differentiable at t0, with derivative

d
dt

∣∣
t=t0

T (t)S(t0)x =: T ′(t0)S(t0)x,

then t 7→ T (t)S(t)x is differentiable at t0, with derivative

d
dt

∣∣∣
t=t0

T (t)S(t)x = T ′(t0)S(t0)x+T (t0)S′(t0)x.

Proof We present the proof for open intervals I; for general intervals I obvious adap-
tations can be made at the boundaty points.

For t ∈ I \{t0} we have

T (t)S(t)x−T (t0)S(t0)x
t− t0

=
T (t)S(t)x−T (t)S(t0)x

t− t0
+

T (t)S(t0)x−T (t0)S(t0)x
t− t0

=: (I)+(II).

By assumption, (II) tends to T ′(t0)S(t0)x as t → t0. Concerning (I), fix δ > 0 small
enough so that (t0−δ , t0 +δ ) is contained in I, set It0,δ := (t0−δ , t0)∪ (t0, t0 +δ ), and
consider the relatively compact set

Ct0,δ :=
{S(t)x−S(t0)x

t− t0
−S′(t0)x : t ∈ It0,δ

}
.

For t ∈ It0,δ we have∥∥∥T (t)S(t)x−T (t)S(t0)x
t− t0

−T (t0)S′(t0)x
∥∥∥

⩽
∥∥∥T (t)

(S(t)x−S(t0)x
t− t0

−S′(t0)x
)∥∥∥+∥(T (t)−T (t0))S′(t0)x∥



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
13.1 C0-Semigroups 443

⩽ sup
y∈Ct0 ,δ

∥T (t)y−T (t0)y∥+
∥∥∥T (t0)

(S(t)x−S(t0)x
t− t0

−S′(t0)x
)∥∥∥

+∥(T (t)−T (t0))S′(t0)x∥.

The strong continuity of T and the fact that strong convergence implies uniform conver-
gence on compact sets imply that the first and third terms on the right-hand side tend to
0 as t→ t0. The second term tends to 0 by the assumptions on S.

A C0-semigroup is uniquely determined by its generator:

Proposition 13.7. If A is the generator of the C0-semigroups S and T , then S(t) = T (t)
for all t ⩾ 0.

Proof By Lemma 13.6, for all t > 0 and x ∈ D(A) the function φt(s) := S(t− s)T (s)x
is continuously differentiable on [0, t] with derivative φ ′t (s) =−AS(t− s)T (s)x+S(t−
s)AT (s)x = 0, and therefore φt is constant by Proposition 1.45. Hence, S(t)x = φt(0) =
φt(t) = T (t)x. This being true for all x in the dense subspace D(A) of X , it follows that
S(t) = T (t).

The next proposition identifies the resolvent of the generator as the Laplace transform
of the semigroup.

Proposition 13.8. Let A be the generator of a C0-semigroup S on X, and fix constants
M ⩾ 1 and ω ∈ R such that ∥S(t)∥⩽ Meωt for all t ⩾ 0. Then {λ ∈ C : Reλ > ω} ⊆
ρ(A), and on this set the resolvent of A is given by

R(λ ,A)x =
∫

∞

0
e−λ tS(t)xdt, x ∈ X .

As a consequence, for Reλ > ω we have

∥R(λ ,A)∥⩽ M
Reλ −ω

.

Proof Fix x∈X and define Rλ x :=
∫

∞

0 e−λ tS(t)xdt. Using the semigroup property (S2)
and a substitution, we obtain the identity

lim
h↓0

1
h
(S(h)− I)Rλ x = lim

h↓0

1
h

(
eλh

∫
∞

h
e−λ tS(t)xdt−

∫
∞

0
e−λ tS(t)xdt

)
= lim

h↓0

eλh−1
h

∫
∞

h
e−λ tS(t)xdt− lim

h↓0

1
h

∫ h

0
e−λ tS(t)xdt

= λRλ x− x,

from which it follows that Rλ x ∈ D(A) and ARλ x = λRλ x− x. This shows that the
bounded operator Rλ is a right inverse for λ −A.
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Integrating by parts and using that d
dt S(t)x = S(t)Ax for x ∈ D(A) we obtain

λ

∫ T

0
e−λ tS(t)xdt =−e−λT S(T )x+ x+

∫ T

0
e−λ tS(t)Axdt.

Since Reλ > ω , sending T → ∞ gives λRλ x = x+Rλ Ax. This shows that Rλ is also a
left inverse.

The estimate for the resolvent follows from∥∥∥∫ ∞

0
e−λ tS(t)xdt

∥∥∥⩽ ∫ ∞

0
e−Reλ t∥S(t)x∥dt ⩽ M∥x∥

∫
∞

0
e(ω−Reλ )t dt =

M
Reλ −ω

∥x∥.

Combining this result with Proposition 10.30 we obtain the result that a C0-semigroup
is determined by its generator:

Proposition 13.9. If A and B generate C0-semigroups on X, and if B is an extension of
A, then A = B.

Proof Proposition 13.8 implies that the resolvent sets of A and B share a common
half-plane. The equality A = B then follows from Proposition 10.30.

For operators satisfying the resolvent estimate of Proposition 13.8 for real λ , we have
the following convergence result.

Proposition 13.10. Let A be a densely defined closed operator acting in X, and suppose
that for some ω ∈ R we have {λ > ω} ⊆ ρ(A) and

∥R(λ ,A)∥⩽ M
λ −ω

, λ > ω.

Then for all x ∈ X we have

lim
λ→∞

λR(λ ,A)x = x.

Proof First let x ∈ D(A) and fix an arbitrary µ ∈ ρ(A). Then x = R(µ,A)y for y :=
(µ−A)x. By the resolvent identity and the above estimate on the resolvent we obtain

lim
λ→∞

λR(λ ,A)x = lim
λ→∞

λR(λ ,A)R(µ,A)y

= lim
λ→∞

λ

λ −µ
(R(µ,A)−R(λ ,A))y = R(µ,A)y = x.

For general x ∈ X the claim then follows by approximation with elements from D(A),
using the uniform boundedness of the resolvent for λ ⩾ ω +1.

The final result of this section gives a useful sufficient condition for a semigroup of
operators to be strongly continuous. We need the following terminology. A family of
bounded operators S = (S(t))t⩾0 on X is said to be a weakly continuous semigroup if
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conditions (S1) and (S2) in Definition 13.1 hold and (S3) is replaced by the condition
that for all x ∈ X and x∗ ∈ X∗ one has limt↓0⟨S(t)x,x∗⟩= ⟨x,x∗⟩.

Theorem 13.11 (Phillips). Every weakly continuous semigroup is strongly continuous.

Proof Let

X0 :=
{

x ∈ X : lim
t↓0
∥S(t)x− x∥= 0

}
.

It is evident that X0 is a linear subspace of X . We wish to show that X0 = X .
Arguing as in the proof of Proposition 13.3 we see that the family {S(t) : 0 ⩽ t ⩽ 1}

is uniformly bounded. A first consequence is that X0 is a closed subspace of X . Next
we note that the weak continuity of t 7→ S(t)x along with the fact that closed subspaces
are weakly closed (Proposition 4.44) implies that each orbit t 7→ S(t)x is contained in
a separable closed subspace of X . It follows that we can apply the Pettis measurability
theorem (Theorem 4.19) and conclude that every orbit t 7→ S(t)x is strongly measurable.
It follows from these considerations that the Bochner integrals xt := 1

t
∫ t

0 S(s)xds are
well defined.

Fix x ∈ X and 0 < t < 1
2 . For 0 < s < t,

∥S(s)xt − xt∥=
1
t

∥∥∥∫ t

0
S(s+ r)xdr−

∫ t

0
S(r)xdr

∥∥∥
=

1
t

∥∥∥∫ t+s

t
S(r)xdr−

∫ s

0
S(r)xdr

∥∥∥⩽ 2s · 1
t

(
sup

0⩽r⩽1
∥S(r)∥

)
∥x∥.

This shows that x∗t ∈ X0.
Suppose now, for a contradiction, that X0 ̸= X . Then there exists an x ∈ X \X0 and by

the Hahn–Banach theorem we can find an x∗ ∈ X∗ which vanishes on X0 but not on x.
Then, with xt =

1
t
∫ t

0 S(s)xds as before,

0 = lim
t↓0
⟨xt ,x∗⟩= lim

t↓0

1
t

∫ t

0
⟨S(s)x,x∗⟩ds = ⟨x,x∗⟩ ̸= 0,

a contradiction.

13.1.b C0-Groups

Instead of considering only forward time we could also include backward time. This
leads to the notion of a C0-group.

Definition 13.12 (C0-groups). A C0-group is a family S = (S(t))t∈R of bounded opera-
tors acting on X with the following properties:

(G1) S(0) = I;
(G2) S(t)S(s) = S(t + s) for all t,s ∈ R;
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(G3) limt→0 ∥S(t)x− x∥= 0 for all x ∈ X .

Its infinitesimal generator, or briefly its generator, is the linear operator A defined by

D(A) :=
{

x ∈ X : lim
t→0

1
t
(S(t)x− x) exists

}
,

Ax := lim
t→0

1
t
(S(t)x− x), x ∈ D(A).

It is evident from the definition that if A generates a C0-group (S(t))t∈R, then both
(S(t))t⩾0 and (S(−t))t⩾0 are C0-semigroups. Denoting their generators by A+ and A−,
it is evident that D(A)⊆D(A+)∩D(A−) and that for all x ∈D(A) we have Ax = A+x =
−A−x. In fact, more is true:

Proposition 13.13. A linear operator A in X generates a C0-group (S(t))t∈R if and
only if both A and −A generate C0-semigroups. These semigroups are (S(t))t⩾0 and
(S(−t))t⩾0, respectively.

Proof If A generates a C0-group (S(t))t∈R and x ∈ D(A+), then

lim
t↑0

∥∥∥1
t
(S(t)x− x)−A+x

∥∥∥= lim
t↑0

∥∥∥− 1
t

S(−1)
∫ 1

1+t
S(s)A+xds−A+x

∥∥∥= 0.

Since also limt↓0
1
t (S(t)x− x) = A+x it follows that x ∈ D(A) and Ax = A+x. In com-

bination with the inclusion D(A)⊆ D(A+) it follows that D(A) = D(A+) and therefore
A = A+. In the same way one proves that D(A) = D(A−) and A =−A−.

For the converse, suppose that A and −A generate C0-semigroups (S+(t))t⩾0 and
(S−(t))t⩾0 respectively. By Lemma 13.6, for x ∈ D(A) = D(−A) the function t 7→
S−(t)S+(t)x is continuously differentiable and

d
dt

S−(t)S+(t)x =−AS−(t)S+(t)x+S−(t)AS+(t)x = 0,

where we used that S−(t) commutes with A. It follows from Proposition 1.45 that the
function t 7→ S−(t)S+(t)x is constant, and evaluation at t = 0 shows that S−(t)S+(t)x= x
for all t ⩾ 0. Since D(A) is dense this identity extends to arbitrary x ∈ X . This proves
that S−(t) is a left inverse for S+(t). Interchanging the roles of S−(t) and S+(t) we
find that S−(t) is also a right inverse for S+(t). As a result, S+(t) is invertible and
(S+(t))−1 = S−(t) for all t ⩾ 0. For t ∈ R define

S(t) :=

{
S+(t), t ⩾ 0,

S−(t), t < 0.

With what we have proved it is trivial to verify that (S(t))t⩾0 is a C0-group and that A is
its generator.

Proposition 13.8, applied to the semigroups generated by ±A, implies:
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Corollary 13.14. If A generates a uniformly bounded C0-group on X, then σ(A)⊆ iR.

The spectrum of the generator of a C0-semigroup may be empty (an example is given
in Problem 13.4). This is contrasted by the second part of the following result. For a
uniformly bounded C0-group S on X and f ∈ L1(R) we define S( f ) ∈L (X) by

S( f )x :=
∫

∞

−∞

f (t)S(t)xdt, x ∈ X . (13.1)

Theorem 13.15. If A generates a uniformly bounded C0-group S on X, then:

(1) if the Fourier transform of a function f ∈ L1(R) is compactly supported and van-
ishes in a neighbourhood of iσ(A), then S( f ) = 0;

(2) if X ̸= {0}, then σ(A) ̸=∅.

Proof (1): For all δ > 0 and s ∈R we have ±δ − is ∈ ρ(A), and for all x ∈ X we have

R(δ − is,A)x =
∫

∞

0
e−(δ−is)tS(t)xdt

and

R(−δ − is,A)x =−R(δ + is,−A) =−
∫

∞

0
e−(δ+is)tS(−t)xdt.

Hence by dominated convergence, Fourier inversion (Theorem 5.20), Fubini’s theorem,
and Propositions 13.8 and 13.13,

S( f )x = lim
δ↓0

∫
∞

−∞

e−δ |t| f (t)S(t)xdt

=
1√
2π

lim
δ↓0

∫
∞

−∞

e−δ |t|
(∫ ∞

−∞

eist f̂ (s)ds
)

S(t)xdt

=
1√
2π

lim
δ↓0

∫
∞

−∞

f̂ (s)
(∫ ∞

−∞

e−δ |t|eistS(t)xdt
)

ds

=
1√
2π

lim
δ↓0

∫
∞

−∞

f̂ (s)(R(δ − is,A)−R(−δ − is,A))xds.

By dominated convergence, this identity immediately implies (1).

(2): Suppose that σ(A) = ∅. The result of part (1) implies that S( f ) = 0 for all
f ∈ L1(R) whose Fourier transform has compact support. We claim that such func-
tions are dense in L1(R). To see this, fix an arbitrary nonzero function φ ∈C∞

c (R). Its
inverse Fourier transform ψ := φ̂ belongs to L1(R) (since φ (k) ∈ L1(R) implies that
|x|kψ(x) is bounded for all k ∈ N). Since ψ is nonzero by the injectivity of the (in-
verse) Fourier transform, after multiplying with an appropriate scalar we may assume
that

∫
R ψ dx = 1. By Proposition 2.34 we then have limε↓0 ψε ∗ f = f in L1(R), where

ψε(x) := ε−dφ(ε−1x), and the Fourier transforms ψ̂ε ∗ f =
√

2πψ̂ε f̂ are compactly sup-
ported. This proves the claim.
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448 Semigroups of Linear Operators

By approximation we obtain that S( f ) = 0 for all f ∈ L1(R). In particular, taking
f0(t) := e−t for t ⩾ 0 and f0(t) := 0 for t < 0, Proposition 13.8 implies that R(1,A) =
S( f0) = 0. Since R(R(1,A)) = D(A) is dense in X , this implies that X = {0}.

We will use this theorem to give a proof of Wiener’s Tauberian theorem (Theorem
5.21). Recall that this theorem asserts that if the Fourier transform of a function f ∈
L1(R) is zero-free, then the span of the set of all translates of f is dense in L1(R).

We start with some preparations. If S is a uniformly bounded C0-group on a Banach
space X , we define

IS := { f ∈ L1(R) : S( f ) = 0},

where S( f ) is given by (13.1). The Arveson spectrum of S is the set

Sp(S) := {ω ∈ R : f̂ (ω) = 0 for all f ∈ IS}.

The key to proving Wiener’s Tauberian theorem is the following result, which is of
independent interest.

Theorem 13.16. Let S be a uniformly bounded C0-group S with generator A on X. Then
Sp(S) = iσ(A).

Proof First let ω ∈R satisfy ω ̸∈ iσ(A). Noting that σ(A)⊆ iR, we choose a function
f ∈ L1(R) whose Fourier transform is compactly supported and vanishes in a neigh-
bourhood of iσ(A) but not on ω . By Theorem 13.15, S( f ) = 0, so f ∈ IS. But then
f̂ (ω) ̸= 0 implies that ω ̸∈ Sp(S).

Conversely, let ω ∈ iσ(A). Since σ(A) ⊆ iR and since the topological boundary of
σ(A) is always contained in the approximate point spectrum (see Section 10.1.c, where
it was observed that the corresponding result for bounded operators, Proposition 6.17,
extends to unbounded operators),−iω is contained in the approximate point spectrum of
A. Hence we may choose a sequence (xn)n⩾1 of norm one vectors in X , with xn ∈ D(A)
for all n ⩾ 1, such that limn→∞ ∥Axn + iωxn∥→ 0. In view of

S(t)xn− e−iωtxn =
∫ t

0
eiωsS(s)(A+ iω)xn ds→ 0 as n→ ∞,

(xn)n⩾1 is an approximate eigensequence of S(t) with approximate eigenvalue e−iωt .
Let f ∈ L1(R). By dominated convergence,

lim
n→∞

∫
∞

−∞

f (t)(S(t)xn− e−iωtxn)dt = 0.

Thus, using that ∥xn∥= 1,

∥S( f )∥⩾ lim
n→∞
∥S( f )xn∥= lim

n→∞

∥∥∥∫ ∞

−∞

f (t)S(t)xn dt
∥∥∥= ∣∣∣∫ ∞

−∞

e−iωt f (t)dt
∣∣∣= | f̂ (ω)|.

This inequality implies that f̂ (ω) = 0 for all f ∈ IS. Therefore, ω ∈ Sp(S).
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The right translation group is the C0-group U = (U(t))t∈R on L1(R) defined by

U(t) f (s) := f (s− t), s, t ∈ R.

Note that U( f )g = f ∗g for all f ,g ∈ L1(R), where ∗ denotes convolution.
We are now ready for the proof of Wiener’s Tauberian theorem.

Proof of Theorem 5.21 Let f ∈ L1(R) be a function whose Fourier transform is zero-
free and let X := span{U(t) f : t ∈ R}. We wish to prove that X = L1(R). Consider
the quotient space Y := L1(R)/X and let UY = (UY (t))t∈R denote the associated quo-
tient translation group on Y . This group is strongly continuous and bounded. For all
g ∈ L1(R) we have U( f )g = f ∗ g = g ∗ f = U(g) f . By the translation invariance of
X , U(g) f ∈ X . Hence U( f )g ∈ X , so UY ( f )(g+X) = 0 for all g ∈ L1(R). It follows
that UY ( f ) = 0. On the other hand, by assumption we have f̂ (ω) ̸= 0 for all ω ∈ R.
Therefore, Sp(UY ) =∅. We conclude that Y = {0} and X = L1(R).

13.2 The Hille–Yosida Theorem

The main theorem on generation of C0-semigroups is the Hille–Yosida theorem, which
gives necessary and sufficient conditions in terms of resolvent growth. We only need
the version for contraction semigroups, which is somewhat easier to state and prove. Its
extension to general semigroups can be done via the same reductions that will be used
in the proof of Theorem 13.18 (see Problem 13.1).

Theorem 13.17 (Hille–Yosida). For a densely defined closed linear operator A in X
the following assertions are equivalent:

(1) A generates a C0-semigroup of contractions on X;
(2) {λ ∈ C : Reλ > 0} ⊆ ρ(A) and

∥R(λ ,A)∥⩽ 1
Reλ

, Reλ > 0;

(3) {λ ∈ R : λ > 0} ⊆ ρ(A) and

∥R(λ ,A)∥⩽ 1
λ
, λ > 0.

Proof The implication (1)⇒(2) follows from Propositions 13.4 and 13.8, and the im-
plication (2)⇒(3) is trivial.

Assume now that (3) holds. For the bounded operators An := nAR(n,A)= n2R(n,A)−
nI, n ⩾ 1, Proposition 13.10 implies limn→∞ Anx = Ax for all x ∈ D(A). Also,

∥etAn∥⩽ en2∥R(n,A)∥te−nt ⩽ ente−nt = 1. (13.2)
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Fix x ∈ D(A) and t ⩾ 0. The identity

etAnx− etAmx =
∫ t

0

d
ds

[e(t−s)AmesAnx]ds =
∫ t

0
e(t−s)AmesAn(Anx−Amx)ds

and the contractivity estimate (13.2) imply

∥etAnx− etAmx∥⩽ t∥Anx−Amx∥,

and therefore (etAnx)n⩾1 is Cauchy in X for all x ∈ D(A). Hence, the limit S(t)x :=
limn→∞ etAnx exists for all x ∈ D(A). By the uniform boundedness of the operators etAn

guaranteed by (13.2), this limit in fact exists for all x ∈ X . Moreover, for each t ⩾ 0
the resulting mapping x 7→ S(t)x is linear and contractive. It remains to verify that the
contractions S(t), t ⩾ 0, form a C0-semigroup on X and that A is its generator.

It is clear that S(0) = I. The semigroup property follows from

S(t)S(s)x = lim
n→∞

etAnesAnx = lim
n→∞

e(t+s)Anx = S(t + s)x,

using the uniform boundedness of the sequence (etAn)n⩾1 in the first equality and the
properties of the power series of the exponential function in the second.

Next we prove the strong continuity. For x ∈ D(A) we have

S(t)x− x = lim
n→∞

etAnx− x = lim
n→∞

∫ t

0
esAnAnxds =

∫ t

0
S(s)Axds,

where we used that

∥esAnAnx−S(s)Ax∥⩽ ∥esAn(Anx−Ax)∥+∥(esAn −S(s))Ax∥
⩽ ∥(Anx−Ax)∥+∥(esAn −S(s))Ax∥→ 0.

Therefore, for x ∈ D(A),

lim
t↓0

S(t)x− x = lim
t↓0

∫ t

0
S(s)Axds = 0.

Once again the strong continuity for general x ∈ X follows from this by approximation.
It remains to check that A equals the generator of S, which we denote by B. By what

we have already proved, for x ∈ D(A) we have

lim
t↓0

1
t
(S(t)x− x) = lim

t↓0

1
t

∫ t

0
S(s)Axds = Ax,

so x ∈ D(B) and Bx = Ax. Since both A and B are closed and share a half-line in their
resolvent sets, Proposition 10.30 implies that A = B.

As an application we have the following perturbation result.

Theorem 13.18 (Perturbation). Let A be the generator of a C0-semigroup S on X and
let B be a bounded operator on X, then A+B generates a C0-semigroup on X.
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Here it is understood that D(A+B) = D(A) and (A+B)x = Ax+Bx for x ∈ D(A).
The proof of the theorem shows that if ∥S(t)∥⩽ Meωt , then ∥SB(t)∥⩽ Me(ω+∥B∥)t .

Proof We prove the theorem in three steps. We begin with two reductions.

Step 1 – Choose M ⩾ 1 and ω ∈R such that ∥S(t)∥⩽ Meωt for all t ⩾ 0. The operator
A−ω is the generator of the C0-semigroup (e−ωtS(t))t⩾0, and this semigroup satisfies
∥e−ωtS(t)∥⩽ M. Since

A+B = (A−ω)+(B+ω)

and B+ω is bounded, this argument shows that it is enough to prove the theorem for
uniformly bounded semigroups.

Step 2 – We now assume that the semigroup generated by A is uniformly bounded,
say by a constant M ⩾ 1. From ∥x∥⩽ supt⩾0 ∥S(t)x∥⩽ M∥x∥ it follows that

|||x||| := sup
t⩾0
∥S(t)x∥

defines an equivalent norm on X . With respect to this norm, for all x ∈ X we have

|||S(s)x|||= sup
t⩾0
∥S(s+ t)x∥⩽ sup

r⩾0
∥S(r)x∥= |||x|||.

This argument shows that we may assume that S is a semigroup of contractions.

Step 3 – By the previous two steps it suffices to prove the theorem for generators of
contraction semigroups.

Fix λ ∈ C with Reλ > 0. Then λ ∈ ρ(A) and ∥R(λ ,A)∥⩽ (Reλ )−1. Because

(λ − (A+B)) = (I−BR(λ ,A))(λ −A)

and ∥BR(λ ,A)∥⩽ (Reλ )−1∥B∥, for Reλ > ∥B∥ the operator I−BR(λ ,A) is invertible,
and the Neumann series for its inverse gives

∥R(λ ,A)∥∥(I−BR(λ ,A))−1∥⩽ (Reλ )−1(I− (Reλ )−1∥B∥)−1 = (Reλ −∥B∥)−1.

Hence, for Reλ > ∥B∥, the operator λ − (A+B) is invertible and its inverse satisfies

∥R(λ ,A+B)∥⩽ (Reλ −∥B∥)−1.

The operator A+B−∥B∥ is then invertible for Reλ > 0 and satisfies

∥(λ − (A+B−∥B∥))∥⩽ (Reλ )−1.

By the Hille–Yosida theorem this operator generates a C0-semigroup T of contractions.
Then A+B generates the C0-semigroup given by SB(t) := et∥B∥T (t).

Clearly, ∥SB(t)∥⩽ et∥B∥. Remembering that we made two reductions, reversing them
gives the estimate given after the statement of the theorem.
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In general there is no closed-form expression for SB(t), but we do have the so-called
variation of constants identity

SB(t)x = S(t)x+
∫ t

0
S(t− s)BSB(s)xds.

The proof of this identity is simple: for x ∈ D(A) = D(A+B), using Lemma 13.6 we
differentiate the function φ(s) = S(t− s)SB(s)x using the product rule and get

φ
′(s) =−AS(t− s)SB(s)x+S(t− s)(A+B)SB(s) = S(t− s)BSB(s)x.

Integrating this identity over the interval [0, t] gives the required result.
As a consequence of this identity we see that the norm of the difference is of the order

∥S(t)−SB(t)∥= O(t) as t ↓ 0.

We continue with a useful approximation formula, by means of which it is possible
to deduce information about the semigroup from information about the properties of the
resolvent along the positive real line. It will be used later on to prove the positivity of
the heat semigroup under Dirichlet and Neumann boundary conditions.

To motivate the result we recall Euler’s formula for the exponential, which entails
that for all a ∈ R and t ⩾ 0,

eta = lim
n→∞

(
1− t

n
a
)−n

= lim
n→∞

(n
t
(

n
t
−a)−1

)n
.

Theorem 13.19 (Euler’s formula). Let A be the generator of a C0-semigroup S on X.
Then for all x ∈ X and t > 0 we have

S(t)x = lim
n→∞

(n
t

R(
n
t
,A)
)n

x.

Proof By Proposition 10.28 the resolvent of A is holomorphic, with complex deriva-
tive given by d

dλ
R(λ ,A) =−R(λ ,A)2. By induction this implies

dn

dλ n R(λ ,A) = (−1)nn!R(λ ,A)n+1. (13.3)

On the other hand, repeated differentiation under the integral in the Laplace transform
representation R(λ ,A)x =

∫
∞

0 e−λ sS(s)xds gives

dn

dλ n R(λ ,A)x = (−1)n
∫

∞

0
sne−λ sS(s)xds.

Substituting s = rt and specialising to λ = n/t we obtain

dn

dλ n R(λ ,A)x
∣∣∣
λ=n/t

= (−1)ntn+1
∫

∞

0
(re−r)nS(rt)xdr. (13.4)
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Combining (13.3) and (13.4), and using the identity

nn+1

n!

∫
∞

0
(re−r)n dt = 1, (13.5)

we arrive at(n
t

R(
n
t
,A)
)n+1

x−S(t)x =
nn+1

n!

∫
∞

0
(re−r)nS(rt)xdr−S(t)x

=
nn+1

n!

∫
∞

0
(re−r)n(S(rt)x−S(t)x)dr.

Fixing x ∈ X and ε > 0, by strong continuity we may choose 0 < a < 1 < b < ∞ in such
a way that

sup
a⩽r⩽b

∥S(rt)x−S(t)x∥< ε.

We split the integral into three parts I1, I2, and I3 corresponding to [0,a], [a,b], and
[b,∞) and estimate each part separately, using that u 7→ ue−u is increasing on [0,1] and
decreasing on [1,∞). For the first integral, using the elementary bound

nn

n!
⩽

en
√

2πn
(13.6)

we obtain

∥I1∥⩽
nn+1

n!
(ae−a)n

∫ a

0
∥S(rt)x−S(t)x∥dr ⩽

1√
2π

n1/2en(ae−a)n ·2 sup
0⩽s⩽t

∥S(s)∥∥x∥,

which tends to 0 as n→ ∞ since ae−a < e−1. Next, using (13.5),

∥I2∥⩽
nn+1

n!

∫ b

a
(re−r)n

ε dr ⩽ ε
nn+1

n!

∫
∞

0
(re−r)n dr = ε.

To estimate I3 we choose M ⩾ 1 and ω ∈R such that ∥S(t)∥⩽ Meωt . Choose 0 < δ < 1
so small that be1−b(1−δ ) < 1; this is possible since be−b < e−1. For all n ⩾ δ−1(1+
|ω|max{t,1}), by (13.6) we have

∥I3∥⩽
nn+1

n!

∫
∞

b
rne−r(1−δ )ne−r(1+|ω|max{t,1})M(eωrt + eωr)∥x∥dr

⩽
nn+1

n!
1

(1−δ )n ·2M∥x∥
∫

∞

b

(
r(1−δ ))e−r(1−δ )

)ne−r dr

⩽
en
√

2π
n1/2(be−b(1−δ ))n ·2M∥x∥

∫
∞

b
e−r dr

⩽
1√
2π

n1/2(be1−b(1−δ ))n ·2M∥x∥,
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which tends to 0 as n→ ∞ by the choice of δ ; we used the monotonicity of u 7→ ue−u

on [1,∞) to bound (r(1−δ ))e−r(1−δ ) by (b(1−δ ))e−b(1−δ ).
Collecting the estimates, we have shown that

lim
n→∞

(n
t

R(
n
t
,A)
)n+1

x = S(t)x.

This is almost the result we want, except for the power n+1 instead of n. To correct for
this we argue as follows. By Proposition 13.8,∥∥∥(n

t
R(

n
t
,A)
)n+1

x−
(n

t
R(

n
t
,A)
)n

x
∥∥∥⩽ ∥∥∥(n

t
R(

n
t
,A)
)n(n

t
R(

n
t
,A)x− x

)∥∥∥
⩽ M

(
1− t

n
|ω|
)−n∥∥∥n

t
R(

n
t
,A)x− x

∥∥∥.
As n→ ∞, by Euler’s formula and Proposition 13.10 we have(

1− t
n
|ω|
)−n
→ e|ω|t ,

∥∥∥n
t

R(
n
t
,A)x− x

∥∥∥→ 0,

and therefore

lim
n→∞

(n
t

R(
n
t
,A)
)n

x = lim
n→∞

(n
t

R(
n
t
,A)
)n+1

x = S(t)x.

We continue with a simple result about compact semigroups.

Proposition 13.20 (Compact semigroups). Let A be the generator of a C0-semigroup S
on X. If S(t) is a compact operator for every t > 0, then:

(1) the semigroup is uniformly continuous for t > 0;
(2) the resolvent operator R(λ ,A) is compact for every λ ∈ ρ(A);
(3) the spectrum of A is finite or countable and consists of isolated eigenvalues, and the

corresponding eigenspaces are finite-dimensional;
(4) for all t > 0 we have the spectral mapping formula

σ(S(t))\{0}= exp(tσ(A)).

Moreover, the eigenspaces corresponding to λ ∈ σ(A) and eλ t ∈ σ(S(t)) coincide.

Proof (1): Fix s > 0. For t > s/2 we have

∥S(t)−S(s)∥= sup
∥x∥⩽1

∥(S(t− s/2)−S(s/2))S(s/2)x∥.

Since S(s/2)BX is relatively compact, by Proposition 1.42 this implies limt→s ∥S(t)−
S(s)∥= 0.

(2): Choose M ⩾ 1 and ω ∈ R such that ∥S(t)∥⩽ Meωt for all t ⩾ 0. We first claim
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that the compactness of the semigroup operators S(t) for t > 0 implies that R(µ,A) is
compact for all Re µ > ω . For all x ∈ X and t > 0 we have

S(t)R(µ,A)x−R(µ,A)x =
∫ t

0
S(s)AR(µ,A)x,

and therefore

∥S(t)R(µ,A)−R(µ,A)∥⩽ t sup
s∈[0,t]

∥S(s)∥∥AR(µ,A)∥,

where AR(µ,A) = µR(µ,A)− I is a bounded operator. Since S(t)R(µ,A) is compact
for every t > 0, from Proposition 7.5 we obtain that R(µ,A) is compact. This proves
the claim. The compactness of R(λ ,A) for arbitrary λ ∈ ρ(A) now follows from the
resolvent identity (10.2).

(3): This follows from Lemma 12.25.

(4): This follows from (3) and the next proposition.

In the next proposition we denote by σp(B) the point spectrum of a bounded or un-
bounded operator B, that is, the set of its eigenvalues.

Proposition 13.21 (Spectral mapping theorem for the point spectrum). Let A be the
generator of a C0-semigroup S on X. Then

σp(S(t))\{0}= exp
(
tσp(A)

)
, t ⩾ 0.

Moreover, the eigenspaces corresponding to λ ∈ σp(A) and eλ t ∈ σp(S(t)) coincide.

Proof If x∈D(A) is an eigenvector of A corresponding to the eigenvalue λ , the identity∫ t

0
eλ (t−s)S(s)(λ −A)xds = (eλ t −S(t))x

shows that S(t)x = eλ tx, that is, eλ t is an eigenvalue of S(t) with eigenvector x. This
proves the inclusion σp(S(t))\{0} ⊇ exp

(
tσp(A)

)
.

The inclusion σp(S(t))\{0} ⊆ exp
(
tσp(A)

)
is proved as follows. Fix t > 0 and sup-

pose that x ∈ X is an eigenvector of S(t) corresponding to a nonzero eigenvalue µ . Then
µ = eλ t for some λ ∈ C. The identity S(t)x = eλ tx implies that the map s 7→ e−λ sS(s)x
is periodic with period t. Since this map is not identically zero, the uniqueness theorem
for the Fourier transform implies that (after scaling the interval [0, t] to [0,2π]) at least
one of its Fourier coefficients is nonzero. Thus, there exists an integer k ∈ Z such that
with λk := λ +2πik/t we have

xk :=
1
t

∫ t

0
e−λksS(s)xds ̸= 0.

We will show that λk is an eigenvalue of A with eigenvector xk.
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Choose M ⩾ 1 and ω ∈ R such that ∥S(t)∥ ⩽ Meωt . By the t-periodicity of s 7→
e−λ sS(s)x, for all Reν > ω we have

R(ν ,A)x =
∫

∞

0
e−νsS(s)xds =

∞

∑
n=0

∫ (n+1)t

nt
e−νsS(s)xds

=
∞

∑
n=0

∫ t

0
e−νsS(s)(e−νntS(nt)x)ds =

∞

∑
n=0

e(λ−ν)nt
∫ t

0
e−νsS(s)xds

=
1

1− e(λ−ν)t

∫ t

0
e−νsS(s)xds =

1
1− e(λk−ν)t

∫ t

0
e−νsS(s)xds.

(13.7)

Since the integral on the right-hand side is an entire function of the variable ν , this shows
that the map ν 7→R(ν ,A)x can be holomorphically extended to C\{λ +2πin/t : n∈Z}.
Denoting this extension by F , by (13.7) and the definition of xk we have

lim
ν→λk

(ν−λk)F(ν) = xk.

Also, by (13.7) and the t-periodicity of s 7→ e−λ sS(s)x,

lim
ν→λk

(λk−A)(ν−λk)F(ν)

= lim
ν→λk

ν−λk

1− e(λk−ν)t

(
(I− e−νtS(t))x+(λk−ν)

∫ t

0
e−νsS(s)xds

)
=

1
t
(0+0) = 0.

From the closedness of A it follows that xk ∈ D(A) and (λk−A)xk = 0.
It remains to prove the final statement on the coincidence of the eigenspaces. Let us

denote the eigenspaces corresponding to λ ∈ σp(A) and eλ t ∈ σp(S(t)) by Eλ and Et,λ ,
respectively. The first part of the proof shows that Eλ ⊆ Et,λ . Denote by Fλ and Ft,λ the
closed linear spans of {S(t)x : x ∈ Eλ} and {S(t)x : x ∈ Et,λ}. Then Eλ = Fλ ⊆ Ft,λ ,
and the second part of the proof shows that Ft,λ ⊆ Eλ (because the vector xk belongs to
Ft,λ ). Putting these inclusions together, we obtain

Eλ = Fλ ⊆ Ft,λ ⊆ Eλ and Eλ ⊆ Et,λ ⊆ Ft,λ ⊆ Eλ ,

and therefore all these subspaces coincide.

13.3 The Abstract Cauchy Problem

Having set up the general theory of C0-semigroups, it is time to put them to use in
solving abstract Cauchy problems.
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13.3.a The Inhomogeneous Cauchy Problem

If A is the generator of a C0-semigroup S on X , then by Proposition 13.4 for initial values
u0 ∈ D(A) the function

u(t) := S(t)u0, t ⩾ 0, (13.8)

solves the initial value problem (ACP),{
u′(t) = Au(t), t ∈ [0,T ],

u(0) = u0,

in the sense that u is continuously differentiable, takes values in D(A), and satisfies
the equation pointwise in time. A function u with these properties is called a classical
solution. However, the definition (13.8) makes sense for arbitrary u0 ∈ X , not just for
u0 ∈D(A), and for all u0 ∈ X the function u(t) = S(t)u0 solves the following integrated
version of (ACP):

u(t) = u0 +A
∫ t

0
u(s)ds, t ∈ [0,T ]. (13.9)

Indeed, by Proposition 13.4(3), for arbitrary u0 ∈ X we have
∫ t

0 S(s)u0 ds ∈ D(A) and
A
∫ t

0 S(s)u0 ds = S(t)u0−u0, confirming that (13.9) holds for u(t) = S(t)u0. This obser-
vation leads to the notion of strong solution which we develop next in the more general
context of the inhomogeneous Cauchy problem{

u′(t) = Au(t)+ f (t), t ∈ [0,T ],

u(0) = u0,
(IACP)

with initial value u0 ∈ X . We assume that f belongs to L1(0,T ;X), the space of all
strongly measurable functions f : (0,T )→ X such that

∥ f∥1 :=
∫ T

0
∥ f (t)∥dt < ∞,

identifying functions that are equal almost everywhere. In the same way as in the scalar-
valued case one shows that L1(0,T ;X) is Banach space.

Definition 13.22 (Strong solutions). A strong solution of (IACP) is a continuous func-
tion u : [0,T ]→ X such that for all t ∈ [0,T ] we have

∫ t
0 u(s)ds ∈ D(A) and

u(t) = u0 +A
∫ t

0
u(s)ds+

∫ t

0
f (s)ds.

We proceed with an existence and uniqueness result for strong solutions of (IACP).
It is based on the following lemma.

Lemma 13.23. Let f ∈ L1(0,T ;X). Then:
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(1) for all t ∈ [0,T ] the function s 7→ S(t− s) f (s) has a strongly measurable represen-
tative and is integrable on [0, t];

(2) the function t 7→
∫ t

0 S(t− s) f (s)ds is continuous on [0,T ].

Proof (1): Choose a strongly measurable representative for f , which we denote again
by f , as well as a sequence of simple functions fn converging to f pointwise. Each
function s 7→ S(t − s) fn(s) is strongly measurable, since it is a linear combination of
functions of the form s 7→ 1B(s)S(t− s)x with B⊆ [0,T ] a Borel subset, and such func-
tions are strongly measurable because continuous functions on an interval are strongly
measurable and if g is strongly measurable and B is a Borel set, then 1Bg is strongly
measurable. By Proposition 1.48, the pointwise limit s 7→ S(t− s) f (s) is strongly mea-
surable. Integrability follows from the estimate ∥S(t− s) f (s)∥⩽ M∥ f (s)∥, where M =

supt∈[0,T ] ∥S(t)∥, and the integrability of f .

(2): Let 0 ⩽ t ⩽ t ′ ⩽ T . Then∥∥∥∫ t ′

0
S(t ′− s) f (s)ds−

∫ t

0
S(t− s) f (s)ds

∥∥∥
⩽
∥∥∥∫ t ′

t
S(t ′− s) f (s)ds

∥∥∥+∥∥∥∫ t

0
S(t ′− s) f (s)ds−

∫ t

0
S(t− s) f (s)ds

∥∥∥.
The first term on the right-hand side can be bounded above by M

∫ t ′
t ∥ f (s)∥ds which

tends to 0 by dominated convergence as t ′ − t → 0. The second term tends to 0 by
dominated convergence as well: for simple functions f this follows from the strong
continuity and local boundedness of the semigroup, and for general f ∈ L1(0,T ;X) this
follows by approximation by simple functions in the L1(0,T ;X)-norm.

Theorem 13.24 (Existence and uniqueness). For all u0 ∈ X and f ∈ L1(0,T ;X) the
problem (IACP) admits a unique strong solution u. It is given by the convolution formula

u(t) = S(t)u0 +
∫ t

0
S(t− s) f (s)ds. (13.10)

If f ∈ Lp(0,T ;X) with 1 ⩽ p < ∞, then u ∈ Lp(0,T ;X).

The function t 7→ S(t)u0 +
∫ t

0 S(t− s) f (s)ds is usually referred to as the mild solution
of (IACP).

Proof For the existence part we will show that the right-hand side of (13.10) defines a
strong solution. By Lemma 13.23, this function is continuous.

We begin by showing that
∫ t

0 u(s)ds ∈ D(A). We have
∫ t

0 S(s)u0 ds ∈ D(A) by Propo-
sition 13.4. To prove that

∫ t
0
∫ s

0 S(s− r) f (r)dr ds ∈ D(A) we apply the definition of A.
As h ↓ 0 we have, using Fubini’s theorem,

1
h
(S(h)− I)

∫ t

0

∫ s

0
S(s− r) f (r)dr ds =

∫ t

0

1
h
(S(h)− I)

∫ t

r
S(s− r) f (r)dsdr
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=
∫ t

0

1
h
(S(h)− I)

∫ t−r

0
S(s) f (r)dsdr

→
∫ t

0
A
∫ t−r

0
S(s) f (r)dsdr

=
∫ t

0
S(t− r) f (r)− f (r)dr

= u(t)−S(t)u0−
∫ t

0
f (r)dr.

The convergence is justified by the dominated convergence theorem since for all 0 <

h < 1 we have the following pointwise bound with respect to the variable r:∥∥∥1
h
(S(h)− I)

∫ t−r

0
S(s) f (r)ds

∥∥∥= 1
h

∥∥∥∫ t−r+h

t−r
S(s) f (r)ds−

∫ h

0
S(s) f (r)ds

∥∥∥
⩽

1
h

∫ t−r+h

t−r
∥S(s) f (r)∥ds+

1
h

∫ t−r+h

t−r
∥S(s) f (r)∥ds

⩽ 2Mt∥ f (r)∥,

where Mt := sup0⩽τ⩽t+1 ∥S(τ)∥.
The above computation shows that

∫ t
0 u(s)ds ∈ D(A) and

A
∫ t

0
u(s)ds = A

∫ t

0
S(s)u0 ds+A

∫ t

0

∫ s

0
S(s− r) f (r)dr ds

= (S(t)u0−u0)+
(

u(t)−S(t)u0−
∫ t

0
f (r)dr

)
.

This shows that the function u given by (13.10) is a strong solution.
To prove uniqueness, suppose that u and ũ are strong solutions of (IACP). It follows

from the definition that u and ũ are continuous. Set v := u− ũ. Then v is continuous,∫ t
0 v(s)ds ∈ D(A), and v(t) = A

∫ t
0 v(s)ds for all t ∈ [0,T ].

Fix 0 ⩽ t ⩽ T and define w : [0, t]→ X by w(s) = S(t− s)
∫ s

0 v(r)dr. This function is
differentiable with derivative

w′(s) = S(t− s)v(s)−S(t− s)A
∫ s

0
v(r)dr = S(t− s)v(s)−S(t− s)v(s) = 0.

It follows that w is constant. Hence∫ t

0
v(r)dr = w(t) = w(0) = 0.

Since this is true for all 0 ⩽ t ⩽ T and v is continuous, it follows that v = 0 on [0,T ].
The final assertion is a consequence of Young’s inequality.

The solution u depends continuously on u0 in the norm of C([0,T ];X), the Banach
space of all continuous functions from [0,T ] to X . Indeed, if ũ0 is another initial value
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and the corresponding unique strong solution is denoted by ũ, then

∥u(t)− ũ(t)∥⩽ ∥S(t)∥∥u0− ũ0∥⩽ M∥u0− ũ0∥,

where M := supt∈[0,T ] ∥S(t)∥, and therefore

∥u− ũ∥∞ ⩽ M∥u0− ũ0∥.

Unique solvability plus continuous dependence on the initial value is usually sum-
marised as well-posedness. Thus, the inhomogeneous problem (IACP) is well posed
for strong solutions.

13.3.b The Semilinear Cauchy Problem

In this section we study a class of nonlinear evolution equations of the form{
u′(t) = Au(t)+ f (t,u(t)), t ∈ [0,T ],

u(0) = u0.
(SCP)

Equations of this form are referred to as semilinear equations. We assume that A gener-
ates a C0-semigroup S on X and that the initial value u0 lies in X . We make the following
assumptions on the function f : [0,T ]×X → X :

(i) (Strong measurability) for all x∈X the function t 7→ f (t,x) is strongly measurable
on [0,T ];

(ii) (Linear growth) there exists a constant C ⩾ 0 such that

∥ f (t,x)∥⩽C(1+∥x∥), t ∈ [0,T ], x ∈ X ;

(iii) (Lipschitz continuity) there exists a constant L ⩾ 0 such that

∥ f (t,x)− f (t,x′)∥⩽ L∥x− x′∥, t ∈ [0,T ], x,x′ ∈ X .

Under these assumptions, in force throughout this section, we will prove existence,
uniqueness, and continuous dependence on the initial conditions of mild solutions. Thus
(SCP) is well posed for mild solutions.

Definition 13.25 (Mild solutions). A function u : [0,T ]→ X is called a mild solution of
(SCP) if it is continuous and satisfies

u(t) = S(t)u0 +
∫ t

0
S(t− s) f (s,u(s))ds, t ∈ [0,T ].

To see that this is well defined we must check that the integral converges as a Bochner
integral in X . Lemma 13.26 takes care of this. Taking the lemma for granted for the
moment, let us first motivate the definition.

First of all, it generalises the formula of Theorem 13.24 for the strong solution of the
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inhomogeneous problem. Perhaps more importantly, we shall prove that every classical
solution is a mild solution. To prepare for this, suppose that u : [0,T ]→ X is not just
continuous but continuously differentiable and takes values in D(A). Then it makes
sense to ask whether u satisfies (SCP) in a pointwise sense. If it does, we call u a
classical solution. Let us assume that this is the case. Multiplying the equation for s ∈
[0, t] on both sides with S(t− s) and integrating, we obtain

∫ t

0
S(t− s)u′(s)ds =

∫ t

0
S(t− s)Au(s)ds+

∫ t

0
S(t− s) f (s,u(s))ds.

On the other hand, an integration by parts, using that u(0) = u0 and S′(t)x = S(t)Ax for
x ∈ D(A), gives the identity∫ t

0
S(t− s)u′(s)ds = u(t)−S(t)u0 +

∫ t

0
S(t− s)Au(s)ds.

Substituting this identity into the preceding one, the identity defining a mild solution is
obtained.

In general there is no reason to expect the existence of classical solutions, but, un-
der the standing assumptions (i)–(iii) formulated above, a unique mild solution always
exists. In the definition of a mild solution, no differentiability or D(A)-valuedness is
imposed, and this is precisely what makes things work.

As promised we now check that the integral in Definition 13.25 is well defined as a
Bochner integral in X . The next result extends Lemma 13.23 to the present situation.

Lemma 13.26. Let f : [0,T ]×X → X satisfy the conditions (i)–(iii) and suppose that
u : [0,T ]→ X is continuous. Then:

(1) the functions s 7→ f (s,u(s)) and s 7→ S(t − s) f (s,u(s)) have strongly measurable
representatives and are integrable;

(2) the function t 7→
∫ t

0 S(t− s) f (s,u(s))ds is continuous on [0,T ].

Proof (1): First let v = ∑
k
j=1 1I j⊗x j be an X-valued step function, where the intervals

I j ⊆ [0,T ] are disjoint. If s ∈ I j, then f (s,v(s)) = f (s,x j) and therefore s 7→ v(s, f (s))
belongs to L1(0,T ;X), with∫ T

0
∥ f (s,v(s))∥ds =

k

∑
j=1

∫
I j

∥ f (s,x j)∥ds ⩽C
k

∑
j=1
|I j|(1+∥x j∥)

using the linear growth assumption. If v′ is another X-valued step function, from the
Lipschitz continuity assumption (iii) we obtain the estimate∫ T

0
∥ f (s,v(s))− f (s,v′(s))∥ds ⩽ LT∥v− v′∥∞.
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Since u : [0,T ]→ X is continuous, we can find step functions un : [0,T ]→ X such
that ∥u−un∥∞ ⩽ 1/n. Then, for m,n ⩾ N,

∥un−um∥∞ ⩽ ∥un−u∥∞ +∥u−um∥∞ ⩽
1
n
+

1
m

⩽
2
N
,

so the functions s 7→ f (s,un(s)) form a Cauchy sequence in L1(0,T ;X). By the com-
pleteness of L1(0,T ;X) they tend to a limit, say g. Moreover, after passing to a sub-
sequence, we may assume that limn→∞ f (s,un(s)) = g(s) for almost all s ∈ [0,T ]. By
modifying the functions on a common Borel null set as in the proof of Lemma 13.23
we may even assume that the convergence holds pointwise. On the other hand, for all
s ∈ [0,T ] we have

∥ f (s,un(s))− f (s,u(s))∥⩽ L
n
.

It follows that g(s) = f (s,u(s)) for almost all s ∈ [0,T ]. In particular, this proves that
s 7→ f (s,u(s)) has a strongly measurable representative and belongs to L1(0,T ;X).

(2): This follows by applying Lemma 13.23 to the function s 7→ f (s,u(s)).

We are now ready to state and prove our main result:

Theorem 13.27 (Well-posedness of the semilinear problem). Under the assumptions
(i)–(iii) formulated at the beginning of the section, the semilinear problem (SCP) admits
a unique mild solution u ∈C([0,T ];X). This solution depends continuously, in the norm
of C([0,T ];X), on the initial condition u0 ∈ X.

Proof To obtain existence and uniqueness we define a nonlinear mapping Φ from
C([0,T ];X) to itself by

(Φ(v))(t) := S(t)u0 +
∫ t

0
S(t− s) f (s,v(s))ds, t ∈ [0,T ], v ∈C([0,T ];X).

We have already observed in Lemma 13.26 that the integrand is integrable, and the
continuity of Φ(v) follows from the strong continuity of the semigroup and Lemma
13.23. It follows that Φ is well defined as a mapping of C([0,T ];X) into itself. We now
re-use the idea in the proof of Lemma 2.14 and set, for λ > 0 to be chosen in a moment,

∥g∥λ := sup
t∈[0,T ]

e−λ t∥g(t)∥.

This defines an equivalent norm on C([0,T ];X). By the Lipschitz continuity assumption,
for all v,w ∈C([0,T ];X) and t ∈ [0,T ] we have

∥(Φ(v))(t)− (Φ(w))(t)∥⩽
∫ t

0
∥S(t− s)( f (s,v(s))− f (s,w(s)))∥ds

⩽ LM
∫ t

0
eλ se−λ s∥v(s)−w(s)∥ds
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⩽ LM
∫ t

0
eλ s∥v−w∥λ ds =

LM
λ

(eλ t −1)∥v−w∥λ ,

where M = supt∈[0,T ] ∥S(t)∥. It follows that

∥Φ(v)−Φ(w)∥λ ⩽
LM
λ

(1− e−λ t)∥v−w∥λ ⩽
LM
λ
∥v−w∥λ .

If we choose λ > LM, the mapping Φ is a uniform contraction on C([0,T ];X) and
therefore has a unique fixed point u ∈ C([0,T ];X) by the Banach fixed point theorem
(Theorem 2.13). Then,

u(t) = (Φ(u))(t) = S(t)u0 +
∫ t

0
S(t− s) f (s,u(s))ds, t ∈ [0,T ],

so u is a mild solution. Conversely, any mild solution is a fixed point of Φ, and since Φ

has a unique fixed point the mild solution u is unique.
To complete the proof we check the continuous dependence of the mild solution on

the initial value u0. If ũ0 is another initial value and the corresponding unique mild
solution is denoted by ũ, estimating as before we obtain

∥u(t)− ũ(t)∥⩽ ∥S(t)∥∥u0− ũ0∥+
∫ t

0
∥S(t− s)( f (s,u(s))− f (s, ũ(s)))∥ds

⩽ M∥u0− ũ0∥+
LM
λ

(eλ t −1)∥u− ũ∥λ

and therefore

∥u− ũ∥λ ⩽ M∥u0− ũ0∥+
LM
λ
∥u− ũ∥λ .

Choosing λ = 2LM gives

1
2
∥u− ũ∥2LM ⩽ M∥u0− ũ0∥

and the desired continuity follows, keeping in mind that ∥ · ∥2LM is an equivalent norm
on C([0,T ];X).

For this to be useful, one must have ways to ‘translate’ nonlinearities occurring in
concrete partial differential equations into our abstract framework. We demonstrate how
this works by means of an example. Consider the following semilinear heat equation on
a nonempty bounded open subset D of Rd :

∂u
∂ t

(t,ξ ) = ∆u(t,ξ )+b(u(t,ξ )), ξ ∈ D, t ∈ [0,T ],

u(t,ξ ) = 0, ξ ∈ ∂D, t ∈ [0,T ],

u(0,ξ ) = u0(ξ ), ξ ∈ D.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
464 Semigroups of Linear Operators

We assume that b : R→ R is Lipschitz continuous, with Lipschitz constant L:

|b(ξ )−b(ξ ′)|⩽ L|ξ −ξ
′|, ξ ,ξ ′ ∈ R.

The assumption that b only depends on the solution is made for simplicity; the more
general case where b also depends on time can be treated in the same way.

To cast this problem into a semilinear abstract Cauchy problem we assume that the
initial value u0 belongs to L2(D). The above problem may then be written in the form{

u′(t) = Au(t)+B(u(t)),

u(0) = u0,

where A is the Dirichlet Laplacian on L2(D), which generates an analytic C0-contraction
semigroup on this space (see Proposition 13.47), and B : L2(D)→ L2(D) is the Nemyt-
skii mapping associated with b:

(B(x))(ξ ) := b(x(ξ )), x ∈ L2(D).

The next proposition checks that this mapping is well defined, of linear growth, and
Lipschitz continuous on L2(D) (and, with the same proof, on Lp(D) with 1 ⩽ p < ∞).

Proposition 13.28. Under the above assumptions on b, the Nemytskii mapping B :
L2(D)→ L2(D) is well defined, of linear growth, and Lipschitz continuous (in the sense
that f (t,x) := B(x) satisfies conditions (ii) and (iii) at the beginning of this section).

Proof Let us first check that B(x) ∈ L2(D) for all x ∈ L2(D). Using the triangle in-
equality in L2(D), for all x ∈ L2(D) we have

∥B(x)∥L2(D) =
(∫

D
|b(x(ξ ))|2 dξ

)1/2

⩽
(∫

D
|b(x(ξ ))−b(0)|2 dξ

)1/2
+
(∫

D
|b(0)|2 dξ

)1/2

⩽ L
(∫

D
|x(ξ )−0|2 dξ

)1/2
+ |b(0)|

(∫
D

1dξ

)1/2
= L∥x∥2 + |D|1/2|b(0)|,

where |D| stands for the Lebesgue measure of D. This proves that B is well defined and
of linear growth.

Lipschitz continuity follows by a similar estimate. For all x,y ∈ L2(D),

∥B(x)−B(y)∥L2(D) =
(∫

D
|b(x(ξ ))−b(y(ξ ))|2 dξ

)1/2

⩽ L
(∫

D
|x(ξ )− y(ξ )|2 dξ

)1/2
= ∥x− y∥L2(D).
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We have thus shown that all assumptions of Theorem 13.27 are fulfilled. Accord-
ingly we obtain unique solvability of the semilinear heat equation, in the sense that the
corresponding abstract Cauchy problem admits a unique mild solution.

13.4 Analytic Semigroups

Analytic semigroups provide an abstract framework for discussing a class of initial
value problems, referred to in the partial differential equations literature as parabolic.
An important characteristic of this class of problems is that solutions are smooth.

13.4.a The Main Result

For ω ∈ (0,π) consider the open sector

Σω := {z ∈ C\{0} : |arg(z)|< ω},

where the argument is taken in (−π,π).

Definition 13.29 (Analytic C0-semigroups). A C0-semigroup S on X is called analytic
on Σω if for all x∈ X the function t 7→ S(t)x extends holomorphically to Σω and satisfies

lim
z∈Σω ,z→0

S(z)x = x.

We call S an analytic C0-semigroup if it is analytic on Σω for some ω ∈ (0,π).

If S is an analytic C0-semigroup on Σω , then for all z1,z2 ∈ Σω we have

S(z1)S(z2) = S(z1 + z2).

Indeed, for each x∈ X the functions z1 7→ S(z1)S(t)x and S(z1+ t)x are holomorphic ex-
tensions of s 7→ S(s+t)x and are therefore equal. Repeating this argument, the functions
z2 7→ S(z1)S(z2)x and S(z1 + z2)x are holomorphic extensions of t 7→ S(z1 + t)x and are
therefore equal.

As in the proof of Proposition 13.3, the uniform boundedness theorem implies that if
S is an analytic C0-semigroup on Σω , then the operators S(z) is uniformly bounded on
Σω ′ ∩B(0;r) for every 0 < ω ′ < ω and r ⩾ 0. The same argument as in Proposition 13.3
then gives exponential boundedness on Σω ′ for all 0 < ω ′ < ω , in the sense that there
are constants M′ ⩾ 1 and c′ = cω ′ ∈ R such that

∥S(z)∥⩽ M′ec′|z|, z ∈ Σω ′ .

We say that S is a bounded analytic C0-semigroup on Σω if S is an analytic C0-semigroup
on Σω and the operators S(z) are uniformly bounded on Σω . Analytic C0-contraction
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semigroups on Σω are defined similarly. There is a rather subtle point here: Boundedness
and contractivity are imposed on a sector, not just on the positive real line. That this
makes a difference is shown by simple example of the rotation group on C2, given by

S(t) =

(
cos t −sin t
sin t cos t

)
.

For each t ∈ R we have ∥S(t)∥ = 1. Upon replacing t by a complex parameter z the
group extends holomorphically to the entire complex plane, but it is unbounded on every
sector Σω with 0 < ω < π . It may even happen that a bounded analytic C0-semigroup is
contractive on the positive real line, yet fails to be an analytic C0-contraction semigroup;
an example of such a semigroup on C2 is discussed in Problem 13.10.

Theorem 13.30 (Bounded analytic semigroups, complex characterisation). For a dens-
ely defined closed operator A in X the following assertions are equivalent:

(1) A generates a bounded analytic C0-semigroup on Ση for some η ∈ (0, 1
2 π);

(2) there exists θ ∈ ( 1
2 π,π) such that Σθ ⊆ ρ(A) and

sup
λ∈Σθ

∥λR(λ ,A)∥< ∞.

Denoting the suprema of all admissible η and θ in (1) and (2) by ωholo(A) and ωres(A)
respectively, we have

ωres(A) =
1
2

π +ωholo(A).

Under the equivalent conditions (1) and (2) we have the inverse Laplace transform
representation

S(t)x =
1

2πi

∫
Γ

eλ tR(λ ,A)xdλ , t > 0, x ∈ X , (13.11)

where Γ = Γθ ′,B is the upwards oriented boundary of Σθ ′ \B, for any θ ′ ∈ ( 1
2 π,θ) and

any closed ball B centred at the origin.

Note that (2) implies σ(A)∩ iR⊆ {0}.

Proof By Cauchy’s theorem, if the integral representation holds for some θ ′ ∈ ( 1
2 π,θ)

and some closed ball B centred at the origin, then it holds for any such θ ′ and B.

(1)⇒(2): We start with the preliminary observation that if a linear operator Ã gen-
erates a uniformly bounded C0-semigroup S̃ on X , then, by Proposition 13.8, the open
right half-plane C+ = {Reλ > 0} is contained in the resolvent set of A and we have the
bound ∥R(λ , Ã)∥ ⩽ M/Reλ for all λ ∈ C+. Moreover, for all θ ∈ (0, 1

2 π) and λ ∈ Σθ

we have Reλ ⩾ |λ |cos(θ) and therefore

sup
λ∈Σθ

∥λR(λ , Ã)∥⩽ M
cosθ

.
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Now if A generates a C0-semigroup which is bounded on a sector Ση with η ∈ (0, 1
2 π),

say by a constant M, we can apply the above reasoning to the bounded semigroups
S(eiη ′t), with η ′ ∈ (0,η), and obtain (2). Optimising the various choices of angles we
obtain the inequality

ωres(A)⩾
1
2

π +ωholo(A).

(2)⇒(1): The idea is to define the semigroup operators by the integral representa-
tion given in the statement of the theorem, and prove that they define a bounded C0-
semigroup which has the properties stated in part (1).

Once we have this, it is fairly straightforward to deduce (1) with η = θ − 1
2 π; this is

done in the second step and gives the inequality

ωholo(A)⩾ ωres(A)−
1
2

π.

Let η := θ − 1
2 π . For any ζ ∈ Ση let

S(ζ )x :=
1

2πi

∫
Γ

eλζ R(λ ,A)xdλ , x ∈ X ,

where Γ is the boundary of Σθ ′ \ B with θ ′ ∈ ( 1
2 π,θ) any number such that 1

2 π +

|arg(ζ )| < θ ′ < θ and B is any closed ball centred at the origin; see Figure 13.1. This
integral converges absolutely, defines a bounded operator S(ζ ) on X , and the function
ζ 7→ S(ζ )x is holomorphic on Ση .

The proof of the semigroup property proceeds much in the same way as the proof of
the multiplicativity of the holomorphic calculus. Fix ζ ,ζ ′ ∈ Ση and choose contours Γ

and Γ′ as above, with Γ to the left of Γ′. Then, by the resolvent identity (10.2), Cauchy’s
theorem, Fubini’s theorem, and the Cauchy integral formula,

S(ζ ′)S(ζ )x =
1

(2πi)2

∫
Γ

∫
Γ′

eλζ+µζ ′R(λ ,A)R(µ,A)xdλ dµ

=
1

(2πi)2

∫
Γ

∫
Γ′

eλζ+µζ ′ R(λ ,A)x−R(µ,A)x
µ−λ

dλ dµ

=
1

(2πi)2

∫
Γ

∫
Γ′

eλζ+µζ ′ R(λ ,A)x
µ−λ

dµ dλ

=
1

2πi

∫
Γ

eλζ+λζ ′R(λ ,A)xdλ = S(ζ +ζ
′)x.

Put M := supλ∈Σθ
∥λR(λ ,A)∥ and fix ζ ∈ Ση . To estimate the norm of S(ζ )x, by

Cauchy’s theorem we may take Γ = Γθ ′,Br with Br = B(0;r) the ball of radius r and
centre 0, where we take 1

2 π + |arg(ζ )| < θ ′ < θ as before; the choice of r > 0 will be
made shortly. The arc {|z|= r, |arg(z)|⩽ θ ′} contributes at most

1
2π
·2θ

′r · exp(r|ζ |)M
r
=

θ ′M
π

exp(r|ζ |),
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θ ′

θ

Γ

Figure 13.1 The contour Γ

while each of the rays {|z|⩾ r, arg(z) =±θ ′} contributes at most

1
2π
· M

r

∫
∞

r
exp
(
−ρ|ζ ||cos

(
θ
′)|)dρ ⩽

1
2π
· M

r|ζ ||cos(θ ′)|
.

It follows that

∥S(ζ )∥⩽ M
π

(
θ
′ exp(r|ζ |)+ 1

r|ζ ||cos(θ ′)|

)
.

Taking r = 1/|ζ | and letting θ ′ ↑ θ we obtain the uniform bound

∥S(ζ )∥⩽ M
π

(
θe+

1
|cos(θ)|

)
, ζ ∈ Ση , η = θ − 1

2
π.

It remains to prove strong continuity on each sector Ση ′ with 0 < η ′ < η . Let x ∈
D(A). Fix ζ ∈ Ση ′ and write x = R(µ,A)y with µ ∈ Σθ \Σθ ′ , where 1

2 π + |arg(ζ )| <
θ ′ < θ as before. Inserting this in the integral expression for S(ζ )x, using the resol-
vent identity to rewrite R(λ ,A)R(µ,A)y = (R(λ ,A)−R(µ,A))/(µ − λ ), and arguing
as above, we find that the integral corresponding to the term with R(µ,A) vanishes by
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Cauchy’s theorem and the choice of µ and obtain

S(ζ )x =
1

2πi

∫
Γ

eλζ (µ−λ )−1R(λ ,A)ydλ .

Letting ζ → 0 inside Ση ′ we see that S(ζ )x converges to

1
2πi

∫
Γ

(µ−λ )−1R(λ ,A)ydλ = R(µ,A)y = x

by dominated convergence.
This proves that S(ζ )x→ x for x ∈D(A) as ζ → 0 inside Ση ′ . In view of the uniform

boundedness of S(ζ ) on Ση ′ , the convergence for general x ∈ X follows from it.

The following result characterises analytic C0-semigroups directly in terms of the
semigroup and its generator, without reference to the resolvent. Its importance lies in
the smoothing property revealed by (2): the semigroup operators S(t) map every x ∈ X
into the smaller subspace D(A) for all t > 0.

Theorem 13.31 (Bounded analytic semigroups, real characterisation). Let A be the gen-
erator of a C0-semigroup S on X. The following assertions are equivalent:

(1) S is bounded analytic;
(2) S(t)x ∈ D(A) for all x ∈ X and t > 0, and

sup
t>0

t∥AS(t)∥< ∞.

Remark 13.32. By writing S(t) = [S( t
n )]

n, part (2) self-improves as follows: for all
x ∈ X and t > 0 we have S(t)x ∈ D(An) for all x ∈ X and t > 0, and

sup
t>0

tn∥AnS(t)∥=: Cn < ∞.

This will be used in the proof below.

Proof of Theorem 13.31 (1)⇒(2): Fix t > 0 and x ∈ X . Arguing as in the proof of
Proposition 13.8, from the integral representation (13.11) with Γ= ∂ (Σθ ′ \B) we deduce
that S(t)x ∈ D(A) and

AS(t)x =
1

2πi

∫
Γ

eλ tR(λ ,A)Axdλ .

The integral on the right-hand side converges absolutely since

sup
λ∈Γ

∥AR(λ ,A)∥= sup
λ∈Γ

∥λR(λ ,A)− I∥< ∞.

By estimating this integral and letting the radius of the ball B in the definition of Γ tend
to 0, it follows moreover that

t∥AS(t)x∥⩽ M
π
∥x∥

∫
∞

0
teρt cosθ ′ dρ =

M
π|cosθ ′|

∥x∥,
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where M is the supremum in the preceding line.

(2)⇒(1): For all x ∈ D(An) the mapping t 7→ S(t)x is n times continuously differen-
tiable and S(n)(t)x = AnS(t)x = (AS(t/n))nx. Since D(An) is dense in X , the bounded-
ness of AS(t/n) and closedness of the nth derivative in C([0,T ];X) together imply that
the same conclusion holds for x ∈ X . Moreover,

∥S(n)(t)x∥⩽ Cnnn

tn ∥x∥,

where C is the supremum in (2). From the inequality n! ⩾ nn/en (which follows from
Stirling’s inequality) we obtain that for each t > 0 the series

S(z)x :=
∞

∑
n=0

1
n!
(z− t)nS(n)(t)x

converges absolutely on every ball B(t;rt/eC) with 0< r < 1 and defines a holomorphic
function there. The union of all these balls is the sector Ση with sinη = 1/eC (cf. the
argument in the proof of the next lemma). We shall complete the proof by showing that
S(z) is uniformly bounded and satisfies limz→0 S(z)x = x in Ση ′ for each 0 < η ′ < η .
To this end we fix 0 < r < 1 so that the union of the balls B(t;rt/eC) equals Ση ′ . For
z ∈ B(t;rt/eC) we have

∥S(z)x∥⩽
∞

∑
n=0

1
n!

rn(t/eC)n Cnnn

tn ∥x∥⩽
∞

∑
n=0

rn∥x∥= ∥x∥
1− r

.

This proves uniform boundedness on the sectors Ση ′ . To prove strong continuity it then
suffices to consider x ∈ D(A), for which it follows from estimating the identity

S(z)x− x = eiθ
∫ r

0
S(seiθ )Axds

where z = reiθ .

13.4.b The Lumer–Phillips Theorem

The main result of this section is the Lumer–Phillips theorem, which gives a charac-
terisation of analytic C0-semigroups of contractions in Hilbert spaces. We begin with a
useful lemma about extending resolvent bounds from a half-line to a sector.

In Hilbert spaces, we have the following characterisation of contractive analytic C0-
semigroups (for an extension to Banach spaces see Problem 13.19).

Theorem 13.33 (Lumer–Phillips, analytic contraction semigroups). Let A be a densely
defined closed operator in a Hilbert space H and let 0 < η < 1

2 π . The following asser-
tions are equivalent:

(1) A generates a contractive analytic C0-semigroup on H on the sector Ση ;
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{|z|= |λ |}

η

1
2 π−η

λ

−(Ax|x)

λ − (Ax|x)

Figure 13.2 |λ − (Ax|x)|⩾ |λ |

(2) µ−A has dense range for some µ > 0 and −(Ax|x) ∈ Σ 1
2 π−η

for all x ∈ D(A).

Proof By a multiplicative scaling of A we may assume that µ = 1.

(1)⇒(2): Let |η ′|< η , x ∈ D(A), and consider the function f (t) := Re(S(teiη ′)x|x).
Observe that f (0) = ∥x∥2. Furthermore, for all t ⩾ 0 we have

| f (t)|= |(S(teiη ′)x|x)|⩽ ∥S(teiη ′)x∥∥x∥⩽ ∥x∥2,

where we used that S is contractive on Ση . From these two observations we infer that
f ′(0)⩽ 0. On the other hand, differentiating f gives

f ′(t) = Re(eiη ′S(teiη ′)Ax|x).

Evaluating at t = 0 gives

Re(eiη ′(Ax|x))⩽ 0.

This can only be true for all |η ′|< η if (Ax|x) ∈ −Σ 1
2 π−η

.

(2)⇒(1): Set λ := reiη ′ with r > 0 and |η ′|<η . We want to show that for all x∈D(A)
we have ∥(λ −A)x∥⩾ r∥x∥= |λ |∥x∥. For this we may assume that ∥x∥= 1.

From λ ∈ Ση and −(Ax|x) ∈ Σ 1
2 π−η

it is easy to see that |λ − (Ax|x)| ⩾ |λ |. See
Figure 13.2. As a consequence,
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∥(λ −A)x∥⩾ |((λ −A)x|x)|= |λ − (Ax|x)|⩾ |λ |= |λ |∥x∥. (13.12)

From this inequality and Proposition 10.26 we infer that λ − A has closed range.
Therefore, to show that this operator is invertible, it suffices to show that it has dense
range. This will be deduced from the assumption that I−A has dense range. Since I−A
has also closed range, we have in fact 1 ∈ ρ(A). Now suppose, for a contradiction, that
some λ1 ∈ Ση belongs to σ(A). Set λt := (1− t)+ tλ1. Then λt ∈ Ση for all t ∈ [0,1].
Let t0 := inf{t ∈ [0,1] : λt ∈ σ(A)}. Then t0 ∈ (0,1] and limt↑t0 ∥R(λt ,A)∥ = ∞ since
resolvent norms diverge as we approach the boundary of the spectrum by Proposition
10.29. This clearly contradicts (13.12), which tells us that ∥R(λt ,A)∥ ⩽ |λt |−1 ⩽ m−1,
where m = min0⩽t⩽1 |(1− t)+ tλ1|.

We have now shown that Ση ⊆ ρ(A) and ∥R(λ ,A)∥⩽ |λ |−1 on this sector. A similar
argument shows that for all 0 < θ < 1

2 π + η we have Σθ ⊆ ρ(A) and ∥R(λ ,A)∥ ⩽
M|λ |−1 for some constant M ⩾ 0 depending on θ . Theorem 13.30 then implies that the
semigroup generated by A is bounded analytic on every sector Ση ′ with 0 < η ′ < η . Its
contractivity on these sectors is obtained by applying the Hille–Yosida theorem to the
operators eiη ′A.

The conditions of the theorem are satisfied if −A is a positive selfadjoint operator on
H. In that case, the semigroup S generated by A is given by

S(t) =
∫

σ(−A)
e−tλ dP(λ ),

where P is the projection-valued measure associated with −A. More generally, this for-
mula can be used to associate a C0-semigroup of contractions with every normal opera-
tor A; see Theorem 13.61.

With the same proofs, both Theorem 13.33 and its corollary extend to η = 0, pro-
vided we interpret Σ0 as the positive real line and replace ‘analytic C0-semigroup of
contractions’ by ‘C0-semigroup of contractions’:

Theorem 13.34. Let A be a densely defined operator on a Hilbert space H. The follow-
ing assertions are equivalent:

(1) A generates a C0-semigroup of contractions on H;
(2) µ−A has dense range for some µ > 0 and −Re(Ax|x)⩾ 0 for all x ∈ D(A).

The condition ‘−Re(Ax|x) ⩾ 0 for all x ∈ D(A)’ says that −A is accretive. Since
the open half-line (0,∞) is contained in the resolvent set of any operator generating a
C0-semigroup of contractions, in Theorems 13.33 and 13.34, the condition ‘µ −A has
dense range for some µ > 0’ may be replaced by ‘1 ∈ ρ(A)’. An accretive operator −A
satisfying 1∈ ρ(A) is also called a maximal accretive operator, or briefly, an m-accretive
operator.
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13.4.c Semigroups Associated with Forms

The first estimate of Theorem 12.12 shows that the assumptions of the Hille–Yosida
theorem are fulfilled. The second estimate, combined with Corollary 12.13 and Lemma
10.34 applied to A−δ and A, implies that the conditions of Theorem 13.30 are fulfilled.
Thus we obtain the following result.

Theorem 13.35 (Bounded analytic semigroups via forms). Let A be a linear operator
in a Hilbert space H. Then:

(1) if −A is the operator associated with a densely defined closed continuous accretive
form in H, then A generates a C0-contraction semigroup on H, and for all δ > 0
the operator A−δ generates a bounded analytic C0-semigroup on H;

(2) if −A is the operator associated with a bounded coercive form on a Hilbert space
V densely embedded in H, then A generates a C0-contraction semigroup on H that
extends to a bounded analytic C0-semigroup on H.

Example 13.36 (Operators in Divergence Form I). Let D be a nonempty bounded open
subset of Rd. In H = L2(D) we consider the divergence form operators

Aa = div(a∇)

of Section 12.3.e subject to Dirichlet conditions. As in that section we assume that the
matrix-valued function a : D→Md(C) satisfies

(i) the functions ai j : D→ C are measurable and bounded;
(ii) there exists a constant α > 0 such that

Re
d

∑
i, j=1

ai j(x)ξiξ j ⩾ 0, ξ ∈ Cd.

The operator−Aa is rigorously defined as the densely defined closed operator associated
with the form

aa(u,v) =
∫

D
a∇u ·∇vdx

on V = H1
0 (D). This form satisfies the assumptions of the first part of Theorem 13.35.

If the accretivity assumption

Re
d

∑
i, j=1

ai j(x)ξiξ j ⩾ 0

of Section 12.3.e is replaced by the coercivity condition

Re
d

∑
i, j=1

ai j(x)ξiξ j ⩾ α|ξ |2
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of Section 11.3.b, with α > 0, then the second part of Theorem 13.35 can be applied.

We show next that generators of analytic C0-contraction semigroups are obtained if
the range of a is contained in the closure of a subsector strictly contained in the open
right-half plane.

Definition 13.37 (Sectorial forms). Let 0 < ω ⩽ 1
2 π . A form a on H is called ω-

sectorial if

a(v) := a(v,v) ∈ Σω , v ∈ D(a).

Theorem 13.38 (Analytic contraction semigroups via forms). Let H be a Hilbert space
and let A be the densely defined closed operator in H associated with a densely defined
closed form a that is ω-sectorial for some 0 < ω < 1

2 π . Then −A generates an analytic
C0-semigroup of contractions on the sector Σ 1

2 π−ω
.

Proof This is an immediate consequence of Theorem 13.33.

Example 13.39 (Operators in divergence form II). Consider again the divergence form
operator

Aa := div(a∇)

in L2(D), subject to Dirichlet conditions. As before we assume that D is a nonempty
bounded open subset of Rd. We now assume that the matrix-valued function a : D→
Md(C) satisfies

(i) the functions ai j : D→ C are measurable and bounded;
(ii) there exists a constant α > 0 such that

d

∑
i, j=1

ai j(x)ξiξ j ⩾ α|ξ |2, ξ ∈ Cd.

The uniform ellipticity condition (ii) is stronger than the corresponding condition of
Example 13.36, in that no real parts are taken. It implies that the form aa of Example
13.36 takes values in [0,∞), so it is ω-sectorial for all ω ∈ (0, 1

2 π). Accordingly, −Aa

generates an analytic C0-semigroup of contractions on every sector Σθ with θ ∈ (0, 1
2 π).

Sectorial forms of angle less than 1
2 π are continuous and accretive; this clarifies the

relationship between Theorems 13.35 and 13.38. Accretivity is clear, and continuity
follows from the following proposition.

Proposition 13.40. Let a be an ω-sectorial form on H with 0 < ω < 1
2 π . Then a is

continuous and for all u,v ∈ D(A) we have

|a(u,v)|⩽ (1+ tanω)(Rea(u))1/2(Rea(v))1/2,

where Rea= 1
2 (a+a⋆) with a⋆(u,v) := a(v,u).
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Proof By the Cauchy–Schwarz inequality applied to the (symmetric) form Rea,

|Rea(u,v)|⩽ (Rea(u))1/2(Rea(v))1/2.

If Rea(u) = 0, the desired inequality follows from this. In the rest of the proof we may
therefore assume that Rea(u)> 0.

Consider the form Ima= 1
2i (a−a⋆). Fix u,v∈D(a). Replacing v by eiθ v if necessary

we may assume that Ima(u,v) ∈ R. Then Ima(u,v) = Ima(v,u) and therefore, by ω-
sectoriality,

| Ima(u,v)|= 1
4

∣∣Ima(u+ v,u+ v)− Ima(u− v,u− v)
∣∣

⩽
1
4

tanω
(
Rea(u+ v,u+ v)+Rea(u− v,u− v)

)
=

1
2

tanω
(
Rea(u)+Rea(v)

)
.

Replacing u and v with
√

εu and v/
√

ε gives

| Ima(u,v)|⩽ 1
2

tanω
(√

ε Rea(u)+
1√
ε

Rea(v)
)
.

Taking ε := Rea(v)/Rea(u), we obtain

| Ima(u,v)|⩽ tanω
(
(Rea(u))1/2(Rea(v))1/2).

Together with the estimate for |Rea(u,v)|, this gives the result.

13.4.d Maximal Regularity

In Section 13.3 we have seen that the mild solution u of the inhomogeneous problem
u′ = Au+ f with initial condition u(0) = u0, which is given by

u(t) = S(t)u0 +
∫ t

0
S(t− s) f (s)ds, t ⩾ 0,

is also a strong solution, that is, for all t ⩾ 0 we have
∫ t

0 u(s)ds ∈ D(A) and

u(t) = u0 +A
∫ t

0
u(s)ds+

∫ t

0
f (s)ds.

In general it cannot be asserted, however, that

u(t) = u0 +
∫ t

0
Au(s)ds+

∫ t

0
f (s)ds,

the problem being that u need not take values in D(A) almost everywhere, and even if it
does so we cannot be certain that s 7→ Au(s) is integrable on intervals (0, t). The aim of
the present section is to prove that these things do hold if A generates a bounded analytic
C0-semigroup on a Hilbert space.
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Theorem 13.41 (Maximal regularity). Let A be the generator of a bounded analytic C0-
semigroup S on a Hilbert space H. Then for all f ∈ L2(R+;H) the mild solution u = u f

of the inhomogeneous problem u′ = Au+ f with initial condition u(0) = 0 enjoys the
following properties:

(1) u belongs to D(A) almost everywhere, Au belongs to L2(R+;H), and for almost all
t ⩾ 0 we have

u(t) =
∫ t

0
Au(s)ds+

∫ t

0
f (s)ds;

(2) we have

∥Au∥2 ⩽C∥ f∥2,

where C = supξ∈R\{0} ∥AR(iξ ,A)∥.

By the Lebesgue differentiation theorem (Theorem 2.39, or rather its the vector-
valued version which is proved in exactly the same way), the identity in (1) implies
that u is differentiable almost everywhere and that the pointwise identity

u′(t) = Au(t)+ f (t)

holds for almost all t ⩾ 0. This, in combination with (2), implies that also u′ belongs
to L2(R+;H) (with estimate ∥u′∥2 ⩽ (C + 1)∥ f∥2). This explains the name ‘maximal
regularity’ attached to the theorem.

We begin with a reduction to a class of “nice” functions f . To this end, for subspaces
F and Y of L2(R+) and H respectively, we introduce the notation F⊗Y for the vector
space of all linear combinations of functions f : R+ → H of the form f = φ ⊗ y with
φ ∈ F and y ∈ Y , where

(φ ⊗ y)(t) := φ(t)y, t ⩾ 0.

If F and Y are dense in L2(R+) and H respectively, then F ⊗Y is a dense subspace of
L2(R+;H). This is because the dt-simple functions are dense in L2(R+;H) and every
such function is a linear combination of functions of the form 1B⊗ h with B ⊆ R+ a
Borel set of finite measure and h ∈ H; we now approximate 1B with functions in F (in
the norm of L2(R+)) and h with elements in Y (in the norm of H).

In what follows we consider the dense subspaces F = C1
c (R+) and Y = D(A). For

functions f ∈C1
c (R+)⊗D(A) the mild solution of the problem u′ = Au+ f with initial

condition u(0) = 0, given by

u(t) =
∫ t

0
S(t− s) f (s)ds, t ⩾ 0,

is continuously differentiable in H, takes values in D(A), and satisfies u′(t) = Au(t)+
f (t) for every t ⩾ 0.
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Lemma 13.42. Let A be the generator of a bounded analytic C0-semigroup S on a
Hilbert space H. If there exists a constant C ⩾ 0 such that for all f ∈C1

c (R+)⊗D(A)
the mild solution u associated with f satisfies Au ∈ L2(R+;H) and

∥Au∥2 ⩽C∥ f∥2,

where C ⩾ 0 is a constant independent of f , then the assertions (1) and (2) of Theorem
13.41 hold for all f ∈ L2(R+;H), with the same constant C.

Proof Since C1
c (R+)⊗D(A) is dense in L2(R+;H), for any f ∈ L2(R+;H) we may

choose functions fn ∈C1
c (R+)⊗D(A) converging to f in L2(R+;H). Writing u and un

for the mild solutions corresponding to f and fn respectively, the assumptions imply
that the functions Aun form a Cauchy sequence in L2(R+;H) and therefore converge to
a limit v in L2(R+;H).

Using the Cauchy–Schwarz inequality for L2(0,T ;H) and taking the supremum over
t ∈ [0,T ], we obtain

∥un−um∥C([0,T ];H) ⩽ T 1/2(∥Aun−Aum∥L2(0,T ;H)+∥ fn− fm∥L2(0,T ;H)).

It follows that the functions un converge uniformly on every interval [0,T ] to a function
u. As a result, for all t ⩾ 0 we obtain

u(t) =
∫ t

0
v(s)ds+

∫ t

0
f (s)ds.

Since A is closed, a standard subsequence argument furthermore gives that v takes values
in D(A) almost surely and v = Au in L2(R+;H).

The proof of Theorem 13.41 relies on the observation that the Fourier–Plancherel
transform F on L2(R) extends to an isometry from L2(R;H) onto itself, defining

F (1B⊗h) := (F1B)⊗h

for Borel sets B⊆R of finite measure and elements h∈H, and extending this definition
by linearity. That this extension enjoys the stated properties can be proved in exactly the
same way as in the scalar-valued case, repeating the proof given for that case word by
word with the obvious adjustments.

Proof of Theorem 13.41 For functions f ∈C1
c (R+)⊗D(A), the mild solution u asso-

ciated with f takes values in D(A) and satisfies Au =V f in L2(R+;H), where

V f (t) :=
∫ t

0
AS(t− s) f (s)ds, t ⩾ 0.

Thus the assumptions of Lemma 13.42 are satisfied if we can show that V f ∈ L2(R+;H)

for all f ∈C1
c (R+)⊗D(A) and

∥V f∥2 ⩽C∥ f∥2, f ∈C1
c (R+)⊗D(A),
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where C is the constant from the statement of the theorem. In order to set the stage for
the Fourier transform we translate this into a statement about functions defined on the
full real line. Let K(t) := AS(t) for t > 0 and K(t) := 0 for t ⩽ 0, and define

V f (t) :=
∫

∞

−∞

K(t− s) f (s)ds, f ∈C1
c (R+)⊗D(A), t ∈ R.

Then V f =V f for functions f ∈C1
c (R+)⊗D(A) (where on the left-hand side we think

of f as being extended identically zero to all of R), so it suffices to prove that V maps
C1

c (R+)⊗D(A) into L2(R;H) with bound

∥V f∥2 ⩽C∥ f∥2, f ∈C1
c (R+)⊗D(A). (13.13)

This will be achieved by showing that

V f = Tm f , f ∈C1
c (R+)⊗D(A), (13.14)

where Tm is the (operator-valued) Fourier multiplier operator on L2(R;H) with

m(ξ ) := AR(iξ ,A) = iξ R(iξ ,A)− I, ξ ∈ R\{0},

that is,

Tm f = F−1(mF f ), f ∈ L2(R;H).

To see that the operator Tm is well defined and bounded, we note that since A generates
a bounded analytic C0-semigroup the function

m(ξ ) := AR(iξ ,A) = iξ R(iξ ,A)− I, ξ ∈ R\{0},

is uniformly bounded. Moreover, by holomorphy, this function is continuous from R \
{0} into L (H). As a consequence, the mapping g 7→ mg given almost everywhere by
applying m(ξ ) to g(ξ ) is well defined and bounded on L2(R;H) as required, with norm

∥Tm∥= sup
η∈R\{0}

∥AR(iη ,A)∥.

This gives (13.14) as well as (13.13) with the correct value for C.
In order to prove the identity (13.14) we must show that

V̂ f = m f̂ , f ∈C1
c (R+)⊗D(A).

At least formally, the operator V has the form of a convolution with K, so in view of
Proposition 5.29 one is led to believe that the identity FV f = F (K ∗ f ) =

√
2πK̂ f̂ =

m f̂ should hold since, at least formally,
√

2πK̂(ξ ) =
∫

∞

−∞

e−itξ K(t)dt

=
∫

∞

0
e−itξ AS(t)dt = A

∫
∞

0
e−itξ S(t)dt = AR(iξ ,A) = m(ξ ),



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
13.4 Analytic Semigroups 479

and this would give the desired result. None of the steps in this formal argument is
rigorous, however, and the remainder of the proof is devoted to presenting a rigorous
version of it.

We “mollify” both V and m by defining, for r > 0, the regularising operator

B(r) =−(1− rA)−1A(r−A)−1

=−r−1(r−1−A)−1[r− (r−A)](r−A)−1

=−(r−1−A)−1(r−A)−1 + r−1(r−1−A)−1.

(13.15)

If y ∈ R(A), say y = Ax, then

−(r−1−A)−1(r−A)−1y = (r−1−A)−1(r−A)−1[(r−A)− r]x

= (r−1−A)−1x− r(r−A)−1(r−1−A)−1x.

As r ↓ 0 we have r−1(r−1−A)−1y→ y by Propositions 13.10 and 13.8, and the latter one
implies ∥r(r−A)−1∥⩽M and ∥(r−1−A)−1∥⩽M/r−1, where M is as in the proposition.
Combining these observations, we find that

lim
r↓0

B(r)Ax = Ax, x ∈ D(A). (13.16)

Moreover, (13.15) implies that ∥B(r)∥⩽ (M/r−1)(M/r)+M = M2 +M.
Define mr(ξ ) = m(ξ )B(r) for ξ ̸= 0, and

V r f (t) :=
∫ t

0
AS(t− s)B(r) f (s)ds =

∫
∞

−∞

Kr(t− s) f (s)ds, f ∈C1
c (R+)⊗D(A),

where Kr(t) = AS(t)B(r) for t > 0 and Kr(t) = 0 otherwise.
By Theorem 13.31 and the uniform boundedness of S(t) for t > 0,

∥Kr(t)∥= ∥A2S(t)∥∥(1− rA)−1∥∥(r−A)−1∥⩽Cr/t2

and

∥Kr(t)∥⩽ ∥S(t)∥∥A(1− rA)−1∥∥A(r−A)−1∥⩽Cr,

where Cr is independent of t > 0. It follows that Kr ∈ L1(R;L (H)) and thus, by domi-
nated convergence and Proposition 13.8,

√
2πK̂r(ξ ) = lim

η↓0

∫
∞

0
e−(η+iξ )tKr(t)dt = lim

η↓0
A(η + iξ −A)−1B(r) = mr(ξ ).

Therefore, V r = Tmr on C1
c (R+)⊗D(A).

We now let r ↓ 0. By (13.16) and dominated convergence, for f = g⊗ x ∈C1
c (R+)⊗

D(A) and t ∈ R we have

V r f (t) =
∫ t

0
g(s)S(t− s)B(r)Axds→

∫
∞

−∞

g(s)S(t− s)Axds =V f (t).
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Similarly, by (13.16) and the uniform boundedness of the operators B(r),

mr(ξ ) f̂ (ξ ) = ĝ(ξ )(iξ −A)−1B(r)Ax→ ĝ(ξ )(iξ −A)−1Ax = m(ξ ) f̂ (ξ ),

with convergence in L2(R;H). Therefore, Tmr f → Tm f in L2(R;H), and along an ap-
propriate subsequence we also have almost everywhere convergence. This shows that
V f = Tm f , and by linearity this implies V f = Tm f for all f ∈C1

c (R+)⊗D(A).

We demonstrate the usefulness of maximal regularity by proving local existence for
the time-dependent inhomogeneous Cauchy problem{

u′(t) = A(t)u(t)+ f (t), t ∈ [0,T ],

u(0) = 0,
(13.17)

where (A(t))t∈[0,T ] is a family of densely defined closed operators in a Hilbert space H.
We make the following assumptions:

• each domain D(A(t)) is isomorphic to a fixed Banach space D which is continuously
and densely embedded in H;

• the mapping t 7→ A(t) ∈L (D,H) is continuous on [0,T ];
• the operator A(0) is invertible and generates a bounded analytic C0-semigroup on H.

The idea is to rewrite the problem in the form

u′(t) = A(0)u(t)+gu(t) with gu(t) := (A(t)−A(0))u(t)+ f (t).

Now let 0 < a ⩽ T and consider a fixed function u ∈ L2(0,a;D). Referring to Theorem
13.24, denote by Ka(u) the mild solution of the inhomogeneous problem{

u′(t) = A(0)u(t)+gu(t), t ∈ [0,a],

u(0) = 0.
(13.18)

Then, at least formally, the solutions of (13.17) are the fixed points of Ka. The maximal
regularity of A(0) will now be used to show that Ka is a uniform contraction (that is,
its norm is strictly smaller than one) in L2(0,a;D) provided 0 < a ⩽ T is small enough.
The Banach fixed point theorem then gives the existence of a unique fixed point for Ka

in L2(0,a;D). This fixed point will be called the solution on (0,a).
Indeed, if u1,u2 ∈ L2(0,a;D), then Ka(u1)−Ka(u2) equals the solution u of

u′(t) = A(0)u(t)+gu1(t)−gu2(t), u(0) = 0.

Since D is isomorphic to D(A(0)), which is a Banach space with respect to the norm
x 7→ ∥A(0)x∥ since 0 ∈ ρ(A(0)), we obtain with the maximal regularity inequality for
the problem (13.18) on the interval (0,a) that

∥Ka(u1)−Ka(u2)∥L2(0,a;D) = ∥A(0)u∥L2(0,a;H)
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⩽C∥gu1 −gu2∥L2(0,a;H)

=C∥[A(·)−A(0)](u1−u2)∥L2(0,a;H)

⩽C sup
t∈[0,a]

∥A(t)−A(0)∥L (D,H)∥u1−u2∥L2(0,a;D).

To justify the first inequality we extend the inhomogeneity gu1 − gu2 identically 0 on
[a,∞) and observe that the mild solution for the resulting inhomogeneous problem on
R+ restricts to u on the interval (0,a).

If the constant a > 0 is small enough, then

sup{∥A(t)−A(0)∥ : t ⩽ a}< 1/C

and ∥Ka∥L (L2(0,a;D) < 1, and the Banach fixed point theorem provides a unique solution
for (13.17) on (0,a).

13.5 Stone’s Theorem

If A is a positive selfadjoint operator in a Hilbert space H, then −A satisfies the con-
ditions of Theorem 13.33. Denote by S the analytic C0-semigroup of contractions gen-
erated by −A. It can be shown (see Problem 13.13) that for all t ∈ R and x ∈ H the
limit

U(t)x := lim
s↓0

S(s− it)x

exists and that the family (U(t))t∈R is a C0-group of unitary operators with generator iA.
The main result of this section is Stone’s theorem, which asserts that, for any selfadjoint
operator A, it the operator iA generates a C0-group of unitary operators. For the proof of
this theorem we need the following auxiliary result. A more precise version for bounded
selfadjoint operators has been proved in Theorem 8.11.

Proposition 13.43. If A is a selfadjoint operator in H, then σ(A)⊆ R and

∥R(λ ,A)∥⩽ 1
| Imλ |

, λ ∈ C\R.

Proof Let λ = α + iβ with β ̸= 0. For all x ∈D(A) we have (Ax|x) = (x|Ax) = (Ax|x)
and therefore (Ax|x) ∈ R. Then,

∥(λ −A)x∥∥x∥⩾ |((λ −A)x|x)|=
∣∣α(x|x)− (Ax|x)+ iβ (x|x)

∣∣⩾ |β |∥x∥2

and therefore ∥(λ−A)x∥⩾ β∥x∥. This implies that λ−A is injective and by Proposition
10.26 it has closed range. The same argument can be applied to λ and allows us to con-
clude that λ −A is injective and has closed range. Moreover, using that ((λ −A)x|y) =
(x|(λ −A)y), the injectivity of λ −A implies that λ −A has dense range.
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We conclude that λ −A is bijective, hence invertible, and from the inequality ∥(λ −
A)x∥⩾ |β |∥x∥ we see that ∥R(λ ,A)∥⩽ 1/|β |.

Theorem 13.44 (Stone). For a densely defined operator A in H, the following assertions
are equivalent:

(1) A is selfadjoint;
(2) iA is the generator of a C0-group of unitary operators.

Proof (1)⇒(2): By Proposition 13.43, σ(A) is contained in the real line and for
all λ ∈ C \R we have ∥R(λ ,A)∥ ⩽ 1/| Imλ |. Hence, by the Hille–Yosida theorem
(Theorem 13.17), the operators ±iA generate C0-contraction semigroups S±. Hence,
by Proposition 13.13, iA generates a C0-group of contractions given by

U(t) :=

{
S+(t), t ⩾ 0,

S−(t), t ⩽ 0.

Also, since (iA)⋆ =−iA⋆ =−iA, we have S−(t) = S⋆+(t) and vice versa, from which it
follows that the operators U(±t) are unitary.

(2)⇒(1): Suppose that iA generates the unitary group (U(t))t∈R. From U(−t) =
(U(t))−1 =U⋆(t) we see that (U⋆(t))t∈R is a C0-group as well. To determine its gener-
ator, which we call B for the moment, suppose that x ∈ D(A) and h ∈ D(B). Then

(x|Bh) = lim
t→0

1
t
(x|U⋆(t)h−h) = lim

t→0

1
t
(U(t)x− x|h) = (iAx|h).

This shows that h ∈ D(A⋆) and −iA⋆ = (iA)⋆h = Bh. In the converse direction, if h ∈
D(A⋆), then for all x ∈ D(A) we have

(x|− iA⋆h) = (iAx|h) = lim
t→0

1
t
(U(t)x− x|h) = lim

t→0

1
t
(x|U⋆(t)h−h) = (x|Bh).

This shows that h ∈ D(B) and Bh = −iA⋆h. We conclude that B = −iA⋆ with equal
domains. The identity

1
t
(U(−t)x− x) =

1
t
(U⋆(t)x− x)

then shows that x ∈ D(A) if and only if x ∈ D(A⋆) and −iAx = Bx =−iA⋆x.

Some applications of this theorem will be given in the next section (see Sections
13.6.g and 13.6.h.

13.6 Examples

In this section we collect some important examples of C0-semigroups and C0-groups.
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13.6.a Multiplication Semigroups

Let (Ω,F,µ) be a measure space and let m : Ω → K be measurable with real part
bounded from below:

inf
ω∈Ω

Rem(ω) =: M >−∞.

The operators

S(t) f := e−tm f , t ⩾ 0,

are bounded on Lp(Ω), 1 ⩽ p ⩽ ∞, with norm ∥S(t)∥⩽ e−tM . We will prove that S is a
C0-semigroup on Lp(Ω) for 1 ⩽ p < ∞, with generator A given by

D(A) :=
{

f ∈ Lp(Ω) : m f ∈ Lp(Ω)
}
,

A f :=−m f , f ∈ D(A).
(13.19)

Fix 1 ⩽ p < ∞. The semigroup properties (S1) and (S2) are clear and (S3) follows by
dominated convergence. To prove (13.19) let f ∈ Lp(Ω) be such that m f ∈ Lp(Ω). For
µ-almost all ω ∈Ω we have

S(t) f (ω)− f (ω) = e−tm(ω) f (ω)− f (ω) =−m(ω) f (ω)
∫ t

0
e−sm(ω) ds.

Also, by Proposition 13.4, S(t) f − f = A
∫ t

0 S(s) f ds. It follows that

A
∫ t

0
S(s) f ds =−m f

∫ t

0
e−sm ds.

Next we note that

lim
t↓0

1
t

∫ t

0
S(s) f ds = f

and

lim
t↓0

A
1
t

∫ t

0
S(s) f ds =− lim

t↓0
m f

1
t

∫ t

0
e−sm ds =−m f

in Lp(Ω). Since A is closed this implies f ∈ D(A) and A f =−m f .
Conversely, if f ∈ D(A), then the limit

lim
t↓0

1
t
(e−tm f − f )

exists in Lp(Ω) and equals A f . Since convergence in Lp(Ω) implies µ-almost every-
where convergence along a subsequence, there is a sequence tn ↓ 0 such that

A f (ω) = lim
n→∞

1
tn
(e−tnm(ω) f (ω)− f (ω))
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for µ-almost all ω ∈Ω. Clearly,

lim
n→∞

1
tn
(e−tnm(ω) f (ω)− f (ω)) =−m(ω) f (ω).

It follows that m f ∈ Lp(Ω) and A f =−m f .

13.6.b The Translation Group

On the space Lp(R), 1 ⩽ p < ∞, the formula

(S(t) f )(x) := f (x+ t), x ∈ R, t ∈ R,

defines a C0-group S. Its generator A is given by

D(A) =W 1,p(R),
A f = f ′, f ∈ D(A).

The group properties (G1) and (G2) are clear and (G3) follows from Proposition 2.32.
To prove that D(A) =W 1,p(R) and A f = f ′, we first note that for f ∈C1

c (R) we have

S(t) f (x)− f (x) = f (x+ t)− f (x) =
∫ t

0
f ′(x+ s)ds =

∫ t

0
S(s) f ′(x)ds.

It follows that S(t) f − f =
∫ t

0 S(s) f ′ ds. Also, S(t) f − f = A
∫ t

0 S(s) f ds. It follows that

A
∫ t

0
S(s) f ds =

∫ t

0
S(s) f ′ ds.

Next we note that

lim
t→0

1
t

∫ t

0
S(s) f ds = f

and

lim
t→0

A
1
t

∫ t

0
S(s) f ds = lim

t→0

1
t

∫ t

0
S(s) f ′ ds = f ′

in Lp(R). Since A is closed this implies f ∈ D(A) and A f = f ′.
Since C1

c (R) is dense in Lp(R) and invariant under translations, from Proposition
13.5 we infer that C1

c (R) is dense in D(A). Since C1
c (R) is also dense in W 1,p(R) and

∥ f∥D(A) = ∥ f∥+ ∥A f∥ = ∥ f∥+ ∥ f ′∥ = ∥ f∥W 1,p(R) for all f ∈ C1
c (R), it follows that

D(A) =W 1,p(R) and A f = f ′ for all f ∈ D(A) =W 1,p(R).
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13.6.c The Heat Semigroup

The Heat Semigroup on Rd For 1 ⩽ p < ∞ and t > 0 we define a linear operator H(t)
on Lp(Rd) by

H(t) f (x) = Kt ∗ f (x), f ∈Cc(Rd), x ∈ Rd, (13.20)

where

Kt(x) := (4πt)−d/2e−|x|
2/4t

is the heat kernel. Since Kt ∈ L1(Rd) with ∥Kt∥1 = 1, it follows from Young’s inequality
(Proposition 2.33) that for all 1⩽ p<∞ the operators H(t) are well defined and bounded
on Lp(Rd) and satisfy

∥H(t) f∥Lp(Rd) ⩽ ∥ f∥Lp(Rd).

We furthermore set H(0) := I, the identity operator on Lp(Rd). We will prove that the
family H = (H(t))t⩾0 is a C0-semigroup of contractions, the so-called heat semigroup,
on Lp(Rd) and that its generator A is the weak Lp-Laplacian ∆. Thus the heat semigroup
solves the linear heat equation

∂u
∂ t

(t,x) = ∆u(t,x), t ⩾ 0, x ∈ Rd,

u(0,x) = f (x), x ∈ Rd,

in the sense that its orbits satisfy d
dt H(t) f = ∆H(t) f and H(0) = f .

Step 1 – Fix 1 ⩽ p < ∞. First we prove that H is a C0-semigroup on Lp(Rd). For all
t > 0, by Lemma 5.19 and a change of variables the Fourier transform of Kt is given by

K̂t(ξ ) :=
1

(2π)d/2

∫
Rd

Kt(x)e−ixξ dx =
1

(2π)d/2 e−t|ξ |2 , ξ ∈ Rd.

It follows that (2π)d/2K̂t K̂s = K̂t+s for each t,s > 0, and by Proposition 5.29 this implies
H(t+s) f = H(t)H(s) f for all f ∈ L2(Rd). In particular this identity holds for functions
f ∈ Lp(Rd)∩L2(Rd), and since we have already seen that the operators H(t) are con-
tractive on Lp(Rd) the identity H(t + s) f = H(t)H(s) f extends to general functions
f ∈ Lp(Rd), by the density of Lp(Rd)∩L2(Rd) in Lp(Rd).

Strong continuity of the semigroup is an immediate consequence of Proposition 2.34.

Step 2 – We now prove that A = ∆, the weak Lp-Laplacian, with equal domains.
We begin by proving the inclusion D(∆)⊆ D(A) along with the fact that

A f = ∆ f , f ∈ D(A).

First let f ∈C∞
c (Rd). For all t > 0 we have the pointwise identities

∂

∂ t
Kt = ∆Kt ,

∂

∂ t
Kt ∗ f = ∆Kt ∗ f ,
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and therefore

H(t) f − f = Kt ∗ f − f =
∫ t

0
∆Ks ∗ f ds =

∫ t

0
∆H(s) f ds. (13.21)

Since we are assuming that f ∈ C∞
c (Rd), all identities can be rigorously justified by

elementary calculus arguments. By mollification and smooth cut-off, C∞
c (Rd) is dense

in D(∆). Since all terms in the above identity depend continuously on the graph norm of
D(∆), the identity extends to arbitrary functions f ∈D(∆). Dividing both sides by t and
passing to the limit t ↓ 0, by the continuity of t 7→ ∆H(t) f as an Lp(Rd)-valued function
we obtain that f ∈ D(A) and A f = ∆ f as claimed. This completes the proof.

To prove the converse inclusion D(A) ⊆ D(∆) we must show that every f ∈ D(A)
admits a weak Lp-Laplacian. To this end we multiply both sides of (13.21) with a test
function φ and integrate by parts. This results in the identity∫

Rd
(H(t) f (x)− f (x))φ(x)dx =

∫ t

0

∫
Rd

H(s) f (x)∆φ(x)dxds.

Dividing by t and passing to the limit t ↓ 0, and using the assumption f ∈ D(A), we
obtain the identity ∫

Rd
A f (x)φ(x)dx =

∫
Rd

f (x)∆φ(x)dx.

This identity precisely expresses that f admits a weak Laplacian, given by the function
A f ∈ Lp(Rd).

By Theorem 11.29, for p = 2 we have

D(A) = D(∆) =W 2,2(Rd). (13.22)

Remark 13.45. For 1 < p < ∞ one has the analogous equality

D(A) = D(∆) =W 2,p(Rd),

but this is highly nontrivial and depends on the Lp-boundedness of the Riesz transforms
(see the Notes to Chapter 5). For d = 1 there is the following more elementary argument
that also works for p= 1. The inclusion W 2,p(Rd)⊆D(∆) being clear for any dimension
d, the point is to prove the inclusion D(∆)⊆W 2,p(R). If f ∈ Lp(R) admits a weak Lp-
Laplacian ∆ f = f ′′, Theorem 11.12 implies that f admits a weak derivative f ′ belonging
to Lp(R). This shows that f belongs to W 2,p(R).

Remark 13.46. There is a slightly different route to the identification A = ∆ for p = 2
which depends on the fact that each of the operators H(t) is a Fourier multiplication
operator associated with the multiplier mt(ξ ) = exp

(
−t|ξ |2

)
. Defining H̃(t)g := mtg

we obtain a multiplication semigroup H̃ on L2(Rd) which is strongly continuous and
whose generator Ã is given by

D(Ã) =
{

g ∈ L2(Rd) : ξ 7→ |ξ |2g(ξ ) ∈ L2(Rd)
}
= H2(Rd),
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Ãg(ξ ) =−|ξ |2g(ξ ), g ∈ D(Ã), ξ ∈ Rd ;

this follows from the results proved in Section 13.6.a. This semigroup is related to the
heat semigroup through the identity

H(t) = F−1 ◦ H̃(t)◦F, t ⩾ 0,

from which it follows that a function f ∈ L2(Rd) belongs to the domain of the generator
A of H if and only if F f = f̂ belongs to the domain of the generator Ã of H̃, in which
case the identity

A f = F−1 ◦ Ã◦F f

holds. As we have seen, this is the case if and only if f ∈ H2(Rd). Since H2(Rd) =

W 2,2(Rd) up to equivalence of norm, this implies (13.22).

The Heat Semigroup on Bounded Domains Let D be a nonempty bounded open set
in Rd.

Proposition 13.47. The Dirichlet and Neumann Laplacians on L2(D) generate analytic
C0-semigroups of selfadjoint contractions on every sector of angle less than 1

2 π .

Proof Everything follows from the Lumer–Phillips theorem (Theorem 13.33), except
the selfadjointness of the semigroup operators which follows from Euler’s theorem
(Theorem 13.19) after noting that for λ > 0 the resolvent operators are selfadjoint.

To check the conditions of the Lumer–Phillips theorem, let us denote the Dirichlet
and Neumann Laplacians by ∆. The operator−∆ is positive and selfadjoint by Theorem
12.20), and therefore I−∆ is injective. Dualising and using selfadjointness, this in turn
implies that I−∆ has dense range. This verifies the first condition of Lumer–Phillips
theorem; the second follows immediately from the positivity of −∆.

Alternatively, Proposition 13.47 can be deduced from the spectral theorem for self-
adjoint operators (as such the result is a special case of Theorem 10.56, where further
details are provided). This gives the representation

S(z) =
∫
[0,∞)

e−zt dP(t), Rez > 0,

where P is the projection-valued measure associated with the Laplacian under consid-
eration (see Example 13.62).

The Dirichlet and Neumann heat semigroups on L2(D) are positivity preserving, that
is, they map nonnegative functions to nonnegative functions. From the physics point
of view it is natural to expect that heat semigroups should have this property, as they
are meant to describe the time evolution of heat distributions. Positivity of the heat
semigroup on L2(Rd) is evident from the explicit representation through convolution
with the heat kernel.
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Theorem 13.48 (Positivity). Let D be bounded. Then the C0-semigroups on L2(D) gen-
erated by ∆Dir and ∆Neum are positivity preserving.

Proof Let A denote the Dirichlet or Neumann Laplacian on L2(D) and let S be the
C0-contraction semigroup generated by A on L2(D). We must prove that S(t) f ⩾ 0 for
all t ⩾ 0 whenever f ∈ L2(D) satisfies f ⩾ 0. In what follows we fix such a function f .

Step 1 – We first prove that for all λ > 0 we have g := R(λ ,A) f ⩾ 0. Since the
positive and negative parts g+ and g− of g have disjoint supports, they are orthogonal
in L2(D) and therefore (g±|g) = ±∥g±∥2. Furthermore, Theorem 11.23 implies that if
g ∈ H1(D), then g± ∈ H1(D) and ∂ jg± = ±1{±g>0}∂ jg, and this in turn implies that∫

D ∇g ·∇g± dx =±
∫

D ∥∇g±∥2 dx. Combination of these facts gives

0 ⩽ λ∥g−∥2 = λ (g−|g−) =−λ (g|g−) =−( f |g−)− (Ag|g−)

⩽−(Ag|g−) =
∫

D
∇g ·∇g− dx =−

∫
D
∥∇g−∥2 dx ⩽ 0,

the middle inequality being a consequence of the fact that f ⩾ 0, and the equality fol-
lowing it being a consequence of the definition of −A as the operator associated with
the form on the right-hand side of the equality. This proves that g− = 0 in L2(D), so
R(λ ,A) f = g = g+ ⩾ 0.

Step 2 – The positivity of the operators S(t) follows from the result of Step 1 via the
Euler formula (Theorem 13.19)

S(t) f = lim
n→∞

(n
t

R(
n
t
,A)
)n

f , f ∈ L2(D).

Above we have seen that the Laplace operator ∆ generates a C0-semigroup of con-
tractions on Lp(Rd) for all 1 ⩽ p < ∞. For bounded open subsets D of Rd, up to this
point we have only considered the analogues of this semigroup on the space L2(D). We
prove next that the Dirichlet and Neumann Laplacians also generate C0-semigroups of
contractions on the space Lp(D) for 1 ⩽ p < ∞. This will be derived from an abstract
result on Lp-boundedness of submarkovian operators which we discuss first.

Let (Ω,F,µ) be a finite measure space. A bounded operator T on L2(Ω) is called
doubly submarkovian if it has the following properties:

(i) T f ⩾ 0 for all f ⩾ 0;
(ii) T 1 ⩽ 1 and T ⋆1 ⩽ 1.

Such operators enjoy the following extension property.

Theorem 13.49 (Lp-Boundedness of doubly submarkovian operators). Let (Ω,F,µ)

be a finite measure space and let T be a doubly submarkovian operator on L2(Ω). Then
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for all 1 ⩽ p ⩽ ∞, the restriction of T to L2(Ω)∩ Lp(Ω) has a unique extension to a
contraction on Lp(Ω).

Proof For all f ∈ L2(Ω),

∥T f∥1 = ∥|T f |∥1 ⩽ ∥T | f |∥1 = ⟨T | f |,1⟩
=
(
T | f |

∣∣1)= (| f |∣∣T ⋆1
)
⩽
(
| f |
∣∣1)= ⟨| f |,1⟩= ∥| f |∥1 = ∥ f∥1,

where ⟨·, ·⟩ denotes the L1-L∞ duality and (·|·) the L2-inner product. It follows that T has
a unique extension to a contraction on L1(Ω). By similar reasoning, for all f ∈ L2(Ω)

and g ∈ L∞(Ω) we have

|⟨ f ,T g⟩|⩽ ⟨| f |,T |g|⟩⩽ ⟨| f |,T 1⟩∥g∥∞ ⩽ ⟨| f |,1⟩∥g∥∞ = ∥ f∥1∥g∥∞.

Since L2(Ω) is dense in L1(Ω), it follows that ∥T g∥∞ ⩽ ∥g∥∞. It follows that T restricts
to a contraction on L∞(Ω).

Boundedness and contractivity for 1 < p < ∞ now follow from the Riesz–Thorin
interpolation theorem (Theorem 5.38).

Turning to the Lp-boundedness of the heat semigroup, we begin with the case of
Neumann boundary conditions.

Theorem 13.50 (Lp-Boundedness, Neumann boundary conditions). Let D be bounded
and let SNeum denote the C0-semigroup generated by ∆Neum to L2(D). For all 1 ⩽ p < ∞,
the restriction of SNeum(t) to L2(D)∩ Lp(D) uniquely extends to a C0-semigroup of
positivity preserving contractions on Lp(D).

Proof By Proposition 13.47 and Theorem 13.48, for all t ⩾ 0 the operator SNeum(t)
is selfadjoint and positivity preserving. From ∆Neum1 = 0 it follows that S⋆Neum(t)1 =

SNeum(t)1 = 1 and therefore the operators SNeum(t) are doubly submarkovian. Applying
Theorem 13.49 we obtain that for all 1 ⩽ p < ∞ and t ⩾ 0 the restriction of SNeum(t)
to L2(D)∩Lp(D) has a unique extension, also denoted by SNeum(t), to a contraction on
Lp(D).

By Hölder’s inequality, the strong continuity of SNeum on L2(D) implies that for all
1 ⩽ p < 2 and f ∈ L2(D) we have

∥SNeum(t) f − f∥p ⩽ |D|1/r∥SNeum(t) f − f∥2→ 0

as t ↓ 0, where 1
2 +

1
r = 1

p . Since ∥SNeum(t)∥p ⩽ 1 for all t ⩾ 0, the density of L2(D)

in Lp(D) implies that the strong continuity extends all f ∈ Lp(D). For 2 < p < ∞ we
use selfadjointness to see that for all f ∈ L2(D)∩Lp(D) and g ∈ L2(D)∩Lq(D) with
1
p +

1
q = 1 we have

|⟨SNeum(t) f − f ,g⟩|= |(SNeum(t) f − f |g)|= |( f |SNeum(t)g−g)|
= ⟨ f ,SNeum(t)g−g⟩|⩽ ∥ f∥p∥SNeum(t)g−g∥q→ 0

(13.23)
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applying in the last step what we already proved to the exponent 1 < q < 2. Using the
contractivity of the operators SNeum(t) on Lp(D) and Lq(D), by density (13.23) extends
to arbitrary f ∈ Lp(D) and g ∈ Lq(D). It follows that the semigroup SNeum is weakly
continuous on Lp(D). By Theorem 13.11, this implies its strong continuity. Positivity
on Lp(D) follows from the positivity of L2(D) by a density argument.

Our next aim is to prove the following analogue of Theorem 13.50 for the Dirichlet
heat semigroup.

Theorem 13.51 (Lp-Boundedness, Dirichlet boundary conditions). Let D be a bounded
open subset of Rd and let SDir denote the C0-semigroup generated by ∆Dir to L2(D). For
all 1 ⩽ p < ∞, the restriction of SDir to L2(D)∩ Lp(D) extends to a C0-semigroup of
positivity preserving contractions on Lp(D).

The heart of the matter is to prove the following resolvent inequality.

Lemma 13.52. For all 0 ⩽ f ∈ L2(D) and λ > 0 we have

0 ⩽ R(λ ,∆Dir) f ⩽ R(λ ,∆Neum) f .

Proof Fix λ > 0 and 0 ⩽ f ∈ L2(D). Then 0 ⩽ u := R(λ ,∆Dir) f ∈ D(∆Dir) and 0 ⩽
v := R(λ ,∆Neum) f ∈ D(∆Neum) and

λu−∆Diru = f = λv−∆Neumv. (13.24)

The theorem will be proved by showing that this implies u ⩽ v.
Fix a nonnegative test function φ ∈C∞

c (D). Multiplying (13.24) on both sides with φ

and integrating by parts, we arrive at

λ

∫
D

uφ dx+
∫

D
∇u∇φ dx = λ

∫
D

vφ dx+
∫

D
∇v∇φ dx. (13.25)

We claim that this equality extends to all nonnegative functions φ ∈ H1
0 (D). Indeed, if

φn→ φ in H1
0 (D) with φn ∈C∞

c (D) for all n ⩾ 1, then φ+
n → φ in H1

0 (D) by Theorem
11.23. Since each φ+

n has compact support, mollification with a nonnegative compactly
supported smooth mollifier allows us to approximate φ+

n by nonnegative test functions
in H1

0 (D) as in Proposition 11.22. Applying (13.25) to these test functions and taking
limits, the claim is obtained.

Next we claim that (u− v)+ belongs to H1
0 (D), the point here being that u ∈ H1

0 (D)

but v ∈ H1(D). To prove the claim let uk→ u in H1
0 (D) with uk ∈C∞

c (D). Since v ⩾ 0,
for each k ⩾ 1 the function (uk − v)+ is supported in the compact support of uk and
therefore it belongs to H1

0 (D) by Proposition 11.22. By another application of Theorem
11.23 it then follows that (u− v)+ = limk→∞(uk− v)+ belongs to H1

0 (D) as claimed.
By (13.25), which we may now apply to φ = (u− v)+,

λ

∫
D

u(u− v)+ dx+
∫

D
∇u∇(u− v)+ dx = λ

∫
D

v(u− v)+ dx+
∫

D
∇v∇(u− v)+ dx.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
13.6 Examples 491

As a consequence,

λ

∫
D
(u− v)+2 dx = λ

∫
D
(u− v)(u− v)+ dx

=
∫

D
∇(v−u)∇(u− v)+ dx =−

∫
D
|∇(u− v)+|2 dx ⩽ 0,

arguing as in the proof of Theorem 13.48 in the last step. This implies that (u−v)+ ⩽ 0,
that is, u ⩽ v.

Proof of Theorem 13.51 By the lemma and Euler’s formula (Theorem 13.19),

SDir(t) f = lim
n→∞

(n
t

R(
n
t
,∆Dir)

)n
f ⩽ lim

n→∞

(n
t

R(
n
t
,∆Neum)

)n
f = SNeum(t) f .

In particular this implies SDir(t)1 ⩽ SNeum(t)1 = 1. Together with positivity and self-
adjointness, this implies that the operators SDir(t) are doubly submarkovian. The proof
can now be finished along the lines of that of Theorem 13.50.

13.6.d The Poisson Semigroup

Let 1 ⩽ p < ∞. For t > 0 we define the operator P(t) on Lp(Rd) by convolution with
the Poisson kernel

pt(x) =
cdt

(t2 + |x|2) 1
2 (d+1)

, t > 0, x ∈ Rd, (13.26)

where cd = Γ( 1
2 (d +1))/π

1
2 (d+1) with Γ(t) =

∫
∞

0 xt−1e−x dx the Euler Gamma function.
The change of variables y = x/t gives the norm estimate

∥pt∥L1(Rd) = cd

∫
Rd

1

(1+ |y|2) 1
2 (d+1)

dy

= cdσd−1

∫
∞

0

1

(1+ r2)
1
2 (d+1)

rd−1 dr = cdσd−1 ·
1
2
√

π
Γ( 1

2 d)

Γ( 1
2 (d +1))

= 1,

where σd−1 = 2πd/2/Γ( 1
2 d) is the surface area of the unit sphere in Rd. Young’s in-

equality guarantees that the operators P(t) defined by P(0) := I and

P(t) f := pt ∗ f , t > 0, f ∈ Lp(Rd),

are well defined and contractive on Lp(Rd). For d = 1, the formula (13.26) takes the
simpler form

pt(x) =
1
π

t
t2 + x2 , t > 0, x ∈ R.
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To see that the operators P(t) satisfy the semigroup property we will show that the
Fourier transform of pt is given by

p̂t(ξ ) =
1

(2π)d/2 exp(−t|ξ |). (13.27)

To prove this identity we compute the inverse Fourier transform of the exponential on
the right-hand side. By a standard contour integration argument, for γ > 0 we have

e−γ =
1
π

∫
R

eiγy

1+ y2 dy.

Writing 1
1+y2 =

∫
∞

0 e−(1+y2)u du, using Fubini’s theorem to interchange the order of in-
tegration, and Lemma 5.19 and a change of variables to evaluate the inner integral, we
obtain

e−γ =
1
π

∫
R

∫
∞

0
eiγye−(1+y2)u dudy

=
1
π

∫
∞

0
e−u
(∫

R
eiγye−y2u dy

)
du =

1√
π

∫
∞

0

e−u
√

u
e−γ2/4u du.

We apply this with γ = t|ξ |. Using Fubini’s theorem, Lemma 5.19, and another substi-
tution, we obtain

1
(2π)d/2

∫
Rd

1
(2π)d/2 exp(−t|ξ |)exp(ix ·ξ )dξ

=
1

(2π)d

∫
Rd

1√
π

∫
∞

0

e−u
√

u
e−t2|ξ |2/4u exp(ix ·ξ )dudξ

=
1√
π

∫
∞

0

e−u
√

u
1

(2π)d

∫
Rd

e−t2|ξ |2/4u exp(ix ·ξ )dξ du

=
1√
π

∫
∞

0

e−u
√

u

( u
πt2

)d/2e−|x|
2u/t2

du

=
1

π
1
2 (d+1)

1
td

∫
∞

0
e−(t

2+|x|2)u/t2
u

1
2 (d−1) du

=
1

π
1
2 (d+1)

t

(t2 + |x|2) 1
2 (d+1)

∫
∞

0
e−vv

1
2 (d−1) dv

=
1

π
1
2 (d+1)

t

(t2 + |x|2) 1
2 (d+1)

Γ(
1
2
(d +1)) = pt(x).

This completes the proof of (13.27). Thanks to this identity, for t,s > 0 we obtain

p̂t ∗ ps = (2π)d/2 p̂t p̂s = (2π)−d/2 exp(−t|ξ |)exp(−s|ξ |)

= (2π)−d/2 exp(−(t + s)|ξ |) = p̂t+s
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and therefore pt ∗ ps = pt+s. It follows that for, say, f ∈Cc(Rd),

P(t)P(s) f = pt ∗ (ps ∗ f ) = (pt ∗ ps)∗ f = pt+s ∗ f = P(t + s) f .

Since Cc(Rd) is dense in Lp(Rd) for 1 ⩽ p < ∞ this proves that P(t)P(s) = P(t + s) for
all t,s > 0. This identity of course trivially extends to t,s ⩾ 0. Strong continuity of the
family P on Lp(Rd) for 1 ⩽ p < ∞ is an immediate consequence of Proposition 2.34.

We will determine the generator A of this semigroup for p = 2. It will turn out that

A =−(−∆)1/2, D(A) = H1(Rd).

Here, the square root first is defined by the functional calculus of the selfadjoint oper-
ator −∆ (see Proposition 10.60) or by the following more direct argument. Recall the
definition of H1(Rd) as the space of all f ∈ L2(Rd) for which

ξ 7→ (1+ |ξ |2)1/2 f̂ (ξ )

belongs to L2(Rd). In view of the trivial inequality |ξ | ⩽ (1 + |ξ |2)1/2, for all f ∈
H1(Rd) the function ξ 7→ |ξ | f̂ (ξ ) belongs to L2(Rd). Thus we can define an opera-
tor (B,D(B)) by

B f := (ξ 7→ |ξ | f̂ (ξ ))
̂
, D(B) = H1(Rd).

Note the formal analogy with the definition of Fourier multiplier operators; the only
difference here is that the multiplier function m(ξ ) = |ξ | does not belong to L∞(Rd)

and is therefore not covered by the definition of these operators. For f ∈ H2(Rd) we
similarly have

−∆ f = (ξ 7→ |ξ |2 f̂ (ξ ))

̂
,

so that B f ∈ D(−∆) and B2 f := B(B f ) =−∆ f . This justifies the notation

(−∆)1/2 := B, D((−∆)1/2) = H1(Rd). (13.28)

From

(B f | f ) =
(
| · | f̂ (·)

∣∣ f̂ (·))= ∫
Rd
|ξ || f̂ (ξ )|2 dξ ⩾ 0

we see that B is positive. The uniqueness part of Proposition 10.60 implies that B co-
incides with the positive square root of −∆ obtained in the corollary by means of the
functional calculus of −∆.

In dimension d = 1 the identity |ξ |=−isign(ξ ) · iξ implies that

(−d2/dx2)1/2 = H ◦ d
dx

,

where H is the Hilbert transform (which, as we recall from Section 5.6, is the Fourier
multiplier operator corresponding to the multiplier ξ 7→ −isign(ξ )).
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Theorem 13.53 (Poisson semigroup). The Poisson semigroup on L2(Rd) is generated
by the selfadjoint operator −(−∆)1/2.

Selfadjointness follows from Example 10.39.

Proof We start by noting that a function f ∈ L2(Rd) belongs to H1(Rd) if and only if
ξ 7→ |ξ | f̂ (ξ ) belongs to L2(Rd). The ‘only if’ part has already been noted, and the ‘if’
part follows from the inequality (1+ |ξ |2)1/2 ⩽ 1+ |ξ | in the same way.

On L2(Rd) we now define the multiplication semigroup Q by

Q(t)g(ξ ) := e−t|ξ |g(ξ )

for t ⩾ 0 and g ∈ L2(Rd). As we have shown in Section 13.6.a, this is a C0-semigroup
whose generator (C,D(C)) is given by

Cg(ξ ) =−|ξ |g(ξ )

for g ∈ D(C) = {g ∈ L2(Rd) : ξ 7→ |ξ |g(ξ ) ∈ L2(Rd)}. Evidently,

P(t) = F−1 ◦Q(t)◦F, t ⩾ 0,

from which it follows that a function f ∈ L2(Rd) belongs to the domain of the generator
A of P if and only if F f = f̂ belongs to the domain of the generator C of Q, in which
case the identity

A f = F−1 ◦C ◦F f

holds. By the observation at the beginning of the proof and (13.28), F f belongs to
D(C) if and only if f ∈ H1(Rd) = D((−∆)1/2), and in that case we have

−(−∆)1/2 f = (ξ 7→ −|ξ | f̂ )
̂
= F−1 ◦C ◦F f .

These considerations prove that A = (−∆)1/2 with equality of their domains.

The operator (−∆)1/2 has an interesting connection with the wave equation which
will be elaborated in Section 13.6.h.

13.6.e The Ornstein–Uhlenbeck Semigroup

In this section we assume some elementary knowledge about Gaussian random vari-
ables. Let

dγ(x) =
1

(2π)d/2 exp
(
−1

2
|x|2
)

dx

denote the standard Gaussian measure on Rd. For t ⩾ 0 and f ∈ Cc(Rd), define the
operator OU(t) on L2(Rd,γ) by

OU(t) f (x) :=
∫
Rd

f (e−tx+
√

1− e−2ty)dγ(y), x ∈ Rd.
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We will prove that OU is a C0-semigroup on Lp(Rd,γ) for all 1⩽ p<∞. This semigroup
is known as the Ornstein–Uhlenbeck semigroup. It plays a central role in the so-called
Malliavin calculus, an infinite-dimensional Gaussian version of calculus which finds
applications in, for example, the theory of stochastic (partial) differential equations and
mathematical finance. Interestingly, this semigroup also makes its appearance in Quan-
tum Field Theory, where its negative generator takes the role of the so-called bosonic
number operator. This point of view will be taken up in Section 15.6.

Let us first show that each operator OU(t) extends to a bounded operator on Lp(Rd,γ)

of norm at most 1. By Hölder’s inequality, for all f ∈Cc(Rd) we have

∥OU(t) f∥p
Lp(Rd,γ)

=
∫
Rd

∣∣∣∫
Rd

f (e−tx+
√

1− e−2ty)dγ(y)
∣∣∣p dγ(x)

⩽
∫
Rd

∫
Rd

∣∣∣ f (e−tx+
√

1− e−2ty)
∣∣∣p dγ(x)dγ(y)

= E
∣∣ f (e−tX +

√
1− e−2tY )

∣∣p,
where X and Y are independent standard Gaussian random variables defined on some
probability space and E is the expectation with respect to the probability measure. Since
(e−t)2+(

√
1− e−2t)2 = 1, the random variable e−tX+

√
1− e−2tY is standard Gaussian

again, so it is equal in distribution to X . Hence

E
∣∣ f (e−tX +

√
1− e−2tY )

∣∣p = E| f (X)|p =
∫
Rd
| f (x)|p dγ(x) = ∥ f∥p

Lp(Rd,γ)
.

This proves that ∥OU(t) f∥p ⩽ ∥ f∥p.
Next we claim that C∞

c (Rd) is dense in Lp(Rd,γ). To this end we first approximate
f by a function of the form ψ f , where 0 ⩽ ψ ⩽ 1 and ψ ≡ 1 on a large enough open
ball B(0;r) in Rd. On each ball B(0;r) the Gaussian density is bounded from below,
and therefore convergence in the L2(B(0;r),γ)-norm is equivalent to convergence in the
Lp(B(0;r))-norm. Since C∞

c (B(0;r)) is dense in Lp(B(0;r)) the desired result follows.
Combining the above two steps it follows that the operators OU(t) extend uniquely to

contractions on Lp(Rd,γ). By a limiting argument involving the extraction of an almost
everywhere convergent subsequence and dominated convergence, the defining formula
for OU(t) extends to arbitrary functions f ∈ Lp(Rd,γ), in the sense that for every f ∈
Lp(Rd,γ) the formula holds for almost all x ∈ Rd.

Next we prove that OU is a C0-semigroup on Lp(Rd,γ). It is clear that (S1) holds. To
prove the semigroup property (S2) let us first fix a function f ∈Cc(Rd). Then OU(t) f ∈
Cb(Rd) and

OU(t)OU(s) f (x) =
∫
Rd

OU(s) f (etx+
√

1− e−2ty)dγ(y)

=
∫
Rd

∫
Rd

f (e−s(e−tx+
√

1− e−2ty)+
√

1− e−2sz)dγ(z)dγ(y)
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= E f (e−(t+s)x+ e−s
√

1− e−2tY +
√

1− e−2sZ),

where Y and Z are independent standard Gaussians. In view of the identity

(e−s
√

1− e−2t)2 +(
√

1− e−2s)2 = 1− e−2(t+s),

the random variable e−s
√

1− e−2tY +
√

1− e−2sZ is equal in distribution to a Gaussian
random variable with variance 1− e−2(t+s). Therefore

E f (e−(t+s)x+ e−s
√

1− e−2tY +
√

1− e−2sZ)

= E f (e−(t+s)x+
√

1− e−2(t+s)Y )

=
∫
Rd

f (e−(t+s)x+
√

1− e−2(t+s)y)dγ(y) = OU(t + s) f (x).

This proves the identity OU(t)OU(s) f =OU(t+s) for f ∈Cc(Rd). Using the denseness
of these functions in Lp(Rd,γ), the identity extends to general f ∈ Lp(Rd,γ).

To prove the strong continuity property (S3) we again first consider a function f ∈
Cc(Rd). By Hölder’s inequality,

∥OU(t) f − f∥p
Lp(Rd,γ)

⩽
∫
Rd

∫
Rd

∣∣ f (e−tx+
√

1− e−2ty)− f (x)
∣∣p dγ(x)dγ(y).

The right-hand side tends to 0 as t ↓ 0 by dominated convergence. This gives strong
continuity for functions f ∈Cc(Rd). The general case follows again by approximation,
keeping in mind that the operators OU(t) are all contractive.

The generator of (OU(t))t⩾0 is traditionally denoted as L. We show next that it is
given, for functions f ∈C∞

c (Rd), by the Ornstein–Uhlenbeck operator

L f (x) = ∆ f (x)− x ·∇ f (x). (13.29)

Before turning to the proof, we wish to point out an interesting feature of this formula.
Multiplying both sides with a test function φ , integrating with respect to γ , and integrat-
ing by parts after having written out the Gaussian density, we obtain∫

Rd
L f (x)φ(x)dγ(x) =

1
(2π)d/2

∫
Rd
(∆ f (x)− x ·∇ f (x))φ(x)exp

(
−1

2
|x|2
)

dx

=− 1
(2π)d/2

∫
Rd

∇ f ·∇φ exp
(
−1

2
|x|2
)

dx

=−
∫
Rd

∇ f ·∇φ dγ(x).

(13.30)

Since C∞
c (Rd) is dense in D(∇) = W 1,2(Rd ,γ), the Gaussian Sobolev space of all f ∈

L2(Rd,γ) whose weak first order derivatives exist and belong to L2(Rd,γ), for p = 2
the identity (13.30) identifies −L as the operator associated with the closed, densely



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
13.6 Examples 497

defined, accretive form aOU with domain W 1,2(Rd ,γ) defined by

aOU( f ,g) =
∫
Rd

∇ f ·∇gdγ(x).

Let us now turn to a proof of (13.29). Substituting
√

1− e−2ty = u and e−tx+u = v
and writing out the Gaussian density, we arrive at

OU(t) f (x) =
1

(2π)d/2

( 1
1− e−2t

)d/2 ∫
Rd

f (e−tx+u)exp
(
−1

2
|u|2

1− e−2t

)
du

=
1

(2π)d/2

( 1
1− e−2t

)d/2 ∫
Rd

f (v)exp
(
−1

2
|e−tx− v|2

1− e−2t

)
dv

=
∫
Rd

Mt(x,v) f (v)dv.

(13.31)

This represents OU(t) as an integral operator with kernel

Mt(x,y) =
1

(2π)d/2

( 1
1− e−2t

)d/2
exp
(
−1

2
|e−tx− y|2

(1− e−2t)

)
.

The function Mt is called the Mehler kernel at time t. We can express it in terms of
the heat kernel as Mt(x,y) = K 1

2 (1−e−2t )(e
−tx− y), and therefore we have the pointwise

identity

OU(t) f (x) = H( 1
2 (1− e−2t)) f (e−tx),

where H is the heat semigroup on L2(Rd).
Let f ∈C∞

c (Rd). Then f ∈W 2,p(Rd) and therefore, by the results of Section 13.6.c,
f ∈ D(∆). Hence, we may differentiate the above identity at t = 0 and obtain

lim
t↓0

1
t
(OU(t) f − f )(·)

=
[
e−2t

∆H( 1
2 (1− e−2t) f (e−t ·)− e−t(·) ·H( 1

2 (1− e−2t)∇ f (e−t ·)
]

t=0

= ∆ f (·)− (·) ·∇ f (·).

In the middle expression, H(s)∇g is short-hand for ∑
d
j=1 H(s)∂ jg. The combined use of

the product rule and chain rule can be rigorously justified by going through the steps of
the standard proof of the corresponding scalar analogue, which we leave as an exercise
to the reader. It is important to point out that the limit is taken with respect to the
norm of Lp(Rd), as we were dealing with the heat semigroup in Lp(Rd). However,
since convergence in Lp(Rd) implies convergence in Lp(Rd,γ) it follows that the above
differentiation can retrospectively be interpreted with respect to the norm of Lp(Rd,γ).
This proves that f ∈ D(L) and that the asserted formula for L f holds.

Let us show next that the analogue of Theorem 12.19 holds for L. We have already
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identified −L as the operator associated with the form aOU . This, in combination with
Theorem 10.46 and Proposition 12.18, implies that

−L = ∇
⋆
∇,

where the adjoint refers to the inner product of L2(Rd ,γ). Finally, mutatis mutandis the
argument for the heat semigroup can be repeated to prove that in L2(Rd ,γ) the generator
domain D(L) equals the domain of the weak L2-Ornstein–Uhlenbeck operator which is
defined in the obvious way.

Remark 13.54. For 1 < p < ∞ it can be shown that

D(L) =W 2,p(Rd,γ),

the Gaussian Sobolev space of all f ∈ Lp(Rd,γ) admitting weak derivatives up to order
2, all of which belong to Lp(Rd,γ). The proof of this fact is beyond the scope of this
work, even for the case p = 2.

For d = 1 one has the following representation for the Ornstein–Uhlenbeck semi-
group in terms of the Hermite polynomials Hn discussed in Section 3.5.b:

OU(t)Hn = e−ntHn, n ∈ N. (13.32)

This is a simple exercise based on the representation (13.29) and the recurrence relation
for the Hermite polynomials discussed in Section 3.5.b, and it implies

σ(−L) = N

(see Proposition 10.32). The formula (13.32) generalises to arbitrary dimension d once
one has found an analogue of the Hermite basis for L2(Rd,γ). This is accomplished in
Section 15.6.a (see Theorems 15.57 and 15.58). An immediate consequence is that the
Ornstein–Uhlenbeck semigroup extends holomorphically and contractively to the open
right-half plane {z ∈ C : Rez > 0) and is strongly continuous on every sector Σω with
ω < 1

2 π . Another way to see this is to note that L is selfadjoint (by Proposition 10.43,
noting that L is symmetric by the selfadjointness of the operators OU(t) and satisfies
(0,∞)⊆ ρ(−L) by Proposition 13.8); the holomorphic extension to the right-half plane
may now be defined by

OU(z) = exp(−zL), Rez > 0.

Following this approach, strong continuity on the sectors Σω with ω < 1
2 π will follow

from Theorem 13.61. This discussion is summarised in the following theorem.

Theorem 13.55. The operator −L generates an analytic C0-semigroup of contractions
on every sector Σω with ω < 1

2 π .
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13.6.f The Hermite Semigroup

Let 0 ⩽ V ∈ L1
loc(Rd) be given; in applications we think of V as a potential. Consider

the forms a∆,aV : C∞
c (Rd)×C∞

c (Rd) defined by

a∆(u,v) :=
∫
Rd

∇u(x) ·∇v(x)dx, aV (u,v) :=
∫
Rd

V (x)u(x)v(x)dx.

The form a∆ + aV is densely defined, closable, positive, and continuous. The operator
A associated with its closure a is densely defined, positive, and selfadjoint by Theorem
12.17. We denote this operator somewhat suggestively by −∆+V .

An interesting special case arises if we take V (x) = |x|2. This results in the selfadjoint
operator −∆+ |x|2 on L2(Rd), the so-called Hermite operator. In Quantum Mechanics,
the operator

H :=−1
2

∆+
1
2
|x|2

is called the quantum harmonic oscillator. Let us take a closer look at the C0-contraction
semigroup generated by −H.

Theorem 13.56 (The Hermite semigroup). The C0-semigroup S on L2(Rd) generated by
−H+ d

2 I is unitarily equivalent to the Ornstein–Uhlenbeck semigroup OU on L2(Rd ;γ).
More precisely, we have

U−1S(t)U = OU(t), t ⩾ 0,

where U : L2(Rd,γ)→ L2(Rd) is the unitary operator given by U = D ◦E, with D :
L2(Rd)→ L2(Rd) and D : L2(Rd,γ)→ L2(Rd) given by

D f (x) = (
√

2)d/2 f (
√

2x),

E f (x) =
1

(2π)d/4 exp
(
−|x|2/4

)
f (x).

Proof Fix f ∈C∞
c (Rd). Recalling from (13.29) that

L f = ∆ f − x ·∇ f ,

a somewhat tedious but straightforward computation gives the identity

L f =U−1
(
−H +

d
2

)
U f .

Passing to the resolvents, applying Theorem 13.19, and using the density of C∞
c (Rd) in

L2(Rd,γ), the identity for the semigroups follows from this.

As an immediate consequence of this result and Theorem 13.55 we see that the Her-
mite semigroup extends to an analytic C0-semigroup of contractions on every sector Σω

with ω < 1
2 π .
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It will follow from Theorem 15.58 that σ(−L) equals N= {0,1,2, . . .} and consists
of eigenvalues (see Corollary 15.59). From this we see that the spectrum of the quantum
Harmonic oscillator equals

σ(H) = N+
d
2

and consists of eigenvalues. The lowest eigenvalue 1
2 d is the ground state energy of H.

13.6.g The Schrödinger Group

We again consider the setting of Section 13.6.f and consider, for nonnegative potentials
V ∈ L1

loc(Rd) we consider the positive selfadjoint operator A :=−∆+V associated with
the closure of the densely defined, closable, positive, and continuous form a := a∆+aV ,
where

a∆(u,v) :=
∫
Rd

∇u(x) ·∇v(x)dx, aV (u,v) :=
∫
Rd

V (x)u(x)v(x)dx,

for u,v ∈ C∞
c (Rd). By Stone’s theorem, the operator iA generates a unitary C0-group

on L2(Rd), the so-called Schrödinger group with potential V . It solves the Schrödinger
equation with potential V ,

1
i

∂

∂ t
u(t,x) =−∆u(t,x)+V (x)u(t,x), t ⩾ 0, x ∈ Rd. (13.33)

The special case V ≡ 0 is of special interest:

Example 13.57 (Free Schrödinger group). The C0-group (S(t))t∈R on L2(Rd) gener-
ated by the operator A = i∆ with domain D(A) = H2(Rd) is called the free Schrödinger
group. For functions f ∈ L1(Rd)∩L2(Rd) and t ̸= 0 it is given explicitly be the formula

S(t) f (x) =
1

(4πit)d/2

∫
Rd

exp
(

i
|x− y|2

4t

)
f (y)dy, (13.34)

valid for almost all x ∈ Rd. Note that, on a formal level, we have S(t) = H(it), where
(H(z))Rez>0 is the (holomorphic extension to the open right-half plane of the) heat
semigroup generated by ∆ given by (13.20). We refer to Problem 13.13 for a proof that
the limit H(it) f := lims↓0 S(s+ it) f indeed exists for all f ∈ L2(Rd); the point we are
making here is that this limit is still represented by the explicit formula (13.20) for the
heat semigroup evaluated at it. Taking the result of Problem 13.13 for granted, (13.34)
follows from (13.20), with t replaced by s+ it, by dominated convergence.

An alternative derivation can be given on the basis of the spectral theorem for self-
adjoint operators; see Problem 13.24. This idea will be explored more systematically in
Example 13.62.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
13.6 Examples 501

The representation 13.34 implies that S(t) f ∈ L∞(Rd) for all f ∈ L1(Rd)∩L2(Rd)

and t ∈ R\{0}, with bounds

∥S(t) f∥∞ ⩽
1

4π|t|
∥ f∥1, ∥S(t) f∥2 ⩽ ∥ f∥2,

the former by a direct estimate and the latter by Plancherel’s theorem. By the Riesz–
Thorin interpolation theorem, for all t ∈ R \ {0} the operators S(t), when restricted to
L1(Rd)∩L2(Rd), extend to bounded operators from Lp(Rd) to Lq(Rd) for all 1 ⩽ p ⩽ 2
and 1

p +
1
q = 1, with bound

∥S(t)∥L (Lp(Rd),Lq(Rd)) ⩽
1

(4π|t|)
1
p−

1
2

(13.35)

for t ̸= 0.

13.6.h The Wave Group

The Wave Group on Bounded Domains Let D be a nonempty bounded open set in
Rd. The space H := H1

0 (D)×L2(D) is a Hilbert space with respect to the norm given by

∥(u,v)∥2 = |||u|||2H1
0 (D)

+∥v∥2
2,

where we consider the norm on H1
0 (D) given by

|||u|||2H1
0 (D)

:=
∫

D
|∇u|2 dx, u ∈ H1

0 (D). (13.36)

This norm is equivalent to the usual Sobolev norm on H1
0 (D) by Poincaré’s inequality.

In H we define the operator A defined by

A :=
(

0 I
∆Dir 0

)
, D(A) := D(∆Dir)×H1

0 (D),

where ∆Dir is the Dirichlet Laplacian on L2(D). We will prove that A is the generator of
a unitary C0-group W on H. This group solves the linear wave equation

∂ 2u
∂ t2 (t,x) = ∆u(t,x), t ∈ R, x ∈ D,

u(0,x) = u0(x), x ∈ D,

∂v
∂ t

(0,x) = v0(x), x ∈ D,

written as a system of first-order ODEs u′ = v, v′ = ∆u, with initial value u(0) = u0,
v(0) = v0, subject to Dirichlet boundary conditions.
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The operator A is densely defined and an integration by parts gives, for u =

(
u1

u2

)
∈

D(A) and v =
(

v1

v2

)
∈ D(A),

(Au|v) =

((
u2

∆u1

)∣∣∣∣∣
(

v1

v2

))
=
∫

D
∇u2 ·∇v1 +(∆u1)v2 dx

=
∫

D
∇u2 ·∇v1−∇u1∇v2 dx

=−

((
u1

u2

)∣∣∣∣∣
(

v2

∆v1

))
=−(u|Av).

This implies that −iA is symmetric.
We next observe that 0 ∈ ρ(∆Dir) by Theorem 12.26. This allows us to consider the

bounded operator

R :=
(

0 ∆
−1
Dir

I 0

)
on H. For (u,v) ∈ H we have

R
(

u
v

)
=

(
∆
−1
Dirv
u

)
∈ D(∆Dir)×H1

0 (D) = D(A)

and it is immediate to check that AR = I and RAh = h for h∈D(A). This proves that A is
boundedly invertible, that is, 0 ∈ ρ(A). An application of Proposition 10.43 now gives
that −iA is selfadjoint. Therefore, by Stone’s theorem (Theorem 13.44) we obtain:

Theorem 13.58 (Wave group on bounded domains). The operator A generates a unitary
C0-group (W (t))t∈R on H1

0 (D)×L2(D), provided H1
0 (D) is endowed with the equivalent

norm given by (13.36).

The Wave Group on Rd Let us next consider the case D =Rd, which is not covered by
the above considerations since it was assumed that D be bounded. We have H1

0 (Rd) =

H1(Rd) by Theorem 11.25 and Theorem 11.31 and ∆Dir = ∆ with D(∆) = H2(Rd). This
suggests considering in H1(Rd)×L2(Rd) the operator

A :=
(

0 I
∆ 0

)
, D(A) := H2(Rd)×H1(Rd).

We will use the theory of Fourier multipliers to prove that A generates a C0-group on
H1(Rd)×L2(Rd) and give an explicit expression for it.
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To motivate the upcoming expressions we first consider the matrix

Aa :=
(

0 1
−a 0

)
,

where a ⩾ 0 is a nonnegative scalar, and compute its exponentials etAa . The powers of
Aa are given by

A2k
a =

(
(−a)k 0

0 (−a)k

)
, A2k+1

a =

(
0 (−a)k

(−a)k+1 0

)
, k ∈ N,

so that with b := a1/2,

etAa =
∞

∑
k=0


t2k

(2k)!
(−a)k t2k+1

(2k+1)!
(−a)k

t2k+1

(2k+1)!
(−a)k+1 tk

(2k)!
ak



=
∞

∑
k=0


(−1)k t2k

(2k)!
b2k (−1)k t2k+1

(2k+1)!
b2k

−(−1)k t2k+1

(2k+1)!
b2k+2 (−1)k t2k

(2k)!
b2k


=

(
cos tb b−1 sin tb
−bsin tb cos tb

)
.

Substituting −∆ for a and (−∆)1/2 for b, we arrive at the following guess for the ex-
pression for the wave group:

W (t) =

 cos
(
t(−∆)1/2

)
(−∆)−1/2 sin

(
t(−∆)1/2

)
−(−∆)1/2 sin

(
t(−∆)1/2

)
cos
(
t(−∆)1/2

)
 , t ⩾ 0.

We need to give a meaning to the operators occurring in this matrix, which can be
accomplished by the functional calculus of −∆, or by interpreting them as Fourier mul-
tiplier operators as follows. The operators on the diagonal can be interpreted as Fourier
multiplier operators on L2(Rd) associated with the multipliers

m1,1;t(ξ ) = m2,2;t(ξ ) = cos(t|ξ |);

this function belongs to L∞(Rd) with norm 1 for every t ∈ R. Recalling the characteri-
sation of H1(Rd) as those functions f in L2(Rd) for which ξ 7→ (1+ |ξ |2)1/2 f̂ (ξ ) is in
L2(Rd), we see moreover that cos

(
t(−∆)1/2

)
maps W 1,2(Rd) into itself. Recalling the
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norm of H1(Rd) given by (11.9), this argument also gives the estimates∥∥∥cos
(

t(−∆)1/2
)∥∥∥

L (L2(Rd))
⩽ 1,

∥∥∥cos
(

t(−∆)1/2
)∥∥∥

L (H1(Rd))
⩽ 1.

Similarly we can associate a bounded operator from H1(Rd) to L2(Rd) with the multi-
plier

m2,1;t(ξ ) =−|ξ |sin(t|ξ |).

Indeed, if f ∈ H1(Rd), then∥∥m2,1;t(ξ ) f̂ (ξ )
∥∥

L2(Rd)
⩽
(

sup
ξ∈Rd

|ξ |
(1+ |ξ |2)1/2 |sin(t|ξ ||)

)
∥ f∥H1(Rd) ⩽ ∥ f∥H1(Rd)

and therefore ∥∥∥− (−∆)1/2 sin
(

t(−∆)1/2
)

f
∥∥∥

L (H1(Rd),L2(Rd))
⩽ 1

for all t ∈ R. In the same way the operators (−∆)−1/2 sin
(
t(−∆)1/2

)
are interpreted as

bounded operators from L2(Rd) into H1(Rd) given by the multipliers

m1,2;t(ξ ) =
sin(t|ξ |)
|ξ |

,

which satisfy (distinguish the cases |ξ |⩽ 1 and |ξ |> 1)∥∥m1,2;t(ξ ) f̂ (ξ )
∥∥

H1(Rd)
⩽
(

sup
ξ∈Rd

|sin(t|ξ |)|
|ξ |

(1+ |ξ |2)1/2
)
∥ f̂∥L2(Rd)

⩽C(1+ |t|)∥ f̂∥L2(Rd) =C(1+ |t|)∥ f∥L2(Rd),

where C is a universal constant. Therefore∥∥∥(−∆)−1/2 sin
(

t(−∆)1/2
)∥∥∥

L (L2(Rd),H1(Rd))
⩽C(1+ |t|)

for all t ∈ R.

Theorem 13.59 (Wave group on Rd). The operator A generates a C0-group (W (t))t∈R
on H1(Rd)×L2(Rd) which is given by

W (t) =
(

cos
(
t(−∆)1/2

)
(−∆)−1/2 sin

(
t(−∆)1/2

)
−(−∆)1/2 sin

(
t(−∆)1/2

)
cos
(
t(−∆)1/2

) )
, t ∈ R.

Moreover, there is a constant C ⩾ 0 such that

∥W (t)∥⩽C(1+ |t|), t ∈ R.
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Proof The group property follows from formal matrix multiplication, which can be
made rigorous by noting that in the Fourier domain we are just multiplying matrices of
scalar-valued multipliers, much like what we did in the treatment of the heat and Poisson
semigroups. Once we have proved strong continuity, differentiation of the entries at

t = 0 identifies
(

0 I
∆ 0

)
as the generator by the same reasoning.

To prove strong continuity we note that ∥m1,1;t∥∞ ⩽ 1 and limt→0 m1,1;t(ξ ) = 1 point-
wise, implying that limt→0 m1,1;t f̂ = f̂ in L2(Rd) by dominated convergence. Hence
limt→0 cos

(
t(−∆)1/2

)
f = f in L2(Rd) for all f ∈ L2(Rd) by Plancherel’s theorem. The

strong convergence of the other three terms is proved similarly.

Remark 13.60. Notwithstanding the linear growth bound for W (t), the energy func-
tional

E(t) := ∥∂tW (t) f∥2
2 +∥∇W (t) f∥2

2

is constant in time. For functions f ∈ D(A) one has E ′(t) = 0 by direct calculation, and
the general case then follows by density.

We conclude with some informal remarks establishing a connection with the Pois-
son semigroup of Section 13.6.d. Since (−∆)1/2 with domain H1(Rd) is selfadjoint,
i(−∆)1/2 is the generator of a C0-group (U(t))t∈R of unitary operators on L2(Rd) by
Stone’s theorem. For f ∈ H2(Rd) we have (−∆)1/2 f ∈ H1(Rd) and

d2

dt2 U(t) f = [i(−∆)1/2]2U(t) f = ∆U(t) f

In this sense, t 7→ u(t,x) = U(t) f (x) satisfies the wave equation with initial condition
u(0,x) = f (x). We are neglecting the initial condition for the first derivative, however,
and in fact we could run the same argument for −i(−∆)1/2, which is the generator of
the C0-group (U(−t))t∈R to find that its orbits also solve the wave equation with initial
condition u(0,x) = f (x). Interpreting U(t) and U(−t) as Fourier multipliers one sees
that

1
2
(U(t)+U(−t)) = cos

(
t(−∆)1/2),

which is the first entry in the matrix representation for the wave group. These operators
solve the wave equation with initial conditions u(0,x) = f (x) and ∂u

∂ t (0,x) = 0, the latter
because of the cancellation of the derivatives of U(t) f and U(−t) f . This argument is
admittedly somewhat sketchy; the reader is invited to provide the rigorous details.
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13.7 Semigroups Generated by Normal Operators

We begin with a general observation about semigroup generation by normal operators.
Recall from Section 13.4 the notation

Σω := {z ∈ C\{0} : |arg(z)|< ω}

for the open sector of angle ω ∈ (0,π), arguments being taken in (−π,π).

Theorem 13.61 (Semigroups generated by normal operators). Let N be a normal oper-
ator in a Hilbert space H with associated projection-valued measure P. Then:

(1) if σ(N) is contained in the closed right half-plane, then −N is the generator of a
C0-semigroup of contractions S, given by

S(t) =
∫

σ(N)
e−λ t dP(λ ), t ⩾ 0;

(2) if σ(N) is contained in a closed sector of angle 0 < θ < 1
2 π , then −N is the gener-

ator of an analytic C0-semigroup of contractions (S(z))z∈Σ 1
2 π−θ

, given by

S(z) =
∫

σ(N)
e−λ z dP(λ ), z ∈ Σ 1

2 π−θ
.

Proof We give a detailed proof of (1); the proof of (2) is entirely similar.
First of all, the operators S(t) are well defined and contractive by Theorem 9.8(ii).

We next check that the semigroup is strongly continuous. For all x ∈ H, dominated
convergence gives

lim
t↓0

(S(t)x|x) = lim
t↓0

∫
σ(N)

e−λ t dPx(λ ) =
∫

σ(N)
dPx = (x|x).

By a polarisation argument, this gives the weak continuity of the semigroup. By Theo-
rem 13.11, this implies its strong continuity. It remains to be shown that N is its gener-
ator. If x ∈ D(N), that is, if

∫
σ(N) |λ |2 dPx(λ )< ∞, then by dominated convergence

lim
t↓0

1
t
(S(t)x− x|x) = lim

t↓0

∫
σ(N)

e−λ t −1
t

dPx(λ ) =−
∫

σ(N)
λ dPx(λ ) =−(Nx|x).

(13.37)
The same argument proves that

lim
t↓0

1
t2 ∥S(t)x− x∥2 = lim

t↓0

1
t2 (S

⋆(t)− I)S(t)x− x|x) =
∫

σ(N)
|λ |2 dPx(λ ) = ∥Nx∥2,

(13.38)
using the final identity in the statement of Theorem 10.50 in the last step.
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By polarisation, (13.37) implies that

lim
t↓0

1
t
(S(t)x− x|y) = (Nx|y), x ∈ D(N), y ∈ D(N),

and hence, using that limsupt↓0
1
t ∥S(t)x− x∥ < ∞ by (13.38), by approximation we

obtain

lim
t↓0

1
t
(S(t)x− x|y) =−(Nx|y), x ∈ D(N), y ∈ H.

Denoting the generator of the semigroup by A, for y ∈ D(A⋆) it follows that

−(Nx|y) = lim
t↓0

1
t
(S(t)x− x|y) = lim

t↓0

1
t
(x|S⋆(t)y− y) = (x|A⋆y).

This implies that Nx ∈ D(A⋆⋆) = D(A), referring to Proposition 10.23 for the equality
of these domains.

We have thus proved that −N ⊆ A. Since (0,∞) is contained in the resolvent sets
of both −N (by assumption) and A (since it generates a C0-contraction semigroup),
Proposition 10.30 implies A =−N.

Some of the semigroup examples of the previous section can be constructed rather
easily using the spectral theorem.

Example 13.62 (Heat semigroup, Poisson semigroup, free Schrödinger group, wave
group revisited). Let P be the projection-valued measure on R associated with the neg-
ative Laplace operator −∆, viewed as a selfadjoint operator on L2(Rd) (see Problem
10.17). The heat semigroup H is then given by

H(t) =
∫
R

e−λ t dP(λ ), t ⩾ 0,

and the free Schrödinger group by

S(t) =
∫
R

e−iλ t dP(λ ), t ⩾ 0.

The positive square root (−∆)1/2 defined through Proposition 10.60 coincides with
the unbounded Fourier multiplier operator corresponding to the multiplier m(ξ ) = |ξ |.
Using Proposition 10.52 to switch between the projection-valued measure Q of −∆ and
R of (−∆)1/2, we see that the Poisson semigroup generated by the latter is given by

P(t) =
∫
[0,∞)

e−λ t dR(λ ) =
∫
[0,∞)

e−λ 1/2t dQ(λ ), t ⩾ 0.

In the same way, the operators cos
(
t(−∆)1/2

)
and sin

(
t(−∆)1/2

)
featuring in the

wave group are given by

cos
(

t(−∆)1/2
)
=
∫
[0,∞)

cos(tλ )dR(λ ) =
∫
[0,∞)

cos
(

tλ 1/2
)

dQ(λ ),
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sin
(

t(−∆)1/2
)
=
∫
[0,∞)

sin(tλ )dR(λ ) =
∫
[0,∞)

sin
(

tλ 1/2
)

dQ(λ ).

Example 13.63 (Stone’s theorem revisited). Let P be the projection-valued measure
on R associated with a selfadjoint operator A on a Hilbert space H. Then the unitary
C0-group (U(t))t∈R generated by iA is given by

U(t) =
∫
R

eiλ t dP(λ ), t ⩾ 0.

Problems

13.1 Let S be a C0-semigroup on X with generator A, and suppose that ∥S(t)∥⩽ Meµt

for some M ⩾ 1, µ ∈ R, and all t ⩾ 0. Prove that

∥(λ −A)−k∥⩽ M/(Reλ −µ)k, Reλ > µ, k = 1,2, . . .

Hint: By considering A− µ instead of A we may assume that µ = 0. Under this
assumption, observe that |||R(λ ,A)|||⩽ 1/Reλ , where |||x||| := supt⩾0 ∥S(t)x∥ de-
fines an equivalent norm on X .

Remark: The converse holds as well: If A is a densely defined operator on X
satisfying the above inequalities, then A generates a C0-semigroup on X satisfying
∥S(t)∥ ⩽ Meµt for all t ⩾ 0. This is the version of the Hille–Yosida theorem for
arbitrary C0-semigroups. The ambitious reader may try to prove this.

13.2 The aim of this problem is to prove that if A generates a C0-semigroup S on X ,
then A is bounded if and only if

lim
t↓0
∥S(t)− I∥= 0.

(a) Show that if A is bounded, then S(t) = etA and limt↓0 ∥S(t)− I∥= 0.
(b) Use a Neumann series argument to prove that if limt↓0 ∥S(t)− I∥ = 0, then

for small enough t > 0 the operators Tt :=
∫ t

0 S(s)ds are invertible, and show
that for such t > 0 we have

A = T−1
t (S(t)− I).

13.3 Let A be the generator of a C0-semigroup S on X . This problem gives a rigorous
interpretation to the “formula” “S(t) = etA”.

For each h > 0 consider the bounded operator A(h)x := 1
h (S(h)x− x).

(a) Choosing M ⩾ 1 and ω ⩾ 0 so that ∥S(t)∥⩽ Meωt for all t ⩾ 0, show that

∥etA(h)∥⩽ Mexp
( t

h
(eωh−1)

)
.

Deduce that for all 0 < h ⩽ 1 we have ∥etA(h)∥⩽ Met(eω−1).
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(b) Using the identity

S(t)x− etA(h)x =
∫ t

0

d
ds

[e(t−s)A(h)S(s)x]ds

deduce from part (a) that for all x ∈ D(A) and 0 < h < 1 we have

∥S(t)x− etA(h)x∥⩽ tM2et(ω+eω−1)∥Ax−A(h)x∥.

(c) Prove that for all x ∈ X and t ⩾ 0 we have

lim
h↓0

etA(h)x = S(t)x.

(d) For n∈N with n > ω , let An := nAR(n,A) as in the proof of the Hille–Yosida
theorem. Prove that for all x ∈ X and t ⩾ 0 we have

lim
n→∞

etAnx = S(t)x.

13.4 Let A be the generator of the C0-semigroup of left translations on L2(0,1), insert-
ing zeroes from the right. Show that σ(A) =∅.
Hint: Apply Proposition 13.8.

13.5 Let A be the generator of a C0-semigroup S on X . The adjoint semigroup on X∗ is
the family S∗ = (S∗(t))t⩾0, where S∗(t) = (S(t))∗ for t ⩾ 0.

(a) Show that the adjoint semigroup has the semigroup properties (S1) and (S2)
but may fail (S3).

Set

X⊙ := {x∗ ∈ X∗ : lim
t↓0
∥S∗(t)x∗− x∗∥= 0}.

(b) Show that X⊙ is a closed subspace of X∗.
(c) Show that the adjoint semigroup maps X⊙ into itself and that its restriction

to X⊙ is a C0-semigroup.
(d) Show that for all x∗ ∈ X∗ and t > 0 there exists a unique element φt,x∗ ∈ X∗

satisfying

⟨x,φt,x∗⟩=
∫ t

0
⟨x,S∗(s)x∗⟩ds.

(e) Show that for all x∗ ∈ X∗ and t > 0 we have φt,x∗ ∈ D(A∗) and

A∗φt,x∗ = S∗(t)x∗− x∗.

(f) Show that X⊙ = D(A∗) and deduce that X⊙ is weak∗ dense in X∗.
(g) Show that

D(A∗) =
{

x∗ ∈ X∗ : limsup
t↓0

1
t
∥S∗(t)x∗− x∗∥< ∞

}
.
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(h) Show that if X is reflexive, then S∗ is a C0-semigroup on X∗ and A∗ is its
generator.
Hint: For the strong continuity apply Phillips’s theorem (Theorem 13.11);
for the identification of the generator use Proposition 10.30.

13.6 Let A be the generator of a C0-semigroup of contractions S on X . Show that for
all x ∈ D(A2) one has Landau’s inequality

∥Ax∥2 ⩽ 4∥x∥∥A2x∥.

Hint: Use integration by parts to show that

S(t)x = x+
∫ t

0
S(s)Axds = x+ tAx+

∫ t

0
(t− s)S(s)A2xds,

and combine this with the inequality infr>0 (ra2 + b2

r )⩽ 2ab for a,b ⩾ 0.
13.7 In this problem we prove a continuous analogue of the Sz.-Nagy dilation theorem

(Theorem 8.36). Let S be a C0-semigroup of contractions on a Hilbert space H.

(a) Show that the mapping T : R→L (H) defined by

T (t) :=


S(t), t > 0,

I, t = 0,

(S(−t))⋆, t < 0,

is positive definite.
Hint: For t1, . . . , tN ∈ Q use Lemma 8.35 to show that for all h1, . . . ,hN ∈ H
we have ∑

N
m,n=1(T (tn− tm)hm|hn)⩾ 0.

(b) Show that there exist a Hilbert space H̃ containing H as a closed subspace
and a C0-group (U(t))t∈R on H̃ such that

T (t)h = PU(t)h, t ⩾ 0, h ∈ H,

where P is the orthogonal projection of H̃ onto H.
Hint: Combine the result of part (a) with Theorem 8.34 to obtain the dilation
and use Theorem 13.11 to prove its strong continuity.

13.8 Let A be the generator of a C0-semigroup S on X . Prove the following spectral
inclusion formula: for all t ⩾ 0 we have

exp(tσ(A))⊆ σ(S(t)).

Hint: First show that for all λ ∈ C, t ⩾ 0, and x ∈ D(A) we have

eλ tx−S(t)x =
∫ t

0
eλ (t−s)S(s)(λ −A)xds = (λ −A)

∫ t

0
eλ (t−s)S(s)xds.
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13.9 Let A be the generator of a C0-semigroup on X , and let f ∈ L1(0,T ;X) be given
and fixed. A function u ∈ L1(0,T ;X) is said to be a weak solution of the inhomo-
geneous abstract Cauchy problem{

u′(t) = Au(t)+ f (t), t ∈ [0,T ],

u(0) = u0,

if for all t ∈ [0,T ] and x∗ ∈ D(A∗) we have

⟨u(t),x∗⟩= ⟨u0,x∗⟩+
∫ t

0
⟨u(s),A∗x∗⟩ds+

∫ t

0
⟨ f (s),x∗⟩ds.

Prove that the inhomogeneous abstract Cauchy problem has a unique weak solu-
tion, and that it equals the unique strong solution.

13.10 This problem gives a two-dimensional example of a bounded analytic C0-semi-
group which is uniformly exponentially stable, contractive on R+, and fails to be
contractive on any open sector containing R+.

On C2 consider define (x|y)Q := (Qx|y), where

Q =

(
1 2
1 1

)
.

(a) Show that (·|·)Q defines an inner product on C2.

Let ∥ ·∥Q be the associated norm. On (C2,∥ ·∥Q) we consider the C0-semigroup S,

S(t) = e−t/2
(

1 t
0 1

)
.

(b) Show that ∥S(t)∥2
Q = 1

2 e−t(t2 +2+ t
√

t2 +4) and conclude that S(t) is con-
tractive for all t ⩾ 0.

Hint: Use the fact that ∥S(t)∥2
Q equals the largest eigenvalue of S(t)S⋆(t) (see

Problem 8.7), where the adjoint refers to the inner product (·|·)Q.

(c) Show that S extends to an entire C0-semigroup which is uniformly bounded
on the open sector Ση for all 0 < η < 1

2 π .
(d) Show that S fails to be contractive on any open sector Ση .

13.11 Let A be the generator of an analytic C0-semigroup on X . Show that if B is a
bounded operator on X , then A+ B generates an analytic C0-semigroup on X .
Also show that if A generates a bounded analytic C0-semigroup, then so does
A+B−∥B∥I.
Hint: First prove the second assertion.

13.12 Let A be the generator of an analytic C0-contraction semigroup on a Hilbert space
H. Show that the form a on H with domain D(a) := D(A) defined by a(x,y) :=
−(Ax|y) is accretive, continuous, and closable.
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512 Semigroups of Linear Operators

13.13 Let A be the generator of a C0-semigroup S on X which is bounded analytic on
the open right-half plane. Show that for all t ∈ R and x ∈ X the limit

T (t)x := lim
s↓0

S(s+ it)x

exists and that the family (T (t))t∈R is a uniformly bounded C0-group of operators
with generator iA.
Hint: Begin by observing that if 0 < s′ < s < ∞ and −∞ < t ′ < t < ∞, then

∥S(s+ it)x−S(s′+ it)x∥⩽ M∥S(s− s′)x− x∥,

where M = supRez>0 ∥S(z)∥. Deduce from this the existence of the limits. Deduce
the semigroup properties and strong continuity in a similar manner. Finally show
that if x ∈ D(A), then ∫ t

0
T (s)iAxds = T (t)x− x

to deduce that x ∈ D(B), where B is the generator of (U(t))t∈R, and use this to
conclude that B = iA.

13.14 Let A be the generator of an analytic C0-semigroup S on X . Prove that if σ(A)⊆
{z ∈ C : Rez < 0}, then S is uniformly exponentially stable, that is, there exists
an exponent ω > 0 such that supt⩾0 eωt∥S(t)∥< ∞.
Hint: Verify the assumptions of Theorem 13.30 for ω+A for small enough ω > 0.

13.15 Prove the Datko–Pazy theorem: For any given 1 ⩽ p < ∞, a C0-semigroup S on
X is uniformly exponentially stable (see Problem 13.14) if and only if the orbit
t 7→ S(t)x belongs to Lp(R+;X) for all x ∈ X .
Hint: Apply the uniform boundedness theorem and reason by contradiction.

13.16 Let S be a C0-semigroup on X .

(a) Show that S is uniformly exponentially stable if and only if for some (equiv-
alently, for all) 1 ⩽ p < ∞ one has S ∗ f ∈ Lp(R+;X) for all f ∈ Lp(R+;X),
where

(S∗ f )(t) =
∫ t

0
S(t− s) f (s)ds, t ∈ R+.

Hint: For the ‘if’ part consider the functions f (t) = e−µtS(t)x to reduce mat-
ters to the Datko–Pazy theorem of the preceding problem.

(b) Does the analogous result hold for p = ∞?

13.17 Prove the Gearhart–Prüss theorem: A C0-semigroup (S(t))t⩾0 with generator A
on a Hilbert space H is uniformly exponentially stable (see Problem 13.14) if and
only if {λ ∈ C : Reλ > 0} ⊆ ρ(A) and

sup
Reλ>0

∥R(λ ,A)∥< ∞.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
Problems 513

Hint: Suppose that ∥S(t)∥⩽ Meωt . Complete the following steps:

(a) Extend the Fourier–Plancherel theorem to L2(Rd ;H).
(b) Prove that t 7→ R(s+ it,A)x belongs to L2(R;H) for all x ∈ H and s > ω .

By Lemma 10.34 there exists a δ > 0 such that {λ ∈C : Reλ >−δ} ⊆ ρ(A) and

sup
Reλ>−δ

∥R(λ ,A)∥< ∞.

(c) Use the resolvent identity to prove that the function t 7→ R(it,A)x belongs to
L2(R;H) for all x ∈ H.

(d) Conclude that t 7→ S(t)x belongs to L2(R;H) for all x ∈ H.

13.18 This problem shows that the Gearhart–Prüss theorem of Problem 13.17 does not
extend to general Banach spaces.

Let 1 ⩽ p < q < ∞ and let X := Lp(1,∞)∩ Lq(1,∞). This space is a Banach
space under the norm ∥ f∥ := max{∥ f∥p,∥ f∥q} (see Problem 2.21). On X define
the operators S(t), t ⩾ 0, by

(S(t) f )(x) := f (xet), x > 1.

(a) Show that S is a C0-semigroup on X with generator A given by

D(A) := { f ∈ X : x 7→ x f ′(x) ∈ X},
(A f )(x) := x f ′(x), x > 1, f ∈ D(A).

(b) Show that {Reλ >−1/q} ⊆ ρ(A) and that for all ω ′ >−1/q we have

sup
Reλ>ω ′

∥R(λ ,A)∥< ∞.

(c) Show that for all ω <−1/p we have limt→∞ e−ωt∥S(t)∥= ∞.

13.19 For x ∈ X define the subdifferential of x. by

∂ (x) := {x∗ ∈ X∗ : ∥x∗∥= ∥x∥, ⟨x,x∗⟩= ∥x∥∥x∗∥}.

(a) Show that ∂ (x) ̸=∅.
(b) Show that if X is a Hilbert space, then for all x ∈ X we have

∂ (x) = {x}.

(c) Let 1 < p < ∞ and 1
p +

1
q = 1. Show that for X = Lp(Ω) and f ∈ Lp(Ω) we

have

∂ ( f ) = {g f ,p},

where g f ,p ∈ Lq(Ω) is defined by writing f (ω) = eiθ(ω)| f (ω)| and setting
g f ,p(ω) = e−iθ(ω)| f (ω)|p−1.

(d) Is the subdifferential always a singleton?
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514 Semigroups of Linear Operators

(e) Using subdifferentials, extend the Lumer–Phillips theorem (Theorem 13.33)
to Banach spaces.

13.20 Discuss Examples 13.36 and 13.39 for Neumann boundary conditions.
13.21 Prove the identity (13.32).
13.22 Consider the wave groups W on a bounded open set D ⊆ Rd (as in Theorem

13.58) or on the full space D =Rd (as in Theorem 13.58) and denote their gener-
ators by A. Prove that if f = (u,v) ∈D(A), then the solution of the wave equation
in the sense of semigroup theory, that is, the mapping t 7→W (t) f , belongs to
C2(R;L2(D))∩C(R;H2(D)).
Hint: Let H = H1

0 (D)× L2(D) be the Hilbert space on which the wave group
acts. Start from the general observation that if f ∈D(A), then t 7→W (t) f belongs
to C1(R;H )∩C(R;D(A)); this follows from general semigroup considerations.
Then use the special structure of the wave operator A.

13.23 This problem gives some perspective on the bound ∥W (t)∥ ⩽ C(1+ t) for the
wave group over the domain Rd (Theorem 13.59). Let A be its generator.

(a) Is the operator −iA selfadjoint? (Compare with Theorem 13.58.)
(b) Show that A− I satisfies the conditions of the Lumer–Phillips theorem if we

endow H1(Rd) with the equivalent norm

∥u∥2
1,2 :=

∫
D
|u|2 + |∇u|2 dx, u ∈ H1(Rd).

(Compare with (13.36).) Conclude that with respect to the resulting equiva-
lent norm ||| · ||| on H1(Rd)×L2(Rd) we have |||W (t)|||⩽ et for all t ⩾ 0. How
does the norm ||| · ||| compare to the norm used in Theorem 13.59?

(c) Elaborating on the idea of part (b), show that for all ε > 0 the space H1(Rd)×
L2(Rd) admits an equivalent norm ||| · |||ε such that |||W (t)|||ε ⩽ eεt , t ⩾ 0.

13.24 Derive the formulas (13.20) and (13.34) for the heat semigroup and the free
Schrödinger group from their representations in terms of the projection-valued
measure associated with the Laplace operator (Example 13.62).
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14
Trace Class Operators

This chapter is devoted to the study of trace class operators and the related class of
Hilbert–Schmidt operators. In a sense that will be explained in the next chapter, we
can think of positive trace class operators and the trace as noncommutative analogues
of finite measures and the expectation. After proving some general properties of trace
class operators, we compute traces in a number of interesting examples.

14.1 Hilbert–Schmidt Operators

Throughout this chapter we assume that H is a separable complex Hilbert space.

Definition 14.1 (Hilbert–Schmidt operators). A bounded operator T ∈L (H) is called
a Hilbert–Schmidt operator if

∑
n⩾1
∥T hn∥2 < ∞

for some (equivalently, for every) orthonormal basis (hn)n⩾1 of H.

To see that this definition is independent of the orthonormal basis (hn)n⩾1, let (h′n)n⩾1

be another orthonormal basis of H. If T1 and T2 are Hilbert–Schmidt, then

∑
n⩾1

(T1hn|T2hn) = ∑
n⩾1

∑
k⩾1

(T1hn|h′k)(h′k|T2hn)

= ∑
k⩾1

∑
n⩾1

(T ⋆
1 h′k|hn)(hn|T ⋆

2 h′k) = ∑
k⩾1

(T ⋆
1 h′k|T ⋆

2 h′k).
(14.1)

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven

515



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
516 Trace Class Operators

Using this identity with hn replaced by h′n,

∑
k⩾1

(T ⋆
1 h′k|T ⋆

2 h′k) = ∑
n⩾1

(T1h′n|T2h′n).

Taking T1 = T2 = T we infer that for a Hilbert–Schmidt operator T , the quantity

∥T∥L2(H) :=
(

∑
n⩾1
∥T hn∥2

)1/2

is independent of the orthonormal basis (hn)n⩾1 of H. It is clear that

∥T∥⩽ ∥T∥L2(H).

For g,h ∈ H we recall the notation g⊗̄h for the operator on H defined by

(g⊗̄h)x := (x|h)g, x ∈ H.

Example 14.2 (Finite rank operators). Every finite rank operator is a Hilbert–Schmidt
operator. Indeed, by a Gram–Schmidt argument we may represent T as

T =
k

∑
j=1

g j ⊗̄h j

with g1, . . . ,gk ∈H orthonormal in H and h1, . . . ,hk ∈H. Completing to an orthonormal
basis (g j) j⩾1, we have

∑
n⩾1
∥T gn∥2 = ∑

n⩾1

k

∑
j=1
|(gn|h j)|2 =

k

∑
j=1

∑
n⩾1
|(gn|h j)|2 =

k

∑
j=1
∥h j∥2.

Example 14.3 (Integral operators with square integrable kernel). Let (Ω,µ) be a σ -
finite measure space such that L2(Ω,µ) is separable, and let k ∈ L2(Ω×Ω,µ × µ) be
given. Then

T f (s) :=
∫

Ω

k(s, t) f (t)dµ(t), s ∈Ω,

defines a Hilbert–Schmidt operator T on L2(Ω,µ), for if (hn)n⩾1 is an orthonormal basis
of L2(Ω,µ), then

∥T∥2
L2(H) = ∑

n⩾1

∫
Ω

∣∣∣∫
Ω

k(s, t)hn(t)dµ(t)
∣∣∣2 dµ(s)

=
∫

Ω
∑
n⩾1

∣∣∣∫
Ω

k(s, t)hn(t)dµ(t)
∣∣∣2 dµ(s)

=
∫

Ω

∥k(s, ·)∥2
L2(Ω,µ) dµ(s) = ∥k∥2

L2(Ω×Ω,µ×µ).
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As a special case, any d×d matrix A = (a jk)1⩽ j,k⩽d is a Hilbert–Schmidt operator as a
linear operator on Cd, and

∥A∥2
L2(Cd)

= ∑
1⩽ j,k⩽d

|a jk|2.

A converse to this example will be stated at the end of this section.

Proposition 14.4. The space L2(H) of all Hilbert–Schmidt operators on H is a Hilbert
space with respect to the inner product

(T1|T2) := ∑
n⩾1

(T1hn|T2hn),

where (hn)n⩾1 is any orthonormal basis of H.

Proof It is elementary to check that (T1|T2) := ∑n⩾1(T1hn|T2hn) defines an inner prod-
uct. Its independence of the choice of the basis follows from (14.1).

The triangle inequality in ℓ2 implies that L2(H) is a normed space. To prove com-
pleteness, suppose that (Tn)n⩾1 is a Cauchy sequence in L2(H). Then (Tn)n⩾1 is a
Cauchy sequence in L (H). Let T ∈ L (H) be its limit. If (h j) j⩾1 is an orthonormal
basis for H, then for all n ⩾ 1 we have

n

∑
j=1
∥T h j∥2 = lim

k→∞

n

∑
j=1
∥Tkh j∥2 ⩽ lim

k→∞
∥Tk∥2

L2(H) < ∞.

Upon letting n→ ∞, it follows that T is a Hilbert–Schmidt operator and

∥T∥L2(H) ⩽ lim
k→∞
∥Tk∥L2(H).

Also,
n

∑
j=1
∥(Tk−T )h j∥2 = lim

m→∞

n

∑
j=1
∥(Tk−Tm)h j∥2 ⩽ limsup

m→∞

∥Tk−Tm∥2
L2(H).

It follows that ∥Tk−T∥L2(H) ⩽ limsupm→∞ ∥Tk−Tm∥L2(H). Since the latter tends to 0
as k→ ∞ it follows that limk→∞ Tk = T in L2(H). This proves completeness.

Proposition 14.5. Every Hilbert–Schmidt operator is compact and can be approxi-
mated, in the Hilbert–Schmidt norm, by finite rank operators.

Proof Let T be a Hilbert–Schmidt operator on H, let (hn)n⩾1 be an orthonormal basis
for H, and denote by PN the orthogonal projection onto the span of {h1, . . . ,hN}. Then
PNT is a finite rank operator and hence Hilbert–Schmidt, and we have

limsup
N→∞

∥PNT −T∥2 ⩽ limsup
N→∞

∥PNT −T∥2
L2(H) = limsup

N→∞
∑

n⩾N+1
∥T hn∥2 = 0.

Each PNT is a finite rank operator, hence compact. Since uniform limits of compact
operators are compact, it follows that T is compact.
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Proposition 14.6. A bounded operator T ∈ L (H) is a Hilbert–Schmidt operator if
and only if T ⋆ is a Hilbert–Schmidt operator, and in this case we have ∥T∥L2(H) =

∥T ⋆∥L2(H).

Proof This is immediate from (14.1).

Hilbert–Schmidt operators have the following ideal property:

Proposition 14.7. If T is a Hilbert–Schmidt operator and S and U are bounded, then
STU is a Hilbert–Schmidt operator and

∥STU∥L2(H) ⩽ ∥S∥∥T∥L2(H)∥U∥.

Proof It is clear that ST is a Hilbert–Schmidt operator and

∥ST∥L2(H) ⩽ ∥S∥∥T∥L2(H).

Applying this to U⋆ and T ⋆ using Proposition 14.6, it follows that U⋆T ⋆ is a Hilbert–
Schmidt operator and

∥U⋆T ⋆∥L2(H) ⩽ ∥U⋆∥∥T ⋆∥L2(H) = ∥U∥∥T∥L2(H).

Then TU = (U⋆T ⋆)⋆ is a Hilbert–Schmidt operator and

∥TU∥L2(H) = ∥U⋆T ⋆∥L2(H) ⩽ ∥U∥∥T∥L2(H).

Using the first step once more, this implies that STU is a Hilbert–Schmidt operator and
satisfies the estimate in the statement of the proposition.

Theorem 14.8. Let (Ω,µ) be a σ -finite measure space such that L2(Ω,µ) is separable.
If T ∈L2(L2(Ω,µ)), there exists a unique k ∈ L2(Ω×Ω,µ × µ) such that for all f ∈
L2(Ω,µ) we have

T f (ω) =
∫

Ω

k(ω,ω ′) f (ω ′)dµ(ω ′)

for µ-almost all ω ∈Ω.

The proof of this theorem will be given in the next section.

14.2 Trace Class Operators

14.2.a The Singular Value Decomposition

Recall that a bounded operator T ∈L (H) is called positive if (T h|h)⩾ 0 for all h ∈H.
Since the scalar field is assumed to be complex, every bounded positive operator is
selfadjoint.
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Definition 14.9 (Trace, of a positive operator). The trace of a positive operator T ∈
L (H) is the nonnegative extended-real number defined by

tr(T ) := ∑
n⩾1

(T hn|hn),

where (hn)n⩾1 is any orthonormal basis of H.

To see that tr(T ) is well defined, suppose that (hn)n⩾1 and (h′n)n⩾1 are orthonormal
bases of H. Then, by the result already proved for Hilbert–Schmidt operators,

∑
n⩾1

(T h′n|h′n) = ∑
n⩾1
∥T 1/2h′n∥2 = ∑

n⩾1
∥T 1/2hn∥2 = ∑

n⩾1
(T hn|hn).

Definition 14.10 (Trace class operators). A bounded operator T ∈ L (H) is called a
trace class operator if its modulus |T | := (T ⋆T )1/2 has finite trace.

Proposition 14.11. If T ∈L (H) is a trace class operator, then ∥T∥⩽ tr(|T |).

Proof This follows from

∥T∥= ∥T ⋆T∥1/2 = sup
∥h∥=1

(
|T |h

∣∣|T |h)1/2

= sup
∥h∥=1

∥∥|T |h∥∥= ∥∥|T |∥∥= sup
∥h∥⩽1

(
|T |h

∣∣h)⩽ tr(|T |),

using the identities of Proposition 4.28 and Theorem 8.11.

Example 14.12 (Finite rank operators). Every finite rank operator T is a trace class
operator. Indeed, the proof of Theorem 9.2 gives a representation

|T |= ∑
n⩾1

µnhn ⊗̄hn,

where (µn)n⩾1 is the sequence of nonzero eigenvalues of |T | repeated according to
multiplicities and the orthonormal sequence (hn)n⩾1 consists of eigenvectors of |T |.
Then

T ⋆T = ∑
n⩾1

µ
2
n hn ⊗̄hn,

and since T ⋆T is of finite rank, this sum must be a finite sum. Therefore the same is true
for the sum representing |T |. This implies that tr(|T |) = ∑

N
n=1 µn is finite.

Proposition 14.13. Every trace class operator is compact.

Proof First assume that T is a positive trace class operator. Let (hn)n⩾1 be an orthonor-
mal basis if H. Then from

∑
n⩾1
∥T 1/2hn∥2 = ∑

n⩾1
(T hn|hn) = tr(T )< ∞
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we see that T 1/2 is a Hilbert–Schmidt operator and therefore compact. Hence also T =

(T 1/2)2 is compact.
In the general case let T =U |T | be the polar decomposition of T , with U an isometry

from R(|T |) onto R(T ) (see Theorem 8.30). Since the positive operator |T | is a trace
class operator, |T | is compact, hence so is T .

Let T be a compact operator, with polar decomposition T = U |T |. Viewing U as an
isometry from R(|T |) onto R(T ), its adjoint U⋆ is an isometry from R(T ) onto R(|T |)
satisfying U⋆U = I, and consequently |T |=U⋆T . It follows that |T | is compact.

Definition 14.14 (Singular values). The singular values of a compact operator T on H
are the nonzero eigenvalues of the compact operator |T |.

Since |T | is positive, every singular value is a strictly positive real number, and since
|T | is compact, the set of singular values is finite or countable with 0 as its only possible
accumulation point. We may therefore think of the set of singular values as a nonin-
creasing (finite or infinite) sequence (µn)n⩾1. This sequence, where each µn is repeated
according to its multiplicity, is called the singular value sequence. The singular value
sequence (µn)n⩾1 of a compact normal operator T ∈L (H) is related to the eigenvalue
sequence (λn)n⩾1 of T by the relation µn = |λn|, provided multiplicities are repeated and
the sequences are ordered in decreasing order of absolute value; this is immediate from
the spectral theory of these operators. According to the singular value decomposition of
Theorem 9.2, every compact operator T ∈L (H) admits a decomposition

T = ∑
n⩾1

µngn ⊗̄hn

with convergence in the operator norm, where (µn)n⩾1 is the singular value sequence
of T and (gn)n⩾1 and (hn)n⩾1 are orthonormal sequences in H. The following theo-
rem characterises trace class and Hilbert–Schmidt operators in terms of the sequence
(µn)n⩾1. In order to state the two cases symmetrically, we use the notation ∥T∥L1(H) :=
tr(|T |). In the next section we prove that the set L1(H) of all trace class operators on H
is a Banach space.

Theorem 14.15 (Singular value decomposition). Let T ∈ L (H) be compact, and let
(µn)n⩾1 be its singular value sequence. Then:

(1) T is a trace class operator if and only if ∑n⩾1 µn < ∞. In this case we have

∥T∥L1(H) = ∑
n⩾1

µn.

(2) T is a Hilbert–Schmidt operator if and only if ∑n⩾1 µ2
n < ∞. In this case we have

∥T∥2
L2(H) = ∑

n⩾1
µ

2
n .
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In either case we have

T = ∑
n⩾1

µngn ⊗̄hn

where (gn)n⩾1 and (hn)n⩾1 are orthonormal sequences in H, with convergence in the
norm of L1(H) in case (1) and convergence in the norm of L2(H) in case (2). If T is
positive we may take (gn)n⩾1 = (hn)n⩾1.

Proof (1): Let ν1 > ν2 > .. . be the sequence of distinct nonzero eigenvalues of |T |.
Since |T | is selfadjoint, the eigenspaces Yk corresponding to νk are pairwise orthogonal,
and since |T | is compact they are finite-dimensional, say dim(Yk) =: dk. By the spectral
theorem for compact selfadjoint operators (Theorem 9.1) we have

|T |= ∑
k⩾1

νkPk

with convergence in the operator norm of L (H). Choosing orthonormal bases (hk
j)

dk
j=1

for Yk we may write Pk = ∑
dk
j=1 hk

j ⊗̄hk
j and

|T |= ∑
k⩾1

νk

dk

∑
j=1

hk
j ⊗̄hk

j,

again with convergence in the operator norm of L (H). Fixing an orthonormal basis
(h′n)n⩾1 of H, it follows that

tr(|T |) = ∑
n⩾1

(|T |h′n|h′n) = ∑
n⩾1

∑
k⩾1

νk

dk

∑
j=1

(h′n|hk
j)(h

k
j|h′n)

= ∑
k⩾1

νk

dk

∑
j=1

∑
n⩾1
|(h′n|hk

j)|2 = ∑
k⩾1

dkνk = ∑
n⩾1

µn.

This gives the first assertion. Now let T be represented as ∑n⩾1 µngn⊗̄hn, as in the
discussion preceding the theorem. To prove convergence in the norm of L1(H) of this
sum, we note that∥∥∥T −

N

∑
n=1

µngn ⊗̄hn

∥∥∥
L1(H)

=
∥∥∥ ∑

n⩾N+1
µngn ⊗̄hn

∥∥∥
L1(H)

= ∑
n⩾N+1

µn,

the last identity being a consequence of the fact that both (gn)n⩾1 and (hn)n⩾1 are or-
thogonal sequences (cf. Example 14.18). As N→ ∞, the right-hand side tends to 0 and
the required convergence follows.

(2): With the notation of (1), the doubly indexed sequence (hk
j)k⩾1,1⩽ j⩽dk is an or-
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thonormal basis for
⊕

k⩾1 Yk and we have

∑
k⩾1

dk

∑
j=1
∥T hk

j∥2 = ∑
k⩾1

dk

∑
j=1

(|T |2hk
j|hk

j) = ∑
k⩾1

dk

∑
j=1

ν
2
k = ∑

n⩾1
µ

2
n .

Since |T |h = 0 for h ∈ Y0 := N(|T |), this gives the first assertion. Convergence in the
norm of L2(H) is proved by testing against an orthonormal basis (h′m)m⩾1 containing
(hn)n⩾1 as a subsequence, which gives∥∥∥T −

N

∑
n=1

µngn ⊗̄hn

∥∥∥2

L2(H)
=
∥∥∥ ∑

n⩾N+1
µngn ⊗̄hn

∥∥∥2

L2(H)
⩽ ∑

n⩾N+1
µ

2
n .

The right-hand side tends to 0 as N→ ∞.

At this point we briefly pause to insert a proof of Theorem 14.8.

Proof of Theorem 14.8 Let T ∈L2(L2(Ω,µ)) be given, with L2(Ω,µ) separable. By
Theorem 14.15 we have

T = ∑
n⩾1

µngn ⊗̄hn,

where (gn)n⩾1 and (hn)n⩾1 are orthonormal sequences of L2(Ω,µ) and the nonnegative
real numbers µn ⩾ 0 satisfy ∑n⩾1 µ2

n < ∞. Then, for f ∈ L2(Ω,µ) and µ-almost all
ω ∈Ω,

T f (ω) = ∑
n⩾1

µn( f |hn)gn(ω)

= ∑
n⩾1

µn

∫
Ω

f (ω ′)hn(ω ′)gn(ω)dµ(ω ′) =
∫

Ω

k(ω,ω ′) f (ω ′)dµ(ω ′),

where

k(ω,ω ′) := ∑
n⩾1

µngn(ω)hn(ω ′)

is square integrable since∫
Ω

∫
Ω

|k(ω,ω ′)|2 dµ(ω)dµ(ω ′)

=
∫

Ω

∫
Ω

∑
m⩾1

∑
n⩾1

µmµngm(ω)gn(ω)hm(ω ′)hn(ω
′)dµ(ω)dµ(ω ′)

= ∑
m⩾1

∑
n⩾1

µmµn(gm|gn)(hn|hm) = ∑
n⩾1

µ
2
n < ∞.

Returning to the main line of development, Theorem 14.15 permits us to extend the
trace to arbitrary trace class operators.
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Theorem 14.16 (Trace). If T ∈L (H) is a trace class operator, for any orthonormal
basis (hn)n⩾1 of H the sum

tr(T ) := ∑
n⩾1

(T hn|hn)

converges absolutely, the sum is independent of the choice of the basis, and

|tr(T )|⩽ tr(|T |).

Proof Let T =U |T | be the polar decomposition of T , with U a partial isometry from
R(|T |) onto R(T ). First consider the special case where (hn)n⩾1 is an orthonormal basis
containing the sequences (hk

j)
dk
j=1, k ⩾ 1, from the proof of Theorem 14.15. Since T

vanishes on R(|T |)⊥ = N(|T |), upon taking µn = 0 if hn ∈ N(|T |) we have |T |h =

∑n⩾1 µn(h|hn)hn for all h ∈ H. Then,

∑
n⩾1
|(T hn|hn)|= ∑

n⩾1
|(U |T |hn|hn)|= ∑

n⩾1
µn|(Uhn|hn)|⩽ ∑

n⩾1
µn = tr(|T |).

It follows that tr(T ) = ∑n⩾1(T hn|hn) with absolute convergence and |tr(T )|⩽ tr(|T |).
Now let (h′n)n⩾1 be an arbitrary orthonormal basis. Then, with the notation as above,

∑
n⩾1
|(T h′n|h′n)|= ∑

n⩾1

∣∣∣∑
k⩾1

(T hk|h′n)(h′n|hk)
∣∣∣⩽ ∑

n⩾1
∑
k⩾1
|(T hk|h′n)(h′n|hk)|

= ∑
k⩾1

∑
n⩾1
|(|T |Uhk|h′n)(h′n|hk)|= ∑

k⩾1
µk ∑

n⩾1
|(Uhk|h′n)(h′n|hk)|

⩽ ∑
k⩾1

µk

(
∑
n⩾1
|(Uhk|h′n)|2

)1/2(
∑
n⩾1
|(h′n|hk)|2

)1/2

= ∑
k⩾1

µk∥Uhk∥∥hk∥⩽ ∑
k⩾1

µk.

This shows that ∑n⩾1(T h′n|h′n) is absolutely summable. Moreover,

∑
n⩾1

(T h′n|h′n) = ∑
n⩾1

∑
k⩾1

(T h′n|hk)(hk|h′n) = ∑
k⩾1

∑
n⩾1

(T h′n|hk)(hk|h′n)

= ∑
k⩾1

∑
n⩾1

(T ⋆hk|h′n)(h′n|hk) = ∑
k⩾1

(T ⋆hk|hk) = ∑
k⩾1

(T hk|hk),

where the change of summation order is justified by the previous estimates, which imply
the absolute summability of the double summations.

Definition 14.17 (Trace, of a trace class operator). The trace of a trace class operator
T ∈L (H) is defined by

tr(T ) := ∑
n⩾1

(T hn|hn),

where (hn)n⩾1 is any orthonormal basis of H.
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By Theorem 14.16, the trace is well defined.

Example 14.18 (Finite rank operators, continued). The trace of a finite rank operator
T = ∑

N
n=1 gn ⊗̄hn is given by

tr(T ) =
N

∑
n=1

tr(gn ⊗̄hn) =
N

∑
n=1

(gn|hn).

Here we use the fact that the trace of a rank one operator g⊗̄h may be evaluated in
terms of an orthonormal basis (h′n)n⩾1 chosen such that h′1 = h/∥h∥ to give

tr(g⊗̄h) = ∑
n⩾1

(g|h′n)(h′n|h) = (g|h).

If P is a (not necessarily orthogonal) projection onto an N-dimensional subspace,
then

tr(P) = N.

To see this we write P=∑
N
n=1 gn ⊗̄hn with g1, . . . ,gN orthonormal. From Phn = ∥hn∥2gn

and P2hn = ∥hn∥2
∑

N
m=1(gn|hm)gm we deduce that (gn|hm) = δmn and the result follows

from the first part of the example.

More interesting examples will be given in Section 14.5.
We prove next that the set L1(H) of all trace class operators on H is a vector space

and, endowed with norm

∥T∥L1(H) := tr(|T |),

a Banach space. We begin with the proof that L1(H) is a vector space. It is evident
that if T is a trace class operator, then so is cT for all c ∈ C and tr(|cT |) = |c|tr(|T |).
Additivity is less trivial and is based on a characterisation of trace class operators which
we prove first. The crucial ingredient is the following lemma.

Lemma 14.19. Let T ∈ L (H) be compact and let (µn)n⩾1 be its singular value se-
quence. Then for all n ⩾ 1 we have

∑
j⩾1

µ j = sup
g,h

∣∣∣∑
j
(T g j|h j)

∣∣∣= sup
g,h

∑
j
|(T g j|h j)|,

where the suprema are taken over all integers k ⩾ 1 and all finite orthonormal sequences
g = (g j)

k
j=1 and h = (h j)

k
j=1 of length k in H.

Here we allow the possibility that all three expressions are infinite.

Proof Without loss of generality we assume that T ̸= 0. Let e j be a normalised eigen-
vector for |T | with strictly positive eigenvalue µ j. Consider a polar decomposition
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T =U |T |, with U a partial isometry which is isometric from R(|T |) onto R(T ). Then,

n

∑
j=1

µ j =
n

∑
j=1

(|T |e j|e j) =
n

∑
j=1

(Te j|Ue j) =
∣∣∣ n

∑
j=1

(Te j|Ue j)
∣∣∣,

using that (x|y) = (Ux|Uy) for all x,y ∈ R(|T |) and that all µ j are positive. For the same
reason, (Ue j)

n
j=1 is an orthonormal sequence. This gives the two inequalities ‘⩽’.

In the converse direction, let two orthonormal sequences (g j)
n
j=1 and (h j)

n
j=1 in H

be given. Then, with the above notation, repetition of the second part of the proof of
Theorem 14.16 gives

n

∑
j=1
|(T g j|h j)|=

n

∑
j=1

∑
k⩾1
|(U |T |ek|h j)(g j|ek)|

= ∑
k⩾1

µk

n

∑
j=1
|(Uek|h j)(g j|ek)|

⩽ ∑
k⩾1

µk

( n

∑
j=1
|(Uek|h j)|2

)1/2( n

∑
j=1
|(g j|ek)|2

)1/2

⩽ ∑
k⩾1

µk∥Uek∥∥ek∥= ∑
k⩾1

µk.

This concludes the proof of the equalities.

Theorem 14.20 (Trace class operators). For a bounded operator T ∈L (H) the follow-
ing assertions are equivalent:

(1) T is a trace class operator;
(2) we have

sup
g,h

∣∣∣∑
j⩾1

(T g j|h j)
∣∣∣< ∞,

the supremum being taken over all orthonormal sequences g = (g j) j⩾1 and h =

(h j) j⩾1 of H;
(3) we have

sup
g,h

∑
j⩾1
|(T g j|h j)|< ∞,

the supremum being taken over all orthonormal sequences g = (g j) j⩾1 and h =

(h j) j⩾1 of H.

In this situation, the suprema in (2) and (3) are in fact maxima, and we have

∥T∥L1(H) = sup
g,h

∣∣∣∑
j⩾1

(T g j|h j)
∣∣∣= sup

g,h
∑
j⩾1
|(T g j|h j)|.
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Proof The equivalences follow from Lemma 14.19, which also gives the equalities in
the final assertion of the theorem. To see that the suprema are in fact maxima, consider
the sequences given by the singular value decomposition of Theorem 14.15.

The trace class condition is stated in terms of summability of its singular value se-
quence. As a first application of Theorem 14.20 we show that if an operator is of trace
class, then its eigenvalue sequence is absolutely summable:

Proposition 14.21. For any trace class operator T ∈L (H), with eigenvalue sequence
(λn)n⩾1 repeated according to algebraic multiplicity, we have

∑
n⩾1
|λn|⩽ ∥T∥L1(H).

Proof We prove the proposition in two steps.

Step 1 – In this step we let T be any linear operator acting on a d-dimensional Hilbert
space H, with eigenvalue sequence (λ j)

d
j=1 repeated according to algebraic multiplici-

ties. Our aim is to prove that there exists an orthonormal basis (h j)
d
j=1 in H such that

(T h j|h j) = λ j for all j = 1, . . . ,d.
As a first step we prove that there exists an orthonormal basis (h j)

d
j=1 in H such that

the matrix representation (ti j)
d
i, j=1 of T with respect to this basis is lower triangular, that

is, it satisfies ti j = 0 whenever i < j. We prove this by induction on the dimension d.
For d = 1 there is nothing to be proved. Assume now that the claim has been proved
for all dimensions less than d. Assuming now that the dimension equals d, let λ be an
eigenvalue of T . Then λ − T maps H into some (d− 1)-dimensional subspace G of
H. Since G is invariant under T , the induction hypothesis implies that there exists an
orthonormal basis (h j)

d−1
j=1 in G relative to which the matrix representation of T |G is

lower triangular. Then,

((λ −T |G)hi|h j) = λ (hi|h j)− ti j = λ ·0−0 = 0, 1 ⩽ i < j ⩽ d−1.

Choose a norm one vector xd in H orthogonal to G. Relative to the orthonormal basis
(h j)

d
j=1 the matrix representation of T is lower triangular and we have

((λ −T )hi|h j) = 0, 1 ⩽ i < j ⩽ d.

This proves the claim.
With the orthonormal basis (h j)

d
j=1 as in the claim, we have

det(λ −T ) = (λ − (T h1|h1)) . . .(λ − (T hd |hd)).

But this implies that ((T h j|h j))
d
j=1 is the eigenvalue sequence of T repeated according

to algebraic multiplicities.

Step 2 – Let now H and T be as in the statement of the proposition, and let (λn)n⩾1

be the sequence of eigenvalues of T repeated according to algebraic multiplicities. Let
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(xn)n⩾1 be a corresponding sequence of eigenvectors, that is, xn ̸= 0 and T xn = λnxn for
all n ⩾ 1. For each N ⩾ 1 let HN be the linear span of x1, . . . ,xN . Applying the result just
mentioned to the restriction of T to HN , we obtain an orthonormal basis (hn)

N
n=1 for HN

such that
N

∑
n=1
|λn|=

N

∑
n=1
|(T hn|hn)|.

By Theorem 14.20,
N

∑
n=1
|(T hn|hn)|⩽ ∥T∥L1(H).

This completes the proof.

We continue with some results about the structure of the set of trace class operators.

Theorem 14.22 (Sums). If T1 and T2 are trace class operators on H, then so is their
sum T1 +T2, and we have tr(T1 +T2) = tr(T1)+ tr(T2) and

tr(|T1 +T2|)⩽ tr(|T1|)+ tr(|T2|).

Proof Let (λn)n⩾1, (µn)n⩾1, and (νn)n⩾1 denote the singular value sequences of T1, T2,
and T1 +T2, respectively. Applying Theorem 14.20 first to the compact operator T1 +T2

and then to T1 and T2 separately, we obtain

∑
n⩾1

νn = sup
g,h

∣∣∣∑
n⩾1

((T1 +T2)gn|hn)
∣∣∣

⩽ sup
g,h

∣∣∣∑
n⩾1

(T1gn|hn)
∣∣∣+ sup

g,h

∣∣∣∑
n⩾1

(T2gn|hn)
∣∣∣= ∑

n⩾1
λn + ∑

n⩾1
µn,

where the suprema are taken over all orthonormal sequences g = (gn)n⩾1 and h =

(hn)n⩾1 in H.

Theorem 14.23 (Completeness). The normed space L1(H) is a Banach space, and the
finite rank operators are dense in this space.

Proof Suppose (Tn)n⩾1 is a Cauchy sequence in L1(H). Then (Tn)k⩾1 is a Cauchy
sequence in L (H). Let T ∈ L (H) be its limit. Since each Tn is compact, so is T .
Moreover, for all orthonormal sequences (g j) j⩾1 and (h j) j⩾1 in H and all k ⩾ 1,

k

∑
j=1
|(T g j|h j)|= lim

n→∞

k

∑
j=1
|(Tng j|h j)|⩽ sup

n⩾1
∥Tn∥L1(H) < ∞.

Therefore Theorem 14.20 implies that T is a trace class operator. Also,

k

∑
j=1
|((Tn−T )g j|h j)|= lim

m→∞

k

∑
j=1
|((Tn−Tm)g j|h j)|⩽ limsup

m→∞

∥Tn−Tm∥L1(H).
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Again by Theorem 14.20, this implies that

∥Tn−T∥L1(H) ⩽ limsup
m→∞

∥Tn−Tm∥L1(H).

Since the latter tends to 0 as n→∞, it follows that limn→∞ Tn = T in L1(H). This proves
that L1(H) is complete.

To prove that the finite rank operators are dense it suffices to show that if T is a trace
class operator, then the convergence in part (2) of Theorem 14.20 also takes place with
respect to the norm of L1(H); the partial sums in part (2) are Cauchy in the norm of
L1(H) thanks to the absolute summability of the sequence (λn)n⩾1 and the fact that
∥g⊗̄h∥L1(H) = ∥g∥∥h∥. Therefore, by the completeness of L1(H), the partial sums
converge to some operator T̃ ∈L1(H); but since we know already that the sum con-
verges to T in L (H), we must have T̃ = T .

Trace class operators have the following ideal property:

Theorem 14.24 (Ideal property). If T is a trace class operator and if S and U are
bounded, then STU is a trace class operator and

∥STU∥L1(H) ⩽ ∥S∥∥T∥L1(H)∥U∥.

For the proof we need a lemma which is of some independent interest:

Lemma 14.25. Every contraction is a convex combination of four unitaries.

Proof Let T ∈L (H) be a contraction. The two operators S1 := 1
2 (T +T ⋆) and S2 :=

1
2i (T −T ⋆) are selfadjoint and satisfy T = S1 + iS2. The four operators

U±j := S j± i(I−S2
j)

1/2, j = 1,2,

are unitary and satisfy S j =
1
2 (U

+
j +U−j ).

Proof of Theorem 14.24 If U is a unitary operator, the operator TU is a trace class
operator and ∥TU∥L1(H) ⩽ ∥T∥L1(H) by Theorem 14.20. For contractions U , the same
conclusion follows by combining the unitary case with Lemma 14.25 and the general
case follows by scaling. The proof can now be finished as in Proposition 14.7.

Proposition 14.26. A bounded operator T is a trace class operator if and only if T ⋆

is a trace class operator, and in this case we have tr(T ⋆) = tr(T ) and ∥T ⋆∥L1(H) =

∥T∥L1(H).

Proof This is immediate from Theorem 14.20.

Proposition 14.27. If T is a trace class operator and S is bounded, then ST and T S are
trace class operators and

tr(ST ) = tr(T S).
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Proof That ST and T S are trace class operators follows from Theorem 14.24.
To prove the identity tr(ST ) = tr(T S) we first assume that S is unitary. If (hn)n⩾1 is

an orthonormal basis for H, then so is (Shn)n⩾1. Hence, since the trace is independent
of the choice of basis,

tr(ST ) = ∑
n⩾1

(ST hn|hn) = ∑
n⩾1

(ST Shn|Shn) = ∑
n⩾1

(T Shn|hn) = tr(T S),

where we used that S⋆S = I. The general case follows as in the previous proof by writing
a contraction S as a convex combination of four unitaries.

We conclude with a proposition describing the relationship between trace class oper-
ators and Hilbert–Schmidt operators. As a preliminary observation note that the inner
product of L2(H) can be reinterpreted in terms of the trace: we have the trace duality

(T1|T2) = tr(T ⋆
2 T1) = tr(T1T ⋆

2 ).

Proposition 14.28. A bounded operator on H is a trace class operator if and only if it
is the product of two Hilbert–Schmidt operators. If T = S2S1 is such a decomposition,
then

∥T∥L1(H) ⩽ ∥S1∥L2(H)∥S2∥L2(H).

Proof ‘If’: If S1 and S2 are Hilbert–Schmidt and T := S2S1, then for all orthonormal
sequences (g j)

n
j=1 and (h j)

n
j=1 in H and all n ⩾ 1,

n

∑
j=1
|(T g j|h j)|⩽

n

∑
j=1
∥S1g j∥∥S⋆2h j∥⩽

( n

∑
j=1
∥S1g j∥2

)1/2( n

∑
j=1
∥S⋆2h j∥2

)1/2

⩽ ∥S1∥L2(H)∥S⋆2∥L2(H) = ∥S1∥L2(H)∥S2∥L2(H).

Letting n→ ∞, by Theorem 14.20, this implies that T is a trace class operator and
satisfies the inequality ∥T∥L1(H) ⩽ ∥S1∥L2(H)∥S2∥L2(H).

‘Only if’: Using a polar decomposition T = U |T | with U a partial isometry, take
S1 = |T |1/2 and S2 = U |T |1/2. Since |T | is a trace class operator, |T |1/2 is a Hilbert–
Schmidt operator, and hence so are S1 and S2.

14.3 Trace Duality

We have already noted that the space L2(H) of Hilbert–Schmidt operators on H is a
Hilbert space with respect to the inner product given by trace duality,

(T1|T2) = tr(T1T ⋆
2 ), T1,T2 ∈L2(H).
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The next theorem establishes that, by the same formula, L1(H) can be identified iso-
metrically as the dual of K (H), the closed subspace of L (H) consisting of all compact
operators on H, and L (H) as the dual of L1(H).

Theorem 14.29 (Trace duality). By trace duality we have isometric isomorphisms

(K (H))∗ ≃L1(H) and (L1(H))∗ ≃L (H).

More precisely, the following results hold:

(1) for every T ∈ L1(H) the mapping φT : K (H)→ C given by φT (S) := tr(ST ) is
linear and bounded and satisfies

∥φT∥(K (H))∗ = ∥T∥L1(H),

and, conversely, for every φ ∈ (K (H))∗ there exists a unique T ∈L1(H) such that
φ = φT ;

(2) for every T ∈ L (H) the mapping ψT : L1(H)→ C given by ψT (S) := tr(ST ) is
linear and bounded and satisfies

∥ψT∥(L1(H))∗ = ∥T∥L (H),

and, conversely, for every ψ ∈ (L1(H))∗ there exists a unique T ∈L (H) such that
ψ = ψT .

The point of working with tr(ST ) rather than tr(ST ⋆) is that this makes the identifi-
cations of the duals into a linear correspondence rather than a conjugate-linear one.

Proof (1): Linearity of φT is clear and boundedness follows from Theorem 14.24,
which also gives the upper bound

∥φT∥(K (H))∗ ⩽ ∥T∥L1(H).

To conclude the proof of (1) it remains to show that every φ ∈ (K (H))∗ is of the form
φT for some T ∈ L1(T ) and that the converse inequality ∥T∥L1(H) ⩽ ∥φT∥(K (H))∗

holds; this also gives uniqueness.
Let φ ∈ (K (H))∗ be given. The inclusion mapping i : L2(H)→K (H) is contin-

uous, so the same is true for the functional φ̃ := φ ◦ i : L2(H) → C. By the Riesz
representation theorem there exists a unique T ∈L2(H) such that

φ(S) = φ̃(S) = (S|T )L2(H), S ∈L2(H).

Let T = U |T | be its polar decomposition and let (gn)n⩾1 be an orthonormal basis
for R(|T |). Denoting by PN = ∑

N
n=1 gn ⊗̄gn the orthogonal projection onto the span of

g1, . . . ,gN ,

∑
n⩾1

(|T |gn|gn) = ∑
n⩾1

(T gn|Ugn) = ∑
n⩾1

(Ugn|T gn)
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= lim
N→∞

(PNUPN |T )L2(H) = lim
n→∞

φ̃(PNUPN),

where the nonnegativity of the first expression justifies the second equality. Because φ

is continuous it follows that

|φ̃(PNUPN)|= |φ(iPNUPN)|⩽ ∥i∥∥PNUPN∥∥φ∥⩽ ∥φ∥,

which proves that T is a trace class operator with ∥T∥L1(H) = tr(|T |)⩽ ∥φ∥.
We now show that φ = φT ⋆ . For all g,h ∈ H we have

φT ⋆(g⊗̄h) = tr((g⊗̄h)◦T ⋆) = (g|T h).

On the other hand, if (hn)n⩾1 is an orthonormal basis such that h1 = h,

φ(g⊗̄h) = (g⊗̄h|T ) = ∑
n⩾1

((g⊗̄h)hn|T hn) = (g|T h).

By linearity, this proves the identity φT ⋆(S) = φ(S) for all finite rank operators S. Since
these are dense in K (H) by Proposition 7.6, it follows that φ = φT ⋆ as claimed.

(2): Again linearity is clear and boundedness follows from Theorem 14.24, which
also gives the upper bound ∥ψT∥(L1(H))∗ ⩽ ∥T∥L (H). The converse inequality follows
from

∥T∥L (H) = sup
∥x∥,∥y∥⩽1

|(T x|y)|= sup
∥x∥,∥y∥⩽1

|tr(T ◦ (x⊗̄y))|

= sup
∥x∥,∥y∥⩽1

|ψT (x⊗̄y)|⩽ ∥ψT∥ sup
∥x∥,∥y∥⩽1

∥x⊗̄y∥L1(H) = ∥ψT∥,

which also gives uniqueness.
To conclude the proof of (2) it remains to show that every ψ ∈ (L1(H))∗ is of the

form ψT for some (necessarily unique) T ∈L (H). By the Riesz representation theorem,
for any h ∈ H there is a unique element T h ∈ H such that

(g|T h) = ψ(g⊗̄h), g ∈ H,

and the mapping h 7→ T h is linear. From the identity it is immediate that T is bounded,
with ∥T∥⩽ ∥ψ∥. As in the proof of (1), for all finite rank operators S we have ψ(S) =
ψT ⋆(S). By Theorem 14.23 the finite rank operators are dense in L1(H). Therefore,
ψ = ψT ⋆ .

14.4 The Partial Trace

If we think of the trace as the noncommutative analogue of the expectation, the partial
trace of a trace class operator is then the noncommutative analogue of the conditional
expectation of a random variable.
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Using the notation of Appendix B we introduce the following definition.

Definition 14.30 (Hilbert space tensor product). The Hilbert space tensor product of
the Hilbert spaces H1, . . . ,HN is the completion of the algebraic tensor product H1⊗
·· ·⊗HN with respect to the norm obtained from the inner product( k

∑
i=1

g(i)1 ⊗·· ·⊗g(i)N

∣∣∣ ℓ

∑
j=1

h( j)
1 ⊗·· ·⊗h( j)

N

)
:=

k

∑
i=1

ℓ

∑
j=1

N

∏
n=1

(g(i)n |h( j)
n ).

With slight abuse of notation the Hilbert space tensor product of H1, . . . ,HN is de-
noted again by H1⊗·· ·⊗HN . We leave it to the reader to check that if H1, . . . ,HN are
separable, with an orthonormal basis (h(n)j ) j⩾1 for each Hn, then the tensors h(1)j1

⊗·· ·⊗
h(N)

jN form an orthonormal basis for H1⊗·· ·⊗HN .
If (Ω1,µ1), . . . ,(ΩN ,µN) are σ -finite measure spaces, then the linear mapping from

L2(Ω1,µ1)⊗·· ·⊗L2(ΩN ,µN) into L2(Ω1×·· ·×ΩN ,µ1×·· ·×µN) defined by

f1⊗·· ·⊗ fN 7→
[
(ω1, . . . ,ωN) 7→

N

∏
n=1

fn(ωn)
]

extends uniquely to an isometric isomorphism

L2(Ω1,µ1)⊗·· ·⊗L2(ΩN ,µN)≃ L2(Ω1×·· ·×ΩN ,µ1×·· ·×µN). (14.2)

Now let H and K be Hilbert spaces. If S ∈L (H), then the operator S⊗ I, defined on
the algebraic tensor product of H and K by

(S⊗ I)(h⊗ k) := Sh⊗ k

and extended by linearity, extends to a bounded operator on the Hilbert space tensor
product H⊗K and

∥S⊗ I∥= ∥S∥.

We leave the proof of this simple fact as an exercise to the reader; a more general version
of this result will be proved in Section 15.6.c (see Proposition 15.65).

For k ∈ K let Uk : H→ H⊗K be given by

Ukh := h⊗ k.

Its Hilbert space adjoint equals U⋆
k (h⊗ k′) = (k|k′)h.

Theorem 14.31 (Partial trace). Let H and K be separable Hilbert spaces and let T ∈
L1(H⊗K). There exists a unique operator trK(T )∈L1(H) such that for all S ∈L (H)

we have

tr(trK(T )S) = tr(T (S⊗ I)). (14.3)
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The mapping T 7→ trK(T ) is called the partial trace with respect to K and is obtained
by tracing out K.

Proof We claim that if (kn)n⩾1 is an orthonormal basis of K, the sum

trK(T ) := ∑
n⩾1

U⋆
kn

TUkn (14.4)

converges in L1(H) and its sum has the required properties.
By Theorem 14.24, each operator U⋆

kn
TUkn is a trace class operator. Hence by Theo-

rem 14.20, for each n ⩾ 1 there exist orthonormal sequences (g(n)j ) j⩾1 and (h(n)j ) j⩾1 in
H such that

∥U⋆
kn

TUkn∥L1(H) = ∑
j⩾1
|(U⋆

kn
TUkng(n)j |h

(n)
j )|.

It follows that

∑
n⩾1
∥U⋆

kn
TUkn∥L1(H) = ∑

n⩾1
∑
j⩾1
|(U⋆

kn
TUkng(n)j |h

(n)
j )|

= ∑
n⩾1

∑
j⩾1
|(T (g(n)j ⊗ kn)|h(n)j ⊗ kn)|< ∞,

where the last step uses that T is a trace class operator and the sequences (g(n)j ⊗kn) j,n⩾1

and (h(n)j ⊗ kn) j,n⩾1 are orthonormal in H⊗K.
Next we check the required identity. If (hm)m⩾1 is an orthonormal basis for H, then

tr(trK(T )S) = ∑
n⩾1

tr(U⋆
kn

TUknS) = ∑
n⩾1

∑
m⩾1

(TUknShm|Uknhm)

= ∑
n⩾1

∑
m⩾1

(T (S⊗ I)(hm⊗ kn)|hm⊗ kn) = tr(T (S⊗ I)).

It remains to prove uniqueness. If A is a trace class operator on H such that

tr(AS) = tr(trK(T )S)

for all S ∈L (H), then Theorem 14.29 implies that A = trK(T ).

Example 14.32 (Partial trace of a rank one projection). If h ∈ H and k ∈ K have norm
one and T = (h⊗ k)⊗̄(h⊗ k) is the corresponding rank one projection in H⊗K, then
trK(T ) is the rank one projection h⊗̄h in H:

trK(T ) = h⊗̄h.

Indeed, for all S ∈L (H) we have

tr(trK(T )S) = tr(T (S⊗ I)) = ((S⊗ I)(h⊗ k)|h⊗ k)

= (Sh⊗ k|h⊗ k) = (Sh|h)(k|k) = (Sh|h) = tr((h⊗̄h)S).
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The result now follows from the uniqueness part of Theorem 14.31.

In the terminology of the next chapter, the following proposition states that the partial
trace of a state is again a state.

Proposition 14.33. Let H and K be separable Hilbert spaces and let T ∈L1(H⊗K).
Then:

(1) if T has unit trace, then so has trK(T );

(2) if T is positive, then so is trK(T ).

Proof Both assertions are immediate consequences of the formulas (14.3) and (14.4)
for the partial trace. Indeed, the first assertion implies that if tr(T ) = 1, then for or-
thonormal bases (hn)n⩾1 and (kn)n⩾1 of H and K,

tr(trK(T )) = ∑
n⩾1

(trK(T )hn|hn)

= ∑
n⩾1

tr(trK(T )(hn⊗̄hn))

= ∑
n⩾1

tr(T ((hn⊗̄hn)⊗ I))

= ∑
n⩾1

∑
i, j⩾1

(T ((hn⊗̄hn)⊗ I)(hi⊗ k j)|hi⊗ k j)

= ∑
n⩾1

∑
i, j⩾1

(T ((hn⊗̄hn)hi⊗ k j)|hi⊗ k j)

= ∑
n⩾1

∑
j⩾1

(T hn⊗ k j|hn⊗ k j) = tr(T ) = 1.

This proves (1). Assertion (2) follows from

(trK(T )h|h) = ∑
n⩾1

(U⋆
kn

TUknh|h) = ∑
n⩾1

(TUknh|Uknh)⩾ 0.

14.5 Trace Formulas

In this final section we illustrate the preceding theory by computing traces in a number
of interesting situations.
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14.5.a Lidskii’s Theorem

If T is a linear operator acting on Cd whose matrix representation is in Jordan normal
form, then

tr(T ) =
d

∑
n=1

λn,

where λ1, . . . ,λd are the eigenvalues of T repeated according to their algebraic multi-
plicities; see Example 7.16. By the result of Step 1 of the proof of Proposition 14.21,
this identity extends to arbitrary linear operators T acting on Cd .

If T is a normal trace class operator on a Hilbert space H, the spectral theorem for
compact normal operators allows us to select an orthonormal basis for H consisting
of eigenvectors in the following way. For each of the eigenspaces corresponding to
the eigenvalues of T we select an orthonormal basis. These eigenspaces are mutually
orthogonal and the union of these bases, after a relabelling, is an orthonormal basis
(hn)n⩾1 for H. For this basis we have

tr(T ) = ∑
n⩾1

(T hn|hn) = ∑
n⩾1

λn,

where (λn)n⩾1 is the sequence of nonzero eigenvalues of T repeated according to their
multiplicities; in the last sum we left out the indices corresponding to eigenvalue λn = 0
and did another relabelling.

The following deep result asserts that these formulas for the trace extend to general
trace class operators:

Theorem 14.34 (Lidskii). For every trace class operator T we have

tr(T ) = ∑
n⩾1

λn,

where (λn)n⩾1 is the sequence of nonzero eigenvalues of T repeated according to their
algebraic multiplicities.

Here we use the convention tr(T ) = 0 in case there are no nonzero eigenvalues. The
absolute summability of the eigenvalue sequence has already been established in Propo-
sition 14.21.

We present the beautiful proof of this theorem due to Simon, which is based on the
theory of Fredholm determinants. In order to introduce these, we need some notation
from multilinear algebra. We refer to Appendix B for the definitions. The n-fold exterior
product of a vector space V is denoted by ΛnV . If T is a linear operator on V , then

Λ
n(T )(v1∧·· ·∧ vn) := T v1∧·· ·∧T vn

defines a linear operator Λn(T ) on Λn(V ). It is the restriction to Λn(V ) of the n-fold
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tensor product T⊗n acting on V⊗n. If S is another linear operator on V , then Λn(ST ) =
Λn(S)Λn(T ).

If H is a Hilbert space and T is bounded on H, then Λn(T ) is bounded on Λn(H),
which is a Hilbert space in a natural way, and its adjoint equals (Λn(T ))⋆ = Λn(T ⋆).
From this we infer that |(Λn(T ))| = Λn(|T |). Thus if (µ j) j⩾1 is the singular value se-
quence of T , the singular values of Λn(T ) are µ j1 · · ·µ jn with j1 < · · · < jn. It follows
that Λn(T ) is a trace class operator and

∥Λn(T )∥L1(ΛnH) = ∑
j1<···< jn

µ jn · · ·µ jn =
1
n! ∑

j1,..., jn⩾1
µ j1 · · ·µ jn =

1
n!
∥T∥n

L1(H).

(14.5)
For n×n matrices A we have the following identity relating the determinant to traces

and exterior products, known as MacMahon’s formula:

det(1+A) =
n

∑
k=0

tr(ΛkA),

with the convention that Λ0(T ) = I. A proof is sketched in Problem 14.15. Observ-
ing that Λk(V ) = {0} when k > dim(V ), MacMahon’s formula suggests the following
definition.

Definition 14.35 (Fredholm determinant). Let T ∈L (H) be a trace class operator. The
Fredholm determinant of I +T is defined as

det(I +T ) := ∑
n∈N

tr(Λn(T )).

The sum on the right-hand side is absolutely convergent since

∑
n∈N
|tr(Λn(T ))|⩽ ∑

n⩾1
∥(Λn(T ))∥L1(ΛnH) ⩽ ∑

n∈N

1
n!
∥T∥n

L1(H) = exp
(
∥T∥L1(H)

)
.

(14.6)
The crucial step in the proof of Lidskii’s theorem is to establish validity of the fol-

lowing identity for all trace class operators T and all µ ∈ C:

det(I +µT ) = ∏
n⩾1

(1+µλn).

Here (λn)n⩾1 is the sequence of eigenvalues of T repeated according to algebraic multi-
plicities. Notice that Proposition 14.21 guarantees the convergence of the infinite prod-
uct. Once this formula has been obtained, Lidskii’s theorem is immediate by compar-
ing the linear term of this product with the linear term in the definition det(I +µT ) =
∑n∈N µn tr(Λn(T )).

The remainder of this section is devoted to proving Lidskii’s theorem. We fix a sepa-
rable Hilbert space H and start with some preliminary results.
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Lemma 14.36. Let T ∈L (H) be a trace class operator and let (µn)n⩾1 be its singular
value sequence, repeated according to multiplicities. Then

|det(I +T )|⩽ ∏
n⩾1

(1+µn).

Proof It follows from (14.5) that

|det(I +T )|⩽ ∑
n∈N
|tr(Λn(T ))|⩽ ∑

n∈N
∥Λn(T )∥L1(ΛnH)

⩽ ∑
n∈N

1
n! ∑

j1,..., jn⩾1
µ j1 · · ·µ jn ⩽ ∏

n⩾1
(1+µn).

Lemma 14.37. Let T ∈L (H) be a trace class operator. For all ε > 0 there exists a
constant Cε ⩾ 0 such that for all λ ∈ C we have

|det(I +λT )|⩽Cε exp(ε|λ |).

Proof Using the inequality |1+ t|⩽ exp(|t|), Lemma 14.36 implies, for any N ⩾ 1,

|det(I +λT )|⩽ ∏
n⩾1

(1+ |λ |µn)⩽
N

∏
n=1

(1+ |λ |µn)exp
(

∑
n⩾N+1

|λ |µn

)
.

Fix ε > 0. If we choose N ⩾ 1 so large that ∑n⩾N+1 µn < 1
2 ε the desired estimate is

obtained, with

Cε := sup
λ∈C

N

∏
n=1

(1+ |λ |µn)exp
(
−1

2
ε|λ |

)
.

Lemma 14.38. The map T 7→ det(I +T ) is continuous from L1(H) to C.

Proof Suppose Tj→ T in L1(H) as j→ ∞. Fix ε > 0 and choose N ⩾ 0 so large that
∑n⩾N+1 Cn/n! < 1

3 ε , where C := sup j ∥Tj∥L1(H). Then, by (14.6),

|det(I +Tj)−det(I +T )|⩽ 2
3

ε +
N

∑
n=1

tr(|Λn(Tj)−Λ
n(T )|).

Denoting by Pn the orthogonal projection in H⊗n onto Λn(H), we have

tr(|Λn(Tj)−Λ
n(T )|) = tr(|Pn(T⊗n

j −T⊗n)Pn|)

⩽ tr(|T⊗n
j −T⊗n|)⩽ nCn−1∥Tj−T∥L1(H).

If we choose N ⩾ 1 so large that also ∥Tj−T∥L1(H) <
1
3 ε(∑N

n=1 nCn−1)−1 for j ⩾ N,
then |det(I +Tj)−det(I +T )|< ε for j ⩾ N.
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Lemma 14.39. Let T be a bounded operator on H such that T = PT P for some or-
thogonal projection P on H of finite rank m. Viewing P(I +T )P as an operator on the
m-dimensional Hilbert space R(P), we have

det(I +T ) = det(P(I +T )P).

Proof The identity T = PT P implies that T is of rank at most m, and therefore we
have Λn(T ) = 0 for n > m. For 0 ⩽ n ⩽ m we have tr(Λn(T )) = tr(Λn(PT P)). Applying
Definition 14.35 twice,

det(I +T ) =
m

∑
n=0

tr(Λn(T )) =
m

∑
n=0

tr(Λn(PT P))

=
ν

∑
n=0

tr(Λn(PT P)|R(P)) = det
(
IR(P)+PT P

)
= det(P(I +T )P).

Lemma 14.40. If S,T ∈L (H) are trace class operators, then

det(I +T )det(I +S) = det((I +T )(I +S)).

Proof First assume that T and S are both of finite rank. Let P be a finite rank projection
in H whose range contains the ranges of T , T ⋆, S, and S⋆. With m being the rank of P,
from Lemma 14.39 along with the identity

det(P(I +T )P) =
m

∑
k=0

tr(Λk(PT P)) = tr(Λm(P(I +T )P))

and similarly for S, we obtain

det(I +T )det(I +S) = tr(Λm(P(I +T )P))tr(Λm(P(I +S)P))

= tr(Λm(P(I +T )P)Λm(P(I +S)P))

= tr(Λm(P(I +T )(I +S)P)) = det((I +T )(I +S)).

Here we used that Λm(R(P)) is one-dimensional, so that the trace is multiplicative on
this space. This proves the lemma for finite rank operators T and S. By Lemma 14.38,
the general case now follows by approximation.

Proposition 14.41. If T ∈ L (H) is a trace class operator, then I + T is invertible if
and only if det(I +T ) ̸= 0.

Proof Suppose first that I+T is invertible and let S :=−T (I+T )−1. Then S is a trace
class operator and an easy computation gives (I+T )(I+S) = I. It follows from Lemma
14.40 that det(I +T )det(I +S) = det(I) = 1, so det(I +T ) ̸= 0.

If I +T is not invertible, then −1 is an eigenvalue of T . Denoting the corresponding
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spectral projection by P, then from Lemma 14.40 and the commutation relation T P =

PT we obtain

det(I +T P)det(I +T (I−P)) = det(I +T P+T (I−P)+T PT (I−P)) = det(I +T ).

Denote by ν the algebraic multiplicity of −1. By Lemma 14.39 applied to T P,
det(I +T P) is the determinant of a finite-dimensional noninvertible operator and there-
fore it equals 0. This proves that det(I +T ) = det(I +T P) = 0.

Proposition 14.42. If T ∈ L (H) is a trace class operator with nonzero eigenvalue
−1/µ0 of algebraic multiplicity ν , then F(µ) = det(I +µT ) has a zero at µ0 of multi-
plicity ν .

Proof Denoting by P the spectral projection associated with −1/µ0, we have

det(I +µT ) = det(I +µT P)det(I +µT (I−P))

and det(I +µT (I−P)) ̸= 0 by Proposition 14.41. The operator T P vanishes on the
range of I−P and its restriction to the range of P has spectrum {−1/µ0}. Thus, for
0 ⩽ n ⩽ ν ,

tr(Λn(µT P)) = ∑
1⩽ j1<···< jn⩽ν

(
− µ

µ0

)n
=

(
ν

n

)(
− µ

µ0

)n

and consequently

det(I +µT P) =
ν

∑
n=0

(
ν

n

)(
− µ

µ0

)n
=
(

1− µ

µ0

)ν

.

The next lemma from complex function theory is stated without proof.

Lemma 14.43. Let F be an entire function whose zeroes z1,z2, . . . (counting multiplic-
ities) satisfy ∑n⩾1 1/|zn|< ∞. Assume furthermore that F(0) = 1 and that for all ε > 0
there exists a constant Cε ⩾ 0 such that |F(z)|⩽Cε exp(ε|z|). Then

F(z) = ∏
n⩾1

(
1− z

zn

)
, z ∈ C.

Theorem 14.44. If T ∈ L (H) is a trace class operator, with eigenvalue sequence
(λn)n⩾1 repeated according to algebraic multiplicities, then for all µ ∈ C we have

det(I +µT ) = ∏
n⩾1

(1+µλn).

Proof By Propositions 14.41 and 14.42, the zeroes of F(µ) := det(I +µT ), count-
ing multiplicities, are precisely the points −1/λn. Proposition 14.21 and Lemma 14.37
show that the assumptions of Lemma 14.43 hold for this function. The result now fol-
lows from the lemma.
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Proof of Theorem 14.34 The linear term in the Taylor expansion of det(I +µT ) =
∑n∈N tr(Λn(T )) equals tr(Λ1(T )) = tr(T ). On the other hand, by Theorem 14.44, this
term equals ∑n⩾1 λn.

14.5.b Trace Formula for Integral Operators

The trace of an integral operator with continuous kernel can be computed as follows.

Theorem 14.45 (Mercer). Let µ be a finite Borel measure on a compact metric space
K. Let T be an integral operator on L2(K,µ) of the form

T f (s) =
∫

K
k(s, t) f (t)dµ(t)

with continuous kernel k ∈C(K×K). Then:

(1) if T is a trace class operator, then its trace is given by

tr(T ) =
∫

K
k(t, t)dµ(t);

(2) if T is positive, that is, if (T f | f ) ⩾ 0 for all f ∈ L2(K,µ), then T is a trace class
operator.

By an argument similar to that employed in the proof below, one sees that T is positive
if and only if the kernel k is positive definite in the sense that for all integers N ⩾ 1 and
all t1, . . . , tN ∈ S and z1, . . . ,zN ∈ C we have

N

∑
n,m=1

k(tm, tn)zmzn ⩾ 0.

Proof It has been observed in Remark 2.31 that L2(K,µ) is separable.

(1): Suppose that the integral operator T is a trace class operator. By Proposition
14.28 we have T = S2S1 with S1,S2 Hilbert–Schmidt on L2(K,µ). Accordingly, by
Theorem 14.8 there exist k1,k2 ∈ L2(K×K,µ×µ) such that for µ-almost all s ∈ K we
have

T f (s) =
∫

K

∫
K

k2(s, t)k1(t,u) f (u)dµ(u)dµ(t).

As a result, for µ×µ-almost all (s, t) ∈ K×K we have

k(s, t) =
∫

K
k2(s, t)k1(t,u)dµ(u).

Then,

tr(T ) = tr(S2S1) = (S1|S⋆2)L2(L2(K,µ))
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(∗)
= (k1|k2)L2(K×K,µ×µ)

=
∫

K

∫
K

k1(s, t)k2(t,s)dµ(s)dµ(t) =
∫

K
k(s,s)dµ(s),

where (∗) follows from the fact, which follows from Example 14.2 and Theorem 14.8,
that the correspondence between Hilbert–Schmidt operators and their square integrable
kernels is unitary.

(2): By the result of Example 7.7, T is compact, and the positivity of T implies that
its singular value sequence equals its sequence of nonzero eigenvalues (λn)n⩾1, taking
into account multiplicities. The rest of the proof is accomplished in two steps.

Step 1 – Let (hn)n⩾1 be an orthonormal sequence of eigenvectors in L2(K,µ) cor-
responding to the sequence (λn)n⩾1. The uniform continuity of k implies that T maps
L2(K) into C(K) and therefore T hn = λnhn implies hn ∈C(K) for all n ⩾ 1. As a con-
sequence, for each n ⩾ 1 the kernel

kn(s, t) := k(s, t)−
n

∑
j=1

λ jh j(s)h j(t), s, t ∈ K,

is continuous.
Let f ∈ L2(K,µ). Since T vanishes on the orthogonal complement of the closed linear

span of (hn)n⩾1, we have

(T f | f ) = ∑
n⩾1

∑
m⩾1

(
λn( f |hn)hn

∣∣∣( f |hm)hm

)
= ∑

n⩾1
λn|( f |hn)|2

and therefore∫
K

∫
K

kn(s, t) f (t) f (s)dµ(t)dµ(s)

= (T f | f )−
n

∑
j=1

λ j

∫
K

∫
K

f (t)h j(t) f (s)h j(s)dµ(t)dµ(s)

= ∑
n⩾1

λn|( f |hn)|2−
n

∑
j=1

λ j|( f |h j)|2 ⩾ 0.

In particular, for any Borel sets B of positive µ-measure,

1
(µ(B))2

∫
K

∫
K

kn(s, t)1B(t)1B(s)dµ(t)dµ(s)⩾ 0. (14.7)

By a limiting argument (applying (14.7) to a sequence of balls B(t;rn) centred at a
given point t ∈ supp(µ) with radii rn ↓ 0), from this inequality and the continuity of kn

we obtain kn(t, t)⩾ 0 for µ-almost all t ∈ K for all n ⩾ 1 and t ∈ K. Then,

0 ⩽
∫

K
kn(t, t)dµ(t)
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=
∫

K
k(t, t)dµ(t)−

n

∑
j=1

λ j

∫
K
|h j(t)|2 dµ(t) =

∫
K

k(t, t)dµ(t)−
n

∑
j=1

λ j.

Letting n→ ∞ we obtain that T ∈L1(H) and

∥T∥L1(H) = tr(T ) = ∑
j⩾1

λ j ⩽
∫

K
k(t, t)dµ(t).

In the positive case, the trace formula can be alternatively proved by the following
more elementary argument. For m = 1,2, . . . let (K(m)

n )Nm
n=1 be a partition of K of mesh

less than 1/m. For 1 ⩽ n ⩽ Nm let

h(m)
n := 1

K(m)
n

/

√
µ(K(m)

n )

(here, and in what follows, we discard those indices for which µ(K(m)
n ) = 0 without ex-

pressing this in our notation in order not to overburden it). This sequence is orthonormal
in L2(K,µ). Using the uniform continuity of k we obtain

lim
m→∞

Nm

∑
n=1

(T h(m)
n |h(m)

n ) = lim
m→∞

Nm

∑
n=1

1

µ(K(m)
n )

∫
K(m)

n

∫
K(m)

n

k(x,y)dµ(x)dµ(y)

= lim
m→∞

Nm

∑
n=1

1

µ(K(m)
n )

∫
K(m)

n

∫
K(m)

n

k(y,y)dµ(x)dµ(y)

= lim
m→∞

Nm

∑
n=1

∫
K(m)

n

k(y,y)dµ(y) =
∫

K
k(y,y)dµ(y).

Hence, by Theorem 14.20,∫
K

k(y,y)dµ(y) = lim
m→∞

Nm

∑
n=1

(T h(m)
n |h(m)

n )⩽ tr(T ).

14.5.c Trace Formula for Fredholm Operators

The following theorem gives a formula for the index of a Fredholm operator in terms of
traces.

Theorem 14.46 (Fedosov). Let T ∈L (H) be a Fredholm operator and let S ∈L (H)

be an operator such that both I− ST and I− T S are finite rank operators. Then the
commutator [T,S] = T S−ST is a trace class operator and

tr([T,S]) = ind(T ).
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By Atkinson’s theorem (Theorem 7.23), operators S with the stated properties always
exist.

Proof The operator [T,S] = (I− ST )− (I− T S) is of finite rank and hence a trace
class operator. If S′ ∈ L (H) is another operator such that I− S′T and I− T S′ are of
finite rank, then R := S′− S is of finite rank. Indeed, RT = (I− ST )− (I− S′T ) is of
finite rank and the range of T , being a Fredholm operator, has finite codimension; these
facts are compatible only if R itself is of finite rank. As a consequence,

tr(T S′−S′T ) = tr(T S−ST +T R−RT ) = tr(T S−ST )+ tr(T R−RT ) = tr(T S−ST ),

using that R, being of finite rank, is a trace class operator and therefore tr(T R) = tr(RT )
by Proposition 14.27.

To prove the theorem it therefore suffices to prove it for the bounded operator S ∈
L (H) constructed in the proof of Theorem 7.23. This operator enjoys the follow-
ing properties: (i) I− ST and I− T S are finite rank projections, and (ii) dimN(T ) =
dimR(I−ST ) and codimR(T ) = dimR(I−T S). Since the rank of a finite rank projec-
tion is equal to its trace (by Example 14.18), we have

ind(T ) = dimN(T )− codimR(T ) = tr(I−ST )− tr(I−T S) = tr(T S−ST ).

14.5.d Trace Formula for Commutators of Toeplitz Operators

From Section 7.3.d we recall that H2(D) is the vector space of all holomorphic functions
on D of the form ∑n∈N cnzn with ∑n∈N |cn|2 < ∞. Identifying it with the closed subspace
of L2(T) consisting of all functions whose negative Fourier coefficients vanish, H2(D)
is the range of the Riesz projection

P : ∑
n∈Z

f̂ (n)en 7→ ∑
n∈N

f̂ (n)en

in L2(T), where en(θ) = einθ . This projection discards the terms in the Fourier series
( f̂ (n))n∈Z of f corresponding to the negative indices n =−1,−2, . . .

Given a function φ ∈ L∞(T), the Toeplitz operator with symbol φ has been defined
as the bounded operator Tφ on H2(D) given by

Tφ f := P(φ f ), f ∈ H2(D).

It follows from Lemma 7.30 that for all φ ,ψ ∈C(T) the commutator

[Tφ ,Tψ ] = Tφ Tψ −Tψ Tφ

is compact. For functions φ ,ψ ∈C2(T) we have the following stronger result.
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Theorem 14.47 (Helton–Howe). For all φ ,ψ ∈ C2(T) the commutator [Tφ ,Tψ ] is a
trace class operator and

tr([Tφ ,Tψ ]) =
1

2πi

∫
π

−π

φ(θ)ψ ′(θ)dθ . (14.8)

Proof The proof is a matter of computation. First, for n,m ∈ Z, [Ten ,Tem ] is a finite
rank operator of rank at most min{|m|, |n|}, and therefore by Example 14.18 with

∥[Ten ,Tem ]∥L1(H2(D)) ⩽ min{|m|, |n|}. (14.9)

Second, for all n,m ∈ Z and j ∈ N we have TenTeme j = λ nm
j en+m+ j with λ nm

j ∈ {0,1},
so that

tr([Ten ,Tem ]) = ∑
j⩾0

(λ nm
j −λ

mn
j )(en+m+ j|e j). (14.10)

Case 1: n+m ̸= 0. In that case (14.10) gives

tr([Ten ,Tem ]) = 0 =
1

2πi

∫
π

−π

en(θ)e′m(θ)dθ .

Case 2: n+m = 0 with n ⩾ 0. In that case λ
n,−n
j = 0 if j < n and λ

n,−n
j = 1 if j ⩾ n,

while always λ
−n,n
j = 1, and (14.10) gives

tr([Ten ,Tem ]) =−n =− n
2π

∫
π

−π

en(θ)e−n(θ)dθ =
1

2πi

∫
π

−π

en(θ)e′m(θ)dθ .

The case n+m = 0 with n < 0 is entirely similar.

This completes the proof of (14.8) for φ = en and ψ = em. Since both the left-
and right-hand side of (14.8) are linear in both φ and ψ , for φ = ∑n∈N anen and ψ =

∑n∈N bnen we have

[Tφ ,Tψ ] = ∑
m,n∈N

anbm[Ten ,Tem ] (14.11)

and hence, taking traces,

tr([Tφ ,Tψ ]) = ∑
m,n∈N

anbm tr([Ten ,Tem ])

= ∑
m,n∈N

anbm
1

2π

∫
π

−π

en(θ)e′m(θ)dθ =
1

2πi

∫
π

−π

φ(θ)ψ ′(θ)dθ ,

provided the sum in (14.11) converges in L1(H2(D)). Keeping in mind (14.9), this can
be guaranteed if we assume that φ and ψ are C2, for then |an| and |bn| are of order O( 1

n2 )

as n→ ∞ and

∑
m,n∈Z

min{|m|, |n|}
(1+m2)(1+n2)

= ∑
m∈Z

∑
n∈Z
|n|⩽|m|

|n|
(1+m2)(1+n2)

+ ∑
n∈Z

∑
m∈Z
|m|<|n|

|m|
(1+m2)(1+n2)
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≲ ∑
k∈Z

log(1+ |k|)
1+ k2 < ∞.

14.5.e Trace Formula for the Dirichlet Heat Semigroup

Let D be a bounded open subset of Rd satisfying |∂D| = 0 and let SDir be the C0-
semigroup on L2(D) generated by the Dirichlet Laplacian ∆Dir associated with D.

Theorem 14.48 (Trace formula for the Dirichlet heat semigroup). For all t > 0 the
operator SDir(t) is a trace class operator on L2(D) with

lim
t↓0

td/2tr(SDir(t)) =
|D|

(4π)d/2 .

For the proof of this formula we need the following lemma.

Lemma 14.49. Let µ be a Borel measure on [0,∞) whose Laplace transform satisfies

L µ(t) :=
∫

∞

0
e−tx dµ(x)< ∞

for all t > 0. If for some r ⩾ 0 and a ∈ R we have

lim
x→∞

x−r
µ([0,x]) = a,

then

lim
t↓0

trL µ(t) = aΓ(1+ r),

where Γ(s) =
∫

∞

0 xs−1e−x dx, s > 0, is the Euler Gamma function.

Proof Integrating by parts and setting ν(x) := µ([0,x]), we have

trL µ(t) = tr
∫

∞

0
e−tx dµ(x)

= tr+1
∫

∞

0
e−tx

ν(x)dx

= tr
∫

∞

0
e−y

ν
(y

t

)
dy =

∫
∞

0
e−y(t + y)r

(
1+

y
t

)−r
ν
(y

t

)
dy.

By assumption we have limx→∞ x−rν(x) = a, and therefore, for all y > 0,

lim
t↓0

(
1+

y
t

)−r
ν
(y

t

)
= a.

In particular we have C := supx>0(1+ x)−rν(x)< ∞ and therefore

e−y(t + y)r
(

1+
y
t

)−r
ν
(y

t

)
⩽Ce−y(t + y)r,
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and for 0 ⩽ t ⩽ 1 we can bound the right-hand side by Ce−y(1+ y)r. It follows that the
dominated convergence theorem can be applied to obtain

lim
t↓0

trL µ(t) = a
∫

∞

0
e−yyr dy = aΓ(1+ r).

Proof of Theorem 14.48 As was observed in the course of the proof of Theorem 12.26,
the resolvent operators R(λ ,∆Dir) are compact, and this implies the compactness of
the inclusion mapping of D(∆Dir) into L2(D). By analyticity, for each t > 0 the oper-
ator SDir(t) maps L2(D) into D(∆Dir) boundedly, and therefore SDir(t) is compact as a
bounded operator on L2(D). We can now apply the spectral mapping formula Proposi-
tion 13.20. Evaluating the trace against an orthonormal basis consisting of eigenvectors
we conclude that SDir(t) is a trace class operator and

tr(SDir(t)) = ∑
n⩾1

e−λnt < ∞,

where 0 < λ1 < λ2 < · · · → ∞ is the enumeration, counting multiplicities, of the eigen-
values of ∆Dir; the finiteness of this sum is a consequence of Weyl’s theorem (Theo-
rem 12.29). We now apply Lemma 14.49 to the Borel measure µ = ∑n⩾1 δ{λn}. Setting
N(x) := max{n ⩾ 1 : λn ⩽ x}, by Weyl’s theorem we have

lim
x→∞

x−d/2
µ([0,x]) = lim

x→∞
x−d/2N(x) =

ωd

(2π)d |D|,

where ωd = πd/2/Γ(1+ 1
2 d) is the volume of the unit ball in Rd. Lemma 14.49 allows

us to conclude that

lim
t↓0

td/2tr(SDir(t)) = lim
t↓0

td/2
∑
n⩾1

e−λnt

= lim
t↓0

td/2
µ̂(t) =

ωd

(2π)d |D|Γ
(
1+

d
2
)
=

|D|
(4π)d/2 .

14.5.f Euler’s Identity Revisited

Consider the Dirichlet Laplacian ∆Dir on L2(0,1). As shown in Example 12.23, the
spectrum of this operator equals

σ(∆Dir) = {−π
2n2 : n = 1,2, . . .}

and consists of the eigenvalues corresponding to the eigenfunctions fn(t) = sin(nπt); as
a consequence of Lemma 12.25, the spectrum of the inverse operator ∆

−1
Dir is given by

σ(∆−1
Dir) =

{
− 1

π2n2 : n = 1,2,3, . . .
}
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and it again consists of the eigenvalues. Since−∆
−1
Dir is positive, it follows from Mercer’s

theorem that
∞

∑
n=1

1
π2n2 = tr(−∆

−1
Dir) =

∫ 1

0
k(t, t)dt,

where k is Green’s function for the Poisson problem on the unit interval with Dirichlet
boundary conditions. From Section 11.2.a we recall that it is given by

k(s, t) =

{
(1− t)s, s ⩽ t,

(1− s)t, t ⩽ s.

In view of ∫ 1

0
k(t, t)dt =

∫ 1

0
(1− t)t dt =

1
6

we recover Euler’s identity
∞

∑
n=1

1
n2 =

π2

6
.

Problems

14.1 (a) Find a compact operator on ℓ2 that is not Hilbert–Schmidt.
(b) Find a Hilbert–Schmidt operator on ℓ2 that is not of trace class.

14.2 Show that if T ∈L (H) is a trace class operator and U ∈L (H) is unitary, then
UTU⋆ is a trace class operator and tr(T ) = tr(UTU⋆).

14.3 Show that if A ∈L (H) is a positive trace class operator, then A ⩽ tr(A)I, that is,
tr(A)I−A is positive.

14.4 Prove the following properties of the partial trace.

(a) If T ∈L1(H⊗K), then

tr(trK(T )) = tr(T ).

(b) If T ∈L1(H⊗K) and A1,A2 ∈L (H), then (A1⊗ I)T (A2⊗ I)∈L1(H⊗K)

and

trK((A1⊗ I)T (A2⊗ I)) = A1trK(T )A2.

(c) If A ∈L1(H) and B ∈L1(K), then T := A⊗B ∈L1(H⊗K) and

trK(T ) = tr(B)A.

(d) The adjoint of the mapping T 7→ trKT from L1(H ⊗K)→ L1(H) is the
mapping S 7→ S⊗ I from L (H) to L (H⊗K).
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14.5 Show that if S = x⊗̄x and T = y⊗̄y with ∥x∥= ∥y∥= 1 are two rank one orthog-
onal projections, then

∥S−T∥2 = 1−|(x|y)|2 = 1− tr(ST ).

14.6 Consider a bounded operator T ∈L (H). Show that the following assertions are
equivalent:

(1) T is a trace class operator, respectively Hilbert–Schmidt;
(2) exp(T )− I is a trace class operator, respectively Hilbert–Schmidt.

Hint: Compare with Problem 7.20.
14.7 Prove the two assertions made after Definition 14.30.
14.8 Let T : L2(0,1)→ L∞(0,1) be a bounded operator, and let (hn)n⩾1 be an orthonor-

mal basis for L2(0,1).

(a) Show that for every k ⩾ 1 there exists a null set Nk ⊆ (0,1) such that for all
c ∈ Ck we have ∣∣∣ k

∑
j=1

c jT h j(t)
∣∣∣⩽ ∥T∥, t ∈ (0,1)\Nk.

(b) Deduce from part (a) that

k

∑
j=1
|T h j(t)|2 ⩽ ∥T∥2, t ∈ (0,1)\Nk.

Let i : L∞(0,1)→ L2(0,1) be the inclusion mapping.

(c) Show that i◦T is Hilbert–Schmidt on L2(0,1) and ∥i◦T∥L2(L2(0,1)) ⩽ ∥T∥.
14.9 Prove that if T ∈L (H) is selfadjoint and S ∈L (H) is compact, and if the com-

mutator [T,S] is a trace class operator, then tr[T,S] = 0.
Hint: Compute the traces of [T,S±S⋆] relative to orthonormal bases which diag-
onalise S±S⋆.

14.10 Let S,T ∈L (H) be selfadjoint trace class operators. Let f : R→ R be a convex
C1-function.

(a) Show that for all norm one vectors h ∈ H we have

( f (T )h|h)⩾ f ((T h|h))⩾ f ((Sh|h))+ f ′((Sh|h))((T −S)h|h).

Hint: For the first inequality expand h against an orthonormal basis of eigen-
vectors of T .

(b) Deduce that

tr( f (T ))⩾ tr( f (S))+ tr( f ′(S)(T −S)).

Hint: Show that if h is an eigenvector of S, then the right-hand side in the
identity of part (a) equals (( f (S)+ f ′(S)(T −S))h|h).
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14.11 Prove the following analogue of Proposition 14.21: If T ∈L (H) is a Hilbert–
Schmidt operator, with eigenvalue sequence (λn)n⩾1 repeated according to alge-
braic multiplicity, then

∑
n⩾1
|λn|2 ⩽ ∥T∥2

L2(H).

14.12 Let T ∈L (H) be compact and let µ1 ⩾ µ2 ⩾ · · ·⩾ 0 be its (downwards ordered)
singular value sequence. Show that for all n ⩾ 1 we have

µn = inf
Y⊆H

dim(Y )=n−1

sup
∥y∥=1
y⊥Y

∥Ty∥,

where the infima are taken over all subspaces Y of H of dimension n−1.
Hint: Use Theorem 9.4.

14.13 As was observed in the main text, the nonzero eigenvalues λn and singular val-
ues µn of a compact normal operator, repeated according to multiplicities and
ordered in decreasing absolute values, are related by |λn| = µn. Show that this
relation breaks down in the absence of normality, by computing the eigenvalues

and singular values of the matrix
(

1 1
0 1

)
.

14.14 Let A be a complex d× d matrix and let (λn)
d
n=1 and (µn)

d
n=1 be the sequences

of eigenvalues of A and |A|, respectively, repeated according to algebraic multi-
plicities. Show that

d

∏
n=1
|λn|=

d

∏
n=1

µn.

Hint: Use the result from Step 1 in the proof of Proposition 14.21 to see that
det(A) = ∏

d
n=1 λn. Apply this to |A|.

14.15 Complete the following outline of a proof of MacMahon’s formula

det(1+A) =
d

∑
k=0

tr(Λk(A))

for complex d×d matrices A.

(a) Prove the formula for the special case when A is diagonalisable, by showing
that in this case the formula reduces to the identity

d

∏
n=1

(1+λn) =
d

∑
k=0

∑
1⩽i1<···<ik⩽d

λi1 · · ·λik ,

where (λn)
d
n=1 is the sequence of eigenvalues of A repeated according to

algebraic multiplicities.
(b) Show that the diagonalisable matrices are dense in Md(C).
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14.16 Prove the following symmetric analogue of MacMahon’s formula: for complex
d×d matrices A one has

1
det(I−A)

=
d

∑
n=0

tr(Γn(A)),

where Γn(A) is the natural extension of A to the n-fold symmetric tensor product
Γn(Cd) (cf. Appendix B).

14.17 Let φ ,ψ be smooth functions on the unit circle and let f ,g : D→ R denote their
harmonic extensions. Applying Green’s theorem to ( f ∂g

∂x , f ∂g
∂y ), show that Theo-

rem 14.47 implies the identity

tr([Tφ ,Tψ ]) =
1

2πi

∫
D

∂ f
∂x

∂g
∂y
− ∂g

∂x
∂ f
∂y

dxdy.

14.18 Using Fedosov’s theorem, prove that if T is a Fredholm operator on H and T =

U |T | is its polar decomposition, then

ind(T ) = tr(UU⋆−U⋆U).

Hint: Show that I−U⋆U and I−UU⋆ are the projections onto the null spaces of
T and T ⋆ respectively, and that codimR(T ) = dimN(T ⋆).

14.19 Use Fedosov’s theorem to give an alternative proof of the identity

ind(T1T2) = ind(T1)+ ind(T2)

for Fredholm operators T1 and T2 acting on H.
14.20 Let A and B be bounded positive operators on H. Show that if AB is of trace class,

then tr(AB)⩾ 0.
Hint: Use Problem 6.14 to infer that σ(AB) \ {0} = σ(A1/2BA1/2) \ {0} is con-
tained in the interval (0,∞). Then apply Lidskii’s theorem.

14.21 Show that the Ornstein–Uhlenbeck operator OU(t) is trace class for each t > 0,
and find its trace norm.
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15
States and Observables

In this final chapter we apply some of the ideas developed in the preceding chapters to
set up a functional analytic framework for Quantum Mechanics. More specifically, we
will show how the replacement of Borel sets in classical mechanics by orthogonal pro-
jections in a Hilbert space leads, in a natural way, to the quantum mechanical formalism
for states and observables.

15.1 States and Observables in Classical Mechanics

We start by taking a brief look at the notions of state and observable in Classical Me-
chanics from a rather abstract measure theoretic point of view.

15.1.a States

In Classical Mechanics, the state space of a physical system is a measurable space
(X ,X ), typically a manifold with its Borel σ -algebra. For example, the state space
of an ensemble of N free moving point particles in R3 is R3N ×R3N (three position
coordinates x j and three momentum coordinates p j for each particle) and that of the
harmonic oscillator (with physical constants normalised to unity) is the submanifold of
R×R given by x2 + p2 = 1.

Definition 15.1 (States, pure states). Let (X ,X ) be a measurable space.

(i) A state is a probability measure ν on (X ,X ).

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven

551



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
552 States and Observables

(ii) A pure state is an extreme point of the set of probability measures on (X ,X ).

For a measurable set B ∈X , the number ν(B) is thought of as “the probability that the
state is described by a point in B”.

Thus we identify the “state” of a system with the ensemble of truth probabilities of
certain questions about the system. For example, the exact positions and momenta of all
particles in a gas container at a given time cannot be known with complete precision,
but one might ask about the probability of finding a certain portion of the gas in a certain
subset of the container.

Recall that a measure ν on (X ,X ) is said to be atomic if, whenever we have ν(B)> 0
and B = B0∪B1 with disjoint B0,B1 ∈X , it follows that either ν(B0) = 0 or ν(B1) = 0.

Proposition 15.2. The pure states are precisely the atomic probability measures.

Proof This was shown in Example 4.37.

15.1.b Observables

Definition 15.3 (Observables). Let (X ,X ) and (Ω,F ) be measurable spaces. An Ω-
valued observable is a measurable function f : X → Ω. An elementary observable is a
{0,1}-valued observable.

For example, the three position coordinates x j and momentum coordinates p j of a
free moving particle in R3 are real-valued observables on the state space X = R3×R3,
and so are the kinetic energy |p|2/2m (where the mass m is treated as a constant) and
potentials V (x).

If ν is a state on (X ,X ) and f : X →Ω is an observable, then for F ∈F the number

ν( f−1(F)) = ν({x ∈ X : f (x) ∈ F})

belongs to the interval [0,1] and is interpreted as “the probability that measuring f
results in a value in F when the system is in state ν .”

15.1.c From Classical to Quantum

An elementary observable is of the form 1B with B ∈X . Its range equals {0,1} unless
B = ∅ or B = X , in which case one has 1∅ ≡ 0 and 1X ≡ 1. Orthogonal projections
in a complex Hilbert space enjoy similar properties spectrally: if P is an orthogonal
projection in a Hilbert space H, its spectrum equals σ(P) = {0,1} unless P = 0 or
P = I; in these cases one has σ(0) = {0} and σ(I) = {1}.

The basic idea that underlies Quantum Mechanics is to replace elementary observ-
ables by orthogonal projections. The set of all orthogonal projections in a complex
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15.2 States and Observables in Quantum Mechanics 553

Hilbert space H is denoted by P(H). This set is partially ordered in a natural way by
declaring P1 ⩽ P2 to mean that the range of P1 is contained in the range of P2; this is
equivalent to the statement that the operator P2−P1 is positive. With respect to this par-
tial ordering, P(H) is a lattice in the sense of Definition 2.50; for P1 and P2 in P(H)

the greatest lower bound

P1∧P2

in P(H) is the orthogonal projection onto R(P1)∩R(P2), and the least upper bound

P1∨P2

in P(H) is the orthogonal projection onto the closed subspace spanned by R(P1) and
R(P2). In addition to these operators, the negation of an orthogonal projection P ∈
P(H) is the orthogonal projection

¬P = I−P

onto the orthogonal complement of R(P). One has the associative laws

(P1∧P2)∧P3 = P1∧ (P2∧P3), (P1∨P2)∨P3 = P1∨ (P2∨P3)

and the identities

¬(P1∧P2) = ¬P1∨¬P2, ¬(P1∨P2) = ¬P1∧¬P2.

The important difference with the classical setting is that the distributive laws

P1∧ (P2∨P3) = (P1∧P2)∨ (P1∧P3)

P1∨ (P2∧P3) = (P1∨P2)∧ (P1∨P3)

generally fail.

Example 15.4. In C2 consider the orthogonal projections P1, P2, and P3 onto the first
and second coordinate axes and the diagonal, respectively. Then P1∨P2 = I, P1∧P3 =

P2∧P3 = 0, and

(P1∨P2)∧P3 = P3, (P1∧P3)∨ (P2∧P3) = 0.

15.2 States and Observables in Quantum Mechanics

From now on H is a separable complex Hilbert space.
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15.2.a States

Upon replacing indicator functions of measurable sets by orthogonal projections in H,
one is led to the idea to define a state as a mapping ν : P(H)→ [0,1] that satisfies
ν(0) = 0, ν(I) = 1, and is countably additive in the sense that

∑
n⩾1

ν(Pn) = ν(P)

whenever (Pn)n⩾1 is a (finite or infinite) sequence of pairwise disjoint orthogonal pro-
jections and P is their least upper bound, that is, P is the orthogonal projection onto
the closure of the span of the ranges of Pn, n ⩾ 1. Here, two orthogonal projections are
called disjoint if their ranges are mutually orthogonal, and a family of projections said
to be disjoint if every two distinct members of this family are disjoint.

Although this definition is quite satisfactory in many ways, it suffers from the defect
that it does not present an obvious way to extend ν to nonnegative linear combinations of
pairwise disjoint orthogonal projections. In the classical picture, the expected value of a
nonnegative simple function f = ∑

N
n=1 cn1Bn in state ν is given by its integral

∫
X f dν =

∑
N
n=1 cnν(Bn). The desideratum

ν

( N

∑
n=1

cnPn

)
=

N

∑
n=1

cnν(Pn) (15.1)

can be thought of as a quantum analogue of this, and constitutes the first step towards
defining the expected value for more general classes of observables. However, if one
attempts to take (15.1) as a definition, a problem of well-definedness arises (that such a
problem indeed may arise is demonstrated by the example at the end of this section).

The next definition proposes a way around this difficulty. Recall that the convex hull
of a subset S of a vector space V is the smallest convex set in V containing S and is
denoted by co(S).

Definition 15.5 (Affine mappings). Let S be a subset of a vector space V . A mapping
ν : S→ [0,1] is called affine if it extends to a mapping ν : co(S)→ [0,1] satisfying

ν

( N

∑
n=1

λnvn

)
=

N

∑
n=1

λnν(vn)

for all N ⩾ 1, v1, . . . ,vN ∈ S, and scalars λ1, . . . ,λN ⩾ 0 satisfying ∑
N
n=1 λn = 1.

Let us denote by Pfin(H) the set of all finite rank projections in P(H), that is, the
set of all projections with finite-dimensional ranges. To prepare for the definition of a
state, we prove the following result.

Proposition 15.6. Let ν : Pfin(H)→ [0,1] be affine and satisfy ν(0) = 0. Then there
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exists a unique positive trace class operator T on H such that

ν(P) = tr(PT ), P ∈Pfin(H).

It satisfies

tr(T ) = sup
P∈Pfin(H)

ν(P).

Conversely, if T is a positive trace class operator on H, then

ν(P) := tr(PT ), P ∈P(H),

defines an affine mapping ν : P(H)→ [0,1] satisfying ν(0) = 0 and

sup
P∈Pfin(H)

ν(P) = sup
P∈P(H)

ν(P) = ν(I) = tr(T ).

Moreover, ν countably additive.

Proof To prove uniqueness, suppose that T, T̃ ∈L (H) are such that tr(PT ) = tr(PT̃ )
for all P ∈Pfin(H). Taking P to be the rank one projection h⊗̄h : x 7→ (x|h)h, with
h ∈H of norm one, gives (T h|h) = (T̃ h|h). By scaling, this identity extends to arbitrary
h ∈ H, and it implies T = T̃ by Proposition 8.1.

The existence proof proceeds in several steps.

Step 1 – Throughout this step it is important to keep in mind that, when considering
general convex or nonnegative-linear combinations of projections P1, . . . ,PN in Pfin(H),
the projections Pn need not be mutually orthogonal and the same projection may be used
multiple times.

Fix orthogonal projections P1, . . . ,PN ∈Pfin(H) and scalars 0 ⩽ c1, . . . ,cN ⩽ 1 sat-
isfying ∑

N
n=1 cn ⩽ 1. With cN+1 := 1−∑

N
n=1 cn and PN+1 := 0, the affinity assumption

implies

ν

( N

∑
n=1

cnPn

)
= ν

(N+1

∑
n=1

cnPn

)
=

N+1

∑
n=1

cnν(Pn) =
N

∑
n=1

cnν(Pn),

where we used that ν(0) = 0. Also, if an operator admits two such representations, say

N

∑
n=1

cnPn =
N′

∑
n=1

c′nP′n,

then by the same argument the affinity of ν implies that

N

∑
n=1

cnν(Pn) =
N′

∑
n=1

c′nν(P′n).

Consider next the case of scalars c1, . . . ,cN ⩾ 0, and consider an operator of the form
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S=∑
N
n=1 cnPn with projections Pn ∈Pfin(H). Fix an arbitrary integer k⩾∑

N
n=1 cn. Then,

by what we just proved, the number

kν(
1
k

S) = kν

( N

∑
n=1

cn

k
Pn

)
= k

N

∑
n=1

cn

k
ν(Pn) =

N

∑
n=1

cnν(Pn)

is independent of k. Hence we may define an extension of ν , again denoted by ν , by

ν(S) := kν(
1
k

S) =
N

∑
n=1

cnν(Pn).

If S admits two such representations, say S = ∑
N
n=1 cnPn = ∑

N′
n=1 c′nP′n, then by taking k ⩾

max{∑N
n=1 cn,∑

N′
n=1 c′n} and using the well-definedness in the case already considered

we obtain that ν(S) is well defined.
The extension just defined is finitely additive on the set of operators S of the form

just described. Indeed, this follows by induction from the fact that if S = ∑
N
n=1 cnPn and

S′ = ∑
N′
n=N+1 cnPn are two such operators, then

ν(S+S′) = ν

( N′

∑
n=1

cnPn

)
=

N′

∑
n=1

cnν(Pn) =
N

∑
n=1

cnν(Pn)+
N′

∑
n=N+1

cnν(Pn) = ν(S)+ν(S′).

Shifting the index in the expression for S′ is justified since no restrictions are imposed
on the projections occurring in the expressions for S and S′ other than their membership
of Pfin(H); cf. the remark at the beginning of the proof.

Step 2 – Consider now an operator of the form S = ∑
N
n=1 cnPn with coefficients

cn ∈ R and projections Pn ∈Pfin(H). Then we may write S = S+− S−, where S± are
nonnegative-linear combinations of projections in Pfin(H) as in Step 1, and define

ν(S) := ν(S+)−ν(S−).

To see that this is well defined, let S = S+−S− = S′+−S′− be two such representations.
By the finite additivity proved in Step 1,

ν(S+)+ν(S′−) = ν(S++S′−) = ν(S′++S−) = ν(S′+)+ν(S−),

so ν(S+)− ν(S−) = ν(S′+)− ν(S′−) as desired. Similarly it is checked that cν(S) =
ν(cS) for all c ∈ R and that ν(S+S′) = ν(S)+ν(S′).

If S = ∑
N
n=1 cnPn with coefficients cn ∈ C and projections Pn ∈Pfin(H), we set

ν(S) :=
1
2

ν(S+S⋆)+
1
2i

ν(i(S−S⋆)). (15.2)

Then ν is easily seen to be additive and real-linear, and from

ν(iS) =
1
2

ν(iS− iS⋆)+
1
2i

ν(i(iS+ iS⋆))
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= i
( 1

2i
ν(iS− iS⋆)− 1

2
ν(−(S+S⋆))

)
= iν(S)

it follows that ν is in fact complex-linear.

Step 3 – Let S ∈K (H) be any finite rank operator. We may represent S as ∑
N
n=1 cnPn

with c1, . . . ,cN ∈C and mutually orthogonal projections P1, . . . ,PN ∈Pfin(H). In doing
so, we obtain

|ν(S)|=
∣∣∣ν( N

∑
n=1

cnPn

)∣∣∣= ∣∣∣ N

∑
n=1

cnν(Pn)
∣∣∣⩽ max

1⩽n⩽N
|cn|

N

∑
n=1

ν(Pn)

= max
1⩽n⩽N

|cn|ν
( N

∑
n=1

Pn

)
⩽ max

1⩽n⩽N
|cn|=

∥∥∥ N

∑
n=1

cnPn

∥∥∥= ∥S∥.
(15.3)

Here we used that ν(∑N
n=1 Pn)⩽ 1 since ∑

N
n=1 Pn is an orthogonal projection.

Step 4 – By the spectral theorem (Theorem 9.1), every compact selfadjoint operator
S ∈K (H) can be approximated, in the norm of L (H), by a sequence of finite rank
operators Sn. The estimate (15.3), applied to their differences, entails that the limit

ν(S) := lim
n→∞

ν(Sn)

exists. If the finite rank operators S′n form another approximating sequence, then by
what has been proved before we have

|ν(Sn)−ν(S′n)|= |ν(Sn−S′n)|⩽ ∥Sn−S′n∥→ 0.

This shows that the number ν(S) is independent of the choice of approximating se-
quence.

For general compact operators S ∈L (H) we define ν(S) by (15.2) and find

|ν(S)|⩽ 1
2
∥S+S⋆∥+ 1

2
∥i(S−S⋆)∥⩽ 2∥S∥.

Repeating previous arguments, this extension is again seen to be linear.

Step 5 – The argument of Step 4 proves that we may identify ν with an element in
(K (H))∗, the dual of the space K (H) of compact operators on H. By trace duality
(Theorem 14.29) there exists a unique trace class operator T ∈L1(H) such that for all
S ∈K (H) we have ν(S) = tr(ST ). By considering the orthogonal projection P = h⊗̄h
onto the span of the norm one vector h, we obtain (T h|h) = tr(PT ) = ν(P) ⩾ 0. This
implies that T is positive.

If Pn is an increasing sequence of finite rank projections converging to the identity
operator strongly, then

tr(T ) = lim
n→∞

tr(PnT ) = lim
n→∞

ν(Pn)⩽ sup
P∈Pfin(H)

ν(P).



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
558 States and Observables

In the opposite direction, for any P ∈Pfin(H) we have

ν(P) = tr(PT ) = tr(T P)⩽ tr(T ).

Taking the supremum over all P ∈Pfin(H) we obtain supP∈Pfin(H) ν(P) ⩽ tr(T ). This
proves the identity tr(T ) = supP∈Pfin(H) ν(P), thereby completing the proof of the first
assertion of the theorem.

Step 6 – We now turn to the converse statement. Let T be a positive trace class oper-
ator on H and define ν(S) := tr(ST ) = tr(T S) for S ∈L (H). Its restriction to P(H),
which we shall denote by ν again, is obviously affine and satisfies ν(0) = 0. To prove
countable additivity, let (Pn)n⩾1 be a sequence of disjoint orthogonal projections and let
P be the orthogonal projection onto the closure of the span of their ranges. If (h(n)j ) j⩾1

is an orthonormal basis for the range of Pn, then the union of these sequences can be
relabelled into an orthonormal basis (hk)k⩾1 for the range of P. Then,

ν(P) = tr(T P) = ∑
k⩾1

(T hk|hk) = ∑
n⩾1

(
∑
j⩾1

(T Pnh(n)j |h
(n)
j )
)
= ∑

n⩾1
tr(T Pn) = ∑

n⩾1
ν(Pn),

the fourth identity being justified by the nonnegativity of the summands.

Step 7 – Let P ∈P(H) be arbitrary and choose an orthonormal basis (hn)n⩾1 for
(R(P))⊥. Denoting the coordinate projections by Pn, by the countable additivity of ν we
have ν(P) ⩽ ν(P)+∑n⩾1 ν(Pn) = ν(I). This being true for any P ∈P(H) it follows
that

sup
P∈P(H)

ν(P)⩽ ν(I).

On the other hand, if (hn)n⩾1 is an orthonormal basis for H, the countable additivity of
ν gives limN→∞ ν(∑N

n=1 Pn) = ν(I). Since ∑
N
n=1 Pn ∈Pfin(H) this implies

sup
P∈Pfin(H)

ν(P)⩾ ν(I).

In combination with the second part of Step 5, which shows that for any positive trace
class operator T on H we have tr(T ) = supP∈Pfin(H) tr(PT ), this proves the identities in
the second part of the theorem.

In what follows we denote by S (H) the convex set of all positive trace class operators
with unit trace on H. We will see below (Proposition 15.14) that this set is the closed
convex hull of its set of extreme points and that these extreme points are precisely the
orthogonal rank one projections in H.

A functional φ : L (H)→ C is called positive if φ(T ) ⩾ 0 for every positive T ∈
L (H), and normal if

∑
n⩾1

φ(Pn) = φ(P)
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whenever (Pn)n⩾1 is a sequence of disjoint orthogonal projections in H and P is their
least upper bound. The same terminology applies to functionals φ : K (H)→ C.

Theorem 15.7. The following six sets are in one-to-one correspondence:

(1) affine mappings ν : Pfin(H)→ [0,1] satisfying ν(0)= 0 and supP∈Pfin(H) ν(P)= 1;
(2) affine mappings ν : P(H)→ [0,1] satisfying ν(0) = 0 and ν(I) = 1;
(3) positive trace class operators T on H satisfying tr(T ) = 1, via

ν(P) = tr(PT ), P ∈Pfin(H);

(4) positive trace class operators T on H satisfying tr(T ) = 1, via

ν(P) = tr(PT ), P ∈P(H);

(5) positive functionals φ : K (H)→ C satisfying supP∈Pfin(H) φ(P) = 1, via

φ(S) = tr(ST ), S ∈K (H);

(6) positive normal functionals φ : L (H)→ C satisfying φ(I) = 1, via

φ(S) = tr(ST ), S ∈L (H).

Proof For m,n = 1,2,3,4 we write (m)⇒(n) to express that every object in the set
described by (m) uniquely defines an element in the set described by (n).

(1)⇔(3): This one-to-one correspondence is contained in Proposition 15.6.

(3)⇒(6): Let T be a positive trace class operator with unit trace and define φ :
L (H)→ C as in (6). Then φ(I) = tr(T ) = 1. To prove the positivity of φ , let S ⩾ 0. If
(hn)n⩾1 is an orthonormal basis for H, the positivity of T implies

φ(S) = tr(ST ) = tr(S1/2T S1/2) = ∑
n⩾1

(T S1/2hn|S1/2hn)⩾ 0.

The normality of φ follows from the countable additivity of the mapping P 7→ tr(PT )
proved in the second part of Proposition 15.6.

(6)⇒(5): This inclusion follows from Step 7 of the proof of Proposition 15.6.

(5)⇒(1): The restriction ν := φ |Pfin(H) is affine, takes values in [0,1], and satisfies
ν(0) = 0 and supP∈Pfin(H) ν(P) = 1.

(6)⇒(2)⇒(1): The first inclusion is obtained in the same way and the second again
follows from Step 7 of the proof of Proposition 15.6.

(1)⇒(4)⇒(3): These inclusions are also contained in Proposition 15.6.

We may now define a state as either one of these six sets. For the sake of definiteness
we take the sixth:
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Definition 15.8 (States). A state is a positive normal functional φ : L (H)→ C satis-
fying φ(I) = 1.

This definition captures what is generally called a normal state in the mathematical
literature on Quantum Mechanics; the term state is usually reserved for general positive
functionals φ : L (H)→ C satisfying φ(I) = 1. The small abuse of terminology com-
mitted by omitting the adjective ‘normal’ from our terminology may be excused by the
third item in the above list, which does not involve normality.

Remark 15.9 (Density functions). In the Physics literature, the positive trace class op-
erator T with unit trace associated with state ψ is called the density function associated
with φ .

As the following example shows, a countably additive mapping ν : P(C2)→ [0,1]
satisfying ν(0) = 0 and ν(I) = 1 need not be affine (and therefore need not define a
state).

Example 15.10 (Failure of affinity in two dimensions). Let H =C2 and let S denote its
unit sphere. Let f : S→ [0,1] be a function with the following two properties:

(i) f (h1) = f (h2) whenever span(h1) = span(h2);
(ii) f (h1)+ f (h2) = 1 whenever h1 ⊥ h2.

Apart from these restrictions, f can be completely arbitrary.
Define ν : P(H)→ [0,1] by ν(0) := 0, ν(I) = 1, and

ν(Ph) := f (h), h ∈ S,

where Ph is the orthogonal projection onto span(h). It is clear that ν is countably addi-
tive: if the orthogonal projections P1,P2, . . . are pairwise disjoint, then all but at most
two must be zero. If there are zero or one nonzero projections, then countable additivity
is trivial, and if there are two nonzero projections they must be of the form Ph1 and Ph2

with h1 ⊥ h2; in that case countable additivity follows from

ν(Ph1)+ν(Ph2) = f (h1)+ f (h2) = 1 = ν(I) = ν(Ph1 +Ph2).

If there exists a positive operator T on H with unit trace such that for all P ∈P(H) we
have ν(P) = tr(PT ), then

f (h) = ν(Ph) = tr(PhT ) = (T h|h)

depends continuously on h. It is, however, easy to construct discontinuous functions f
satisfying the conditions (i) and (ii). Indeed, once the value of f at a given point h0 ∈ S is
fixed, the conditions (i) and (ii) fix the values of f only on the points eiθ h0 and all points
orthogonal to them. If we identify S with the unit sphere S3 in R4, these points define a
‘great circle’ incident with h0 and an ‘equator’ relative to the ‘north pole’ h0. Therefore,
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in a sufficiently small neighbourhood of h0, f is only determined on a submanifold of
dimension 1. This leaves enough room to construct functions f satisfying (i) and (ii) but
discontinuous at h0.

If ν were affine we could represent it by a positive operator T . This would contradict
the discontinuity of f .

It is not a coincidence that this counterexample lives in two dimensions: A celebrated
theorem due to Gleason asserts that if dim(H)⩾ 3, then every countably additive map-
ping ν : P(H)→ [0,1] is affine and hence defines a state.

15.2.b Pure States

Theorem 15.7 establishes four equivalent ways of looking at the convex set of all states.
Since the correspondences between them preserve convex combinations and hence ex-
treme points, the following definition makes sense from each of these points of view:

Definition 15.11 (Pure states). A pure state is an extreme point of the convex set of
states.

Proposition 15.12. A state φ : L (H)→C is pure if and only if it is a vector state, that
is, there exists a unit vector h ∈ H such that

φ(S) = (Sh|h), S ∈L (H).

This unit vector is unique up to a scalar multiple of modulus one.

The first assertion can be equivalently stated as saying that the extreme points of
the set of all positive trace class operators with unit trace are precisely the orthogonal
projections of rank one.

Proof ‘Only if’: Let φ be a state and let T be the associated positive trace class
operator on H with unit trace. By the singular value decomposition (Theorem 14.15) we
have T = ∑n⩾1 λnhn ⊗̄hn for some orthonormal basis (hn)n⩾1 of H and a nonnegative
scalar sequence (λn)n⩾1 such that ∑n⩾1 λn = tr(T ) = 1. This allows us to write T as
a convex combination of distinct states unless all but one λn vanish, in which case we
have T = hν ⊗̄hν for some unit vector hν ∈H and ν(P) = tr(P◦ (hν ⊗̄hν)) = (Phν |hν)

for all orthogonal projections P ∈P(H).

‘If’: If φ is a vector state, then the associated positive trace class operator is of
the form T = h⊗̄h with ∥h∥ = 1. If T = (1−λ )T0 +λT1 is a convex combination of
positive trace class operators T0 and T1 with unit trace, then the unit vector h = T h =

(1−λ )T0h+λT1h is a convex combination of two vectors of norm at most one. Hence
we must have either h = (1−λ )T0h or h = λT1h. Since T0 and T1 are contractive, this
is only possible if λ = 0 (in the first case) or λ = 1 (in the second case). This means
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that either T = T0 or T = T1, so T is an extreme point of the convex set of positive trace
class operators on H with unit trace. Since the correspondence between states and the
associated positive trace class operators preserves convex combinations, it follows that
φ is an extreme point of the convex set of states.

The uniqueness assertion follows by observing that for all θ ∈ R and h ∈ H we have

(eiθ h)⊗̄(eiθ h) = h⊗̄h.

Remark 15.13 (Bras, kets, superpositions, mixed states). In the Physics literature, the
pure state corresponding to a unit vector h∈H is commonly denoted by |h⟩ and referred
to as the ket or wave function associated with h; often, |h⟩ is identified with h.

The addition in H can be used to define, for orthogonal unit vectors h1,h2 ∈ H and
scalars α1,α2 ∈ C satisfying |α1|2 + |α2|2 = 1, the pure state

α1|h1⟩+α2|h2⟩ := |α1h1 +α2h2⟩.

Such states are referred to as (coherent) superpositions of the states |h1⟩ and |h2⟩. Such
states should be carefully distinguished from states that can be built by using the addi-
tion of L1(H). Indeed, if h1,h2 ∈ H are linearly independent unit vectors in H and if
λ ∈ [0,1], then the convex combination (1−λ )h1 ⊗̄h1 +λh2 ⊗̄h2, or, in Physics nota-
tion,

(1−λ )|h1⟩⟨h1|+λ |h2⟩⟨h2|

defines a state in L1(H). Such states, which are not pure unless λ = 0 or λ = 1, are
called mixed states or, more precisely, mixtures of the states |h1⟩ and |h2⟩.

We recall that S (H) denotes the convex set of all positive trace class operators with
unit trace on H. As we have seen in Theorem 15.7, the elements of this set are in one-
to-one correspondence with states. By Proposition 15.12, the extreme points of S (H)

are the rank one projections of the form h⊗̄h, where h ∈ H has norm one.

Proposition 15.14. The set S (H) is the closed convex hull of its extreme points. The
extreme points of this set are precisely the rank one projections of the form h⊗̄h with
h ∈ H of norm one.

Proof By the singular value decomposition of Theorem 14.15, every element of T ∈
S (H) is of the form T = ∑n⩾1 λnhn ⊗̄hn, with convergence in trace norm, with (hn)n⩾1

an orthonormal basis in H and (λn)n⩾1 a nonnegative sequence satisfying ∑n⩾1 λn = 1.
This gives the first assertion. The second follows from Theorem 15.7, which informs
us that the operators of the form h⊗̄h with h ∈ H of norm one are in one-to-one corre-
spondence with the vector states, which are the extreme points of the convex set of all
states by Proposition 15.12.
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15.2.c Observables

Let (Ω,F ) be a measurable space. Classically, an Ω-valued observable on the state
space (X ,X ) is a measurable function f : X → Ω. By definition of measurability, f
induces a mapping from F to X given by

F 7→ f−1(F), F ∈F,

and this mapping is countably additive, in the sense that if the sets Fn ∈F are pairwise
disjoint, then f−1(

⋃
n⩾1 Fn) =

⋃
n⩾1 f−1(Fn). Identifying sets in X by their indicator

functions and replacing them by orthogonal projections in a Hilbert space H, we arrive
at the following definition of an observable in Quantum Mechanics.

Definition 15.15 (Observables). Let (Ω,F ) be a measurable space and H a Hilbert
space. An Ω-valued observable is a countably additive mapping P : F →P(H) satis-
fying P(Ω) = I. An elementary observable is a {0,1}-valued observable.

By Corollary 9.18, the elementary observables are precisely the orthogonal projec-
tions. This should be compared to the classical situation where elementary observables
are given as the indicator functions of measurable sets.

Observables defined in this way are sometimes called sharp observables, as opposed
to unsharp observables which will be introduced in Section 15.3.b.

Following notation introduced in Chapter 9 we write PF := P(F) for F ∈ F. For
vectors h ∈ H, we denote by Ph the nonnegative probability measure on Ω given by

Ph(F) := (PF h|h), F ∈F.

In the language of Chapter 9 a real-valued observable is nothing but a projection-valued
measure on R, and by the spectral theorem (Theorem 10.56) we can associate a unique
selfadjoint operator A with P determined by

D(A) =
{

h ∈ H :
∫
R
|λ |2 dPh(λ )< ∞

}
and, for h ∈ D(A),

(Ah|h) =
∫
R

λ dPh(λ )

(see Theorem 10.50). In the converse direction, the spectral theorem asserts that every
selfadjoint operator A arises from a projection-valued measure on R in this way and
hence defines an observable.

Thus we arrive at the conclusion that real-valued observables are in one-to-one corre-
spondence with selfadjoint operators. In most treatments of Quantum Mechanics this is
simply taken as a postulate. In a sense, the present treatment provides the deeper motiva-
tion for this postulate, in that this correspondence appears as a consequence of the point
of view that, on the mathematical level, the classical-to-quantum transition is simply
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the transition from the Boolean algebra of subsets of measurable space to the lattice of
orthogonal projections on a Hilbert space. A further advantage of the present approach
is that, in the same vein, the spectral theorem for normal operators can be reinterpreted
as establishing a one-to-one correspondence between complex-valued observables and
normal operators, and between observables with values in the unit circle and unitary
operators.

We return to the abstract setting of observables P : F →P(H) with values in Ω. If
φ : L (H)→ C is a pure state represented by the unit vector h ∈ H, then

φ(PF) = (PF h|h) = Ph(F), F ∈F,

so the assignment F 7→ φ(PF) defines a probability measure. The following proposition
is an immediate consequence of the fact that states are normal and that the least upper
bound of a sequence of disjoint orthogonal projections is given by their sum. It is the
mathematical counterpart of the so-called Born rule in Quantum Mechanics and allows
us to interpret the number φ(PF) as “the probability that measuring P results in a value
contained in F ∈F when the system is in state φ”.

Proposition 15.16 (Born rule). If φ : L (H)→ C is a state and P : F →P(H) an
Ω-valued observable, the mapping

F 7→ φ(PF), F ∈F,

defines a probability measure on (Ω,F ).

If P is a real-valued (or complex-valued) observable represented by a selfadjoint (or,
more generally, a normal) operator A, then, as a projection-valued measure, P is sup-
ported on the spectrum σ(A) and therefore P can be thought of as a σ(A)-valued ob-
servable. The physical interpretation is that “with probability one, a measurement of A
produces a value belonging to σ(A)”.

15.2.d The Uncertainty Principle

If P is a real-valued observable represented by a bounded selfadjoint operator A, the
expected value of P in state φ is defined as the number

⟨A⟩φ := φ(A).

If φ = |h⟩ is a pure state associated with a unit vector h ∈H contained in D(A), we have

⟨A⟩|h⟩ = (Ah|h).

In this situation, for h ∈ D(A) we can define the variance by

var|h⟩(A) :=
〈
(A−⟨A⟩|h⟩)2〉

|h⟩ = ∥(A− (Ah|h))h∥2.
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The uncertainty of A in state |h⟩ is defined by

∆|h⟩(A) := (var|h⟩(A))
1/2.

Theorem 15.17 (Uncertainty principle). Let |h⟩ be a pure state associated with the
unit vector h∈H, and consider two real-valued observables with associated selfadjoint
operators A and B. If h ∈D([A,B]) := {h ∈D(A)∩D(B) : Ah ∈D(B), Bh ∈D(A)} and
[A,B]h := ABh−BAh, then

∆|h⟩(A)∆|h⟩(B)⩾
1
2
|([A,B]h|h)|.

Proof The operators Ã := A−(Ah|h) and B̃ := B−(Bh|h) with domains D(Ã) =D(A)
and D(B̃) =D(B) are selfadjoint. In particular we note that Ãh ∈D(B̃), B̃h ∈D(Ã), and
we have [Ã, B̃]h = [A,B]h. The Cauchy–Schwarz inequality implies

∆|h⟩(A)∆|h⟩(B) = ∥Ãh∥∥B̃h∥⩾ |(Ãh|B̃h)|⩾ | Im(Ãh|B̃h)|

=
1
2
|(Ãh|B̃h)− (B̃h|Ãh)|= 1

2
|([Ã, B̃]h|h)|= 1

2
|([A,B]h|h)|.

The physical interpretation of the next result is that a measurement of A in a pure state
|h⟩ gives the expected value (Ah|h) with probability one if and only if the representing
unit vector h is an eigenvector of A, and in this case the eigenvalue equals (Ah|h).

Proposition 15.18. Let P be a real-valued observable, represented by the selfadjoint
operator A, and let h ∈ D(A) satisfy ∥h∥= 1. The following assertions are equivalent:

(1) A has zero uncertainty in the state |h⟩;
(2) h is an eigenvector for A.

If these equivalent conditions hold, then for the corresponding eigenvalue λ we have

λ = (Ah|h) and (P{λ}h|h) = 1.

Proof (1)⇒(2): If var|h⟩(A) = 0, then Ah = (Ah|h)h, so h is an eigenvector of A with
eigenvalue λ = (Ah|h).

(2)⇒(1): If Ah = λh, then

var|h⟩(A) = ∥(A− (Ah|h))h∥2 = ∥(A−λ )h∥2 = 0.

If the equivalent conditions hold, then by Corollary 10.59 for all measurable functions
f : σ(A)→ C we have f (A)h = f (λ )h and consequently∫

σ(A)
f dPh = ( f (A)h|h) = f (λ ).

This forces Ph = δ{λ} and therefore (P{λ}h|h) =
∫

σ(A) 1{λ} dPh = 1{λ}(λ ) = 1.
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15.2.e The Qubit

It is instructive to take a closer look at the simplest genuinely quantum mechanical
system, the qubit. It is the quantum version of the bit {0,1}, which we think of as
equipped with the counting measure µ giving mass 1 to each of the two elements of
{0,1}. Physically, the qubit models a spin 1

2 particle. We write 1{0} and 1{1} for the unit
basis vectors of the Hilbert space L2({0,1}) and denote the pure states associated with
them by |0⟩ and |1⟩. Every pure state is then of the form α |0⟩+ β |1⟩ with α,β ∈ C
satisfying |α|2 + |β |2 = 1. Since pure states are defined up to a complex number of
modulus one, every pure state can be uniquely written in the form

cos(θ/2) |0⟩+ eiϕ sin(θ/2) |1⟩ (15.4)

for suitable 0 ⩽ θ ⩽ π and 0 ⩽ ϕ < 2π . In spherical coordinates, the variables θ and ϕ

uniquely determine a point

(sinθ cosϕ, sinθ sinϕ, cosθ) (15.5)

on the unit sphere S2 of R3. This representation of pure states is frequently referred to
as the Bloch sphere.

The Bloch sphere
(Source: Wikipedia)

In what follows we identify L2({0,1}) iso-
metrically with C2. Under this identification, lin-
ear operators on L2({0,1}) correspond to 2× 2
matrices with complex coefficients. States can
be identified with points in the closed unit ball
of R3 as follows. Any selfadjoint operator T =

(ti j)
2
i, j=1 on C2 with unit trace tr(T ) = t11+ t22 =

1 is of the form

T =
1
2

(
1+ c3 c1− ic2

c1 + ic2 1− c3

)
(15.6)

with c1,c2,c3 ∈ R. The vector c = (c1,c2,c3) ∈
R3 is called the Bloch vector of T . It is easily
checked that the eigenvalues of T are 1

2 (1±|c|).
From this we see that T ⩾ 0 if and only if |c|⩽ 1.

A routine computation shows that the pure
state |h⟩= cos(θ/2) |0⟩+ eiϕ sin(θ/2) |1⟩ corresponds to the operator

T = h⊗̄h =
1
2

(
1+ cosθ e−iϕ sinθ

eiϕ sinθ 1− cosθ

)
(15.7)

with Bloch vector (sinθ cosϕ, sinθ sinϕ, cosθ). Thus the Bloch sphere representation
of the pure state |h⟩ equals the Bloch vector of the associated operator h⊗̄h.
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Equation (15.6) can be written as

T =
1
2

(
1 0
0 1

)
+

c1

2

(
0 1
1 0

)
+

c2

2

(
0 −i
i 0

)
+

c3

2

(
1 0
0 −1

)
=

1
2
(I + c1σ1 + c2σ2 + c3σ3),

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the three Pauli matrices. These matrices are selfadjoint and their spectra equal {±1}.
Therefore they are associated with ±1 valued observables, also denoted by σ1, σ2, and
σ3. The corresponding eigenstates of σ j are called the spin up/spin down states along
the jth axis. Every selfadjoint operator A on C2 is of the form

A =

(
a c− id

c+ id b

)
=

(
c0 + c3 c1− ic2

c1 + ic2 c0− c3

)
= c0I + c1σ1 + c2σ2 + c3σ3

for certain a,b,c,d,c0,c1,c2,c3 ∈ R with a = c0 + c3, b = c0− c3, c = c1, and d = c2.
It follows that the quadruple {I,σ1,σ2,σ3} is a basis for the real-linear vector space of
selfadjoint operators on C2.

15.2.f Entanglement

The natural choice for the state space of a system of N classical point particles in R3 is
R3N ×R3N , the idea being that six coordinates are needed (three for position, three for
momentum) to describe the state of each particle. In Quantum Mechanics, the natural
choice of Hilbert space is L2(R3N). Labelling the points of R3N as x = (x(n)j )3,N

j,n=1, this

choice suggests the following natural definition of observables x̂(n)j describing the jth
coordinate of the nth particle:

x̂(n)j f (x) := x(n)j f (x), f ∈ D(x̂(n)j ), x ∈ R3N ,

where D(x̂(n)j ) = { f ∈ L2(R3N) : x(n)j f ∈ L2(R3N)}. Later we will see that the corre-
sponding momentum operators are given by

p̂(n)j f :=
1
i

∂

∂x(n)j

f , f ∈ D(p̂(n)j )

with their natural domains.
The space L2(R3N) is isometric in a natural way to the N-fold Hilbert space tensor
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product (see Definition 14.30 and the discussion following it):

L2(R3N)≃ L2(R3)⊗·· ·⊗L2(R3)︸ ︷︷ ︸
N times

.

This suggests that if the Hilbert spaces H1, . . . ,HN describe the states of N quantum
mechanical systems, then their Hilbert space tensor product

H1⊗·· ·⊗HN

serves to describe the system composed of these N subsystems. In what follows we
focus on the case N = 2, but everything we say extends to general N without difficulty.

Let H and K be Hilbert spaces, and let H⊗K be their Hilbert space tensor product.
For unit vectors h ∈ H and k ∈ K we write |h⟩ and |k⟩ for the pure states in H and K
represented by these vectors, and

|h⟩|k⟩ := |h⊗ k⟩

for the pure state represented by the unit vector h⊗ k in H⊗K.
Suppose now that orthonormal vectors h1,h2 ∈H and orthonormal vectors k1,k2 ∈ K

are given. Then the unit vectors h1⊗k1 and h2⊗k2 are orthogonal in H⊗K. Hence, for
scalars α1,α2 ∈C satisfying |α1|2 + |α2|2 = 1, the superposition α1h1⊗k1 +α2h2⊗k2

defines a unit vector in H⊗K. To this unit vector corresponds the pure state

α1|h1⟩|k1⟩+α2|h2⟩|k2⟩ := |α1h1⊗ k1 +α2h2⊗ k2⟩.

Unless α1 = 0 or α2 = 0, such states cannot be written in the form |h⟩|k⟩ and are called
entangled states.

The partial trace (see Section 14.4) can be used to define states of subsystems starting
from the state of a composite system. More concretely, suppose that T ∈ L1(H ⊗K)

is a positive trace class operator with unit trace. Then the operators trK(T ) and trH(T )
are positive trace class operators with unit trace in L1(H) and L1(K), respectively. If
we think of T as describing the state of a system with Hilbert space H⊗K, trK(T ) and
trH(T ) can be thought of as describing the states of the two constituent subsystems with
Hilbert spaces H and K, respectively. For example, by the result of Example 14.32, if
the operator T corresponds to a unit vector h⊗ k in H⊗K, the states corresponding to
trK(T ) and trH(T ) are the pure states |h⟩ and |k⟩, that is,

trK(T ) = |h⟩⟨h|, trH(T ) = |k⟩⟨k|.

15.3 Positive Operator-Valued Measures

We next discuss a natural extension of the notion of an observable.
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15.3.a Effects

As a warm-up we show:

Proposition 15.19. Let (X ,X ) be a measurable space. The closed convex hull in Bb(X)

of the set of elementary observables {1B : B ∈X } equals

E (X) := { f ∈ Bb(X) : 0 ⩽ f ⩽ 1 pointwise}.

The extreme points of E (X) are precisely the elementary observables 1B, B ∈X .

Proof Denote by E(X) the closed convex hull of the set of elementary observables.
The inclusion E(X) ⊆ E (X) is trivial. To prove the inclusion E (X) ⊆ E(X), let f ∈

E (X) be given. Given ε > 0, select a simple function g = ∑
k
j=1 c j1B j such that ∥ f −

g∥∞ < ε; this function may be chosen in such a way that the measurable sets B j are
disjoint, and the coefficients satisfy 0 ⩽ c j ⩽ 1. After relabelling we may assume that
0 ⩽ c1 ⩽ · · ·⩽ ck ⩽ 1.

If k = 1, then g = (1− c1)1∅+ c11B1 belongs to E(X). If k ⩾ 2 we set

L0 :=∅ and Li :=
k⋃

j=i

B j ( j = 1, . . . ,k)

and

λ0 := 1− ck, λ1 := c1, and λi := ci− ci−1 (i = 2, . . . ,k).

Then 0 ⩽ λi ⩽ 1, ∑
k
i=0 λi = 1, and

g =
k

∑
j=1

c j1B j =
k

∑
i=0

λi1Li .

It follows that g belongs to E(X). Since ε > 0 was arbitrary, this proves that f ∈ E(X).
If g ∈ E (X) is an elementary observable and g = λ f0 +(1− λ ) f1 with 0 < λ < 1

and 0 ⩽ f j ⩽ 1 for j = 0,1, then 0 = g(ξ ) = λ f0(ξ )+ (1−λ ) f1(ξ ) implies f0(ξ ) =

f1(ξ ) = 0 and 1 = g(ξ ′) = λ f0(ξ
′)+(1−λ ) f1(ξ

′) implies f0(ξ
′) = f1(ξ

′) = 1, that is,
f0 = f1 = g pointwise. It follows that every elementary observable is an extreme point
of E (X). If g ∈ E (X) is not an elementary observable, then the set {ε ⩽ g ⩽ 1− ε} is
nonempty for sufficiently small ε > 0, and then it is easy to produce measurable f0 ̸= f1

satisfying 0 ⩽ f j ⩽ 1 for j = 0,1 and g = 1
2 f0 +

1
2 f1. It follows that g is not an extreme

point of E (X).

The quantum mechanical counterpart of the elementary observables are the orthog-
onal projections. In analogy to the above result we now characterise the closed convex
hull of P(H) in L (H). We write S ⩽ T to express that T −S is a positive operator.
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Proposition 15.20. The closed convex hull in L (H) of P(H) equals

E (H) := {E ∈L (H) : 0 ⩽ E ⩽ I}.

The extreme points of E (H) are precisely the orthogonal projections.

Proof Every element of the convex hull of P(H) belongs to E (H), and this passes on
to the closed convex hull.

Since elements of E (H) are positive and hence selfadjoint with σ(E)⊆ [0,1], every
E ∈ E (H) admits a representation as

E =
∫
[0,1]

λ dP(λ )

where P is the projection-valued measure of E supported in σ(E).
Let

fn :=
2n−1

∑
j=0

j
2n 1I j ,

where I0 := [0, 1
2n ] and I j := ( j−1

2n , j
2n ] for 1 ⩽ j ⩽ 2n. Set

En :=
∫
[0,1]

fn(λ )dP(λ ) =
1
2n

(
P[0,1/2n]+

2n−1

∑
j=1

P( j/2n,1]

)
.

Then En is contained in the convex hull of P(H) and

lim
n→∞
∥E−En∥⩽ lim

n→∞
sup

λ∈[0,1]
|λ − fn(λ )|= 0.

This proves that E is in the closed convex hull of P(H).
If E ∈ E (H) is an orthogonal projection and E = λE0 +(1−λ )E1 with 0 < λ < 1

and 0⩽E j ⩽ I for j = 0,1, then for all x∈N(E) we have λ (E0x|x)+(1−λ )(E1x|x) = 0
with (Eix|x) ⩾ 0 for i = 0,1, and this is possible only if (E0x|x) = (E1x|x) = 0. For all
norm one vectors x ∈ R(E) we have (Ex|x) = (x|x) = 1 and consequently λ (E0x|x)+
(1− λ )(E1x|x) = 1. Since (Eix|x) ⩽ 1 for i = 0,1, this is possible only if (E0x|x) =
(E1x|x)= 1. It follows that E0 =E1 = 0 on N(E) and E0 =E1 = I on R(E), and therefore
E0 = E1 = E. It follows that E is an extreme point of E (H).

If E ∈ E (H) is not an orthogonal projection, then the spectral theorem for bounded
selfadjoint operators implies that the spectrum σ(E) cannot be equal to {0,1}. Since
σ(E) is contained in [0,1] it follows that [ε,1−ε]∩σ(E) is nonempty for all sufficiently
small ε > 0 and then, again by the spectral theorem, it is easy to produce operators
E0 ̸= E1 in E (H) such that E = 1

2 E0 +
1
2 E1. It follows that E is not an extreme point of

E (H).

Definition 15.21 (Effects). An effect is an element of the set E (H).
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Effects are selfadjoint, and it follows from Theorem 8.11 that a selfadjoint operator
on H is an effect if and only if its spectrum is contained in the unit interval [0,1]. If T is
an arbitrary nonzero positive operator, then for all 0 ⩽ c ⩽ ∥T∥−1 the operator cT is an
effect. Indeed, this is clear for c = 0, and if c > 0 the operator c−1I−T is positive since
it is selfadjoint and has positive spectrum.

A mapping ν : E (H)→ [0,1] is said to be finitely additive if

N

∑
n=1

ν(En) = ν(E)

whenever E1, . . . ,EN ,E ∈ E (H) satisfy E1 + · · ·+EN = E.

Theorem 15.22 (Busch). Every finitely additive mapping ν : E (H)→ [0,1] satisfying
ν(I) = 1 restricts to an affine mapping ν : P(H)→ [0,1] and hence defines a state.

Proof By assumption we have ν(I) = 1 and from 1= ν(I) = ν(I+0) = ν(I)+ν(0) =
1+ν(0) it follows that ν(0) = 0. By additivity, the restriction of ν to P(H) to [0,1] is
affine. Now the result follows from Proposition 15.6.

15.3.b Positive Operator-Valued Measures

The next definition generalises the notion of a projection-valued measure by replacing
the role of orthogonal projections by effects.

Definition 15.23 (Positive operator-valued measures). A positive operator-valued mea-
sure (POVM) on a measurable space (Ω,F ) is a mapping Q : F → E (H) that assigns
to every set F ∈F an effect QF := Q(F) ∈ E (H) with the following properties:

(i) QΩ = I;
(ii) for all x ∈ H the mapping

F 7→ (QF x|x), F ∈F,

defines a measure Qx on (Ω,F ).

The measure defined by (ii) is denoted by Qx. Thus, for all F ∈ F and x ∈ H, by
definition we have

(QF x|x) = Qx(F) =
∫

Ω

1F dQx.

Note that

Qx(Ω) = (QΩx|x) = (x|x) = ∥x∥2.

This shows that the measures Qx are finite.
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Every projection-valued measure is a POVM. In the converse direction we have the
following simple result.

Proposition 15.24. A POVM Q : F → E (H) is a projection-valued measure if and only
if QF QF ′ = QF∩F ′ for all F,F ′ ∈F.

Proof The ‘only if’ part has already been established in Section 9.2. The ‘if’ part is
evident from Q2

F = QF∩F = QF , which shows that each QF is a projection. Since QF is
also positive, it is an orthogonal projection.

A POVM which is not projection-valued is sometimes called an unsharp observable.
An example will be discussed in Section 15.3.d.

We have seen in Proposition 15.16 that if P : F →P(H) is a projection-valued
measure, then for every state φ the mapping

F 7→ φ(PF), f ∈F,

is probability measure on (Ω,F ). This sets up an affine mapping from S (H) to the
convex set M+

1 (Ω) of probability measures on (Ω,F ); we recall that S (H) denotes
the convex set of all positive trace class operators with unit trace on H. As we have seen
in Proposition 15.14, this set is the closed convex hull of its extreme points, which are
precisely the rank one projections of the form h⊗̄h with h ∈ H of norm one.

Inspection of this argument shows that it extends to POVMs. The following proposi-
tion shows that in the converse direction, every POVM arises in this way.

Theorem 15.25 (POVMs as unsharp observables). Let (Ω,F ) be a measurable space.
If Φ : S (H)→M+

1 (Ω) is an affine mapping, then there exists a unique POVM Q : F →
E (H) such that for all T ∈S (H) we have

(Φ(T ))(F) = tr(QF T ), F ∈F.

Proof The proof consists of two steps.

Step 1 – We claim that Φ extends to a bounded operator from L1(H) into M(Ω). The
proof of this claim is accomplished in three steps. First, we set Φ(0) := 0 and, for an
arbitrary nonzero positive operator T ∈L1(H),

Φ(T ) := ∥T∥1Φ(T/∥T∥1),

where ∥T∥1 = tr(T )> 0 since T is positive and nonzero. Note that for all c ⩾ 0 we have

Φ(cT ) = cΦ(T ).

The identity

S+T = (∥S∥1 +∥T∥1)
(

λ
S
∥S∥1

+(1−λ )
T
∥T∥1

)
,
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where λ = ∥S∥1/(∥S∥1 +∥T∥1), implies that if S,T ∈L1(H) are positive, then

Φ(S+T ) = Φ

(
(∥S∥1 +∥T∥1)

(
λ

S
∥S∥1

+(1−λ )
T
∥T∥1

))
= (∥S∥1 +∥T∥1)Φ

(
λ

S
∥S∥1

+(1−λ )
T
∥T∥1

)
= (∥S∥1 +∥T∥1)

(
λΦ

( S
∥S∥1

)
+(1−λ )Φ

( T
∥T∥1

))
= ∥S∥1Φ

( S
∥S∥1

)
+∥T∥1Φ

( T
∥T∥1

)
= Φ(S)+Φ(T ),

where we used the assumption that Φ is affine. Applying this to aS and bT with a,b ⩾ 0
we find that

Φ(aS+bT ) = Φ(aS)+Φ(bT ) = aΦ(S)+bΦ(T ).

Next, for an arbitrary selfadjoint T ∈L1(H) write T = T1−T2 with T1,T2 positive
operators in L1(H). Such decompositions always exist; one could take for instance
T1 =

1
2 (T + |T |) and T2 = T1−T . We then set

Φ(T ) := Φ(T1)−Φ(T2).

To see that this is well defined, suppose that we also have T = T ′1−T ′2 with T ′1,T
′

2 positive
operators in L1(T ). Then T1 +T ′2 = T2 +T ′1 and hence, by what we just proved,

(Φ(T1)−Φ(T2))− (Φ(T ′1)−Φ(T ′2)) = Φ(T1 +T ′2)−Φ(T2 +T ′1) = 0.

As in the proof of Theorem 15.7 it is checked that Φ is real-linear.
Finally, for an arbitrary T ∈L1(T ) we set

Φ(T ) := Φ(A)+ iΦ(B),

where A := 1
2 (T +T ⋆) and B := 1

2i (T −T ⋆) are the unique selfadjoint operators such
that T = A+ iB. As in the proof of Theorem 15.7 it is checked that Φ is linear.

Step 2 – We now turn to the proof of the theorem. Using the extension provided
by Step 1, for every fixed F ∈ F the mapping T 7→ (Φ(T ))(F) defines a bounded
functional on L1(H) and therefore by Theorem 14.29 it defines a bounded operator
QF ∈L (H) such that

(Φ(T ))(F) = tr(T QF), T ∈L1(H).

For all norm one vectors h ∈ H we have

(QF h|h) = tr((h⊗̄h)◦QF) = (Φ(h⊗̄h))(F) ∈ [0,1],

which gives the operator inequality 0 ⩽ QF ⩽ I, that is, we have QF ∈ E (H).
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It is clear that QΩ = I, and for every norm one vector h ∈ H the measure

F 7→ (QF h|h) = Φ(h⊗̄h)(F), F ∈F ,

is a probability measure. This proves that Q : F 7→ QF is a POVM.
Uniqueness is clear since tr(T QF) = 0 for all T ∈L1(H) implies QF = 0.

Remark 15.26. The assumption that Φ should be affine is a reasonable one in the light
of the following argument. Suppose we have two quantum mechanical systems at our
disposal, represented by the operators T1 and T2 in S (H) describing their states. We
use a classical coin to decide which state is going to be observed: if, with probability
p, ‘heads’ comes up we observe the system corresponding to T1; otherwise we observe
the system corresponding to T2. This experiment can be described as observing the state
corresponding to the convex combination pT1 +(1− p)T2. If Φ is the observable to be
measured, we expect the probability distribution of the outcomes, Φ(pT1 +(1− p)T2),
to be given by pΦ(T1)+(1− p)Φ(T2).

POVMs admit a bounded functional calculus, but an important difference with the
bounded functional calculus for projection-valued measures of Theorem 9.8 is that the
calculus for POVMs fails to be multiplicative (see, however, (15.10) for a partial result
on multiplicativity).

Proposition 15.27 (Bounded functional calculus for POVMs). Let Q : F →L (H) be
a POVM. There exists a unique linear mapping Ψ : Bb(Ω)→L (H) satisfying

Ψ(1F) = QF , F ∈F,

and

∥Ψ( f )∥⩽ ∥ f∥∞, f ∈ Bb(Ω).

It satisfies

Ψ( f )⋆ = Ψ( f ), f ∈ Bb(Ω).

Proof For x,y ∈ H consider the complex measure Qx,y defined by

Qx,y(F) := (QF x|y), F ∈F.

That this indeed defines a measure follows by a polarisation argument from the count-
able additivity of the measures Qx, x∈H. For any measurable partition Ω = F1∪·· ·∪Fk

we have, by the Cauchy–Schwarz inequality applied twice,

k

∑
j=1
|Qx,y(Fj)|=

k

∑
j=1
|(QFj x|y)|⩽

k

∑
j=1

(QFj x|x)
1/2(QFj y|y)

1/2

=
k

∑
j=1

Qx(Fj)
1/2Qy(Fj)

1/2
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⩽
( k

∑
j=1

Qx(Fj)
)1/2( k

∑
j=1

Qy(Fj)
)1/2

= Qx(Ω)1/2Qy(Ω)1/2 = ∥x∥∥y∥,

from which it follows that Qx,y has finite variation |Qx,y|(Ω)⩽ ∥x∥∥y∥.
For f ∈ Bb(Ω) define

a f (x,y) :=
∫

Ω

f dQx,y, x,y ∈ H.

The form a is sesquilinear and bounded and defines a bounded operator Ψ( f ) on H by
Proposition 9.15. It is clear that Ψ(1F) = QF for all F ∈F and

|(Ψ( f )x|y)|=
∣∣∣∫

Ω

f dQx,y

∣∣∣⩽ ∫
Ω

| f |d|Qx,y|⩽ ∥ f∥∞∥x∥∥y∥.

The identity (Ψ( f ))⋆ = Ψ( f ) is a consequence of Qy,x = Qx,y, from which it follows
that

((Ψ( f ))⋆x|y) = (x|Ψ( f )y) = (Ψ( f )y|x) = a f (y,x)

=
∫

Ω

f dQy,x =
∫

Ω

f dQx,y = a f (x,y) = (Ψ( f )x|y).

Uniqueness is clear from the fact that Ψ(1F) = QF and the simple functions are dense
in Bb(Ω).

15.3.c Naimark’s Theorem

If J is an isometry from H into another Hilbert space H̃ and P̃ is an orthogonal projection
in H̃, then J⋆P̃J is an effect in H: for all x ∈ H we have

0 ⩽ (P̃Jx|Jx) = ∥P̃Jx∥2 ⩽ ∥x∥2 = (x|x)

and therefore 0 ⩽ J⋆P̃J ⩽ I. This gives a method of producing POVMs from projection-
valued measures:

Proposition 15.28 (Compression). Let J be an isometry from H into another Hilbert
space H̃. If P̃ : F →P(H̃) is a projection-valued measure, then Q := J⋆P̃J : F →
E (H) is a POVM.

Proof By what we just observed, Q maps sets F ∈F to elements of E (H). It is clear
that QΩ = J⋆J = I. To see that Q is a POVM, it remains to observe that for all x ∈ H
and F ∈F we have

Qx(F) = (QF x|x) = (P̃F Jx|Jx) = P̃Jx(F),

from which it follows that Qx is a finite measure on (Ω,F ).
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The main result of this section is Naimark’s theorem, which asserts that, conversely,
every POVM arises in this way.

Theorem 15.29 (Naimark). Let (Ω,F ) be a measurable space and let Q : F → E (H)

be a POVM. There exists a Hilbert space H̃, a projection-valued measure P̃ : F →
P(H̃), and an isometry J : H→ H̃ such that

QF = J⋆P̃F J, F ∈F.

To motivate the proof of this theorem we consider first the special case Ω = T and
F = B(T) its Borel σ -algebra. If Q : B(T)→ E (H) is a POVM, the operator

T :=
∫
T

zdQ(z)

is a contraction on H by Proposition 15.27. By the Sz.-Nagy dilation theorem (Theorem
8.36) there exist a Hilbert space H̃, a unitary operator U ∈ L (H̃), and an isometry
J : H→ H̃ such that

T n = J⋆UnJ, n ∈ N.

Using the spectral theorem for bounded normal operators, let P̃ : B(T)→P(H̃) be its
associated projection-valued measure. Then, by the properties of the bounded functional
calculus of U ,

T n = J⋆UnJ = J⋆
(∫

T
zn dP̃(z)

)
J =

∫
T

zn dQ(z), n ∈ N.

We claim that P̃ has the desired properties. Indeed, for all x ∈ H we have∫
T

λ
n dQx(λ ) = (T nx|x) = (UnJx|Jx) =

∫
T

λ
n dP̃Jx(λ ).

This means that the nonnegative Fourier coefficients of the probability measures Qx and
P̃Jx agree. Hence Qx = P̃Jx by Theorem 5.31 and the observation following it. But this
implies, for all Borel subsets B ∈B(T),

(QBx|x) = Qx(B) = P̃Jx(B) = (P̃BJx|Jx) = (J⋆P̃BJx|x).

This being true for all x ∈ H̃, we conclude that QB = J⋆P̃BJ.
This argument cannot be extended to cover the general case, but it does suggest a

proof strategy for Theorem 15.29, namely, to adapt the proof of the Sz.-Nagy dilation
theorem.

Proof of Theorem 15.29 Let

S := F ×H = {(F,x) : F ∈F, x ∈ H}

and consider the function Q̃ : S×S→ C by

Q̃(p, p′) := (QF∩F ′x|x′) for p = (F,x), p′ = (F ′,x′).
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We claim that this function is positive definite in the sense that for all finite choices of
p1, . . . , pN ∈ S and z1, . . . ,zN ∈ C we have

N

∑
n,m=1

Q̃(pn, pm)znzm ⩾ 0. (15.8)

First assume that pn = (Fn,xn) with the sets Fn disjoint. In that case,

N

∑
n,m=1

Q̃(pn, pm)znzm

N

∑
n,m=1

(QFn∩Fmxn|xm)znzm =
N

∑
n=1

(QFnznxn|znxn)⩾ 0

by the positivity of the operators QFn . For general F1, . . . ,FN ∈F we write their union⋃N
n=1 Fn as a union of 2N disjoint sets Cσ in F, indexed by the elements σ ∈ 2N, the

power set of {1, . . . ,N}, as follows. For σ ∈ 2N we set

Cσ :=
⋂

n∈σ

Fn \
⋃

m ̸∈σ

Fm.

It is straightforward to check that the sets Cσ are pairwise disjoint and that for all n =

1, . . . ,N we have

Fn =
⋃

σ∈2N
n∈σ

Cσ , Fn∩Fm =
⋃

σ∈2N

{n,m}⊆σ

Cσ .

Then, by the additivity of Q and the positivity of the operators QCσ
,

N

∑
n,m=1

Q̃(pn, pm)znzm =
N

∑
n,m=1

(QFn∩Fmxn|xm)znzm

=
N

∑
n,m=1

(
∑

σ∈2N

{n,m}⊆σ

QCσ
xn

∣∣∣xm

)
znzm

= ∑
σ∈2N

∑
1⩽n,m⩽N
{n,m}⊆σ

(QCσ
xn|xm)znzm

= ∑
σ∈2N

(
QCσ ∑

1⩽n⩽N
n∈σ

znxn

∣∣∣ ∑
1⩽m⩽N

m∈σ

zmxm

)
⩾ 0.

This completes the proof of (15.8).
Let V be the vector space of finitely supported complex-valued functions defined on

S. The elements of V are functions h : S→ C such that f (p) = 0 for all but at most
finitely many pairs p = (F,x) ∈ S. The function v ∈ V that maps p ∈ S to the complex
number z and is identically zero otherwise will be denoted as v = z1p. For two functions
v,v′ ∈V , say v = ∑

N
n=1 zn1pn and v′ = ∑

N
n=1 z′n1pn (allowing some of the zn and z′n to be
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zero) we define

(v|v′) :=
N

∑
n,m=1

Q̃(pn, pm)znz′m. (15.9)

Arguing as in the proof of Theorem 8.34, this uniquely defines a sesquilinear mapping
from V ×V to C which satisfies (v|v′) = (v′|v) for all v,v′ ∈ V and (v|v) ⩾ 0 for all
v ∈V , and

N = {v ∈V : (v|v) = 0}

is a subspace of V . It follows that (15.9) induces an inner product on the vector space
quotient V/N. Let H̃ denote the Hilbert space completion H̃ of V/N with respect to this
inner product.

Consider elements in H̃ of the form p+N = (Ω,x)+N and p′+N = (Ω,x′)+N with
x,x′ ∈ H. Then

(p+N|p′+N)H̃ = (QΩx|x′) = (x|x′).

Taking x′ = x, in particular we may identify x ∈H isometrically with the element p+N
in H̃, where p = (Ω,x). In this way we obtain an isometric embedding J of H into H̃.

To simplify notation we use the notation p = (F,x) for general elements of H̃, rather
than the more precise notation p+N = (F,x)+N. With this notation, Jx = (Ω,x).

The mapping π : H̃→ H̃ defined by

π(F,x) := (Ω,QF x)

satisfies π2(F,x) = π(Ω,QF x) = (Ω,QΩQF x) = (Ω,QF x) = π(F,x). We extend π by
linearity and check that this results in a selfadjoint, hence orthogonal, projection in H̃
whose range equals H. From

(π(F,x)|x′)H̃ = (QF x|x′)H = ((F,x)|(Ω,x′))H̃ = ((F,x)|Jx′)H̃

it follows that π = J⋆ as mappings from H̃ to H.
Finally set

P̃F(F ′,x) := (F ∩F ′,x).

Again it is routine to check that P̃F is an orthogonal projection in H̃. By the properties (i)
and (ii) in Definition 15.23 the mapping P̃ : F →L (H̃) is a projection valued measure.
Finally, from

J⋆P̃F Jx = πP̃F(Ω,x) = π(Ω∩F,x) = π(F,x) = QF x

we conclude that QF = J⋆P̃F J.

The argument given after the statement of Theorem 5.31 works for general contrac-
tions:
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15.3 Positive Operator-Valued Measures 579

Theorem 15.30. For every contraction T ∈ L (H), there exists a unique POVM Q :
B(T)→ E (H) such that

T n =
1

2π

∫
π

−π

einθ dQ(θ), n ∈ N.

If Q is a POVM with the above property, then T is unitary if and only if Q is a projection-
valued measure.

Proof Existence is shown by following the lines just mentioned: if U is a unitary
dilation of T and P is its projection-valued measure, the compression Q of P has the
required properties.

To prove uniqueness, suppose that for all x ∈ H we have

(T nx|x) =
∫
T

zn dQx(z) =
∫
T

zn dQ̃x(z), n ∈ N,

where Q̃ is another POVM on T. This means that the nonnegative Fourier coefficients
of the probability measures Qx and Q̃x agree. Now Theorem 5.31 (and the observation
following it) can be applied to see that Qx = Q̃x.

For the final statement it only remains to prove the ‘only if’ part. But this follows
from uniqueness, for if T :=

∫
T zdQ̃(z) is unitary for some POVM Q̃ on T, then we

may also represent T in terms of its associated projection-valued measure P, that is,
T =

∫
T zdP(z). By uniqueness, Q̃ = P.

If Q is as in Theorem 15.30, then for all trigonometric polynomials f ∈C(T) of the
form f (z) = ∑

N
n=0 cnzn we have

Ψ( f ) =
∫
T

f dQ = f (T ),

where T =
∫
T zdQ(z). By the continuity of the bounded functional calculus with respect

to the supremum norm, this identity persists for functions f in the disc algebra A(D), the
Banach space of all functions f ∈C(T) which have continuous extension to D which is
holomorphic on D; these are precisely the functions belonging to the closure in f ∈C(T)
of the trigonometric polynomials of the form just considered. An easy consequence is
that the bounded functional calculus of a POVM Q on T is multiplicative on the disc
algebra, that is,

Ψ( f )Ψ(g) = Ψ( f g), f ,g ∈ A(D). (15.10)

15.3.d The Phase/Number Pair

A convenient model for the number operator, the selfadjoint operator in Quantum Op-
tics that corresponds to the observable of counting the number of photons, can be given
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on the Hardy space H2(D) considered in Section 7.3.d. Recall that H2(D) is the Hilbert
space of all holomorphic functions on D of the form f (z) = ∑n∈N cnzn with

∥ f∥2 := ∑
n∈N
|cn|2 < ∞.

As we have seen in that section, the mapping

∑
n∈N

cnzn 7→ ∑
n∈N

cnen,

where zn(z) := zn and en(θ) := einθ , sets up an isometry from H2(T) onto the closed
subspace of L2(T) consisting of all functions whose negative Fourier coefficients vanish.
This allows us to identify H2(D) with the range of the Riesz projection ∑n∈Z cnen 7→
∑n∈N cnen on L2(T).

In H2(D) we consider the unbounded selfadjoint operator N with domain

D(N) =
{

f = ∑
n∈N

cnzn ∈ H2(D) : ∑
n∈N

n2|cn|2 < ∞

}
,

given by

Nzn = nzn, n ∈ N.

The sequence (zn)n∈N is an orthonormal basis of eigenvectors for N and accordingly
we have N ⊆ σ(N). On the other hand, if λ ∈ C \N, then for every f = ∑n∈N cnzn in
H2(D) the equation (λ −N)u = f is uniquely solved by u = ∑n∈N

cn
λ−n zn ∈H2(D). This

implies that λ ∈ ρ(N). We conclude that

σ(N) = N. (15.11)

(This is a special case of Proposition 10.32, but the proof could be simplified here be-
cause we have precise information about the domain of the operator.) We think of the
eigenfunctions zn on N as the pure states describing the n-photon states of an electro-
magnetic field. In this interpretation, (15.11) tells us that the number of photons ob-
served is a nonnegative integer.

The projection-valued measure N associated with N is given by N{n} = πn, the or-
thogonal projection in H2(D) onto the one-dimensional subspace spanned by zn, so that

(N f | f ) =
∫
N

ndN f (n) = ∑
n∈N

n(N{n} f | f ), f ∈ D(N).

To define phase as a T-valued unsharp observable in the sense of POVMs we proceed
as follows. Let S be the ‘left shift’ on H2(D), that is,

S ∑
n∈N

cnzn := ∑
n∈N

cn+1zn.

In the language of Section 7.3.d, S is the Toeplitz operator Tφ with symbol φ(z) = z.
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Identifying H2(D) with the range of the Riesz projection in L2(T), a unitary dilation of
S is given by the ‘left shift’ S̃ on L2(T),

S̃ ∑
n∈Z

cnen := ∑
n∈Z

cn+1en,

with en(θ) = einθ as before. The projection-valued measure P : B(T)→P(L2(T))
associated with S̃ is easily checked to be given by

PB f = 1B f , B ∈B(T), f ∈ L2(T). (15.12)

Its compression to H2(D) is a POVM Φ : T→ E (H2(D), which is called the phase
observable. It satisfies

Sn =
∫
T

zn dΦ(z), n ∈ N.

The covariance property expressed in the following theorem identifies the POVM Φ as
the “complementary unsharp observable” to the number observable N. The notions of
covariance and complementarity will be developed in more detail in Section 15.5.

Theorem 15.31 (Covariance of phase). The phase observable Φ is covariant under the
action of the unitary C0-group generated by−iN, that is, for all Borel subsets B⊆ T we
have

U(t)ΦBU⋆(t) = Φeit B, t ∈ R,

where eitB = {eitz : z ∈ B} is the rotation of B over t.

Proof Since the POVM Φ is the compression of the projection-valued measure P given
by (15.12), for all m,n ∈ N we have

(ΦBU⋆(t)en|em) = (PBJU⋆(t)en|Jem) = eint(1Ben|em),

while at the same time, with A = {θ ∈ (π,π] : eiθ ∈ B},

(U⋆(t)Φeit Ben|em) = (Peit BJen|JU(t)em) = eimt(1eit Ben|em)

=
eitm

2π

∫
A

ei(n−m)(η+t) dη =
eint

2π

∫
A

ei(n−m)η dη = eint(1Ben|em).

Since the functions en, n ∈ N, have dense span in H2(D), this completes the proof.

As will be explained in Section 15.6.e, N can be thought of as the Hamiltonian of the
quantum harmonic oscillator. In a sense made precise in Problem 15.13(f), N and Φ are
complementary in the sense of satisfying a Heisenberg-type commutation relation. For
physical reasons, this means that Θ can be thought as a time variable.
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15.4 Hidden Variables

The one-to-one correspondence of Theorem 15.25 between the set of POVMs and the
set of affine mappings from S (H) to M1

+(Ω) is particularly satisfying from a philo-
sophical point of view, as it characterises unsharp observables in an operational way: an
unsharp observable is nothing but a rule of assigning probability distributions to states
in such a way that convex combinations are respected. The rationale of this assumption
has been discussed in Remark 15.26.

Thinking of unsharp observables as affine mappings from S (H) to M+
1 (Ω), anal-

ogously we can define classical unsharp observables as affine mappings from M+
1 (X)

to M+
1 (Ω), where (X ,X ) is the state space of the classical system. Indeed, in Section

15.2 we have defined an observable as a measurable function from X to Ω, and such a
function f induces an affine mapping from M+

1 (X) to M+
1 (Ω) by sending µ to its im-

age measure f (µ) = µ ◦ f−1. In this way, every classical observable defines a classical
unsharp observable.

The following theorem shows that every family of quantum observables with values
in a locally compact Hausdorff space admits a classical model, in the sense made precise
in the formulation of the theorem. As before, we use the notation |h⟩ for the pure state
h⊗̄h ∈S (H) with h ∈ H of norm one. The theorem is phrased in terms of countably
generated locally compact Hausdorff spaces. By definition, these are locally compact
Hausdorff spaces whose topology is generated by a countable family of open sets. On
such a space Ω, using Urysohn functions (cf. Proposition 4.3) it is not hard to see that the
indicator of every open set can be approximated pointwise by a nonincreasing sequence
of continuous functions fn ∈C0(Ω); this fact will be used in the proof.

Theorem 15.32 (Hidden variables). Let Ω be a locally compact Hausdorff space whose
topology is countably generated, and suppose that Φ(i) : S (H)→M+

1 (Ω), i∈ I, are the
affine mappings associated with a family of unsharp quantum mechanical observables.
Then there exists a locally compact Hausdorff space X and a family of affine maps
φ (i) : M+

1 (X)→M+
1 (Ω), i ∈ I, such that the following conditions hold:

(1) the elements of X are the equivalence classes of the pure states |h⟩ modulo in-
discernibility under Φ(i), i ∈ I; here, two pure states |h1⟩ and |h2⟩ are said to be
indiscernible under Φ(i), i ∈ I, if

Φ
(i) |h1⟩= Φ

(i) |h2⟩ , i ∈ I;

(2) the quotient mapping sending a pure state |h⟩ to its equivalence class [h] in X is
continuous;

(3) the classical unsharp observables f (i) are related to the unsharp observables Φ(i)

by

φ
(i)(δ[h]) = Φ

(i) |h⟩ ,
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15.4 Hidden Variables 583

where δ[h] ∈M+
1 (X) is the Dirac measure supported on [h] ∈ X.

Proof We start by observing that each Φ(i) induces a bounded operator S(i) : C0(Ω)→
L (H) by the prescription

S(i)( f ) :=
∫

Ω

f dQ(i),

where Q(i) is the POVM underlying Φ(i) as in Theorem 15.25; the boundedness of this
operator follows from Proposition 15.27.

We endow the set Extr(S (H)) of pure states of S (H) with the coarsest topology
τ such that all mappings T 7→

∫
Ω

f dΦ(i)(T ) with i ∈ I and f ∈C0(Ω) are continuous.
As a subset of the closed unit ball of L1(H), Extr(S (H)) is relatively compact in
the closed unit ball of (L1(H))∗∗ = (L (H))∗, using trace duality (Theorem 14.29) to
identify the dual of L1(H) isometrically with L (H). By the Banach–Alaoglu theorem,
Extr(S (H)) is relatively compact with respect to the weak∗ topology inherited from
the closed unit ball of (L1(H))∗∗. We have∫

Ω

f dΦ
(i)(T ) = ⟨T,S(i) f ⟩,

using the duality between L1(H) and L (H) on the right-hand side. This identity im-
plies that the topology τ is coarser than the weak∗ topology inherited from the closed
unit ball of (L1(H))∗∗. As a result, the weak∗-closure of Extr(S (H)) is relatively τ-
compact and therefore the topological space (Extr(S (H)),τ) is locally compact.

As mentioned in the statement of the theorem, we define

X := Extr(S (H))/∼,

where ∼ is the equivalence relation of indiscernibility under Φ(i), i ∈ I. We endow this
space with the quotient topology τ/∼ =: υ , that is, we declare a subset of X to belong
to υ if its pre-image under the quotient mapping q : |h⟩ 7→ q |h⟩=: [h] belongs to τ . This
topology renders the quotient mapping from Extr(S (H)) to X continuous. As a result,
the space X is a locally compact space with respect to υ . It is also Hausdorff, for if
x1 ̸= x2 in X , we have x1 = [h1] and x2 = [h2] with |h1⟩ ̸∼ |h2⟩ in Extr(S (H)), so there
is an i ∈ I such that

Φ
(i) |h1⟩ ̸= Φ

(i) |h2⟩ . (15.13)

This means that Φ(i) |h1⟩ and Φ(i) |h2⟩ can be separated by open sets of the weak∗ topol-
ogy of the closed unit ball of (L1(H))∗∗. We claim that they can actually be separated
by open sets of τ . Indeed, suppose for a contradiction, that∫

Ω

f dΦ
(i) |h1⟩=

∫
Ω

f dΦ
(i) |h2⟩ , f ∈C0(Ω).
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This translates into ∫
Ω

f dQ(i)
h1

=
∫

Ω

f dQ(i)
h2
, f ∈C0(Ω).

By the observation preceding the statement of the theorem, this implies that Q(i)
h1
(U) =

Q(i)
h2
(U) for all open sets U ⊆ X . Since these generate the topology of X , Dynkin’s

lemma E.4 then implies that Q(i)
h1

= Q(i)
h2

. It follows that for every B ∈B(Ω) we have

(Q(i)
B h1|h1) = (Q(i)

B h2|h2), and this in turn implies Φ(i) |h1⟩(B) = Φ(i) |h2⟩(B). This be-
ing true for all B ∈B(Ω), we conclude that Φ(i) |h1⟩= Φ(i) |h2⟩, contradicting (15.13).
This completes the proof that the topology υ is Hausdorff on X .

Observing that the singletons {[h]} belong to B(X), the Dirac measures δ[h] belong
to M+

1 (X). We extend the mapping

δ[h] 7→Φ
(i) |h⟩= (Φi(·)h|h)

to their convex hull in M+
1 (X) by convexity:

φ
(i)
( N

∑
n=1

λnδ[hn]

)
:=

N

∑
n=1

λn(Φi(·)hn|hn)

for scalars 0 ⩽ λn ⩽ 1 such that ∑
N
n=1 λn = 1. Clearly, each φ (i) preserves convex com-

binations. The functions φ (i) are continuous with respect to the weak∗ topologies of
M+

1 (X) and M+
1 (Ω). To see this, by identifying the elements of M+

1 (X) as bounded
functionals on Cb(X), we observe that the mapping φ (i) is the restriction of the adjoint
of the bounded operator R(i) from C0(Ω) to Cb(X) given by

(R(i) f )([h]) :=
∫

Ω

f dQ(i)
h ,

where Q(i) is the POVM associated with Φ(i) as in Theorem 15.25. Note that R(i) f
is well defined pointwise as a function on X , for if |h1⟩ ∼ |h2⟩, then

∫
Ω

1B dQ(i)
h1

=∫
Ω

1B dQ(i)
h2

for all Borel sets B in Ω, and therefore
∫

Ω
f dQ(i)

h1
=
∫

Ω
f dQ(i)

h2
by linear-

ity and a limiting argument. Also note that R(i) f is continuous on (X ,υ); this follows
from the identity

(R(i) f )([h]) =
∫

Ω

f dQ(i)
h =

∫
Ω

f dΦ
(i) |h⟩

and the definition of υ as the quotient topology associated with τ .
Since the convex hull of the Dirac measures is dense in M+

1 (X) with respect to the
weak∗ topology inherited from (Cb(X))∗, these functions φ (i) admit unique weak∗-
continuous extensions to all of M+

1 (X), and these extensions again preserve convex
combinations.
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The set Extr(S (H)) can also be viewed as a subset of the image of the closed unit
ball of H under the quotient mapping H 7→ H/C which identifies two vectors h and
h′ whenever h = ch′ for some |c| = 1, that is, when |h⟩ = |h′⟩. As such, it is locally
compact with respect to the quotient topology induced by the weak topology of H, by
the reflexivity of H (see Example 4.57). This would only obscure the proof, however, as
it hides the trace duality underlying the main idea of the proof.

It is of some interest to work through the details of this construction for the qubit.
Accordingly let H = C2. As we have seen in Section 15.2.e, the set of extreme points
of S (H) then corresponds to the Bloch sphere S2 in R3. Under this correspondence
the Bloch vector ξ = (sinθ cosϕ, sinθ sinϕ, cosθ) ∈ S2 corresponds to the operator
Tξ ∈S (C2) given in matrix form as

Tξ =
1
2

(
1+ cosθ e−iϕ sinθ

eiϕ sinθ 1− cosθ

)
.

Let us take the Pauli matrices as the set of observables of interest:

{σ1,σ2,σ3}.

Let Pj be the projection-valued measure associated with σ j. For example, (P1){1} and
(P1){−1} are the orthogonal projections onto the one-dimensional subspaces spanned by

the eigenvectors corresponding to the eigenvalues 1 and −1 of σ1 =

(
0 1
1 0

)
:

(P1){1} =
1
2

(
1 1
1 1

)
, (P1){−1} =

1
2

(
1 −1
−1 1

)
.

We view these as unsharp observables with values in Ω := {±1}. Since {P1,P2,P3}
separates the points of S2, the space X constructed in the proof of Theorem 15.32 can
be identified with S2. The corresponding family classical variables φ = {φ1,φ2,φ3} is
given by the mappings φ j : M+

1 (S2)→M+
1 ({±1}),

(φ1(δξ ))({1}) = (Φ(Tξ ))({1}) = tr((P1){1}Tξ )

= tr
(

1
2

(
1 1
1 1

)
◦ 1

2

(
1+ cosθ e−iϕ sinθ

eiϕ sinθ 1− cosθ

))
=

1
4

tr
(

1+ cosθ + eiϕ sinθ 1− cosθ + e−iϕ sinθ

1+ cosθ + eiϕ sinθ 1− cosθ + e−iϕ sinθ

)
=

1
4
(1+ cosθ + eiϕ sinθ +1− cosθ + e−iϕ sinθ)

=
1
2
(1+ cosϕ sinθ) =

1
2
(1+ξ1)
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and likewise

(φ1(δξ ))({−1}) = 1
2
(1−ξ1).

Similar computations give

(φ2(δξ ))({±1}) = 1
2
(1±ξ2), (φ3(δξ ))({±1}) = 1

2
(1±ξ3).

By considering convex combinations of Dirac measures and a limiting argument, it
follows that the classical unsharp observables φ j : M+

1 (S2)→M+
1 ({±1}) are given by

dφ j(µ) =
(

1+ p
∫

S2
ξ j dµ(ξ )

)
dp, j = 1,2,3,

where dp is the probability measure on {±1} giving each point mass 1
2 .

15.5 Symmetries

In order to motivate our definition of a symmetry we introduce some notation and ter-
minology. The adjoint of a conjugate-linear mapping T : H → H (that is, a mapping
satisfying T (x+ y) = T (x)+T (y) and T (cx) = cx) is the unique conjugate-linear map-
ping T ⋆ : H→ H defined by

(x|T ⋆y) = (T x|y), x,y ∈ H.

A mapping T : H→ H is called antiunitary if it is conjugate-linear and satisfies T T ⋆ =

T ⋆T = I.

Eugene Wigner, 1902–1995

It is straightforward to check that if U : H→H
is unitary or antiunitary, then the mapping

U (T ) :=UTU⋆

is well defined as a mapping from S (H) to
S (H) and satisfies

tr(U (T1)U (T2)) = tr(T1T2), T1,T2 ∈S (H).

(15.14)

Here, as before, S (H) denotes the set of all pos-
itive trace class operators on H with unit trace.
As we have seen, the extreme points of this set
are precisely the rank one projections h⊗̄h with
h ∈ H of norm one. The physical intuition of (15.14) is that U preserves transition
probabilities between pure states. Indeed, if |g⟩ and |h⟩ are pure states, then

tr((g⊗̄g)◦ (h⊗̄h)) = ((g⊗̄g)h|h) = |(g|h)|2
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is the expected value of the observable g⊗̄g in state |h⟩. In Physics parlance, this is the
probability of “finding a system with state |h⟩ in state |g⟩ when measuring it against an
orthonormal basis containing g”, that is, the transition probability between |h⟩ and |g⟩.

A remarkable theorem due to Wigner provides a converse to (15.14):

Theorem 15.33 (Wigner). If U : S (H)→S (H) is a bijection with the property that

tr(U (T1)U (T2)) = tr(T1T2), T1,T2 ∈S (H),

there exists a mapping U : H→ H which is either unitary or antiunitary such that

U (T ) =UTU⋆, T ∈S (H).

This mapping is unique up to a complex scalar of modulus one.

We sketch a proof of the theorem only for the case of the qubit, that is, for H = C2,
and refer to the Notes for some missing details and references to the general case.

Sketch of the proof of Theorem 15.33 for the qubit We begin by recalling (15.4) and
(15.7), which state that if we write a pure state |h⟩ as cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩
with 0 ⩽ θ ⩽ π and 0 ⩽ ϕ < 2π , then the rank one projection h⊗̄h in C2 onto the span
of h is given as a matrix by

h⊗̄h =
1
2

(
1+ cosθ e−iϕ sinθ

eiϕ sinθ 1− cosθ

)
.

By elementary computation,

tr((h⊗̄h)(h′ ⊗̄h′)) = |(h|h′)|2 = 1
2
(1+ xh · xh′),

where, as in (15.5),

xh = (sinθ cosϕ, sinθ sinϕ, cosθ)

is the Bloch vector of h. Under the bijective correspondence h⊗̄h↔ xh between the
elements of S (C2) and the points of the unit sphere S2 of R3, the assumption of the
theorem implies that U induces a mapping R : S2→ S2 satisfying 1

2 (1+Rxh ·Rxh′) =
1
2 (1+ xh · xh′), that is,

Rxh ·Rxh′ = xh · xh′ .

This identity implies that the 3×3 matrix R defined by

Ri j = Rui ·u j, i, j ∈ {1,2,3},

with u1,u2,u3 the standard unit vectors of R3, is orthogonal. Now we use the algebraic
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fact, taken for granted here, that for every orthogonal 3× 3 matrix R with real coeffi-
cients there exists a mapping U : C2 → C2 which is either unitary or antiunitary, and
which is unique up to a complex scalar of modulus one, such that

U(x ·σ)U⋆ = (Rx) ·σ , x ∈ R3,

where x ·σ := x1σ1 + x2σ2 + x3σ3, where x ∈ R3 and σ1,σ2,σ3 are the Pauli matrices.
The mapping U has the required properties.

Informally speaking, Wigner’s theorem tells us that symmetries U of quantum me-
chanical systems are given by operators U acting on the underlying Hilbert space that
are either unitary or antiunitary. In practice one is primarily interested in one-parameter
groups of symmetries indexed by time. Suppose (U (t))t∈R is such a group. By the
uniqueness part of Wigner’s theorem, for all s, t ∈R the identity U (t)U (s) =U (t + s)
implies the existence of a scalar c(t,s) of modulus one such that the corresponding
(anti)unitary operators satisfy

U(t)U(s) = c(t,s)U(t + s).

From the associative law U(t)(U(s)U(r)) = (U(t)U(s))U(r) we obtain the cocycle
identity

c(s,r)c(t,s+ r) = c(t,s)c(t + s,r).

In this situation, a theorem of Bargmann implies that there exists function d, taking
values in the scalars of modulus one, such that

c(t,s) =
d(t)d(s)
d(t + s)

and the operators V (t) := d(t)−1U(t) are unitary. They satisfy

(U (t))(T ) =V (t)⋆TV (t), V (t)V (s) =V (t + s).

The unitary group (V (t))t∈R can be shown to be strongly continuous. Hence, by Stone’s
theorem, it follows that there exists a selfadjoint operator H , the Hamiltonian asso-
ciated with the family U , such that V (t) = eitH for t ∈ R. The action of the unitary
C0-group (eitH )t∈R on pure states is given by U (t)(h⊗̄h) =V (t)h⊗̄V (t)h. The equa-
tion

d
dt

V (t)h = iH V (t)

is an abstract version of the Schrödinger equation (13.33) (which corresponds to the
special case H = L2(Rd,m) and H = −∆+ potential). These considerations motivate
the following definition.

Definition 15.34 (Symmetry, of a Hilbert space). A symmetry of H is a unitary operator
on H.
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For later use we also introduce the following classical counterpart of this definition.

Definition 15.35 (Symmetry, of a measure space). A symmetry of the measure space
(Ω,F,µ) is a measurable bijective mapping g : Ω→ Ω with measurable inverse that
leaves µ invariant, that is,

(g(µ))(F) := µ(g−1(F)) = µ(F), F ∈F.

If g is a symmetry of (Ω,F,µ), then for all F ∈F the set g(F) is measurable and
µ(F) = µ(g−1(g(F))) = µ(g(F)), that is, µ is also invariant under g−1.

15.5.a Covariance

Definition 15.36 (Conservation and covariance). Let (Ω,F,µ) be a measure space and
let U be a symmetry of a Hilbert space H.

(i) An observable P : F →P(H) is said to be conserved under U if UPFU⋆ = PF

for all F ∈F.

(ii) An observable P : F →P(H) is said to be covariant under the pair (g,U), where
g is a symmetry of (Ω,F,µ), if UPFU⋆ = Pg(F) for all F ∈ F, that is, if the
following diagram commutes:

F F

P(H) P(H)

F 7→g(F)

P P

PF 7→UPFU⋆

As we will see shortly, position is covariant with respect to translation (an object at
position x appears at position x− x′ if the origin is translated over x′) and momentum is
covariant with respect to boosts (cf. Section 15.5.a; an object with momentum p appears
with momentum p− p′ if a boost of size p′ is applied, that is, if the origin ‘in momentum
space’ is translated over p′).

Locally Compact Abelian Groups An interesting special case arises when observ-
ables take values in a locally compact abelian (LCA) group G. Our treatment borrows
some results from the theory of LCA groups that will not be proved here. For the spe-
cial cases Rd and T the presentation is self-contained, as all missing details can be filled
in with the help of the results of Chapter 5. A fuller treatment of symmetries should
also cover the case of (noncommutative) Lie groups such as SO(3) and SU(2), but this
would take us too far afield.
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Every LCA group G admits a Haar measure, that is, a Borel measure µ such that
µ(B) = µ(g−1(B)) for all B ∈B(G) and g ∈ G. This measure is unique up to a scalar
multiple. With respect to a Haar measure µ , every g ∈ G induces a symmetry on G by

g : g′ 7→ gg′, g′ ∈ G.

This induces a symmetry Ug on L2(G) := L2(G,µ) given by

Ug f = f ◦g−1.

We refer to Ug as the translation over g. We have

U(g1)U(g2) f = ( f ◦g−1
2 )◦g−1

1 = f ◦ (g1g2)
−1 =U(g1g2) f ,

so U(g1)U(g2) =U(g1g2). This means that the mapping U : G→L (L2(G)), g 7→Ug,
is multiplicative and hence defines a unitary representation. It is easily checked that this
representation is strongly continuous.

A character of G is a continuous group homomorphism γ : G→ T. The set Γ of all
characters of G is called the Pontryagin dual of G. It has the structure of a locally com-
pact abelian group in a natural way by endowing it with the weak∗ topology inherited
from L∞(G) (local compactness being a consequence of the fact that Γ∪{0} is a weak∗

closed subset of the closed unit ball BL∞(G) which is weak∗ compact by the Banach–
Alaoglu theorem). It follows that Γ carries a Haar measure which is again unique up
to a normalisation. Every g ∈ G defines a character γ 7→ γ(g) on Γ, and the Pontryagin
duality theorem asserts that these are the only ones and the Pontryagin dual of Γ equals
G both as a set and as an LCA group.

Every character γ ∈ Γ induces a symmetry on L2(G) via

Vγ f (g′) = γ(g′) f (g′), g′ ∈ G, f ∈ L2(G).

We refer to Vγ as the boost over γ . In the language of Chapter 5, Vγ is the pointwise
multiplier with γ .

It is immediate from the above definitions that the so-called Weyl commutation rela-
tion holds:

Proposition 15.37 (Weyl commutation relation). For all g ∈ G and γ ∈ Γ we have

VγUg = γ(g)UgVγ .

Proof For f ∈ L2(G) and g′ ∈ G we have

VγUg f (g′) = γ(g′)Ug f (g′) = γ(g′) f (g−1g′)

and

γ(g)UgVγ f (g′) = γ(g)Vγ f (g−1g′) = γ(g)γ(g−1g′) f (g−1g′) = γ(g′) f (g−1g′).



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
15.5 Symmetries 591

We now turn to the definition of a pair of canonical observables that can be associ-
ated with LCA groups. For the statement of the second part of the theorem we need the
Plancherel theorem for LCA groups, which asserts that the Fourier–Plancherel trans-
form F : L1(G)→ L∞(Γ) defined by

F f (γ) :=
∫

G
f (g)γ(g)dµ(g), γ ∈ Γ,

where µ is a Haar measure on G, maps L1(G)∩L2(G) into L2(Γ) and there is a unique
normalisation of the Haar measure of Γ such that F extends to a unitary operator from
L2(G) onto L2(Γ). For later reference we note that γ(g) = γ(g−1) and hence

FUg f (γ) =
∫

G
f (g−1g′)γ(g′)dµ(g′) =

∫
G

f (g′)γ(gg′)dµ(g′) = γ(g−1)F f (γ),

(15.15)
where the second identity follows by substitution and invariance of µ .

Theorem 15.38 (Position and momentum). Let G be an LCA group, let Γ be its Pon-
tryagin dual, and let B(G) and B(Γ) be their Borel σ -algebras. Then:

(1) there exists a unique G-valued observable X : B(G)→P(L2(G)) such that for all
γ ∈ Γ we have

Vγ =
∫

G
γ dX ,

and it is given by XB f = 1B f for f ∈ L2(G) and B ∈B(G);
(2) there exists a unique Γ-valued observable Ξ : B(Γ)→P(L2(G)) such that for all

g ∈ G we have

Ug =
∫

Γ

gdΞ,

and it is given by ΞB f = F−11BF f for f ∈ L2(G) and B ∈B(Γ).

Proof (1): Consider the G-valued observable X : B(G)→L (L2(G)) defined by

XB f := 1B f , B ∈B(G), f ∈ L2(G).

For Borel sets B⊆ G the operator T1B :=
∫

G 1B dX on L2(G) is the pointwise multiplier
T1B f = 1B f . By linearity, for µ-simple functions φ on G the operator Tφ :=

∫
G φ dX

on L2(G) is the pointwise multiplier Tφ f = φ f . By approximation, the operator Tγ :=∫
G γ dX is the pointwise multiplier Tγ f = γ f =Vγ f . This proves existence.

We only sketch the proof of uniqueness; for the special cases G = Rd and G = T the
missing details are easily filled in by using the properties of the Fourier transform proved
in Chapter 5. If X̃ is an observable satisfying Vγ =

∫
G γ dX̃ , then for all f ∈ L2(G) we

have
∫

G γ dX̃ f =
∫

G γ dX f . This can be interpreted as saying that the finite Borel measures
X̃ f and X f have the same Fourier transforms. Their equality therefore follows from the
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injectivity of the Fourier transform as a mapping from the space of finite Borel measures
M(G) to L∞(Γ).

(2): We begin with the existence part. Applying the construction of the preceding
part to Γ we obtain the dual position operator XΓ : B(Γ)→L (L2(Γ)) given by

XΓ
B φ := 1Bφ , B ∈B(Γ), φ ∈ L2(Γ).

By conjugation with the Fourier–Plancherel transform it induces an observable Ξ :
B(Γ)→L (L2(G)):

ΞB f := F−1XΓ
B F f , B ∈B(Γ), f ∈ L2(G).

This observable has the desired property. Uniqueness is proved in the same way as in
part (1).

Definition 15.39 (Position and momentum). The G-valued observable X and the Γ-
valued observable Ξ of the theorem are called the position and momentum observables
of G, respectively.

The special cases where G = Rd and G = T will be discussed in Sections 15.5.b and
15.5.c, respectively.

Proposition 15.40. Let G be an LCA group and let X and Ξ be the position and mo-
mentum observables of G.

(1) X is covariant with respect to every (g,Ug) and conserved under every Vγ ,

UgXBU⋆
g = XgB, Vγ XBV ⋆

γ = XB.

(2) Ξ is conserved under every Ug and covariant with respect to every (γ,Vγ),

UgΞBU⋆
g = ΞB, Vγ ΞBV ⋆

γ = ΞγB.

Proof (1): For all g,g′ ∈ G, f ∈ L2(G), and B ∈B(G) we have

UgXBU⋆
g f (g′) = [1BUg−1 f ](g−1g′) = 1B(g−1g′) f (g′) = XgB f (g′),

proving covariance with respect to (g,Ug). Conservation under Vγ is even simpler:

Vγ XBV ⋆
γ f = γ(·)1B(·)γ−1(·) f (·) = 1B f = XB f .

The proof of (2) is entirely similar.

Remark 15.41 (Complementarity). In the Physics literature, the ‘duality’ between the
position and momentum observables is referred to as complementarity. As we will see in
the next two sections, this captures the complementarity of the position and momentum
observables in Rd as well as that of the angle and angular momentum observables in T.
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15.5.b The Case G = Rd: Position and Momentum

We now specialise to G = Rd with normalised Lebesgue measure dm(x) = (2π)−d/2 dx
as the Haar measure. Every character γ : Rd → T is of the form

γ(x) = eξ (x) := eix·ξ

for some ξ ∈ Rd. Under the identification γ ↔ eξ we have Γ = Rd, the Haar measure
being the normalised Lebesgue measure m. To distinguish G =Rd from its dual Γ =Rd

we use roman letters for elements of G and Greek letters for elements of its dual Γ.
For every y ∈ Rd, the translation y : x 7→ x+ y is a symmetry of Rd. The induced

symmetry Uy on L2(Rd,m) is right translation over y:

Uy f (x) = f (x− y), x ∈ Rd, f ∈ L2(Rd,m).

For every ξ ∈ Rd the boost Vξ on L2(Rd,m) is given by

Vξ f (x) = eix·ξ f (x), x ∈ Rd, f ∈ L2(Rd,m).

The Weyl commutation relation takes the form

VξUx = eix·ξUxVξ , x,ξ ∈ Rd.

The position observable X : B(Rd)→P(L2(Rd,m) and momentum observable Ξ :
B(Rd)→P(L2(Rd,m) of Theorem 15.42 can be described as selfadjoint operators as
follows. For 1 ⩽ j ⩽ d we define X j : B(R)→P(L2(Rd,m) by

(X j)B f := 1R×···×R×B×R···×R f , f ∈ L2(Rd,m),

with the Borel set B ⊆ R at the jth position. This projection-valued measure is inter-
preted as giving the jth position coordinate. We will prove that the selfadjoint operator
A j in L2(Rd,m) associated with X j equals x̂ j, where

x̂ j f (x) := x j f (x), x ∈ Rd, (15.16)

for f ∈D(x̂ j) := { f ∈ L2(Rd) : x 7→ x j f (x) ∈ L2(Rd,m)}. Indeed, for Borel sets B⊆R
and f ∈ L2(Rd) we have∫

R
1B d(X j) f = ((X j)B f | f ) = (1R×···×R×B×R···×R f | f ) =

∫
Rd

1B(x j)| f (x)|2 dm(x).

By linearity and a limiting argument, for f ∈ D(x̂ j) this implies f ∈ D(A j), where

D(A j) =
{

f ∈ L2(Rd) :
∫
R
|λ |2 d(X j) f (λ )< ∞

}
and

(A j f | f ) =
∫
R

λ d(X j) f (λ ) =
∫
Rd

x j| f (x)|2 dm(x) = (x̂ j f | f ).
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This proves the inclusion x̂ j ⊆ A j. Since both A j and x̂ j are selfadjoint, it follows from
Proposition 10.49 that A j = x̂ j with equal domains.

Likewise, the selfadjoint operator in L2(Rd) associated with the jth momentum co-
ordinate Ξ j : B(R)→P(L2(Rd,m),

(Ξ j)B f := F−11R×···×R×B×R···×RF f , f ∈ L2(Rd,m),

is given by

ξ̂ j f (x) :=
1
i

∂ f
∂x j

(x), x ∈ Rd, (15.17)

for f ∈ D(ξ̂ j) := { f ∈ L2(Rd) : x 7→ 1
i

∂ f
∂x j

(x) ∈ L2(Rd,m)}.
Applying the Weyl commutation relation for X and Ξ to functions in C1

c (Rd) and
differentiating this relation with respect to x j and ξk, we obtain the Heisenberg commu-
tation relation

x̂ jξ̂k− ξ̂kx̂ j = iδ jkI, (15.16)

the rigorous interpretation being that for all f ∈ C1
c (Rd) the equality x̂ jξ̂k f − ξ̂kx̂ j f =

iδ jk f holds in L2(Rd,m). Of course (15.16) could also be derived directly from (15.16)
and (15.17). Note that C1

c (Rd) is dense in the commutator domain D([x̂ j, ξ̂k]) for all
1 ⩽ j,k ⩽ d, and (15.16) extends to functions in this domain.

For pure states φ represented by a norm one function f ∈ L2(Rd) such that f ∈
D(x̂ j)∩D(ξ̂ j) and x̂ j f , ξ̂ j f ∈D(x̂ j)∩D(ξ̂ j), the uncertainty principle of Theorem 15.17
takes the form

∆φ (x̂ j)∆φ (ξ̂ j)⩾
1
2
.

It follows from Proposition 15.40 that the position observable X is covariant with
respect to translations and conserved under boosts, and that the momentum observable
Ξ is conserved under translations and covariant with respect to boosts. This essentially
characterises these observables:

Theorem 15.42 (Covariance characterisation of position and momentum). Up to con-
jugation with a translation, respectively a boost, position and momentum are charac-
terised by their covariance and conservation properties. More precisely, denoting by X
and Ξ the position and momentum observables, the following assertions hold.

(1) if the observable P : B(Rd)→P(L2(Rd,m)) is covariant with respect to all pairs
(x,Ux), x∈Rd, and conserved under all boosts Vξ , ξ ∈Rd, then there exists a unique
y ∈ Rd such that

PB =UyXBU⋆
y , B ∈B(Rd);



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
15.5 Symmetries 595

(2) if the observable P : B(Rd)→P(L2(Rd,m)) is invariant under all translations Ux,
x ∈ Rd, and covariant with respect to all pairs (ξ ,Vξ ), ξ ∈ Rd, then there exists a
unique η ∈ Rd such that

PB =Vη ΞBV ⋆
η , B ∈B(Rd).

Proof Let the projection-valued measure P : B(Rd)→P(L2(Rd,m)) be covariant
with respect to all pairs (x,Ux) and conserved under all boosts Vξ . The boost invari-
ance means that every projection PB commutes with pointwise multiplication with ev-
ery trigonometric exponential x 7→ exp(ix ·ξ ). By Lemma 5.33, this implies that PB is a
pointwise multiplier of the form PB f (x) = mB(x) f (x) with mB ∈ L∞(Rd,m). Since PB is
a projection, mB must be an indicator function, say of the set CB:

PB f = 1CB f .

Substituting this into the covariance with respect to translations, we arrive at the identity
1CB(x− t) = 1CB+t as elements of L∞(Rd,m), that is, we have

CB + t =CB+t

up to a null set. Similarly one sees that CRd =Rd and C∁B = ∁CB up to null sets. Finally,
if B and B′ are disjoint, then so are PB and PB′ , and therefore CB and CB′ are disjoint up to
a null set. It follows that the mapping B 7→CB commutes up to null sets with translations
and the Boolean set operations.

Let B := [0,1)d be the half-open unit cube. Suppose x,y ∈ Rd are Lebesgue points
of 1CB satisfying max1⩽ j⩽d |x j− y j| > 1. Then CB and CB + y− x intersect in a set of
positive measure. This is only possible if B and B+ y− x intersect in a set of positive
measure, but these sets are disjoint. This contradiction proves that all Lebesgue points
x,y of 1CB satisfy max1⩽ j⩽d |x j−y j|⩽ 1. Since almost every point of 1CB is a Lebesgue
point, it follows that up to a null set, CB is contained in the rectangle ∏

d
j=1[a j,b j], where

a j := inf{x j : x is a Lebesgue point of 1CB},
b j := sup{x j : x is a Lebesgue point of 1CB}.

In particular, since 0 ⩽ b j− a j ⩽ 1, up to a null set we have CB ⊆ ∏
d
j=1[a j,a j + 1) =

a+B, where a = (a1, . . . ,ad).
We next claim that up to a null set we have equality

CB = a+B.

Indeed, the sets k+B with k ∈ Zd are pairwise disjoint and their union is Rd. Hence,
up to null sets, the sets Ck+B = k+CB are disjoint and their union is Rd. This is only
possible if (a+B)\CB is a null set. This proves the claim.

Let n ∈ N and consider the set B(n) := [0,2−n)d. The same argument as above proves
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that there exists an a(n) ∈ Rd such that CB(n) = a(n)+B(n). Now B is the disjoint union
of 2nd translates k+B(n), k ∈ { j2−n : j = 0,1, . . .2n− 1}d. Therefore, up to a null set,
CB = a+B is the disjoint union of the 2nd sets Ck+B(n) = a(n) + k +B(n). This union
equals a(n)+B. This shows that a(n) = a for all n ∈ N.

Summarising what we have proved, we find that for all sets B of the form y+B(n)

with y ∈ Rd and n ∈ Z, we have

PB f = 1a+B f .

Equivalently, this can be expressed as

PB =UaXBU−a =UaXBU⋆
a .

This proves the first part of the theorem. To prove the second part, suppose that the
projection-valued measure P : B(Rd)→P(L2(Rd,m)) is conserved under all Uy and
covariant with respect to all pairs (η ,Vη). Then P̃B := F−1PBF defines a projection-
valued measure that is covariant with respect to all pairs (y,Uy) and conserved under all
Vη . It follows from the previous step that P̃ = UaXU⋆

a for some a ∈ Rd, and therefore
P = F P̃F−1 =VaΞV ⋆

a for some a ∈ Rd by (15.15).

15.5.c The Case G = T: Angle and Angular Momentum

The results of the preceding section have natural analogues for the unit circle T. We
identify T with the unit circle of C and take the normalised Lebesgue measure on T as
the Haar measure. Every character γ : T→ T is of the form

γ(z) = zk, z ∈ T,

for some k ∈ Z. Under this identification we have Γ = Z, its normalised Haar measure
being the counting measure.

For every w ∈ T the rotation z 7→ wz is a symmetry of T. The induced symmetry Uw

on L2(Rd,m) is given by

Uw f (z) = f (w−1z), z ∈ T, f ∈ L2(T). (15.17)

For every k ∈ Z the boost Vk on L2(T) is given by

Vk f (z) = zk f (z), z ∈ T, f ∈ L2(T). (15.18)

The Weyl commutation relation takes the form

VkUz = zkUzVk, z ∈ T, k ∈ Z.

The position and momentum observables in T associated with the symmetries Uz

and Vk are denoted by Θ and L and are called the angle and (orbital) angular momentum
observables. They take values in T and Z respectively; in particular, angular momentum
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can only assume discrete values. In the Physics literature one speaks about ‘quanta’ of
angular momentum.

Remark 15.43. By viewing Z as a subset of the real line, we may identify L with
a real-valued observable and thus associate with L a selfadjoint operator l̂ on L2(R).
There is no natural way, however, to do the same with Θ. One could identify T with
the interval (−π,π] contained in the real line and thus identify Θ with a real-valued ob-
servable. The choice of the interval (−π,π] is somewhat arbitrary, however, and entails
a non-uniqueness issue that cannot be resolved satisfactorily. The associated selfadjoint
operator θ̂ appears not to be very useful. For instance, it does not satisfy the ‘continuous
variable’ Weyl commutation relation

eisθ̂ eit l̂ = eisteit l̂eisθ̂.

This will be further discussed in Problem 15.13.

By Proposition 15.40, Θ is covariant under every pair (z,Uz) and conserved under
every Vk, and L is conserved under every Uz and covariant under every pair (k,Vk).
Repeating the proof of Theorem 15.42 almost verbatim we arrive at the following result.

Theorem 15.44 (Covariance characterisation of angle and angular momentum). Up to
conjugation with a translation, respectively a boost, angle and angular momentum are
characterised by their covariance and conservation properties. More precisely, denot-
ing by Θ and L the position and momentum operators associated with the rotations Uz

and boosts Vk given by (15.17) and (15.18), the following assertions hold.

(1) if the observable P : B(T) → P(L2(T)) is covariant with respect to all pairs
(z,Uz), z ∈ T, and conserved under all Vk, k ∈ Z, then there exists a unique w ∈ T
such that

PB =UwΘBU⋆
w, B ∈B(T);

(2) if the observable P : B(Z)→P(L2(T)) is conserved under all Uz, z ∈ T, and
covariant with respect to all pairs (k,Vk), k ∈ Z, then there exists a unique j ∈ Z
such that

PB =VjLBV ⋆
j , B ∈B(Z).

15.5.d The Stone–Von Neumann Theorem

We have seen in Theorem 15.42 that the Rd-valued position and momentum observables
are uniquely determined, up to conjugation with a translation and a boost respectively,
by their transformation properties under translations and boosts. It is interesting to ob-
serve that both the covariance relation for position

UxXBU⋆
x f = XxB f , x ∈ Rd, f ∈ L2(Rd,m),
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and the covariance relation for momentum

Vξ ΞBV ⋆
ξ

f = Ξξ B f ξ ∈ Rd, f ∈ L2(Rd,m),

imply the Weyl commutation relation. Here, as before, dm(x) = (2π)−d/2 dx is the nor-
malised Lebesgue measure. Indeed, approximating eix·ξ by simple functions, as in the
proof of Theorem 15.38 we find that the covariance relation for position implies the
identity VξUx = eix·ξUxVξ for x,ξ ∈ Rd, which is the Weyl commutation relation. In the
same way the covariance relation for momentum implies the Weyl commutation rela-
tion. In view of this it is reasonable to ask to what extent position and momentum are
determined by the Weyl commutation relation. The answer to this question is provided
by a theorem due to Stone and von Neumann (Theorem 15.48 and its corollary). Proving
this theorem is the main objective of the present section.

We start with some preparation. Suppose that Ũ ,Ṽ : Rd→L (H) are strongly contin-
uous unitary representations of Rd on a Hilbert space H such that the Weyl commutation
relation holds, that is,

ṼξŨx = eix·ξŨxṼξ , x,ξ ∈ Rd. (15.19)

The relation (15.19) states that Ũ and Ṽ ‘commute up to a multiplicative scalar of mod-
ulus one’. This suggests to interpret (15.19) as a ‘projective’ unitary representation of
Rd ×Rd on H. There is a quick way to extend (15.19) to a unitary representation as
follows. Consider the unitary operators

W̃ (x,ξ ) := e
1
2 ix·ξŨxṼξ = e−

1
2 ix·ξ ṼξŨx, x,ξ ∈ Rd. (15.20)

The operators W̃ (x,ξ ) defined by (15.20) satisfy

W̃ (x,ξ )W̃ (x′,ξ ′) = e−
1
2 i(x·ξ+x′·ξ ′)ṼξŨxṼξ ′Ũx′

= e−
1
2 i(x·ξ+x′·ξ ′)−ix·ξ ′Ṽξ Ṽξ ′ŨxŨx′

= e
1
2 i(x′·ξ−x·ξ ′)e−

1
2 i(x+x′)(ξ+ξ ′)Ṽξ+ξ ′Ũx+x′

= e
1
2 i(x′·ξ−x·ξ ′)W̃ (x+ x′,ξ +ξ

′).

(15.21)

From this it follows that the unitary operators defined by

W̃ (x,ξ , t) := eitW̃ (x,ξ ) (15.22)

satisfy

W̃ (x,ξ , t)W̃ (x′,ξ ′, t ′) = ei(t+t ′)W̃ (x,ξ )W̃ (x′,ξ ′)

= ei(t+t ′+ 1
2 (x
′·ξ−x·ξ ′))W̃ (x+ x′,ξ +ξ

′)

= W̃ ((x,ξ , t)◦ (x′,ξ ′, t ′)),

(15.23)
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where

(x,ξ , t)◦ (x′,ξ ′, t ′) :=
(

x+ x′, ξ +ξ
′, t + t ′+

1
2
(x′ ·ξ − x ·ξ ′)

)
.

One easily checks that the operation ◦ turns Hd := Rd×Rd×R into a group:

Definition 15.45 (Heisenberg group). The Heisenberg group in dimension d is the
group Hd := Rd×Rd×R with composition law

(x,ξ , t)◦ (x′,ξ ′, t ′) :=
(

x+ x′,ξ +ξ
′, t + t ′+

1
2
(x′ ·ξ − x ·ξ ′)

)
.

The identity 15.23 informs us that W̃ defines a unitary representation of the Heisen-
berg group Hd on H. It is strongly continuous and it satisfies

W̃ (0,0, t) = eit I, t ∈ R. (15.24)

Definition 15.46 (Schrödinger representation). The Schrödinger representation is the
unitary representation W : Hd → L (L2(Rd,m)) arising in the special case where the
unitary representations U,V : Rd→L (L2(Rd,m)) are given by translations and boosts,
respectively.

Explicitly, the Schrödinger representation is given by

W (x,ξ , t) f (x′) = eite−
1
2 ix·ξ eix′·ξ f (x′− x). (15.25)

Proposition 15.47. The Schrödinger representation is irreducible, that is, the only
closed subspaces of L2(Rd,m) invariant under the action of W are the trivial subspaces
{0} and L2(Rd,m).

The proof of this proposition will be given at the end of the section, for it uses ele-
ments of the proof of the following theorem which says that the Schrödinger represen-
tation is essentially the only irreducible unitary representation of Hd satisfying (15.24):

Theorem 15.48 (Stone–von Neumann). Let W̃ : Hd →L (H) be a strongly continuous
unitary representation of Hd on a separable Hilbert space H. If W̃ is irreducible and
satisfies W̃ (0,0, t) = eit I for all t ∈R, then W̃ is unitarily equivalent to the Schrödinger
representation W. More precisely, there exists a unitary operator S : L2(Rd,m)→ H
such that

W̃ (x,ξ , t) = SW (x,ξ , t)S⋆, (x,ξ , t) ∈Hd.

The operator S is unique up to a multiplicative scalar of modulus one.

Here, we use the term unitary operator for an operator S : H→K, where H and K are
Hilbert spaces, such that S⋆S = I (the identity operator on H) and SS⋆ = I (the identity
operator on K).
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We have the following immediate corollary for representations arising from pairs of
unitary representations satisfying the Weyl commutation relation.

Corollary 15.49. Let Ũ ,Ṽ : Rd → L (H) be strongly continuous unitary representa-
tions on a separable Hilbert space H satisfying the Weyl commutation relation

ṼξŨx = eix·ξŨxṼξ , x,ξ ∈ Rd.

Suppose furthermore that the family {Ũx,Ṽξ : x ∈ Rd, ξ ∈ Rd} acts irreducibly on H
in the sense that the only closed subspace invariant under all operators Ux and Ṽξ ,
x∈Rd, ξ ∈Rd, are the trivial subspaces {0} and H. Then there exists a unitary operator
S : L2(Rd,m)→ H such that

Ũx = SUxS⋆, x ∈ Rd,

Ṽξ = SVξ S⋆, ξ ∈ Rd,

where U and V are the translation and boost representations on L2(Rd,m), respectively.
The operator S is unique up to a multiplicative constant of modulus one.

Proof Defining W̃ : Hd→L (H) by (15.20) and (15.22), the irreducibility assumption
of the corollary translates into the irreducibility of the representation W̃ .

We now fix a strongly continuous unitary representation W̃ : Hd →L (H) and define

Ũx :=W (x,0,0), Ṽξ :=W (0,ξ ,0), W̃ (x,ξ ) := W̃ (x,ξ ,0).

Then (15.19)–(15.23) hold again. We write m for both the normalised Lebesgue mea-
sures on Rd and R2d .

Definition 15.50 (Weyl transform). For a ∈ L1(R2d,m) we define the operator W̃ (a) ∈
L (H) by

W̃ (a)h :=
∫
R2d

a(x,ξ )W̃ (x,ξ )hdm(x)dm(ξ ), h ∈ H,

where the integral is a Bochner integral in H.

The next two lemmas state some properties for the Weyl transform associated with
the Schrödinger representation W : Hd →L (L2(Rd,m)).

Lemma 15.51. For all a ∈ L1(R2d,m) ∩ L2(R2d,m) the operator W (a) is Hilbert–
Schmidt on L2(Rd,m) and

∥W (a)∥L2(L2(Rd,m)) = ∥a∥L2(R2d,m).

Proof For the Schrödinger representation we have the explicit formula (15.25),

W (x,ξ ) f (x′) = e−
1
2 ix·ξ eix′·ξ f (x′− x), f ∈ L2(Rd,m),
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where W (x,ξ ) :=W (x,ξ ,0) as in (15.22). By a change of variables and Fubini’s theo-
rem we obtain

W (a) f =
∫
R2d

a(x,ξ )e−
1
2 ix·ξ ei(·)·ξ f (·− x)dm(x)dm(ξ )

=
∫
Rd

(∫
Rd

a(·− x,ξ )e−
1
2 i(·−x)·ξ ei(·)·ξ dm(ξ )

)
f (x)dm(x)

:=
∫
Rd

k(x, ·) f (x)dm(x),

where

k(x,x′) =
∫
Rd

a(x′− x,ξ )e
1
2 i(x+x′)·ξ dm(ξ ).

By Plancherel’s theorem,∫
R2d

∣∣∣k(y− z
2

,
y+ z

2

)∣∣∣2 dm(y)dm(z) =
∫
R2d

∣∣∣∫
Rd

a(z,ξ )e
1
2 iy·ξ dm(ξ )

∣∣∣2 dm(y)dm(z)

= 2d
∫
R2d
|a(z,y)|2 dm(y)dm(z) = 2d∥a∥2

2

and hence∫
R2d
|k(x,x′)|2 dm(x)dm(x′) =

1
2d

∫
R2d

∣∣∣k(y− z
2

,
y+ z

2

)∣∣∣2 dm(y)dm(z) = ∥a∥2
2.

The result now follows from Example 14.3, which says that an integral operator with
square integrable kernel is Hilbert–Schmidt, with Hilbert–Schmidt norm equal to the
L2-norm of the kernel.

Since L1(R2d,m)∩L2(R2d,m) is dense in L2(R2d,m), the lemma implies that the map-
ping W : a 7→W (a) has a unique extension to an isometry from L2(R2d,m) into the space
of Hilbert–Schmidt operators L2(L2(Rd,m)). This extension is again denoted by W .

A special role is played by the functions

a0(x,ξ ) := exp
(
−1

4
(|x|2 + |ξ |2)

)
, x,ξ ∈ Rd,

φ0(x) := 2d/4 exp
(
−1

2
|x|2
)
, x ∈ Rd.

Note that ∥a0∥L2(R2d,m) = ∥φ0∥L2(Rd,m) = 1.

Lemma 15.52. The operator W (a0) equals the rank one projection φ0 ⊗̄φ0.

Proof Using (15.25) and the elementary identity (which follows from Lemma 5.19)∫
Rd

e−
1
2 ix·ξ eiy·ξ exp

(
−1

4
|ξ |2

)
dm(ξ ) = 2d/2 exp

(
−|y− 1

2
x|2
)
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we obtain, for f ∈ L2(Rd,m),

W (a0) f =
∫
R2d

exp
(
−1

4
|x|2
)

exp
(
−1

4
|ξ |2

)
e−

1
2 ix·ξ ei(·)·ξ f (·− x)dm(x)dm(ξ )

= 2d/2
∫
Rd

exp
(
−|(·)− 1

2
x|2
)

exp
(
−1

4
|x|2
)

f (·− x)dm(x)

= 2d/2 exp
(
−1

2
| · |2
)∫

Rd
exp
(
−1

2
|x|2
)

f (x)dm(x) = (φ0 ⊗̄φ0) f .

Returning to a general strongly continuous unitary representation W̃ : Hd →L (H),
we note the following important multiplicativity property.

Lemma 15.53. For all a,b ∈ L1(R2d,m) we have

W̃ (a)W̃ (b) = W̃ (a#b),

where the so-called twisted convolution a#b ∈ L1(R2d,m) is defined by

a#b(x,ξ ) :=
∫
R2d

e
1
2 i(x′·ξ−x·ξ ′)a(x− x′,ξ −ξ

′)b(x′,ξ ′)dm(x′)dm(ξ ′).

Young’s inequality implies that a#b does indeed belong to L1(Rd,m).

Proof Fix h ∈ H. By (15.21), a change of variables, and Fubini’s theorem,

W̃ (a)W̃ (b)h =
∫
R4d

a(x,ξ )b(x′,ξ ′)W̃ (x,ξ )W̃ (x′,ξ ′)hdm(x)dm(ξ )dm(x′)dm(ξ ′)

=
∫
R4d

e
1
2 i(x′·ξ−x·ξ ′)a(x,ξ )b(x′,ξ ′)

×W̃ (x+ x′,ξ +ξ
′)hdm(x)dm(ξ )dm(x′)dm(ξ ′)

=
∫
R4d

e
1
2 i(x′·ξ−x·ξ ′)a(x− x′,ξ −ξ

′)b(x′,ξ ′)

×W̃ (x,ξ )hdm(x)dm(ξ )dm(x′)dm(ξ ′)

=
∫
R2d

a#b(x,ξ )W̃ (x,ξ )hdm(x)dm(ξ ) = W̃ (a#b)h.

This lemma is used to establish the following technical fact.

Lemma 15.54. We have

W̃ (a0)W̃ (x,ξ )W̃ (a0) = a0(x,ξ )W̃ (a0), x,ξ ∈ Rd.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
15.5 Symmetries 603

Proof Repeating the steps in the proof of Lemma 15.53, for all h ∈ H we obtain

W̃ (x,ξ )W̃ (a0)h =
∫
R2d

a0(x′,ξ ′)W̃ (x,ξ )W̃ (x′,ξ ′)hdm(x′)dm(ξ ′)

=
∫
R2d

e
1
2 i(x′·ξ−x·ξ ′)a0(x− x′,ξ −ξ

′)W̃ (x,ξ )hdm(x′)dm(ξ ′)

= W̃ (ax,ξ )h,

(15.26)

where ax,ξ (x′,ξ ′) := e
1
2 i(x′·ξ−x·ξ ′)a0(x−x′,ξ −ξ ′). Hence, by Lemma 15.53, the lemma

is equivalent to the statement that

W̃ (a0 #ax,ξ ) = a0(x,ξ )W̃ (a0).

For this it suffices to show that

a0 #ax,ξ = a0(x,ξ )a0.

By the injectivity of the Schrödinger representation W , which follows from Lemma
15.51, this in turn is equivalent to showing that

W (a0)W (x,ξ )W (a0) =W (a0 #ax,ξ ) = a0(x,ξ )W (a0).

The verification of this identity proceeds by explicit calculation. By Lemma 15.52,

W (a0)W (x,ξ )W (a0) f = (φ0 ⊗̄φ0)W (x,ξ )(φ0 ⊗̄φ0) f

= (W (x,ξ )φ0|φ0)( f |φ0)φ0 = (W (x,ξ )φ0|φ0)W (a0) f .

Moreover, by (15.25) and an elementary computation,

(W (x,ξ )φ0|φ0) = e−
1
2 ix·ξ (ei(·)·ξ

φ0(·− x)|φ0)

= 2d/2e−
1
2 ix·ξ

∫
Rd

eiy·ξ exp
(
−1

2
|y− x|2

)
exp
(
−1

2
|y|2
)

dm(y)

= exp
(
−1

4
|x|2
)

exp
(
−1

4
|ξ |2

)
= a0(x,ξ ).

We are now ready for the proof of the Stone–von Neumann theorem.

Proof of Theorem 15.48 We split the proof into three steps.

Step 1 – We begin by showing that W̃ (a0) is a rank one projection. By Lemmas 15.52
and 15.53 (applied to W ),

W (a0 #a0) =W (a0)W (a0) = (φ0 ⊗̄φ0)
2 = φ0 ⊗̄φ0 =W (a0).

By the injectivity of W (which follows from Lemma 15.51), this implies that a0 #a0 =

a0. Another application of Lemma 15.53, this time to W̃ , gives

W̃ (a0)W̃ (a0) = W̃ (a0 #a0) = W̃ (a0).
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This means that W̃ (a0) is a projection. We will use the assumption of irreducibility of
W̃ to prove that this projection has rank one.

We begin by showing that W̃ (a0) ̸= 0. Indeed, if we had W̃ (a0) = 0, then for all
x,ξ ∈ Rd and h,h′ ∈ H we would have, by (15.21) and (15.26),

0 = (W̃ (x,ξ )W̃ (a0)W̃ (−x,−ξ )h|h′)

= (W̃ (ax,ξ )W̃ (−x,−ξ )h|h′)

=
∫
R2d

e
1
2 i(x′·ξ−x·ξ ′)a0(x− x′,ξ −ξ

′)

× (W̃ (x′,ξ ′)W̃ (−x,−ξ )h|h′)dx′ dξ
′

=
∫
R2d

e−
1
2 i(x′·ξ−x·ξ ′)a0(x′,ξ ′)

× (W̃ (x− x′,ξ −ξ
′)W̃ (−x,−ξ )h|h′)dx′ dξ

′

=
∫
R2d

e−i(x′·ξ−x·ξ ′)a0(x′,ξ ′)(W̃ (−x′,−ξ
′)h|h′)dx′ dξ

′

=
∫
R2d

ei(x′·ξ−x·ξ ′)a0(x′,ξ ′)(W̃ (x′,ξ ′)h|h′)dx′ dξ
′.

This being true for all x,ξ ∈ Rd, the Fourier inversion theorem would then imply that
(W̃ (x′,ξ ′)h|h′) = 0 for almost all x′,ξ ′ ∈ Rd. Since h,h′ ∈ H were arbitrary, it would
follow that W (x′,ξ ′) = 0 for almost all x′,ξ ′ ∈ Rd, contradicting the fact that all these
operators are unitary.

Fix any nonzero h ∈ R(W̃ (a0)); this is possible by the preceding argument. Let Ỹh be
the closed linear span of the set {W̃ (x,ξ )h : x,ξ ∈ Rd}. From (15.21) we see that Ỹh is
invariant under each operator W̃ (x,ξ ) and hence under the representation W̃ . Since W̃
is assumed to be irreducible it follows that Ỹh = H.

By (15.19) and (15.20),

W̃ (x,ξ )⋆ = e
1
2 ix·ξŨ⋆

x Ṽ ⋆
ξ
= e

1
2 ix·ξŨ−xṼ−ξ = e−

1
2 ix·ξ Ṽ−ξŨ−x = W̃ (−x,−ξ ).

Hence if h,h′ ∈ R(W̃ (a0)), say h = W̃ (a0)g and h′ = W̃ (a0)g′, then

(W̃ (x,ξ )h|W̃ (x′,ξ ′)h′) = (W̃ (−x′,−ξ
′)W̃ (x,ξ )W̃ (a0)g|W̃ (a0)g′)

= e
1
2 i(x′·ξ−x·ξ ′)(W̃ (x− x′,ξ −ξ

′)W̃ (a0)g|W̃ (a0)g′)

= e
1
2 i(x′·ξ−x·ξ ′)a0(x− x′,ξ −ξ

′)(W̃ (a0)g|g′)

= e
1
2 i(x′·ξ−x·ξ ′)a0(x− x′,ξ −ξ

′)(h|h′),

(15.27)

using that W̃ (a0) is an orthogonal projection and (W̃ (a0)g|g′) = (W̃ (a0)g|W̃ (a0)g′) =
(h|h′). In particular, if h ⊥ h′ with h′ ∈ R(W̃ (a0)), then Ỹh ⊥ Ỹh′ . Since Ỹh = H this
implies Ỹh′ = {0}, which, by the previous reasoning, is only possible if h′ = 0. This
proves that R(W̃ (a0)) equals the one-dimensional span of h.
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Step 2 – Define

S
N

∑
n=1

cnW (xn,ξn)φ0 :=
N

∑
n=1

cnW̃ (xn,ξn)h0,

where h0 ∈ R(W̃ (a0)) has norm ∥h0∥ = 1 = ∥φ0∥. It follows from (15.27) (applied to
both W and W̃ ) that S is well defined and isometric on the linear span of the functions
W (x,ξ )φ0, x,ξ ∈ Rd, and hence extends to an isometry from Yφ0 onto Ỹh0 , the former
being defined as the closed linear span of the functions W (x,ξ )φ0, x,ξ ∈ Rd. But Ỹh0 =

H, and by applying this to W we see that likewise Yφ0 = L2(Rd,m). This proves that S is
isometric from L2(Rd,m) onto H, and hence unitary. Since Sφ0 = h0, this proves that S
has the desired properties.

Step 3 – If T : L2(Rd,m) → H is another unitary operator with the property that
W̃ (x,ξ , t) = TW (x,ξ , t)T ⋆ for all (x,ξ , t) ∈Hd, then S⋆TW (x,ξ ) =W (x,ξ )S⋆T for all
x,ξ ∈ Rd. From this it follows that S⋆T commutes with W (a0), and therefore it maps
the one-dimensional range of this operator onto itself. This implies that S⋆T f = eiθ f
for some θ ∈ R and all f ∈ R(W (a0)). Then,

T
N

∑
n=1

cnW (xn,ξn) f = SS⋆T
N

∑
n=1

cnW (xn,ξn) f

= S
N

∑
n=1

cnW (xn,ξn)S⋆T f = eiθ S
N

∑
n=1

cnW (xn,ξn) f

and therefore T = eiθ S.

Proof of Proposition 15.47 Reasoning by contradiction, suppose that Y is a nontrivial
closed subspace invariant under W and let Y⊥ be its orthogonal complement. The iden-
tity W (x,ξ )⋆ =W (−x,−ξ ) implies that Y⊥ is invariant under W as well. By restriction
we thus obtain two strongly continuous unitary representations WY : Hd →L (Y ) and
WY⊥ : Hd →L (Y⊥), and they satisfy

WY (0,0, t) = eit IY , WY⊥(0,0, t) = eit IY⊥.

Lemma 15.52 and Step 1 of the proof of Theorem 15.48 imply that W (a0), WY (a0), and
WY⊥(a0) are orthogonal projections of rank one in L2(Rd,m), Y , and Y⊥, respectively.
This leads to the contradiction

y0 ⊗̄y0 =W (a0) =WY (a0)+WY⊥(a0),

as it represents the rank one projection y0 ⊗̄y0 as a sum of two disjoint rank one projec-
tions.

The final result of this section describes the Ornstein–Uhlenbeck semigroup in terms
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of the Weyl calculus. Let us first recall some notation from Theorem 13.56 (where a
different normalisation of Lebesgue measure was used). The multiplication E,

E f (x) := exp
(
−1

4
|x|2
)

f (x)

is unitary from L2(Rd,γ) to L2(Rd,m), and the dilation D,

D f (x) := 2d/4 f
(√

2x
)

is unitary on L2(Rd,m). Consequently the operator

U := D◦E (15.28)

is unitary from L2(Rd,γ) to L2(Rd,m).

Theorem 15.55. For all t > 0 we have, with s := 1−e−t

1+e−t ,

OU(t) = (1+ s)d U⋆W (âs)U,

where W is the Schrödinger representation and

as(x,ξ ) := exp
(
−s(|x|2 + |ξ |2)

)
, x,ξ ∈ Rd.

Proof Let a ∈ L1(R2d,m)∩L2(R2d,m). A formal calculation, using the definition of
the Weyl transform, the identity (15.25), and a change of variables, gives

W (â) f =
∫
R2d

(∫
R2d

a(u,v)e−i(u·x+v·ξ ) dm(u)dm(v)
)

W (x,ξ ) f dm(x)dm(ξ )

=
∫
R3d

(∫
Rd

e−i(v+ 1
2 x−(·))·ξ dm(ξ )

)
a(u,v)e−iux f (·− x)dm(u)dm(v)dm(x)

=
∫
R3d

δv+ 1
2 x−(·)a(u,v)e

−iux f (·− x)dm(u)dm(v)dm(x)

=
∫
R3d

δv− 1
2 (·+x)a(u,v)e

−iu(·−x) f (x)dm(v)dm(u)dm(x)

=
∫
R2d

a
(

u,
1
2
(x+ ·)

)
eiu(x−·) f (x)dm(u)dm(x).

This computation can be made rigorous by replacing the use of the physicist’s δ -
function by a mollifier argument as in the proof of Theorem 5.20.

By the definition of U , this gives the explicit formula

U⋆W (â)U f (y) =
∫
R2d

a
(

u,
1
2
(x+

y√
2
)
)

× exp
(

iu(x− y√
2
)
)

exp
(
−1

2
|x|2 + 1

4
|y|2
)

f (x
√

2)dm(u)dm(x)

=
1

2d/2

∫
R2d

a
(

u,
x+ y
2
√

2

)
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× exp
(

iu(
x− y√

2
)
)

exp
(
−1

4
|x|2 + 1

4
|y|2
)

f (x)dm(u)dm(x)

=:
∫
Rd

Ka(y,x) f (x)dm(x)

with

Ka(y,x) =
1

2d/2 exp
(
−1

4
|x|2 + 1

4
|y|2
)∫

Rd
a
(

u,
x+ y
2
√

2

)
exp
(

iu(
x− y√

2
)
)

dm(u).

Applying this to the function as we obtain

Kas(y,x) =
1

2d/2 exp
(
−1

4
|x|2 + 1

4
|y|2
)

×
∫
Rd

exp
(
−s(|u|2 + 1

8
|x+ y|2)

)
exp
(

iu(
x− y√

2
)
)

dm(u)

=
1

2d/2 exp
(
− s

8
|x+ y|2

)
exp
(
−1

4
|x|2 + 1

4
|y|2
)

×
∫
Rd

exp
(
−s|u|2 + iu(

x− y√
2
)
)

dm(u)

=
1

2d/2 exp
(
− 1

8s
|x− y|2

)
exp
(
− s

8
|x+ y|2

)
exp
(
−1

4
|x|2 + 1

4
|y|2
)

×
∫
Rd

exp
(
−s|η |2

)
dm(η)

=
1

2dsd/2 exp
(
− 1

8s
|x− y|2

)
exp
(
− s

8
|x+ y|2

)
exp
(
−1

4
|x|2 + 1

4
|y|2
)

=
1

2dsd/2 exp
(
− 1

8s
(1− s)2(|x|2 + |y|2)+ 1

4
(

1
s
− s)xy

)
exp
(
−1

2
|x|2
)
.

Therefore, with s = 1−e−t

1+e−t ,

(1+ s)d U⋆W (âs)U f (y)

= (1+ s)d
∫
Rd

Kas(y,x) f (x)dm(x)

=
(1+ s)d

2d(2πs)d/2

∫
Rd

exp
(
− 1

8s
(1− s)2(|x|2 + |y|2)+ 1

4
(

1
s
− s)xy

)
f (x)exp

(
−1

2
|x|2
)

dx

=
1

2d(2π)d/2

( 2
1+ e−t

)d(1+ e−t

1− e−t

)d/2

×
∫
Rd

exp
(
−1

2
e−2t

1− e−2t (|x|
2 + |y|2)+ e−t

1− e−2t xy
)

exp
(
−1

2
|x|2
)

f (x)dx

=
1

(2π)d/2

( 1
1− e−2t

)d/2 ∫
Rd

exp
(
−1

2
|e−ty− x|2

1− e−2t

)
f (x)dx

=
∫
Rd

Mt(y,x) f (x)dx = OU(t) f (y),
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where

Mt(y,x) =
1

(2π)d/2

( 1
1− e−2t

)d/2
exp
(
−1

2
|e−ty− x|2

1− e−2t

)
is the Mehler kernel; the last step used the Mehler formula (13.31) for OU(t).

15.6 Second Quantisation

Up to this point we have been concerned with the problem of first quantisation, namely,
how to define the quantum analogues of classical observables. In order to arrive at a
version of Quantum Mechanics that is consistent with Special Relativity, one must be
able to describe systems with a variable number of particles. This is due to the fact
that the equivalence of mass and energy makes it possible that particles are created and
annihilated. If one uses a Hilbert space H to describe the pure states of a single particle,
one postulates that the n-fold Hilbert space tensor product

H⊗n := H⊗·· ·⊗H︸ ︷︷ ︸
n times

describes the pure states of a system of n such particles. As explained in Appendix B,
we have a direct sum decomposition

H⊗n = Γ
n(H)⊕Λ

n(H)

into symmetric and antisymmetric tensor products. A boson is a particle whose n-
particle states are given by elements of Γn(H) and a fermion is a particle whose n-
particle states are given by elements of Λn(H). We will discuss the bosonic theory only;
the fermionic theory requires deeper tools from noncommutative analysis that would
take us too far afield. The bosonic theory, moreover, has interesting connections to sev-
eral other topics covered in this work.

The elements of the Hilbert space direct sum

Γ(H) :=
⊕
n∈N

Γ
n(H)

correspond to superpositions of states carrying different numbers of bosons. The process
of passing from H to Γ(H) is called (bosonic, or symmetric) second quantisation. The
observation that every contraction T on H extends to a contraction Γ(T ) on Γ(H) (see
Section 15.6.c) allows us to establish a beautiful connection, for the special case H =

Kd, with the Ornstein–Uhlenbeck semigroup discussed in Section 13.6.e, namely,

OU(t) = Γ(e−t I)
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15.6 Second Quantisation 609

(Theorem 15.68). Under this correspondence, the negative generator −L of this semi-
group corresponds to the number operator of Section 15.3.d (where a unitarily equiva-
lent model of it was studied). Our study will also uncover a deep connection between
second quantisation and the Fourier transform: over the complex scalars, the Fourier–
Plancherel transform is unitarily equivalent to the second quantisation of the operator
−iI (Theorem 15.70). Taken together, these facts connect the Fourier–Plancherel trans-
form to the Ornstein–Uhlenbeck semigroup. Some connections of second quantisation
with Number Theory will be discussed in the Notes.

For simplicity we will limit ourselves to the case where the Hilbert space describing
the pure states of a single particle is finite-dimensional. Mutatis mutandis, the theory
generalises to arbitrary Hilbert spaces H if one replaces the Gaussian measure by a so-
called H-isonormal process, a central object in Malliavin calculus. Although this gen-
eralisation does not pose any mathematical difficulties we will not pursue it, as it adds
a layer of abstraction that would only obscure the various connections just described.

Unless otherwise stated the scalar field K is allowed to be either real or complex.

15.6.a The Wiener–Itô Chaos Decomposition

For h ∈ Rd we define φh ∈ L2(Rd,γ) = L2(Rd,γ;K), where K= R or K= C by

φh(x) := (x|h) = x ·h =
d

∑
j=1

x jh j, x ∈ Rd.

Let (Hn)n∈N be the sequence of Hermite polynomials introduced in Section 3.5.b. For
n ∈ N we define

Hn := span{Hn(φh) : h ∈ Rd, |h|= 1},

the closure being taken in L2(Rd,γ). Here, (Hn(φh))(x) := Hn(φh(x)) = Hn((x|h)) for
x ∈ Rd. The space Hn is sometimes referred to as the Gaussian chaos of order n. Note
that H0 =K1 is the one-dimensional space of constant functions.

We are going to prove that the subspaces Hn are pairwise orthogonal and induce a
direct sum decomposition ⊕

n∈N
Hn = L2(Rd,γ).

In a second step we will identify orthonormal bases for the summands Hn.
To start our analysis, for h ∈ Rd we define the functions

Kh := exp
(

φh−
1
2
|h|2
)
.

From exp(φh) ∈ L2(Rd,γ) we see that Kh is well defined as an element of L2(Rd,γ).
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From (3.15) we see that

Kh = exp
(
|h|φh/|h|−

1
2
|h|2
)
= ∑

n∈N

|h|n

n!
Hn(φh/|h|), h ∈ Rd. (15.29)

In particular,

Kh = ∑
n∈N

1
n!

Hn(φh), |h|= 1. (15.30)

Lemma 15.56. The functions Kh, h ∈ Rd, span a dense subspace in L2(Rd,γ).

Proof Suppose that f ∈ L2(Rd,γ) is such that ( f |Kh) = 0 for all h ∈ Rd. Then∫
Rd f exp(φh)dγ = 0 for all h ∈ Rd. Taking h := ∑

d
j=1 c je j, with e j the jth standard unit

vector of Rd, we see that ∫
Rd

f (x)exp
( d

∑
j=1

c jx j

)
dγ(x) = 0

for all c1, . . . ,cd ∈ R. By analytic continuation we obtain that the same holds for all
c1, . . . ,cd ∈ C. Taking c j =−iy j with y j ∈ R, this implies that the Fourier transform of
the function x 7→ f (x)exp

(
− 1

2 |x|
2
)

vanishes. By the injectivity of the Fourier transform
(Theorem 5.20) we conclude that f (x)exp

(
− 1

2 |x|
2
)
= 0 for almost all x ∈ Rd, that is,

f (x) = 0 for almost all x ∈ Rd.

Theorem 15.57 (Wiener–Itô decomposition). We have the orthogonal decomposition

L2(Rd,γ) =
⊕
n∈N

Hn.

Proof Fix h,h′ ∈Rd with |h|= |h′|= 1 and s, t ∈R. Repeating the steps of (3.16), for
all s, t ∈ R we have

(H(s,φh)|H(t,φh′)L2(Rd,γ) = exp
(
st (h|h′)

)
.

Substituting H(r, ·) = ∑
∞
k=0

rk

k! Hk and exp(st (h|h′)) = ∑
∞
k=0

(st)k

k! ((h|h′))k, and taking the
partial derivative ∂ n+m

∂ sm∂ tn at s = t = 0 on both sides of the resulting identity, we obtain

(Hm(φh)|Hn(φh′))L2(Rd,γ) = δmnn!(h|h′)n.

Noting that δmnn! = δmn
√

m!
√

n!, this can be equivalently stated as(Hm(φh)√
m!

∣∣∣Hn(φh′)√
n!

)
= δmn(h|h′)n. (15.31)

For m ̸= n this implies Hm ⊥Hn.
If f ⊥Hn for all n ∈ N, then ( f |Hn(φh))L2(Rd,γ) = 0 for all h ∈ Rd with |h|= 1, and

therefore (15.29) implies that ( f |Kh)L2(Rd,γ) = 0 for all h ∈ Rd, and therefore f = 0 by
Lemma 15.56.
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The next result shows that the Wiener–Itô decomposition diagonalises the Ornstein–
Uhlenbeck semigroup OU on L2(Rd,γ) introduced in Section 13.6.e:

Theorem 15.58. The following identities hold:

(1) for all h ∈ Rd and t ⩾ 0,

OU(t)Kh = Ke−t h;

(2) for all n ∈ N, F ∈Hn, and t ⩾ 0,

OU(t)F = e−ntF.

Proof Completing squares in the exponential, for all h ∈ Rd and t ⩾ 0 we have∫
Rd

exp
(√

1− e−2t(y|h)
)

dγ(y) =
d

∏
j=1

1√
2π

∫
R

exp
(√

1− e−2ty jh j−
1
2
|y j|2

)
dy j

=
d

∏
j=1

exp
(1

2
(1− e−2t)|h j|2

)
= exp

(1
2
(1− e−2t)|h|2

)
.

Hence, from the definitions of OU(t), φh, and Kh,

OU(t)Kh(x) =
∫
Rd

exp
(

φh(e−tx+
√

1− e−2ty)− 1
2
|h|2
)

dγ(y)

= exp
(

e−t(x|h)− 1
2
|h|2
)∫

Rd
exp
(√

1− e−2t(y|h)
)

dγ(y)

= exp
(

e−t(x|h)− 1
2
|h|2
)

exp
(1

2
(1− e−2t)|h|2

)
= exp

(
(x|e−th)− 1

2
|e−th|2

)
= Ke−t h(x).

If |h|= 1 and s ⩾ 0, it follows from (15.29) and the preceding calculation that

OU(t) ∑
n∈N

sn

n!
Hn(φh) = OU(t)Ksh = Ke−t sh = ∑

n∈N

sne−nt

n!
Hn(φh).

Taking nth derivatives in s and evaluating at s = 0, we obtain the identity

OU(t)Hn(φh) = e−ntHn(φh).

By linearity and taking limits, this gives (2).

Part (2) of the theorem implies that each summand Hn is contained in D(L), where L
is the generator of (OU(t))t⩾0, and

LF =−nF, F ∈Hn, n ∈ N.

Over the complex scalars, Proposition 10.32 can be applied and we obtain:

Corollary 15.59. σ(−L) = N.
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15.6.b The Wiener–Itô Isometry

Our next aim is to find an orthonormal basis for each summand Hn. This will be
achieved in Theorem 15.60 by means of multivariate Hermite polynomials.

For n = (n1, . . . ,nk) ∈ Nk we write

|n| :=
k

∑
j=1

n j, n! :=
k

∏
j=1

n j!.

For orthonormal systems h = (h j)
k
j=1 in Rd and n ∈ Nk we define

Hn(φh) :=
k

∏
j=1

Hn j(φh j).

Theorem 15.60. Let h = (h j)
d
j=1 be an orthonormal basis for Rd. For each n ∈ N the

family { 1√
n!

Hn(φh) : n ∈ Nd , |n|= n
}

defines an orthonormal basis for Hn. As a consequence, the family{ 1√
n!

Hn(φh) : n ∈ Nd
}

defines an orthonormal basis for L2(Rd,γ).

Proof The proof is divided into three steps.

Step 1 – First we prove that the family { 1√
n!

Hn(φh) : n ∈ Nd} is an orthonormal

system in L2(Rd,γ). Let m,n ∈ Nd . By separation of variables and (15.31),( 1√
m!

Hm(φh)
∣∣∣ 1√

n!
Hn(φh)

)
=

d

∏
i=1

d

∏
j=1

( 1√
mi!

Hmi(φhi)
∣∣∣ 1√

n j!
Hn j(φh j)

)
=

d

∏
i=1

d

∏
j=1

δmin j(hi|h j)
n j =

d

∏
j=1

δm jn j = δmn.

(15.32)

Step 2 – Next we prove completeness of this system in L2(Rd,γ). Suppose f ∈
L2(Rd,γ) is such that ( f |Hn(φh)) = 0 for all n ∈ Nd . Fix an arbitrary h ∈ Rd and put
gk := ∑

k
j=0

1
j! φ

j
h . Then limk→∞ gk = exp(φh) in L2(Rd,γ) by dominated convergence. By

writing h = ∑
d
j=1 c jh j we see that each gk is a polynomial in φh1 , . . . ,φhd , and such poly-

nomials are linear combinations of the functions Hn(φh) for appropriate multi-indices
n ∈ Nd . It follows that ( f |gk) = 0 for all k ∈ N. Passing to the limit k→ ∞ it follows
that ( f |exp(φh)) = 0, and therefore ( f |Kh) = 0. Since h ∈ Rd was arbitrary, Lemma
15.56 implies that f = 0. Together with Step 1, this proves that {Hn(φh) : n ∈ Nd} is
an orthonormal basis of L2(Rd,γ).
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Step 3 – The final step is to prove that { 1√
n!

Hn(φh) : n ∈ Nd , |n| = n} is an or-
thonormal basis for Hn. Denote by Gn the closed linear span of the set {Hn(φh) : n ∈
Nd , |n| = n}. By Step 1, Gm ⊥ Gn if m ̸= n. If h = ∑

d
j=1 c jh j ∈ Kd and 0 ⩽ m ⩽ n,

then Hm(φh) = Hm(∑
d
j=1 c jφh j) is a linear combination of polynomials of the form

Hk(φh) with |k| ⩽ m, and therefore Hm(φh) ∈
⊕m

j=1 G j. In particular this implies that
Hm ⊆

⊕m
j=1 G j ⊆

⊕n
j=1 G j and therefore

n⊕
j=1

H j ⊆
n⊕

j=1

G j.

Also, by Step 1,

Hn ⊥
n−1⊕
j=1

G j.

It follows that Hn ⊆ Gn. This being true for all n ∈ N, by Step 2 it follows that

L2(Rd,γ) =
⊕
n∈N

Hn ⊆
⊕
n∈N

Gn = L2(Rd,γ).

From this we infer that Hn = Gn for all n ∈ N.

The orthogonal projection in L2(Rd,γ) onto Hn will be denoted by Jn.

Corollary 15.61. For all n ∈ N and h ∈ Rd with |h|= 1 we have

Jn(φ
n
h ) = Hn(φh).

More generally, if (h j)
k
j=1 is orthonormal in Rd and n = (n1, . . . ,nk) ∈ Nk, then

J|n|(φ
n1
h1
· · ·φ nk

hk
) = Hn1(φh1) · · ·Hnk(φhk).

Proof We have

Hn1(φh1) · · ·Hnk(φhk) = φ
n1
h1
· · ·φ nk

hk
+q(φh1 , . . . ,φhk), (15.33)

where q is a polynomial of degree strictly less than |n|. Hence Theorem 15.60 im-
plies that q(h1, . . . ,hk) ∈

⊕|n|−1
j=0 H j, and the corollary follows by projecting (15.33)

onto H|n|. Since Hn1(φh1) · · ·Hnk(φhk) ∈H|n|, the left-hand side remains unchanged;
the right-hand side is mapped to J|n|(φ

n1
h1
· · ·φ nk

hk
).

Corollary 15.62. For all h ∈ Rd with |h|= 1,

Kh = ∑
n∈N

1
n!

Jn(φ
n
h ).

Proof This follows from the previous corollary and (15.30).
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Proposition 15.63. For all g1, . . . ,gn ∈ Rd and h1, . . . ,hn ∈ Rd we have

(Jn(φg1 · · ·φgn)|Jn(φh1 · · ·φhn)) = ∑
σ∈Sn

(g1|hσ(1)) · · ·(gn|hσ(n)),

where Sn is the group of permutations of {1, . . . ,n}.

Proof Let (e j)
d
j=1 be the standard basis of Rd. Choose nonnegative integers ℓ1, . . . , ℓ j

and m1, . . . ,mk such that ℓ1+ · · ·+ℓ j = m1+ · · ·+mk = n. By adding extra zeroes to the
shortest of these two sequences we may assume that j = k. By Corollary 15.61,

Jn(φ
ℓ1
ei1
· · ·φ ℓk

eik
) = Hℓ1(φei1

) · · ·Hℓk(φeik
),

Jn(φ
m1
ei1
· · ·φ mk

eik
) = Hm1(φei1

) · · ·Hmk(φeik
).

Hence, by (15.32),

(Jn(φ
ℓ1
ei1
· · ·φ ℓk

eik
)|Jn(φ

m1
ei1
· · ·φ mk

eik
)) = m!δℓ1,m1 · · ·δℓk,mk .

On the other hand, with

g1 = · · ·= gℓ1 := ei1 , . . . , gℓ1+···+ℓk−1+1 = · · ·= gℓ1+···+ℓk = eik ,

h1 = · · ·= hm1 := ei1 , . . . , hm1+···+mk−1+1 = · · ·= mℓ1+···+ℓk = eik ,
(15.34)

we have

∑
σ∈Sn

(g1|hσ(1)) · · ·(gn|hσ(n))

= ∑
σ∈Sn

(ei1 |hσ(1)) · · ·(ei1 |hσ(ℓ1)) · · ·

· · ·(eik |hσ(ℓ1+···+ℓk−1+1)) · · ·(eik |hσ(ℓ1+···+ℓk−1+ℓk))

= m1! · · ·mk! ·δℓ1,m1 · · ·δℓk,mk = m!δℓ1,m1 · · ·δℓk,mk .

This proves the corollary in the special case (15.34). By n-linearity, the corollary then
also follows if each of the functions f and g are finite linear combinations of such
expressions, and finally the general case follows by density.

The main result of this section relates the spaces Hn to the n-fold symmetric tensor
product of Kd. The n-fold tensor product

(Kd)⊗n :=Kd⊗·· ·⊗Kd︸ ︷︷ ︸
n times

is a Hilbert space with respect to the inner product( ℓ

∑
j=1

g( j)
1 ⊗·· ·⊗g( j)

n

∣∣∣ m

∑
k=1

h(k)1 ⊗·· ·⊗h(k)n

)
:=

ℓ

∑
j=1

m

∑
k=1

(g( j)
1 |h

(k)
1 ) · · ·(g( j)

n |h(k)n ).
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We identify (Kd)⊗0 with the scalar field K. From Appendix B we recall that the n-
fold symmetric tensor product of Kd , denoted by Γn(Kd), is defined as the range of the
orthogonal projection PΓn ∈L ((Kd)⊗n) given by

PΓn(h1⊗·· ·⊗hn) :=
1
n! ∑

σ∈Sn

hσ(1)⊗·· ·⊗hσ(n), h1, . . . ,hn ∈Kd,

and extended by linearity, where Sn is the group of permutations of {1, . . . ,n}. Equiva-
lently, Γn(Kd) is the subspace of those elements of (Kd)⊗n that are invariant under the
action of Sn.

For the formulation of the next theorem we introduce the following notation. Let
h = (h j)

k
j=1 be a finite sequence in Kd . For n ∈ Nk with |n|= n let

h⊗n := h⊗n1
1 ⊗·· ·⊗h⊗nk

k ,

where h
⊗n j
j = h j⊗·· ·⊗h j (n j times) with the convention that terms of the form h⊗0

j are
omitted. Similarly we let

φ
⊗n
h := φ

n1
h1
· · ·φ nk

hk
.

Theorem 15.64 (Wiener–Itô isometry). There exists a unique isometric isomorphism

W : Γ(Kd)→ L2(Rd,γ;K)

with the following property: For every 1 ⩽ k ⩽ d, every orthonormal system h = (h j)
k
j=1

in Rd, every n ∈ N, and every multi-index n ∈ Nk with |n|= n,

W (PΓn(h
⊗n)) =

1√
n!

Hn(φh), n ∈ Nk.

This mapping W will be referred to as the Wiener–Itô isometry.

Proof For complex scalars, the result follows from the real case by complexification.
We may therefore assume that K= R.

Uniqueness being clear, we concentrate on existence. Let e = (e j)
d
j=1 be the standard

basis in Rd. For every integer n ∈ N consider the linear mapping Wn : Γn(Rd)→Hn

defined by

Wn : PΓn(e
⊗n) 7→ 1√

n!
Hn(φe), n ∈ Nd, |n|= n,

and extended by linearity. We begin by showing that if h = (hi)
k
i=1 is any orthonormal

system in Rd, then

Wn(PΓn(h
⊗n)) =

1√
n!

Hn(φh), n ∈ Nk, |n|= n. (15.35)
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As a second step we show that Wn is an isometry from Γn(Rd) onto Hn. In view of the
Wiener–Itô decomposition, these two facts prove the theorem.

Step 1 – Let hi = ∑
d
j=1 ci je j, i = 1, . . . ,k, be the expansion in terms of the standard

basis. Let n ∈ Nk be a multi-index satisfying |n|= n. Then,

Wn(PΓn(h
⊗n)) =Wn

(
PΓn

(( d

∑
j=1

c1 je j

)⊗n1
⊗·· ·⊗

( d

∑
j=1

ck je j

)⊗nk

))
=Wn

(
PΓn ∑
|m|=n

ame⊗m
)
=Wn

(
∑
|m|=n

amPΓne⊗m
)

= ∑
|m|=n

am
1√
n!

Hm(φe) =
1√
n! ∑
|m|=n

am

d

∏
j=1

Hm j(φe j)

=
1√
n! ∑
|m|=n

amJn

( d

∏
j=1

φ
m j
e j

)
=

1√
n!

Jn

(
∑
|m|=n

am

d

∏
j=1

φ
m j
e j

)
=

1√
n!

Jn

(
∑
|m|=n

amφ
m
e

)
=

1√
n!

Jn

( k

∏
ℓ=1

( d

∑
j=1

cℓ jφe j

)nℓ)
=

1√
n!

Jn

( k

∏
ℓ=1

φ
nℓ
hℓ

)
=

1√
n!

k

∏
ℓ=1

Hnℓ(φhℓ) =
1√
n!

Hn(φh),

where the coefficients am, m ∈ Nd, are determined by the identity

∑
|m|=n

amξ
m =

k

∏
ℓ=1

( d

∑
j=1

cℓ jξ j

)nℓ

in the formal variables ξ1, . . . ,ξd and ξ m = ξ
m1
1 · · ·ξ

md
d . This establishes (15.35).

Step 2 – In this step we show that the mappings Wn are isometric from Γn(Rd) onto
Hn. First let h1, . . . ,hn ∈ Rd be arbitrary. By Proposition 15.63 we have

∥Jn(φh1 · · ·φhn)∥
2 = ∑

σ∈Sn

(h1|hσ(1)) · · ·(hn|hσ(n))

= ∑
σ∈Sn

(h1⊗·· ·⊗hn|hσ(1)⊗·· ·⊗hσ(n))

= n!(h1⊗·· ·⊗hn|PΓn(h1⊗·· ·⊗hn)) = n!∥PΓn(h1⊗·· ·⊗hn)∥2,

the projection PΓn = P2
Γn

being orthogonal and hence selfadjoint. Specialising to the
standard basis of Rd and using Corollary 15.61, we obtain

∥PΓn(e
⊗n)∥= ∥PΓn(e

⊗n1
1 ⊗·· ·⊗ e⊗nd

d )∥= 1√
n!
∥Jn(φ

n1
e1
· · ·φ nd

ed
)∥

=
1√
n!
∥Hn1(φe1) · · ·Hnd (φed )∥=

1√
n!
∥Hn(φe)∥.
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This identity extends to finite linear combinations by the Pythagorean identity, noting
that both on the left and on the right the contributing terms in the sums are orthogonal.
This proves that the mapping in the statement of the proposition is an isometry. Since
the multivariate Hermite polynomials of degree n form an orthonormal basis in Hn, this
isometry is surjective.

As a special case, note that for all h ∈ Rd with |h|= 1,

W (h⊗n) =
1√
n!

Hn(φh). (15.36)

15.6.c Second Quantised Operators

For a linear operator T on H we obtain a linear operator T⊗n on H⊗n by

T⊗n(h1⊗·· ·⊗hn) := (T h1⊗·· ·⊗T hn)

and linearity. For n = 0 we understand that H⊗n = K and T⊗0 = IK, where K is the
scalar field.

Proposition 15.65. If T is a bounded operator on H, then T⊗n is a bounded operator
on H⊗n of norm

∥T⊗n∥= ∥T∥n.

Proof By a scaling argument it suffices to show that if ∥T∥= 1, then ∥T⊗n∥= 1. The
inequality ∥T⊗n∥ ⩾ 1 being obvious from the definition of the inner product on H⊗n,
we prove the inequality ∥T⊗n∥⩽ 1.

If the scalar field is real we denote by HC the complexification of H. Endowed with
the norm ∥h+ ih′∥2

HC
:= ∥h∥2 + ∥h′∥2, this is a complex inner product space. If T is a

contraction on H, then TC(h+ ih′) := T h+ iT h′ defines a contraction on HC of the same
norm. Noting that (TC)⊗n = (T⊗n)C, it suffices to prove the proposition in the case of
complex scalars.

If T is unitary, then∥∥∥T⊗n
k

∑
j=1

c jh
( j)
1 ⊗·· ·⊗h( j)

n

∥∥∥2
=

k

∑
i=1

k

∑
j=1

cic j

n

∏
m=1

(T h(i)m |T h( j)
m )

=
k

∑
i=1

k

∑
j=1

cic j

n

∏
m=1

(h(i)m |h( j)
m ) =

∥∥∥ k

∑
j=1

c jh
( j)
1 ⊗·· ·⊗h( j)

n

∥∥∥2

and therefore T⊗n is an isometry on H⊗n. The corresponding result for contractions
follows from the fact that every contraction T on H can be represented as a convex
combination of four unitaries by Lemma 14.25.
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Restricting T⊗n to the symmetric part Γn(H) of H⊗n, we obtain well-defined con-
tractions Γn(T ) on Γn(H). By taking direct sums,

Γ(T ) :=
⊕
n∈N

Γ
n(T )

defines a contraction on
⊕

n∈N Γn(H).

Definition 15.66 (Symmetric second quantisation). The Hilbert space completion Γ(H)

of
⊕

n∈N Γn(H) is called the symmetric Fock space over H. When T is a contraction on
H, the contraction Γ(T ) on Γ(H) is called the symmetric second quantisation of T .

Antisymmetric second quantisation can be defined similarly but will not be studied
here. Because of this, we will omit the adjective ‘symmetric’ from now on and simply
talk about second quantisation.

If S and T are contractions on H, their second quantisations satisfy

Γ(I) = I, Γ(ST ) = Γ(S)Γ(T ), Γ(T ⋆) = (Γ(T ))⋆. (15.37)

In what follows we take again H = Kd. If T is a contraction on Kd, via the Wiener–
Itô isometry (Theorem 15.64) the operator Γ(T ) induces a contraction on L2(Rd,γ) =

L2(Rd,γ;K) which, by a slight abuse of notation, will be denoted by Γ(T ) as well. It is
easily checked that (15.37) holds again.

Lemma 15.67. If T is a contraction on Kd, then for all h ∈ Rd,

Γ(T )Kh = KT h.

Proof Denoting by W the Wiener–Itô isometry, for all h ∈ Rd with T h ̸= 0 we have

KT h = ∑
n∈N

|T h|n

n!
Hn(φT h/|T h|) = ∑

n∈N

|T h|n

n!
W ((T h/|T h|)⊗n)

= ∑
n∈N

1
n!

W ((T h)⊗n) =W
(

∑
n∈N

1
n!

Γn(T )h⊗n
)

=W
(

Γ(T ) ∑
n∈N

1
n!

h⊗n
)
= Γ(T )

(
W
(

∑
n∈N

1
n!

h⊗n
))

= Γ(T ) ∑
n∈N

1
n!

Hn(φh) = Γ(T )Kh,

where the first identity follows from (15.29) and the second and penultimate steps follow
from (15.36). If T h = 0, then KT h = K0 = 1 = Γ(T )K0.

As a special case, for the Ornstein–Uhlenbeck semigroup we obtain:
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Theorem 15.68 (Ornstein–Uhlenbeck semigroup and second quantisation). Under the
Wiener–Itô isometry, for all t ⩾ 0 we have

OU(t) = Γ(e−t I).

Proof This follows from Theorem 15.58 and Lemma 15.67, which give

OU(t)Kh = Ke−t h = Γ(e−t I)Kh,

and the density of the span of the functions Kh in L2(Rd,γ) shown in Lemma 15.56.

Over the real scalars we have the following positivity result.

Theorem 15.69 (Positivity). If T is a contraction on Rd, then Γ(T ) is a positivity pre-
serving contraction on L2(Rd,γ).

Proof By Lemma 15.67, for all h ∈ Rd we have Γ(T )Kh = KT h ⩾ 0. Moreover, for all
c ∈ R,

Γ(T )(exp(cφh)) = Γ(T )(exp(φch)) = exp
(1

2
c2|h|2

)
Γ(T )Kch

= exp
(1

2
c2|h|2

)
KcT h

= exp
(

cφT h +
1
2

c2(|h|2−|T h|2)
)
.

By analytic continuation this identity extends to arbitrary c ∈ C.
Let 0 ⩽ f ∈F 2(Rd) =

{
f ∈ L1(Rd)∩L2(Rd) : f̂ ∈ L1(Rd)∩L2(Rd)

}
. By Fourier

inversion,

Γ(T ) f =
1

(2π)d/2

∫
Rd

f̂ (ξ1, . . . ,ξn)Γ(T )exp
(
iφξ

)
dξ

=
1

(2π)d/2

∫
Rd

f̂ (ξ1, . . . ,ξn)exp
(

iφT ξ −
1
2
(|ξ |2−|T ξ |2)

)
dξ .

In view of φT ξ (x) = (x|T ξ ) = (T ⋆x|ξ ) = T ⋆x · ξ , by dominated convergence we have

Γ(T ) f (·) = limε↓0F̂ε(T ⋆·), where

Fε(ξ ) := f̂ (ξ )gε(ξ ) with gε(ξ ) := exp
(
−1

2
(|ξ |2− (1− ε)|T ξ |2)

)
.

By taking inverse Fourier transforms and applying Lemma 5.19, we conclude that
(2π)d/2F̂ε = f ∗ ĝε . If we can prove that the ĝε is nonnegative almost everywhere on
Rd, it follows that Γ(T ) f ⩾ 0 almost everywhere on Rd.

Since T is a contraction we may write

|ξ |2− (1− ε)|T ξ |2 = ((I− (1− ε)T ⋆T )ξ |ξ ) = |Dε ξ |2,
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where Dε := (I− (1− ε)T ⋆T )1/2 is invertible. Hence,

ĝε(x) =
1

(2π)d/2

∫
Rd

exp
(
−1

2
|Dε ξ |2

)
exp(ix ·ξ )dξ .

After a change of variables, the right-hand side can be evaluated as a Fourier transform
of a Gaussian and is therefore strictly positive on Rd.

15.6.d The Segal–Plancherel Transform

In this section we discuss a Gaussian analogue of the Fourier–Plancherel transform F,
the so-called Segal–Plancherel transform W on L2(Rd,γ). We work over the complex
scalars. As before we denote by

dm(x) :=
1

(2π)d/2 dx

the normalised Lebesgue measure. If we reinterpret the Fourier transform as an operator
from L1(Rd,m) to L∞(Rd,m),

F f (ξ ) =
∫
Rd

exp(−ix ·ξ ) f (x)dm(x), ξ ∈ Rd, f ∈ L1(Rd,m),

its restriction to L1(Rd,m)∩ L2(Rd,m) extends to an isometry on L2(Rd,m). In the
present section, the term Fourier–Plancherel transform will refer to this operator.

As in Section 15.5.d we let U := D ◦E, where D : L2(Rd,m)→ L2(Rd,m) and E :
L2(Rd,γ)→ L2(Rd,m) are the unitary operators

D f (x) := 2d/4 f
(√

2x
)
, E f (x) := e(x) f (x),

with e(x) := exp
(
− 1

4 |x|
2
)
.

Theorem 15.70. The mapping W : f 7→W f , defined for multivariate polynomials f :
Rd → C and analytic continuation by

W f (x) :=
∫
Rd

f (−ix+
√

2y)dγ(y), x ∈ Rd,

extends to a unitary operator on L2(Rd,γ) and we have

W =U⋆ ◦F ◦U. (15.38)

Proof Since D, E, and F are unitary, the unitarity of W will follow from the operator
identity (15.38). To prove this identity, we substitute η =

√
2y and ξ =−ix+η to obtain

W f (x) =
1

(4π)d/2

∫
Rd

f (−ix+η)
d

∏
j=1

exp
(
−1

4
η

2
j

)
dη
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=
1

(4π)d/2

∫
−ix+Rd

f (ξ )
d

∏
j=1

exp
(
−1

4
(ξ j + ix j)

2
)

dξ

(∗)
=

1
(4π)d/2

∫
Rd

f (ξ )
d

∏
j=1

exp
(
−1

4
(ξ j + ix j)

2
)

dξ

=
1

(4π)d/2

∫
Rd

f (ξ )exp
(
−1

4
(|ξ |2− 1

2
iξ · x+ 1

4
|x|2)

)
dξ .

To justify (∗) it suffices, by writing f as a linear combination of monomials and sepa-
rating variables, to show that for any k ∈ N and x ∈ R,∫

−ix+R
ξ

k exp
(
−1

4
(ξ + ix)2

)
dξ =

∫
R

ξ
k exp

(
−1

4
(ξ + ix)2

)
dξ .

But this is clear by Cauchy’s integral formula and a limiting argument using the decay
at infinity. Hence,

(E ◦W ◦E⋆) f (x) =
1

(4π)d/2 exp
(
−1

4
|x|2
)

×
∫
Rd

exp
(1

4
|ξ |2

)
f (ξ )exp

(
−1

4
|ξ |2− 1

2
iξ · x+ 1

4
|x|2
)

dξ

=
1

(4π)d/2

∫
Rd

f (ξ )exp
(
−1

2
iξ · x

)
dξ

= 2−d/2(F f )(x/2).

On the other hand, using that F ◦D = D⋆ ◦F,

(D⋆ ◦F ◦D) f (x) = ((D⋆)2 ◦F ) f (x) = 2−d/2(F f )(x/2).

We have the following representation of W in terms of second quantisation:

Theorem 15.71 (Segal). W = Γ(−iI).

Proof Let f : Rd → C be a multivariate polynomial. Mehler’s formula and Theorem
15.68 tell us that for all t > 0,

Γ(e−t I) f = OU(t) f =
∫
Rd

f (e−t(·)+
√

1− e−2ty)dγ(y).

By analytic continuation we may replace t > 0 by any Rez > 0. Now let z→ 1
2 πi.

The preceding two theorems combine to the following result. Recall the definition of
the unitary operator U of (15.28).
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Corollary 15.72. The Fourier–Plancherel transform is unitarily equivalent to Γ(−iI).
More precisely, we have

U⋆ ◦F ◦U = Γ(−iI).

Here, U is as in (15.28). This gives a neat “explanation” of the identity F 4 = I: by
the multiplicativity of second quantisation it follows from the identity (−i)4 = 1!

15.6.e Creation and Annihilation

For h ∈ Rd and n ∈ N the (bosonic) creation operator a†
n(h) : Γn(Rd)→ Γn+1(Rd) is

defined by

a†
n(h) ∑

σ∈Sn

hσ(1)⊗·· ·⊗hσ(n)

:=
1√

n+1 ∑
σ∈Sn

n+1

∑
j=1

hσ(1)⊗·· ·⊗hσ( j−1)⊗h⊗hσ( j)⊗·· ·⊗hσ(n),

and the (bosonic) annihilation operator an+1(h) : Γn+1(Rd)→ Γn(Rd) by a0(h) := 0
and

an+1(h) ∑
σ∈Sn+1

hσ(1)⊗·· ·⊗hσ(n+1)

:=
1√

n+1 ∑
σ∈Sn+1

n+1

∑
j=1

(hσ( j)|h) hσ(1)⊗·· ·⊗ ĥσ( j)⊗·· ·⊗hσ(n+1)

using the notation ̂ to express that this term is omitted. These operators are well defined
and bounded, and their operator norms are bounded by

∥a†
n(h)∥L (Γn(Rd),Γn+1(Rd)) = ∥an+1(h)∥L (Γn+1(Rd),Γn(Rd)) ⩽Cn|h|

with constants Cn depending on n only. The first equality follows from the duality

a†⋆
n (h) = an+1(h).

Furthermore, a straightforward computation gives the commutation relations

an(h)a
†
n+1(h)−a†

n(h)an+1(h) = |h|2I.

Let (e j)
d
j=1 denote the standard basis of Rd. Using the Wiener–Itô isometry we may

define operators A and A† as densely defined operators from L2(Rd,γ) = L2(Rd,γ;K) to
L2(Rd,γ;Kd) and from L2(Rd,γ;Kd) to L2(Rd,γ), respectively, by putting

AW (x) :=
(
W (an(e1)x), . . . ,W (an(ed)x)

)
, x ∈ Γ

n(Rd), n ∈ N,
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15.6 Second Quantisation 623

and

A†(W (x1), . . . ,W (xd)
)

:= a†
n(e1)x1 + · · ·+a†

n(ed)xd , x1, . . . ,xd ∈ Γ
n(Rd), n ∈ N.

The operators A and A† are dual to each other in the sense that

(A f |g) = ( f |A†g), f ∈Hn, g ∈H d
n . (15.39)

The identity (15.39) easily implies that A and A† are closable. From now on we denote
by A and A† their closures and by D(A) and D(A†) the domains of their closures.

Let ∇ = (∂1, . . . ,∂d) be the gradient, viewed as a densely defined closed operator
from L2(Rd,γ) to L2(Rd,γ;Kd) with its natural domain D(∇) = H1(Rd,γ), the Hilbert
space of all functions in L2(Rd,γ) admitting a weak derivative belonging to L2(Rd,γ).

Lemma 15.73. The space Pol(Rd) of polynomials in the real variables x1, . . . ,xd is
dense H1(Rd,γ).

Proof We sketch the main line of argument and leave some tedious details to the reader
(cf. Problem 15.16). As we have seen in Section 13.6.e, the densely defined closed
operator associated with the sesquilinear form

aOU( f ,g) =
∫
Rd

∇ f ·∇gdγ(x), f ,g ∈ D(aOU ),

with D(aOU ) = H1(Rd,γ), equals −L, where L is the generator of the Ornstein–Uhlen-
beck semigroup OU on L2(Rd,γ). We claim that D(L) is dense in D(aOU ) = H1(Rd,γ).
This is a special case of a general density result mentioned in the Notes to Chapter
13 but can be proved directly as follows. Since the Ornstein–Uhlenbeck semigroup is
analytic (Theorem 13.55), for all f ∈ L2(Rd,γ) and t > 0 we have OU(t) ∈ D(L) by
Theorem 13.31. In particular this implies OU(t) f ∈D(aOU ) = H1(Rd,γ) and it suffices
to prove that

lim
t↓0
∥OU(t) f − f∥H1(Rd,γ) = 0

for all f ∈ H1(Rd,γ). For this, in turn, it suffices to check that for all such f we have

lim
t↓0
∥∇OU(t) f −∇ f∥L2(Rd,γ;Kd) = 0.

Writing g j := ∂ j f , this follows by differentiating under the integral in the definition of
the Ornstein–Uhlenbeck semigroup:

∂ jOU(t) =
∫
Rd

∂ j f (e−t(·)+
√

1− e−2ty)dγ(y)

= e−t
∫
Rd

g j(e−t(·)+
√

1− e−2ty)dγ(y) = e−tOU(t)∂ j f .

The definition of the domain of the operator associated with a form, combined with
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624 States and Observables

a straightforward computation, shows that Pol(Rd) is contained in D(L). We will show
that Pol(Rd) is invariant under the Ornstein–Uhlenbeck semigroup. Once this has been
established, Proposition 13.5 implies that Pol(Rd) is dense in D(L).

To prove the invariance of the space Pol(Rd) under the Ornstein–Uhlenbeck semi-
group, first let f be a monomial of the form

f (x) = xk1
1 · · · · · x

kd
d , x ∈ Rd, (15.40)

with k j ∈ N for all j = 1, . . . ,d. For γ-almost all x ∈ Rd we have

OU(t) f (x) =
∫
Rd

f (e−tx+
√

1− e−2ty)dγ(y) =: Ft(x).

Substituting the expression (15.40), by direct evaluation we see that Ft ∈ Pol(Rd). The
desired invariance follows by taking linear combinations.

Proposition 15.74. We have A = ∇ with equality of domains.

Proof First let f = 1√
n!

Hn(φh) with n ∈ N and h ∈ Rd with |h| = 1. For n = 0 the
identity A f = ∇ f is trivial, so in what follows we take n ⩾ 1. The function f is the
image under the Wiener–Itô isometry of the element h⊗n ∈ Γn(Rd) and we have

(A f ) j = (AW (h⊗n)) j =W
(
an(e j)h⊗·· ·⊗h︸ ︷︷ ︸

n times

)
=

1√
n

n

∑
ℓ=1

(h|e j)W
(
h⊗·· ·⊗h︸ ︷︷ ︸

n−1 times

)
=
√

n(h|e j)W
(
h⊗·· ·⊗h︸ ︷︷ ︸

n−1 times

)
=

√
n√

(n−1)!
(h|e j)Hn−1(φh).

On the other hand, since H ′n = nHn−1 and ∂ jφh = (e j|h),

(∇ f ) j =
1√
n!

∂ jHn(φh) =

√
n√

(n−1)!
(e j|h)Hn−1(φh).

Since (h|e j) = (e j|h) (keeping in mind that h ∈ Rd), this proves that A f = ∇ f for all
f ∈Hn and n ∈ N. Since the linear span of functions f ∈Hn, n ∈ N, is dense in D(A)
by definition, and since ∇ is closed, this gives the inclusion A⊆ ∇.

To prove equality A = ∇ it remains to be shown that the linear span of functions
f ∈Hn, n ∈ N, is also dense in H1(Rd,γ). For this purpose we recall from the proof of
Theorem 15.60, in the special case of the standard unit basis of Rd, that for each n ∈ N
the linear span of the polynomials Hn(φh), |h| = 1, equals the space of all polynomials
of the form x 7→ Hn1(x1) · · · · ·Hnd (xd) with n1 + · · ·+ nd = n. Their linear span when
n ranges over N equals the space Pol(Rd) introduced above. This space is dense in
H1(Rd,γ) by Lemma 15.73.
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15.6 Second Quantisation 625

In what follows we work over the complex scalars. For j = 1, . . . ,d and f ∈ Pol(Rd)

we let

a j f := (A f ) j, a†
j f := A†(0, . . . ,0, f ,0, . . .)

with f in the jth place. By (15.39) these operators are dual to each other, in the sense
that with respect to the inner product of L2(Rd,γ) we have

(a j f |g) = ( f |a†
jg), f ,g ∈ Pol(Rd).

Define the position operator Q = (q1, . . . ,qd) by

q j :=
1√
2
(a j +a†

j).

The choice of the normalising constant 1/
√

2 in the definition of q j may appear unnat-
ural. The reason for this choice will become apparent in (15.41), (15.42), and (15.45).

Viewed as an operator in L2(Rd,γ) with dense initial domain Pol(Rd), this operator
is symmetric and therefore closable. We claim that its closure, which we denote by q j

again, is selfadjoint. First we claim that, for almost all x ∈ Rd,

q j f (x) =
1√
2

x j f (x), f ∈ Pol(Rd).

Indeed, since by Proposition 15.74 we have a j = ∂ j, the directional derivative in the
direction of e j, it follows that

√
2(q j f |g) = ( f |∂ jg)+(∂ j f |g).

Suppose now that f ,g ∈ Pol(Rd). Then, with x = (x1, . . . ,xd),

(∂ ⋆
j f |g) = 1

(2π)d/2

∫
Rd

f (x)∂ jg(x)exp
(
−1

2
|x|2
)

dx

=
1

(2π)d/2

∫
Rd
[x j f (x)−∂ j f (x)]g(x)exp

(
−1

2
|x|2
)

dx =−(∂ j f |g)+(x j f |g).

It follows that (∂ j f +∂ ⋆
j ) f (x) = x j f (x). This proves the claim. The asserted selfadjoint-

ness of q j is an easy consequence of this claim.
In a similar way we define the momentum operator P = (p1, . . . , p j) by

p j :=
1

i
√

2
(a j−a†

j).

Again this operator, initially defined on functions in Pol(Rd), is symmetric and hence
closable, and its closure is selfadjoint.

The identities below are understood in the sense that they hold when applied to func-
tions in Pol(Rd), Some additional details are addressed in Problems 15.17–15.20. From
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626 States and Observables

the commutation relation [a j,a
†
j ] = I we have

[p j,q j] =
1
i
(a ja

†
j −a†

ja j) =
1
i

I (15.41)

as well as the identity

1
2
(p2

j +q2
j) =

1
2
(a†

ja j +a ja
†
j) = a†

ja j +
1
2
[a j,a

†
j ] = a†

ja j +
1
2

I. (15.42)

As is checked by an easy computation, in terms of the annihilation and creation op-
erators, the Ornstein–Uhlenbeck operator is given by

−L = ∇
⋆
∇ = A†A =

d

∑
j=1

a†
ja j, (15.43)

so that by (15.42),

−L =−d
2
+

1
2
(P2 +Q2) =−d

2
+

d

∑
j=1

1
2
(p2

j +q2
j), (15.44)

again in the sense that these identities hold when the operators are applied to functions
in Pol(Rd). The operators P and Q intertwine with the momentum operator D = 1

i ∇ and
the position operator X , in the sense that

U ◦q j ◦U⋆ = x j, U ◦ p j ◦U⋆ =
1
i

∂ j, (15.45)

with U the unitary operator of Sections 15.5.d and 15.6.d. These relations are easy to
check by explicit computation and justify the terminology ‘position’ and ‘momentum’
for q j and p j. In this way we recover the unitary equivalence, established in Theorem
13.56, of −L+ d

2 with the quantum harmonic oscillator.

Problems

15.1 Prove the assertions about orthogonal projections in Section 15.1.c.
15.2 Prove that if P and Q are orthogonal projections on a Hilbert space such that R(P)

is contained in R(Q), then Q = P∨ (Q∧¬P).
15.3 Let φ : L (H)→ C be a state, let (hn)n⩾1 be an orthonormal basis for H, and let

Pn denote the orthogonal projection onto the span of the set {h1, . . . ,hn}. Prove
that for all T ∈L (H) we have

φ(T ) = lim
n→∞

φ(PnT ).

Hint: Apply the Cauchy–Schwarz inequality to the mapping (T,U) 7→ φ(TU⋆)

and take U := I−Pn.
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15.4 Consider a qubit in state α |0⟩+ β |1⟩, where α,β ∈ C satisfy |α|2 + |β |2 = 1.
Compute the probabilities that upon measuring the spin in direction j ∈ {1,2,3}
we find ‘up’, respectively ‘down’.

15.5 We take a closer look at the Pauli matrices σ1, σ2, σ3.

(a) Show that the complex exponentials of the Pauli matrices are given by

exp(iθσ j) = (cosθ)I + i(sinθ)σ j, j = 1,2,3.

(b) Show that if v is a unit vector in R3, then for all n ∈ N we have

(v ·σ)n =

{
I, n even,

v ·σ , n odd.

Use this to prove the identity

exp(iθv ·σ) = (cosθ)I + i(sinθ)v ·σ .

Furthermore show that det(exp(iθv ·σ)) = 1.
(c) Conclude that

{exp(iθv ·σ) : θ ∈ [0,2π]}= SU(2),

the group of unitary matrices acting on C2 with determinant 1.

15.6 Prove that if U is a symmetry of H, then the mapping τU : P(H)→P(H) given
by τU (P) :=U⋆PU enjoys the following properties:

(i) τU (I) = I;
(ii) for all P ∈P(H) we have τU (¬P) = ¬τU (P);

(iii) for all P1,P2 ∈P(H) we have

τU (P1∧P2) = τU (P1)∧ τU (P2);

τU (P1∨P2) = τU (P1)∨ τU (P2).

15.7 Show that position and momentum are covariant with respect to rotations Rρ on
L2(Rd,m) given by Rρ f (x) = f (ρ−1x), where ρ ∈ SO(d), the group of orthogonal
transformations on Rd with determinant 1.

15.8 For G = Z/2Z, determine the position and momentum operators on L2(G)≃ C2.
15.9 Find the projection-valued measures associated with the selfadjoint operators x̂ j

and ξ̂ j discussed in Section 15.5.b.
15.10 In this problem we prove Wintner’s theorem: There exists no pair of bounded op-

erators S,T ∈L (H) satisfying the Heisenberg commutation relation ST −T S =

iI. We may absorb the imaginary constant i into one of the two operators and
consider the identity ST − T S = I instead. Assuming that S,T ∈ L (H) satisfy
ST −T S = I, obtain a contradiction by completing the following steps.
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(a) Show that for all n = 1,2, . . . we have SnT −T Sn = nSn−1.
(b) Deduce that Sn−1 ̸= 0 and n∥Sn−1∥⩽ 2∥Sn−1∥∥S∥∥T∥.

15.11 The aim of this problem is to prove that for a linear mapping φ : L (H)→ C the
following assertions are equivalent:

(1) φ(T ) = ∑
k
j=1(T x j|y j) for suitable k ⩾ 1 and x1, . . . ,xk,y1, . . . ,yk ∈ H;

(2) φ is continuous with respect to the weak topology of L (H);
(3) φ is continuous with respect to the strong topology of L (H).

(a) Prove the implications (1)⇒(2)⇒(3).

The remainder of the problem is devoted to a proof of the implication (3)⇒(1).

(b) Show that (3) implies that there exist x1, . . . ,xk ∈ H such that

|φ(T )|⩽ max
1⩽ j⩽k

∥T x j∥, T ∈L (H).

(c) Let K be the closure of the subspace {(T x1, . . . ,T xk) ∈ Hk : T ∈L (H)} in
Hk. Show that the linear mapping ψ : K→ C defined by

ψ(T x1, . . . ,T xk) := φ(T )

is well defined and bounded.
(d) Using the Riesz representation theorem, show that φ is of the form as in (1).

15.12 Prove that if φ : L (H)→ C is linear, the following assertions are equivalent:

(1) there exist sequences (xn)n⩾1 and (yn)n⩾1 satisfying

∑
n⩾1
∥xn∥2 < ∞ and ∑

n⩾1
∥yn∥2 < ∞

such that for all T ∈L (H) we have φ(T ) = ∑⩾1(T xn|yn);
(2) φ is continuous on BL (H) with respect to the weak topology of L (H);
(3) φ is continuous on BL (H) with respect to the strong topology of L (H);
(4) φ is normal.

If φ is positive and satisfies φ(I) = 1, these conditions are equivalent to:

(5) there exists an orthogonal sequence (xn)n⩾1 satisfying ∑n⩾1 ∥xn∥2 = 1 such
that for all T ∈L (H) we have φ(T ) = ∑n⩾1(T xn|xn).

15.13 Using the functional calculus for projection-valued measures on T we may define

θ̂ :=
∫
T

arg(z)dΘ(z),

where the projection-valued measure Θ : B(T)→P(L2(T)) is the angle ob-
servable of Section 15.5.c. There is some ambiguity here as to how to take the
argument; for the sake of definiteness we take it in (−π,π].
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(a) Show that θ̂ is bounded and selfadjoint on L2(T).
(b) Show that for all f ,g ∈ L2(T) we have

(θ̂ f |g) = 1
2π

∫
π

−π

θ f (eiθ )g(eiθ )dθ .

Define the angular momentum operator as the selfadjoint operator l̂ defined by
the angular momentum observable L : B(Z)→P(L2(T)) of Section 15.5.c,

l̂ := ∑
n∈Z

nL{n}.

(c) Show that, with an appropriate choice of domain, l̂ is selfadjoint on L2(T).
(d) Prove that θ̂ and l̂ satisfy the Heisenberg commutation relation

l̂ θ̂ − θ̂ l̂ = iI

on D(l̂ θ̂)∩D(θ̂ l̂) and show that this domain is dense in L2(T).
The operator θ̂ appears to be of little use in Physics. This is related to the failure
of the ‘continuous variable’ Weyl commutation relation for θ̂ and l̂:

(e) Show that there exists no bounded operator T on L2(T) such that the follow-
ing identity holds for all s, t ∈ R:

eisT eit l̂ = eisteit l̂eisT. (15.46)

Show that the same conclusion holds if we assume that T is a (possibly un-
bounded) selfadjoint operator.
Hint: Show that if an s ∈ R exists such that the identity in (15.46) holds for
all t ∈ R, then s ∈ Z.

(f) Prove a similar result for the phase operator of Section 15.3.d.

15.14 Show that if T is a contraction on Rd, then for every 1 ⩽ p < ∞ the second
quantised operator Γ(T ) extends to a contraction on Lp(Rd,γ).

15.15 Show that if U is an isometry on Rd , then for all f ∈ L2(Rd,γ) we have

Γ(U) f (x) = f (U⋆x)

for almost all x ∈ Rd.
15.16 Complete the details of the proof of Lemma 15.73.
15.17 Complete the details of the proofs that the position and momentum operators q j

and p j are selfadjoint on L2(Rd,γ).
15.18 Prove the commutation relation [a j,a

†
j ] = I used in the proof of (15.41). Also

prove that if j ̸= k, then [a j,a
†
k ] = 0 and [p j,q

†
k ] = 0.

15.19 Show that the operator − d
2 + 1

2 (P
2 + Q2), considered in (15.45) as a densely

defined operator in L2(Rd,γ) with domain Pol(Rd), is closable, with closure −L.
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5
630 States and Observables

15.20 Show that the position and momentum operators q j and p j introduced in Section
15.6.e satisfy the relations

q j ◦W = W ◦ p j, p j ◦W =−W ◦q j,

consistent (modulo the difference in normalisations of the Fourier transform) with
the relations x j ◦F = F ◦ ( 1

i ∂ j) and ( 1
i ∂ j)◦F =−F ◦ x j for position and mo-

mentum operators of Section 15.5.b.
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Appendix A
Zorn’s Lemma

Zorn’s lemma provides a sufficient condition for the existence of maximal elements in
partially ordered sets. Its formulation uses some terminology which we introduce first.
A relation on a set S is a subset R of the cartesian product S× S. Instead of (x,y) ∈ R
we often write xRy.

Definition A.1 (Partially ordered sets). A partially ordered set is a pair (S,⩽), where S
is a set and ⩽ is a relation on S such that for all x,y,z ∈ S we have:

(i) (reflexivity) x ⩽ x;
(ii) (antisymmetry): if x ⩽ y and y ⩽ x, then x = y;

(iii) (transitivity): if x ⩽ y and y ⩽ z, then x ⩽ z.

A totally ordered set is a partially ordered set (S,⩽) with the property that for all x,y∈ S
we have x ⩽ y or y ⩽ x (or both, in which case x = y).

Definition A.2 (Maximal elements, upper bounds). Let (S,⩽) be a partially ordered
set. An element x ∈ S is said to be maximal if x ⩽ y implies y = x. An element x ∈ S is
said to be an upper bound for the subset S′ ⊆ S if x′ ⩽ x holds for all x′ ∈ S′.

Assuming the Axiom of Choice, one has the following result.

Theorem A.3 (Zorn’s lemma). If (S,⩽) is a nonempty partially ordered set with the
property that each of its totally ordered subsets has an upper bound in S, then S has a
maximal element.
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Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven

631



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5

Appendix B
Tensor Products

Let V and W be vector spaces and let B(V,W ) denote the vector space of all bilinear
mappings from V ×W into the scalar field K, that is, all mappings φ : V ×W → K
satisfying

φ(cv,w) = φ(v,cw) = cφ(v,w)

for all c ∈K, v ∈V , and w ∈W , and

φ(v+ v′,w) = φ(v,w)+φ(v′,w),

φ(v,w+w′) = φ(v,w)+φ(v,w′)

for all v,v′ ∈V and w,w′ ∈W.

For all v ∈V and w ∈W , the mapping

v⊗w : φ 7→ φ(v,w)

defines an element of B(V,W )†, the vector space of all linear mappings from B(V,W )

to K. Note that

c(v⊗w) = (cv)⊗w = v⊗ (cw)

for all c ∈K, v ∈V , and w ∈W , and

(v+ v′)⊗w = v⊗w+ v′⊗w

v⊗ (w+w′) = v⊗w+ v⊗w′

for all v,v′ ∈V and w,w′ ∈W.
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634 Tensor Products

Definition B.1 (Algebraic tensor product). The (algebraic) tensor product

V ⊗W

of V and W is the linear span in B(V,W )† of the set {v⊗w : v ∈V, w ∈W}.

We have natural isomorphisms of vector spaces

K⊗V ≃V ⊗K≃V.

By the above definition and the identities preceding it, every element of V ⊗W admits
a representation as a finite sum ∑

k
j=1 v j⊗w j.

If the (finite or infinite) sets {vi : i ∈ I} and {wi : i ∈ I} are both linearly independent,
so is the set {vi⊗wi : i ∈ I}. Indeed, suppose that ∑

k
j=1 c jvi j ⊗wi j = 0 for certain k ⩾ 1

and scalars c1, . . . ,ck. For φ ∈ V † and ψ ∈W † the mapping ζ : (v,w) 7→ φ(v)ψ(w)
belongs to B(V,W ) and accordingly

0=
( k

∑
j=1

c jvi j⊗wi j

)
(ζ )=

k

∑
j=1

c jζ (vi j ,wi j)=
k

∑
j=1

c jφ(vi j)ψ(wi j)=ψ

( k

∑
j=1

c jφ(vi j)wi j

)
.

This being true for all ψ ∈W †, the linear independence of {w1, . . . ,wk} implies that
φ(c jvi j) = c jφ(vi j) = 0 for all φ ∈ V † and j = 1, . . . ,k. But this implies that c jvi j = 0
for all j = 1, . . . ,k. The linear independence of {v1, . . . ,vk} implies that vi j ̸= 0 for all
j = 1, . . . ,k, so we must have c j = 0 for all j = 1, . . . ,k. This proves our claim.

Remark B.2. The above argument relies on the availability of sufficiently many linear
functionals. This issue can be avoided by observing that if there is a linear dependence
relation in V ⊗W , then there exist finite-dimensional subspaces V ′ ⊆ V and W ′ ⊆W ,
containing the finitely many elements vi and wi of V and W involved in the linear de-
pendence, such that this linear dependence also exists in V ′⊗W ′. Running the argument
in V ′⊗W ′, we may test against the coordinate functionals of bases for V ′ and W ′ con-
taining the vi and wi, respectively.

Remark B.3. A similar remark can be made with regard to the very construction of the
tensor product V ⊗W presented here: this space is nontrivial only if a sufficient supply
of bilinear mappings from V ×W to K can be guaranteed. This can be done by using
Zorn’s lemma, which allows one to find algebraic bases for V and W . With such bases at
hand, one may use the associated coordinate functionals to construct nontrivial bilinear
mappings. Although an alternative construction of the tensor product can be given which
circumvents this issue, the present approach has the advantage of connecting in a direct
and intuitive way with the various functional analytic settings where tensor products are
employed. In the main text, V and W will always be Hilbert spaces and the required
supply of bilinear and linear functionals is guaranteed through the inner product.
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As a corollary to this observation we obtain that if V and W are finite-dimensional,
with bases (vi)

dV
i=1 and (w j)

dW
j=1, then (vi⊗w j)

dV ,dW
i, j=1 is a basis for V ⊗W . In particular,

dim(V ⊗W ) = dim(V )dim(W ).

For vector spaces U,V,W , the mapping

(u⊗ v)⊗w 7→ u⊗ (v⊗w)

uniquely extends to an isomorphism of vector spaces

(U⊗V )⊗W ≃U⊗ (V ⊗W ).

Stated differently, taking tensor products is associative. This allows us to define the
tensor product

U⊗V ⊗W

as either one of the spaces in this isomorphism; for the sake of concreteness we will
use the space on the left-hand side. With this in mind we can define the tensor product
V1⊗·· ·⊗VN of vector spaces Vn, n = 1, . . . ,N, inductively by

V1⊗·· ·⊗VN := (V1⊗·· ·⊗VN−1)⊗VN .

Alternatively one could define V1 ⊗ ·· · ⊗VN in terms of functionals on the space of
N-linear mappings; the resulting space is isomorphic in a natural way to the one just
defined. In what follows we write V⊗n :=V ⊗·· ·⊗V for the n-fold tensor product of V .

The n-fold symmetric tensor product Γn(V ) is defined as the range of the projection
PΓ on V⊗n given by

PΓ : v1⊗·· ·⊗ vn 7→
1
n! ∑

σ∈Sn

vσ(1)⊗·· ·⊗ vσ(n), v1, . . . ,vn ∈V,

where Sn is the group of permutations of {1, . . . ,n}. Likewise one defines the n-fold
antisymmetric product Λn(V ), also known as the n-fold exterior product, of a vector
space V as the range of the projection on V⊗n given by

PΛ : v1⊗·· ·⊗ vn 7→
1
n! ∑

σ∈Sn

sign(σ)vσ(1)⊗·· ·⊗ vσ(n), v1, . . . ,vn ∈V.

In connection with second quantisation, these spaces are sometimes denoted by V s⃝n

and V a⃝n, respectively.
We conclude with the observation that if S and T are linear operators on the vector

spaces V and W , respectively, then

(S⊗T ) : v⊗w 7→ Sv⊗Tw



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
636 Tensor Products

uniquely defines a linear operator S⊗T on the tensor product V ⊗W . To see that this
operator is well defined, suppose that an element in V ⊗W admits two representations

N

∑
n=1

cnvn⊗wn =
N′

∑
n=1

c′nv′n⊗w′n.

If φ : V ×W →K is bilinear, then the mapping φS,T : V ×W → K given by

φS,T (v,w) := φ(Sv,Tw)

is bilinear and( N

∑
n=1

cnSvn⊗Twn

)
(φ) =

N

∑
n=1

cnφ(Svn,Twn)

=
N

∑
n=1

cnφS,T (vn,wn) =
( N

∑
n=1

cnvn⊗wn

)
(φS,T )

and, by the same argument,( N′

∑
n=1

c′nSv′n⊗Tw′n
)
(φ) =

( N′

∑
n=1

c′nv′n⊗w′n
)
(φS,T ).

It follows that ( N

∑
n=1

cnSvn⊗Twn

)
(φ) =

( N′

∑
n=1

c′nSv′n⊗Tw′n
)
(φ).

This being true for all bilinear φ : V ×w→K, it follows that

N

∑
n=1

cnSvn⊗Twn =
N′

∑
n=1

c′nSv′n⊗Tw′n.
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Appendix C
Topological Spaces

This appendix offers a brief treatment of topological spaces. Only those notions are
covered that find their way into the main text. Several others will only be needed in the
more concrete setting of metric spaces and will be discussed in that context.

Definition and General Properties

Definition C.1 (Topological spaces). A topological space is a pair (X ,τ), where X is a
set and τ is a topology on X , that is, τ is a collection of subsets of X with the following
properties:

(i) ∅ ∈ τ and X ∈ τ;
(ii) τ is closed under taking arbitrary unions;

(iii) τ is closed under taking finite intersections.

A subset U of X is said to be open if U ∈ τ , and closed if its complement is open. The
interior S◦ of a subset S is the union of all open subsets U in X contained in S. The
closure S of a subset S is the intersection of all closed subsets F of X containing S. Note
that S◦ is the largest open subset of X contained in S and S is the smallest closed subset
of X containing S. A set S is dense in a closed set S′ if S = S′.

If C is a collection of subsets of X , the topology generated by C is the intersection
of all topologies on X containing C . The topology generated by a collection C is the
smallest topology containing every element of C .

In what follows we often omit the topology τ from our notation and write X instead
of the more cumbersome (X ,τ) to denote topological spaces, except in those situations
where confusion could arise. In such situations we may speak of τ-open and τ-closed
sets instead of open and closed sets in order to emphasise the role of τ .
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A topological space X is said to be Hausdorff if for every two distinct points x1,x2 ∈X
there exist disjoint open sets U1,U2 ∈ τ such that x1 ∈U1 and x2 ∈U2.

Proposition C.2. Finite subsets of a Hausdorff topological space are closed.

Proof Since finite unions of closed sets are closed it suffices to prove that every sin-
gleton {x} in a Hausdorff space X is closed. For any y ∈ X \{x} choose an open set Uy

such that y ∈Uy and x ̸∈Uy. This is possible by the Hausdorff assumption (and actually
uses less than that). We then have ∁{x} =

⋃
y∈X\{x}Uy, and this set is open since τ is

closed under taking arbitrary unions. It follows that {x} is closed.

An important class of Hausdorff topological space is the class of metric spaces; they
are discussed in more detail in Section D. Further examples relevant to Functional Anal-
ysis are Banach spaces with their weak topology, dual Banach spaces with their weak∗

topology, and spaces of bounded operators acting between Banach spaces with their
strong and weak operator topologies. For their definitions we refer to the main text.

Continuity

Let (X ,τX ) and (Y,τY ) be topological spaces and consider a mapping f : X → Y .

Definition C.3. We call f continuous at the point x0 ∈ X if for every open set V ∈ τY

containing f (x0) there exists an open set U ∈ τX containing x0 such that f (U)⊆V . We
call f continuous if f is continuous at every point of X .

As an immediate consequence of the definition we note that if (X ,τX ), (Y,τY ), (Z,τZ)

are topological spaces and f : X → Y is continuous at the point x0 ∈ X and g : Y → Z is
continuous at the point f (x0)∈Y , then the composition g◦ f : X→ Z is continuous at the
point x0 ∈ X . In particular, the composition of two continuous mappings is continuous.

Proposition C.4. Let (X ,τX ) and (Y,τY ) be topological spaces. For a mapping f : X→
Y the following assertions are equivalent:

(1) f is continuous;
(2) f−1(V ) is open for every open subset V of Y ;
(3) f−1(F) is closed for every closed subset F of Y .

Proof (1)⇒(2): Suppose that f is continuous and let V be an open set in Y . Let
x ∈ f−1(V ) be arbitrary. Using the definition of continuity we select an open subset
Ux ∈ τX containing x such that f (Ux) ⊆ V . This means that Ux ⊆ f−1(V ). It follows
that f−1(V ) =

⋃
x∈ f−1(V )Ux, and this set is open since τ is closed under taking arbitrary

unions. This shows that f−1(V ) is open in X .
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(2)⇒(3): Suppose f−1(V ) is open for every open V ⊆ Y . Let F ⊆ Y be closed.
Then its complement ∁F is open in Y , hence by our assumption f−1(∁F) is open. From
f−1(F) = ∁ f−1(∁F) it follows that f−1(F) is closed.

(3)⇒(2): This is proved in the same way, interchanging the roles of ‘open’ and
‘closed’.

(2)⇒(1): Let x ∈ X be arbitrary and let V ⊆ Y be open and contain f (x). The set
U = f−1(V ) is open in X by assumption, x is an element of this set, and we have
f (U)⊆V . Thus f is continuous at the point x.

Compactness

Let X be a topological space and let S be a subset of X . A collection U of open subsets of
X is called an open cover of S if S⊆

⋃
U∈U U . A subcover is a cover U ′ of S contained

in U . The set S is called compact if every open cover of S has a finite subcover. A set is
called relatively compact if its closure is compact.

Proposition C.5. Let X be a topological space. Then:

(1) every closed subset of X contained in a compact subset of X is compact;
(2) if X is Hausdorff, then every compact subset of X is closed.

Proof (1): Let the closed set F be contained in the compact subset S of X . Let UF

be an open cover of F , and extend it to an open cover U of S by adjoining the open
set ∁F . The resulting cover of S has a finite subcover, and this subcover also covers F .
Removing the set ∁F from this subcover, we are left with a finite subcover of U for F .
It follows that F is compact.

(2): Let S be a compact subset of the Hausdorff space X . We first claim that for every
x ∈ ∁S there is an open set Ux containing x and disjoint from S. Indeed, for every y ∈ S,
the Hausdorff property provides us with two disjoint open sets Ux,y and Vx,y such that
x ∈ Ux,y and y ∈ Vx,y. The open cover Vx = {Vx,y : y ∈ S} of S has a finite subcover,
say V ′x = {Vx,y1 , . . . ,Vx,ykx

}, where kx ⩾ 1 is an integer depending on x. The set Ux :=⋂kx
j=1 Ux,y j is open, contains x, and is disjoint from S. This proves the claim. But now we

see that ∁S =
⋃

x∈∁S Ux, so ∁S is open and S is closed.

A collection of subsets of a topological space has the finite intersection property if
every finite subcollection has nonempty intersection.

Proposition C.6. A nonempty closed subset S of a topological space X is compact if
and only if every collection of closed subsets of S with the finite intersection property
has nonempty intersection.
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640 Topological Spaces

Proof ‘Only if’: Let C be a collection of closed subsets of S having the finite inter-
section property. If we had

⋂
C∈C C =∅, then U := {∁C : C ∈ C } is an open cover of

S without a finite subcover. For if ∁C1, . . . ,∁Ck were to cover S, then C1∩ ·· ·∩Ck =∅.
It follows that S is not compact.

‘If’: Reasoning by contradiction, assume that every collection of closed subsets of
S with the finite intersection property has nonempty intersection and assume that there
exists an open cover U of S without finite subcover. Then for any finite choice of sets
U1, . . . ,Uk ∈U we have S\

⋃k
j=1 U j ̸=∅. It follows that

⋂k
j=1(S∩∁U j) ̸=∅. From the

assumption on S we infer that
⋂

U∈U (S∩ ∁U) ̸= ∅. But then U does not cover S and
we have arrived at a contradiction.

Compactness is preserved under continuous mappings:

Proposition C.7. Let X and Y be topological spaces. Let f : X → Y be a continuous
mapping. If S is a compact subset of X, then f (S) is compact in Y .

Proof Let U be an open cover of f (S). Then { f−1(U) : U ∈U } is an open cover of S
by Proposition C.4. Since S is compact, it has a finite subcover { f−1(U1), . . . , f−1(Un)}.
The collection {U1, . . . ,Un} is then a finite subcover of f (S).

Every continuous function f : [a,b]→ R has a global maximum and a global mini-
mum on [a,b]. More generally we have:

Theorem C.8 (Global maxima and minima). Let X be a compact topological space and
let f : X → R be continuous. Then f attains a global maximum and a global minimum.

Proof We prove that f attains a global maximum; by applying this to the continuous
function − f it follows that f also attains a global minimum.

For n ⩾ 1 let Un = {x ∈ X : f (x) < n}. The collection U = {Un : n ⩾ 1} is an
open cover of X and has, thanks to the compactness of X , a finite subcover. From this it
follows that the range of f is bounded above. Let m := sup{ f (x) : x ∈ X}.

Suppose that there is no x ∈ X such that f (x) = m; we show that then X cannot be
compact. The assumption just made implies that the collection V = {Vn : n ⩾ 1} is an
open cover of X , where Vn := {x ∈ X : f (x)< m− 1

n}. Since for every n ⩾ 1 there is an
x ∈ X such that f (x)⩾ m− 1

n (this follows from the definition of the supremum) V has
no finite subcover.

A topological space is called normal if for any two disjoint closed subsets F and G
there exist disjoint open subsets U and V such that F ⊆U and G⊆V .

Proposition C.9. Every compact Hausdorff space X is normal.

Proof Let F and G be disjoint nonempty closed subsets of the compact Hausdorff
space X . Then F and G are compact by Proposition C.5. Fix a point x ∈ F . Since X is
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Hausdorff, for all y ∈ G there exist disjoint open subsets Ux,y and Vx,y such that x ∈Ux,y

and y ∈ Vx,y. By letting y range over all points of G and using compactness we find an
open cover Vx,y1 , . . . ,Vx,ykx

of G. Set Ux :=
⋂kx

j=1 Ux,y j and Vx :=
⋃kx

j=1 Vx,y j . Then x ∈Ux,
G⊆Vx, and Ux∩Vx =∅. Letting x range over F and using compactness we find an open
cover Ux1 , . . . ,Uxℓ of F . The sets U :=

⋃ℓ
j=1 Ux j and V :=

⋂ℓ
j=1 Vx j are open and satisfy

F ⊆U , G⊆V , and U ∩V =∅.

In Appendix D we will see that also every metric space is normal.

Corollary C.10. Let X be a normal space. If F ⊆U ⊆ X with F compact and U open,
then there exists an open set V such that

F ⊆V ⊆V ⊆U.

Proof By normality there exist disjoint open sets W and W ′ such that F ⊆W and
∁U ⊆W ′. Since ∁W is closed and W ′ ⊆ ∁W ⊆ ∁F , we have W ′ ⊆ ∁F and therefore

F ⊆ ∁W ′ ⊆ ∁W ′ ⊆U.

The set V := ∁W ′ satisfies F ⊆V ⊆V ⊆ ∁W ′ ⊆U , where the third inclusion holds since
∁W ′ is a closed set containing V .

Urysohn’s Lemma

In normal spaces, disjoint closed sets can be separated by continuous functions. This is
the content of the next result.

The support of a continuous function f : X → K, where X is a topological space,
is defined as the complement of the largest open set U ⊆ X such that f ≡ 0 on U or,
equivalently, as the closure of the set {x ∈ D : f (x) ̸= 0}. The support of f is denoted
by supp( f ).

Proposition C.11 (Urysohn’s lemma). Let X be a normal space. If F ⊆ U ⊆ X with
F closed and U open. Then there exists a continuous function f : X → [0,1] such that
f ≡ 1 on F and supp( f )⊆U.

Proof A rational number q∈ [0,1] is called dyadic if it is of the form k
2n , where k,n∈N

and 0 ⩽ k ⩽ 2n. We will construct, for every dyadic q ∈ [0,1], an open set Uq such that

F ⊆Uq ⊆Uq ⊆U

and, for all dyadic r ∈ [0,1],

q > r implies Uq ⊆Ur.
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By Corollary C.10 (applied twice) there exist open sets U0 and U1 such that

F ⊆U1 ⊆U1 ⊆U0 ⊆U0 ⊆U.

Reasoning by induction, suppose that for some n ∈ N and k = 0, . . . ,2n the open sets
U k

2n
have been chosen such that q > r implies Uq ⊆Ur. Using Corollary C.10, for all

k = 0, . . . ,2n−1 we find an open set U 2k+1
2n+1

such that

U k+1
2n
⊆U 2k+1

2n+1
⊆U 2k+1

2n+1
⊆U k

2n
.

Then Uq ⊆Ur holds for all dyadic q > r of the form k
2n+1 with 0 ⩽ k ⩽ 2n+1.

Now define

fq(x) :=

{
q, if x ∈Uq,

0, otherwise,
gr(x) :=

{
1, if x ∈Ur,

r, otherwise,

and put f (x) := supq fq(x) and g(x) := infr gr(x). Then f is lower semicontinuous, g is
upper semicontinuous, 0 ⩽ f ⩽ 1, f ≡ 1 on F , and supp( f )⊆U . To conclude the proof
we show that f = g.

If fq(x) > gr(x), then we must have q > r, x ∈ Uq, and x ̸∈ Ur. But q > r implies
Uq ⊆ Ur. This contradiction shows that fq(x) ⩽ gr(x) for all dyadic q,r ∈ [0,1] and
x ∈ X . This implies f ⩽ g.

If f (x) < g(x), there are dyadic numbers q,r ∈ [0,1] such that f (x) < r < q < g(x).
But f (x)< r implies that x ̸∈Ur and g(x)> q implies x ∈Uq. This contradicts the fact
that q > r implies Uq ⊆Ur. It follows that f = g.

As an application we prove:

Theorem C.12 (Partition of unity). Let X be a normal space and let

F ⊆U1∪·· ·∪Uk,

where F is compact and the sets U j are open in X for all j = 1, . . . ,k. Then there exist
nonnegative continuous functions f j : X → [0,1] with support in U j, j = 1, . . . ,k, such
that

f1 + · · ·+ fk ≡ 1 on F .

The same result holds if X is a locally compact Hausdorff space.

Proof Every x ∈ F is contained in at least one of the sets U j, and applying normality
to the closed sets {x} and ∁U j we find an open subset V containing x and whose closure
is contained in U j. Letting x range over F and using that F is compact, it follows that
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we can cover F with finitely many open sets V1, . . . ,Vn such that for all m = 1, . . . ,n we
have Vm ⊆U jm for some 1 ⩽ jm ⩽ k. Set

Fj :=
⋃

m:Vm⊆U j

Vm, j = 1, . . . ,k.

This set is closed and contained in U j. By Urysohn’s lemma we can find continuous
functions g j : X → [0,1] topologically supported in U j such that g j ≡ 1 on Fj. Put f1 :=
g1 and

f j := (1−g1) · · ·(1−g j−1)g j, j = 2, . . . ,k.

The support of f j is contained in U j and an easy induction argument shows that

f1 + · · ·+ fk = 1− (1−g1) · · ·(1−gk). (C.1)

If x ∈ F , then g j(x) = 1 for at least one j = 1, . . . ,k and therefore (C.1) implies that
f1 + · · ·+ fk ≡ 1 on F .

The case of locally compact Hausdorff spaces may be reduced to the case of compact
Hausdorff spaces by the same argument as in Proposition 4.3.

We conclude with a useful extension theorem. Its proof makes use of the fact, men-
tioned in Section 2.2.a, that the space Cb(X) of all bounded continuous functions on a
topological space X is complete as a normed space endowed with the supremum norm.
The proof of this elementary fact is direct and does not introduce any circularity.

Theorem C.13 (Tietze extension theorem). Let F be a closed subset of a normal space
X and let f : F → [0,1] be continuous. Then there exists a continuous function g : X →
[0,1] such that g|F = f .

Proof The sets A := {x∈F : f (x)∈ [0, 1
3 ]} and B := {x∈F : f (x)∈ [ 2

3 ,1]} are disjoint
and closed in F , and hence closed in X (since F is closed in X). By Urysohn’s lemma
there exists a continuous function g1 : X → [0,1/3] such that g1 ≡ 0 on A and g1 ≡ 1

3
on B. This function satisfies 0 ⩽ f −g1 ⩽ 2

3 pointwise on F . Proceeding inductively, we
construct continuous functions gk : X → [0,2k−1/3k], k ⩾ 1, such that for every k ⩾ 1
we have

gk ≡ 0 on the set
{

x ∈ F : f (x)−
k−1

∑
j=1

g j(x)⩽ 2k−1/3k
}

and

gk ≡ 2k−1/3k on the set
{

x ∈ F : f (x)−
k−1

∑
j=1

g j(x)⩾ 2k/3k
}
.

We then have 0 ⩽ f −∑
k
j=1 g j ⩽ 2k/3k pointwise on F ; the lower bound is clear from

the construction and the upper bound follows by induction.
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644 Topological Spaces

Set g := ∑k⩾1 gk. The partial sums of this sum converge uniformly and therefore g is
continuous, by the completeness of Cb(X). On the set F we have

0 ⩽ f −g ⩽ f −
k

∑
j=1

g j ⩽ 2k/3k

for every k ⩾ 1, forcing that f = g on F .

Tychonov’s Theorem

Let I be a nonempty set and suppose that for every i ∈ I a topological space (Xi,τi) is
given. The cartesian product of the family (Xi)i∈I is the set X = ∏i∈I Xi whose elements
are the mappings x : I→

⋃
i∈I Xi with the property that x(i)∈Xi for all i∈ I. For each i∈ I

we define the coordinate mapping pi : X → Xi by pi(x) := x(i). The product topology
of X = ∏i∈I Xi is the topology generated by the sets p−1

i (Ui), where Ui ranges over
all open sets in Xi and i ranges over I. It is the smallest topology τ = ∏i∈I τi with the
property that all coordinate mappings pi : x 7→ x(i) are continuous as mappings from
X into Xi. If I = {i1, . . . , ik} is finite, the topology of X = ∏

k
j=1 Xi j coincides with the

topology generated by the sets of the form U = Ui1 ×·· ·×Uik with Ui j open in X j for
all j = 1, . . . ,k.

Theorem C.14 (Tychonov). The product of any family of compact spaces is a compact
space. If each one of the spaces is Hausdorff, then so is its product.

Proof Let X = ∏i∈I Xi, where (Xi,τi) is a compact topological space for each i ∈ I. If
Xi =∅ for some i ∈ I we have X =∅ and there is nothing to prove. We may therefore
assume that Xi ̸=∅ for all i ∈ I.

Fix a collection C of closed subsets of X with the finite intersection property. We
wish to prove that

⋂
C∈C C ̸= ∅. Once this has been proved, Proposition C.6 implies

that X is compact.
Let D be the set of all collections D of subsets of X which have the finite intersection

property and contain C as a subcollection. The set D is nonempty (it contains C ) and can
be partially ordered by set inclusion, that is, we declare D ⩽ D ′ to mean that D ⊆ D ′.
Note that we do not insist on the closedness of the sets in the collections D .

Let T ⊆ D be a totally ordered subset, that is, a subset with the property that for all
T1,T2 ∈ T we have either T1 ⊆T2 or T2 ⊆T1. We claim that

⋃
T ∈T T belongs to D.

For this it suffices to check that this union has the finite intersection property. To this end
suppose that T1, . . . ,Tk ∈

⋃
T ∈T T , say Tj ∈ T j ∈ T for j = 1, . . . ,k. Since T is totally

ordered, after relabelling we may assume that T1 ⊆ ·· · ⊆Tk. Then every Tj belongs to
Tk and therefore the finite intersection property of Tk implies that

⋂k
j=1 Tj ̸= ∅. This

proves that
⋃

T ∈T T has the finite intersection property.
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Evidently, the union
⋃

T ∈T T is an upper bound for T in D. We may therefore apply
Zorn’s lemma and obtain that D has a maximal element. We denote it by M . For each
i ∈ I consider the collection

Xi := {pi(M) : M ∈M },

where pi : x 7→ x(i) are the coordinate mappings. It consists of closed subsets of Xi

and has the finite intersection property since M has it. Since Xi is compact, the set
Yi :=

⋂
M∈M pi(M) is nonempty by Proposition C.6. For every i ∈ I choose a yi ∈Yi and

let x ∈ X be defined by x(i) := yi, i ∈ I. We will prove in two steps that x ∈ M for all
M ∈M .

Step 1 – If Ui is open in Xi and contains x(i) = yi, the fact that x(i) ∈ pi(M) for all
M ∈M implies that x∈ pi(M)∩Ui ̸=∅ and hence x∈M∩ p−1

i (Ui) ̸=∅ for all M ∈M .
It follows that the collection M ∪{p−1

i (Ui) : i ∈ I} has the finite intersection property
and belongs to D. By maximality, this collection equals M . Therefore p−1

i (Ui) ∈M

for all i ∈ I.

Step 2 – Let U be an open set in X containing x. By the definition of the product
topology there are indices i1, . . . , ik ∈ I and open sets Ui j ∈ τi j for j = 1, . . . ,k such
that x ∈

⋂k
j=1 p−1

i j
(Ui j) ⊆U. By the result of Step 1 and the fact that M has the finite

intersection property we have M ∩ p−1
i1
(Ui1)∩ ·· · ∩ p−1

ik
(Uik) ̸= ∅ for all M ∈M . In

particular, M∩U ̸=∅ for all M ∈M . This being true for all open sets U containing x,
it follows that x ∈M for all M ∈M .

It now follows that

x ∈
⋂

M∈M

M ⊆
⋂

C∈C

C =
⋂

C∈C

C,

where we used that C ⊆M and the fact that the elements of C are closed sets. Therefore⋂
C∈C C ̸=∅ and we conclude that X is compact.
Suppose now that each space Xi is Hausdorff. If x,x′ ∈ X and x ̸= x′, then for some

i ∈ I we must have x(i) ̸= x′(i) and since Xi is Hausdorff there are disjoint open sets Ui

and U ′i in Xi containing x(i) and x′(i), respectively. Their inverse images under πi are
open and disjoint in X .
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Appendix D
Metric Spaces

We now introduce an important class of Hausdorff spaces, namely, the class of metric
spaces. All results of the previous appendix apply to metric spaces, but in order to make
the present appendix independently readable some proofs are repeated. In addition, our
treatment of metric spaces includes a number of additional topics.

Definition and General Properties

Definition D.1 (Metric spaces). A metric space is a pair (X ,d), where X is a set and d
a metric (or distance function) on X , that is, a function d : X ×X → [0,∞) such that for
all x, y, z in X the following conditions are satisfied:

(i) d(x,y) = 0⇔ x = y;
(ii) d(x,y) = d(y,x);

(iii) d(x,z)⩽ d(x,y)+d(y,z) (the triangle inequality).

In what follows we omit the distance function d from the notation and write X instead
of the more cumbersome (X ,d) to denote metric spaces, except in those situations where
confusion could arise.

Let X be a metric space, let x ∈ X , and let r > 0. The set

B(x;r) := {y ∈ X : d(x,y)< r}

is called the open ball with centre x and radius r. The set

B(x;r) := {y ∈ X : d(x,y)⩽ r}

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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648 Metric Spaces

is called the closed ball with centre x and radius r.
A subset S of a metric space X is called open if for all x ∈ S there exists an r > 0

such that B(x;r)⊆ S. A subset S of a metric space X is called closed if its complement
∁S = X \S is open. It is an easy consequence of the triangle inequality that every open
ball B(x;r) is open and every closed ball B(x;r) is closed; this justifies the terminology
‘open ball’ and ‘closed ball’.

The interior of a subset S of a metric space X is the union of all open subsets of X
contained in S and is denoted by S◦. It is the largest open subset of X contained in S.
The closure of a subset S of a metric space X is the intersection of all closed subsets of
X containing S and is denoted by S. It is the smallest closed subset of X containing S.

The closure B(x;r) of an open ball is always contained in the closed ball B(x;r), but
this inclusion may be strict. For example, take X = Z with distance function d(m,n) =
|n−m|. The open ball B(0;1) = {0} is also closed, so its closure equals B(0;1) = {0}.
On the other hand, B(0;1) = {−1,0,1}.

For any metric space (X ,d), the collection of its open sets is a Hausdorff topology,
the so-called Borel topology of X . More is true:

Proposition D.2. Every metric space is normal.

Proof Let F and G be disjoint closed sets in a metric space X . We need to find disjoint
open set U and V such that F ⊆U and G ⊆ V . We may assume that F and G are both
nonempty, since otherwise the result is trivial.

The function

f (x) :=
d(x,F)

d(x,F)+d(x,G)

is well defined, continuous, takes values in [0,1], and satisfies f ≡ 0 on F and f ≡ 1 on
G. The sets U := {x ∈ X : f (x) < 1

2} and V := {x ∈ X : f (x) > 1
2} are open and have

the desired properties.

Convergence

A sequence (xn)n⩾1 in a metric space X is called convergent if there exists an x∈ X such
that for all ε > 0 there is an index N ⩾ 1 with the property d(xn,x) < ε for all n ⩾ N.
We then write

lim
n→∞

xn = x

and call x a limit of the sequence (xn)n⩾1. It is clear that limn→∞ xn = x if and only if
limn→∞ d(xn,x) = 0. Limits are unique, for if limn→∞ xn = x and limn→∞ xn = y, then for
all indices n the triangle inequality gives 0 ⩽ d(x,y) ⩽ d(x,xn)+ d(xn,y)→ 0+ 0 = 0
and therefore d(x,y) = 0.
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Metric Spaces 649

A subset S of a metric space X is called sequentially closed if the limit of every
sequence in S that converges in X belongs to S.

Proposition D.3. For a subset S in a metric space X, the following assertions are equiv-
alent:

(1) S is closed;
(2) S is sequentially closed.

Proof (1)⇒(2): Let (xn)n⩾1 be a sequence in S, convergent in X with limit x. We need
to show that x ∈ S. Assume the contrary. Then x ∈ ∁S, and since ∁S is open there is an
ε > 0 such that B(x;ε)⊆ ∁S. On the other hand, since (xn)n⩾1 converges to x there is an
index N ⩾ 1 such that d(xn,x)< ε for all n ⩾ N, that is, xn ∈ B(x;ε) (and hence xn ∈ ∁S)
for all n ⩾ N. For these indices we obtain the contradiction xn ∈ S∩∁S.

(2)⇒(1): We need to show that ∁S is open. Choose x ∈ ∁S arbitrarily. We must show
that there is an ε > 0 such that B(x;ε)⊆ ∁S. Suppose that such an ε > 0 does not exist.
Then for every n ⩾ 1 we can find an xn ∈ B(x; 1

n )∩S. The resulting sequence (xn)n⩾1 is
contained in S and satisfies d(xn,x) < 1

n for all n ⩾ 1, that is, we have limn→∞ xn = x.
Since S is sequentially closed we conclude that x ∈ S, in contradiction with the assump-
tion that x ∈ ∁S.

As a corollary we have the following useful criterion for determining which elements
belong to the closure of a given set:

Proposition D.4. For a subset S in a metric space X and a point x ∈ X, the following
assertions are equivalent:

(1) x ∈ S;
(2) S∩B(x;ε) ̸=∅ for all ε > 0;
(3) there exists a sequence (xn)n⩾1 in S with limn→∞ xn = x.

In particular, a set S is dense in the closed set S′ if and only if every s′ ∈ S′ is the limit
of a sequence in S.

Proof (1)⇒(2): If S∩B(x;ε) = ∅ for some ε > 0, then S ⊆ ∁B(x;ε). Since ∁B(x;ε)

is closed, this implies S⊆ ∁B(x;ε) and therefore x ̸∈ S.

(2)⇒(3): For every n ⩾ 1 we choose xn ∈ S∩B(x; 1
n ). In this way we obtain a se-

quence (xn)n⩾1 in S converging to x.

(3)⇒(1): If x ̸∈ S, then x ∈ ∁S and this set is open. Hence there exists an ε > 0 such
that B(x;ε)⊆ ∁S. In particular it holds that d(x,y)⩾ ε for all y ∈ S. This implies that no
sequence in S can converge to x.
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Completeness

A sequence (xn)n⩾1 in a metric space X is called a Cauchy sequence if for all ε > 0
there is an index N ⩾ 1 such that d(xn,xm)< ε for all n,m ⩾ N.

Proposition D.5. In a metric space X the following assertions hold:

(1) every convergent sequence is a Cauchy sequence;
(2) every Cauchy sequence with a convergent subsequence is convergent.

Proof (1): Let x be the limit of the convergent sequence (xn)n⩾1 and let ε > 0 be
arbitrary. Choose N so large that d(xk,x)< ε for all k ⩾ N. By the triangle inequality it
follows that, for all n,m ⩾ N, we have d(xn,xm)⩽ d(xn,x)+d(x,xm)< ε + ε = 2ε.

(2): Let (xn)n⩾1 be a Cauchy sequence with a subsequence (xnk)k⩾1 convergent to x.
We check that (xn)n⩾1 converges to x. Choose ε > 0 arbitrarily and let N ⩾ 1 be such
that d(xn,xm) < ε for all m,n ⩾ N. Let K ⩾ 1 be such that for all k ⩾ K we have both
nk ⩾ N and d(xnk ,x) < ε . Now choose k ⩾ K arbitrarily. Then for all n ⩾ N we have
d(xn,x)⩽ d(xn,xnk)+d(xnk ,x)< ε + ε = 2ε.

Augustin-Louis Cauchy,
1789–1857

A subset S of a metric space X is called com-
plete if every Cauchy sequence contained in S
converges to a limit in S. In particular, X is com-
plete if every Cauchy sequence in X is conver-
gent in X . Every complete set S is sequentially
closed and hence closed, and conversely if X is
complete, then every closed subset S is complete.

Theorem D.6 (Completion). If X is a met-
ric space, there exists a complete metric space
(X ,d) and a mapping i : X → X with the follow-
ing properties:

(i) i is isometric, that is, d(ix, iy) = d(x,y) for
all x,y ∈ X;

(ii) i has dense range, that is, i(X) is dense in
X.

Moreover, if (X ,d) is another complete metric space and i′ : X → X is a mapping satis-
fying (i) and (ii), then the identity mapping on X has a unique extension to an isometry
from X onto X.

A more precise way of stating the last assertion is that there exists a unique isometry
j from X onto X which satisfies j(ix) = i′x for all x ∈ X .
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Proof On the set of Cauchy sequences in X we define an equivalence relation by
declaring the Cauchy sequences (xn)n⩾1 and (x′n)n⩾1 equivalent if limn→∞ d(xn,x′n) = 0.
Let X be the set of all equivalence classes. The elements of X are denoted by x. On X
we define a metric d by

d(x,y) := lim
n→∞

d(xn,yn),

where (xn)n⩾1 is a Cauchy sequence representing x. Using the triangle inequality, it
is readily checked that this limit indeed exists and is independent of the choice of se-
quences (xn)n⩾1 and (yn)n⩾1 representing x and y.

If x ∈ X , the constant sequence (x)n⩾1 is Cauchy and therefore defines an element
of X which we shall denote by [x]. We thus obtain a mapping i : X → X by declaring
ix := [x]. From d(ix, iy) = d([x], [y]) = limn→∞ d(x,y) = d(x,y) we see that this mapping
is isometric.

This gives property (i). To prove property (ii) let x ∈ X , and let (xn)n⩾1 be a Cauchy
sequence in X representing x. For any ε > 0 we may choose N so large that d(xn,xm)< ε

for all m,n ⩾ N. Then d(ixN ,x) = limn→∞ d(xN ,xn) ⩽ ε. This shows that i(X) is dense
in X .

Next we prove that X is complete. Suppose (xn)n⩾1 is a Cauchy sequence in X . By
the density of X in X we may pick elements xn ∈ X such that d(xn, [xn])<

1
n . From

d(xn,xm) = d([xn], [xm])⩽ d([xn],xn)+d(xn,xm)+d(xm, [xm])

⩽
1
n
+d(xn,xm)+

1
m

and the fact that the right-hand side tends to 0 as n,m→ ∞, we infer that (xn)n⩾1 is a
Cauchy sequence in X . Let x ∈ X be its equivalence class. As was shown in the proof of
density, we have limn→∞ d([xn],x) = 0. Then

d(xn,x)⩽ d(xn, [xn])+d([xn],x)<
1
n
+d([xn],x)

shows that limn→∞ d(xn,x) = 0. This proves the completeness of X .
Let I : X → X denote the identity mapping on X , and let (X ,d) and i′ : X → X satisfy

(i) and (ii). We obtain an isometry j : X → X by putting

jx := lim
n→∞

i′xn

where (xn)n⩾1 is a Cauchy sequence representing x and the limit on the right-hand
side is taken in X . This limit exists because the sequence (i′xn)n⩾1 is Cauchy in the
complete space X . The resulting mapping j is an isometry from X onto X , whose inverse
is obtained by applying the same procedure with the roles of X and X interchanged.

If j′ is another isometry from X onto X extending the identity mapping on X , then
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j′x = limn→∞ j′ixn = limn→∞ jixn = jx for all x∈ X represented by the Cauchy sequence
(xn)n⩾1 in X . This gives the uniqueness of j.

A complete metric space (X ,d) is called a completion of (X ,d) if there exists a map-
ping i : X → X with properties (i) and (ii). The second part of the theorem asserts that
completions are “unique up to isometry”. To avoid this minor ambiguity we agree to
call the metric space (X ,d) constructed in the above proof “the” completion of (X ,d).

Continuity

Let X and Y be metric spaces and consider a mapping f : X → Y .

Definition D.7. A mapping f : X → Y is continuous at the point x0 ∈ X if and only if
for every ε > 0 there exists a δ > 0 such that for all x ∈ X with dX (x,x0) < δ we have
dY ( f (x), f (x0))< ε , and f continuous if f is continuous at every point of X .

This definition is consistent with the one in the previous appendix; this is clear from
the fact that every open set U in X containing x0 contains the open balls B(x0;δ ) for
sufficiently small δ > 0 and every open set V in Y containing f (x0) contains the open
balls B( f (x0);ε) for sufficiently small ε > 0.

A mapping f : X→Y is called sequentially continuous at the point x0 ∈ X if for every
sequence (xn)n⩾1 in X with limn→∞ xn = x0 we have limn→∞ f (xn) = f (x0). We call f
sequentially continuous if f is sequentially continuous at every point of X .

Proposition D.8. For a mapping f : X → Y between the metric spaces X and Y the
following assertions are equivalent:

(1) f is continuous at the point x0 ∈ X;
(2) f is sequentially continuous at the point x0 ∈ X.

In particular, f is continuous if and only if f is sequentially continuous.

Proof (1)⇒(2): Suppose that limn→∞ xn = x0 in X . Choose ε > 0 arbitrarily and
choose, using the continuity of f at x0, a δ > 0 such that dY ( f (x), f (x0)) < ε for all
x ∈ X with dX (x,x0)< δ . Since limn→∞ dX (xn,x0) = 0 we can find an index N ⩾ 1 such
that dX (xn,x0)< δ for all n ⩾ N. For all n ⩾ N it then holds that dY ( f (xn), f (x0))< ε .

(2)⇒(1): Suppose that there exists an ε > 0 for which no δ > 0 can be found such
that dY ( f (x), f (x0))< ε for all x ∈ X with dX (x,x0)< δ . Then for every n ⩾ 1 we can
find xn ∈ X with dX (xn,x0)<

1
n and dY ( f (xn), f (x0))⩾ ε . But this implies that f is not

sequentially continuous.
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A function f : X → Y is uniformly continuous if for every ε > 0 there exists a δ > 0
such that whenever x,y ∈ X satisfy dX (x,y) < δ , then dY ( f (x), f (y)) < ε . Every uni-
formly continuous function is continuous, but the converse is false even for bounded
functions: the function f : (0,1)→ [−1,1], f (x) = sin(1/x), is continuous but not uni-
formly continuous. In the next section we prove that if X is compact, then every contin-
uous function from X into another metric space is uniformly continuous.

Uniformly continuous functions have the following extension property:

Proposition D.9. Let X and Y be metric spaces, with Y complete. If f : X → Y is
uniformly continuous, there exists a unique uniformly continuous function f : X → Y
extending f .

Proof Let x ∈ X and choose a sequence xn → x with each xn in X . Then (xn)n⩾1 is
Cauchy in X , and the uniform continuity of f implies that ( f (xn))n⩾1 is Cauchy in Y .
Since Y is complete, this sequence converges to a limit, say y. We set f (x) := y. We
need to check that f is well defined (that is, f (x) does not depend on the choice of the
approximating sequence) and is uniformly continuous.

If x̃n → x with each x̃n in X , then limn→∞ dX (xn, x̃n) = 0. By the uniform conti-
nuity of f it follows that limn→∞ dY ( f (xn), f (x̃n)) = 0, and therefore limn→∞ f (x̃n) =

limn→∞ f (xn). This proves that f is well defined.
To prove that f is uniformly continuous, let ε > 0 and choose δ > 0 as in the defi-

nition of uniform continuity of f . If dX (x,y) < δ in X , and if (xn)n⩾1 and (yn)n⩾1 are
approximating sequences in X , then ( f (xn))n⩾1 and ( f (yn))n⩾1 are approximating se-
quences for f (x) and f (y) in Y , and for large enough n we have dX (xn,yn) < δ and
dY ( f (xn), f (yn))< ε . From this we obtain dY ( f (x), f (y)) = limn→∞ dY ( f (xn), f (yn))⩽
ε .

It is clear from the construction that f extends f .

Compactness

Let (X ,d) be a metric space. We recall that a subset S of a metric space X is compact
if every open cover of S has a finite subcover, and relatively compact if its closure S is
compact. In order to characterise compactness in terms of sequences we introduce the
following terminology. A subset S of a metric space X is called sequentially compact
when every sequence in S has a convergent subsequence with limit in S.

A subset S of a metric space X is called totally bounded if for every r > 0 there is a
finite cover of S with balls of radius r.

Theorem D.10 (Compactness and total boundedness). For a subset S of a metric space
X the following assertions are equivalent:
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(1) S is compact;
(2) S is sequentially compact;
(3) S is complete and totally bounded.

Proof (1)⇒(2): Suppose that (xn)n⩾1 is a sequence in S not containing any subse-
quence converging to an element of S. We will construct an open cover of S without a
finite subcover.

The assumption entails that for every x ∈ S there is an ε(x)> 0 with the property that
the open ball B(x;ε(x)) contains at most finitely many terms of the sequence (xn)n⩾1.
Let U = {B(x;ε(x)) : x ∈ S}. This is an open cover of S without finite subcover, as
every U ∈ U contains at most finitely many terms of the sequence (xn)n⩾1. But this
sequence has infinitely many distinct terms: otherwise we could immediately pick a
convergent subsequence.

(2)⇒(3): Suppose that S is not totally bounded. We will construct a sequence in S
without any subsequence converging to an element of S.

By our assumption there exists an ε > 0 such that S has no finite cover with ε-balls
with centres in S. Choose x1 ∈ S arbitrarily. The collection {B(x1;ε)} does not cover S,
so there is an x2 ∈ S with x2 ̸∈ B(x1;ε). Note that d(x1,x2)⩾ ε .

The collection {B(x1;ε),B(x2;ε)} is not a cover of S, so there is an x3 ∈ S with
x3 ̸∈ B(x1;ε)∪B(x2;ε). Note that d(x1,x3)⩾ ε and d(x2,x3)⩾ ε .

Continuing this way we obtain a sequence (xn)n⩾1 with the property that d(xn,xm)⩾ ε

for all choices of n and m. This sequence has no Cauchy subsequence, and therefore no
convergent subsequence.

Next we prove that S is complete. Suppose that (xn)n⩾1 is a Cauchy sequence in S.
Since S is sequentially compact this sequence has a convergent subsequence with limit
x in S. But then (xn)n⩾1 itself converges to x. This shows that S is complete.

(3)⇒(1): Suppose, for a contradiction, that S is complete and totally bounded but not
compact.

Since S is not compact, there is an open cover U of S without finite subcover. Since
S is totally bounded, for every n ⩾ 1 we can find a finite cover Bn of S consisting of
1
n -balls with centres in S.

There is a ball B1 ∈B1 such that S∩B1 cannot be covered by finitely many open sets
in U . In the same way there is a ball B2 ∈B2 such that S∩B1∩B2 cannot be covered
by finitely many open sets in U . Continuing in this way we find a sequence of balls
Bk ∈Bk such that S∩B1∩·· ·∩Bk cannot be covered by finitely many open sets in U .

The sequence of centres (xn)n⩾1 of these balls is a Cauchy sequence in S. To see this,
we note that for all n,m ⩾ 1 the intersection Bn∩Bm is nonempty. If xmn is an element
in the intersection, with the triangle inequality we find that

d(xn,xm)⩽ d(xn,xnm)+d(xnm,xm)⩽ 1
n +

1
m .
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In view of limn,m→∞
1
n +

1
m = 0 our assertion follows.

By completeness, the sequence (xn)n⩾1 converges to a limit x which belongs to S.
Choose U ∈ U such that x ∈U and choose r > 0 such that B(x;r) ⊆U . Choose N so
large that 1

N < 1
2 r and d(xN ,x)< 1

2 r for all n ⩾ N. Then

B1∩·· ·∩BN ⊆ BN = B(xN ; 1
N )⊆ B(xN ; 1

2 r)⊆ B(x;r)⊆U.

But this means that B1∩·· ·∩BN is covered by the finite subcollection {U} of U . This
contradiction concludes the proof.

The equivalence of (1) and (3) implies that in a complete metric space, a subset is
compact if and only if it is closed and totally bounded, and relatively compact if and
only if it is totally bounded. The ‘only if’ parts are trivial, and for the ‘if’ parts we note
that the closure of a totally bounded set is totally bounded; for if S can be covered with
finitely many balls of radius B(xn;ε) with centres in S, the balls B(xn;2ε) cover S. Now
it remains to observe that a closed subset of a complete metric space is complete.

Theorem D.11 (Bolzano–Weierstrass). A subset of Rd is compact if and only if it is
closed and bounded.

Proof We have seen that, in any metric space, compact sets are always closed and
bounded. Suppose, conversely, that the set S is closed and bounded.

Step 1 – We prove the theorem for d = 1 and the interval [a,b]. Let U be a cover for
[a,b] with open subsets of R. We must show that U contains a finite subcover.

Let us call a point x ∈ [a,b] reachable from a if there is a finite subcollection of U

covering [a,x]. Let S be the set of all points that are reachable from a. We must show
that b ∈ S.

First we observe that S is nonempty: clearly we have a ∈ S. Since S is bounded above
(by b) we may put p := supS. Choose U ∈U such that p ∈U . Since U is open, there is
an ε > 0 with (p−ε, p+ε)⊆U . Since p= supS we can find an x∈ S with p−ε < x⩽ p.
Choose a finite subcollection U ′ of U covering [a,x]. The collection U ′′=U ′∪{U} is
a finite subcollection of U covering [a, p]. We conclude that p∈ S. We can also conclude
that p = b. Indeed, if we had that p < b, then we could find a y ∈ [a,b]∩ (p, p+ ε).
Then U ′′ also covers interval [a,y], and it follows that y ∈ S. This contradicts the fact
that p = supS.

Step 2 – Suppose now that S⊆Rd is closed and bounded. Since S is bounded, we can
find an r > 0 such that S⊆ [−r,r]d. We claim that [−r,r]d is compact. Once this has been
shown, it follows that S, being a closed subset of the compact set [−r,r]d, is compact.

To prove that [−r,r]d is compact we show that [−r,r]d is sequentially compact. Let
(xn)n⩾1 be a sequence in [−r,r]d. The d coordinate sequences are sequences in the in-
terval [−r,r], which is sequentially compact by the Bolzano–Weierstrass theorem. By
taking d consecutive subsequences we arrive at a subsequence (xnk)k⩾1 all of whose
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coordinate sequences converge in [−r,r]. The sequence (xnk)k⩾1 then converges in Rd,
with a limit in [−r,r]d.

Theorem D.12. Let (X ,dX ) and (Y,dY ) be metric spaces with X compact. Every con-
tinuous mapping f : X → Y is uniformly continuous.

Proof Let ε > 0 be arbitrary. For every x ∈ X we can find a δ (x)> 0 such that for all
x′ ∈ X with dX (x,x′)< δ (x) we have dY ( f (x), f (x′))< 1

2 ε . The collection

U =
{

B(x; 1
2 δ (x)) : x ∈ X

}
is an open cover of X , and therefore has a finite subcover, say

U ′ =
{

B(x j; 1
2 δ (x j)) : j = 1, . . . ,n

}
.

Let δ = min{ 1
2 δ (x j) : j = 1, . . . ,n

}
.

Suppose now that x,x′ ∈ X satisfy dX (x,x′)< δ . We have x ∈ B(x j; 1
2 δ (x j)) for some

1 ⩽ j ⩽ n (since U ′ covers X). Then dX (x,x j)<
1
2 δ (x j) and

dX (x′,x j)⩽ dX (x′,x)+dX (x,x j)< δ + 1
2 δ (x j)⩽ δ (x j).

Consequently, dY ( f (x), f (x′))⩽ dY ( f (x), f (x j))+dY ( f (x j), f (x′))< 1
2 ε + 1

2 ε = ε.

In many applications, the following simple special case of Tychonov’s theorem (The-
orem C.14) suffices.

Proposition D.13. If K1, . . . ,Kn are compact metric spaces, then their cartesian product
K := K1×·· ·×Kn is a compact metric space with respect to the product metric

d(s, t) :=
n

∑
j=1

d j(s j, t j), s, t ∈ K.

Proof Given ε > 0, for j = 1, . . . ,n choose finitely many open d j-balls of radius ε/n
to cover K j. Their cartesian products are open, contained in d-balls of radius ε , and
cover K. Since ε > 0 was arbitrary, this shows that K is totally bounded. Since the
completeness of the spaces K j implies that K is complete, this proves the compactness
of K.

Definition D.14 (Separability). A metric space is called separable if it contains a dense
countable subset.

Proposition D.15. Every compact metric space is separable.

Proof For each n = 1,2, . . . we cover the metric space with finitely many open balls of
radius 1

n , say B(n)
1 , . . . ,B(n)

Nn
. Together, the centres of all these balls form a dense subset.

Indeed, any nonempty open set U contains an open ball B, say of radius r > 0, and this
ball must contain at least one of the balls B(n)

j for each n ⩾ 1 such that 1
n < 1

3 r, for

otherwise the sets B(n)
1 , . . . ,B(n)

Nn
cannot cover B. The centres of such balls are in U .
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Appendix E
Measure Spaces

This appendix reviews the basic elements of Measure Theory.

σ -Algebras

Let Ω be a set.

Definition E.1 (σ -Algebras). A σ -algebra in Ω is a collection F of subsets of Ω with
the following properties:

(i) Ω ∈F ;
(ii) F ∈F implies ∁F ∈F ;

(iii) F1,F2, · · · ∈F implies
⋃

n⩾1 Fn ∈F.

Here, ∁F = Ω\F is the complement of F .
A measurable space is a pair (Ω,F ), where Ω is a set and F is a σ -algebra in Ω.

The sets in F are often referred to as the measurable subsets of Ω.

These properties express that F is nonempty, closed under taking complements, and
closed under taking countable unions. From⋂

n⩾1

Fn = ∁
(⋃

n⩾1

∁Fn

)
it follows that F is closed under taking countable intersections. Clearly, F is closed
under finite unions and intersections as well.

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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Example E.2. When C is any collection of subsets of Ω, the σ -algebra generated by
C is defined as the intersection of all σ -algebras in Ω containing C , and is denoted by
σ(C ). It is the smallest σ -algebra containing C . Such σ -algebras arise in a variety of
situations:

(1) When (X ,τ) is a topological space, the σ -algebra B(X) generated by τ is called
the Borel σ -algebra of (X ,τ).

(2) Let (Ω1,F1), (Ω2,F2), . . . be a sequence of measurable spaces. On the cartesian
product ∏n⩾1 Ωn, the product σ -algebra ∏n⩾1 Fn is the σ -algebra generated by all
sets of the form

F1×·· ·×FN×ΩN+1×ΩN+2×·· ·

with N = 1,2, . . . and Fn ∈Fn for n = 1, . . . ,N.
The product of finitely many measurable spaces (Ω1,F1), . . . (ΩN ,FN) is de-

fined similarly; here one takes the σ -algebra in Ω1×·· ·×ΩN generated by all sets
of the form F1× ·· ·×FN with Fn ∈Fn for n = 1, . . . ,N. By way of example, the
reader may check that

(Rd,B(Rd)) =
d

∏
n=1

(R,B(R)).

For a proof one may use that every open set in Rd is a countable union of open
rectangles of the form (a1,b1)×·· ·× (ad ,bd).

(3) Let Ω and Ω′ be sets and let f : Ω→ Ω′ be any function. When F ′ is a σ -algebra
in Ω′, for F ′ ∈F ′ we define

{ f ∈ F ′} := {ω ∈Ω : f (ω) ∈ F ′}.

The collection

σ( f ) =
{
{ f ∈ F ′} : F ′ ∈F ′}

is a σ -algebra in Ω, the σ -algebra generated by f . The σ -algebra generated by a
family of functions is defined similarly.

Measures

Let (Ω,F ) be a measurable space.

Definition E.3 (Measures). A measure on (Ω,F ) is a mapping µ : F → [0,∞] with
the following properties:

(i) µ(∅) = 0;
(ii) for all disjoint sets F1,F2, . . . in F we have µ(

⋃
n⩾1 Fn) = ∑n⩾1 µ(Fn).



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
Measure Spaces 659

A triple (Ω,F,µ), with µ a measure on a measurable space (Ω,F ), is called a mea-
sure space.

A measure space (Ω,F,µ) is called finite if µ is a finite measure, that is, if µ(Ω)<∞.
If µ(Ω) = 1, then µ is called a probability measure and (Ω,F,µ) is called a probability
space. In probability theory, it is customary to use the symbol P for a probability mea-
sure. A measure space (Ω,F,µ) is called σ -finite if there exist F1,F2, . . . in F such
that

⋃
n⩾1 Fn = Ω and µ(Fn)< ∞ for all n ⩾ 1. A Borel measure on a topological space

(X ,τ) is measure µ : B(X)→ [0,∞], where B(X) is the Borel σ -algebra of X .
The following properties of measures are easily checked:

(i) if F1 ⊆ F2 in F, then µ(F1)⩽ µ(F2);
(ii) if F1,F2, . . . in F, then

µ

(⋃
n⩾1

Fn

)
⩽ ∑

n⩾1
µ(Fn);

(iii) if F1 ⊆ F2 ⊆ . . . in F, then

µ

(⋃
n⩾1

Fn

)
= lim

n→∞
µ(Fn);

(iv) if F1 ⊇ F2 ⊇ . . . in F and µ(F1)< ∞, then

µ

(⋂
n⩾1

Fn

)
= lim

n→∞
µ(Fn).

In (iii) and (iv), the limits (in [0,∞]) exist by monotonicity.

Dynkin’s Lemma

Lemma E.4 (Dynkin’s lemma). Let µ1 and µ2 be two finite measures defined on a mea-
surable space (Ω,F ). Let A ⊆F be a collection of sets with the following properties:

(i) Ω ∈A ;
(ii) A is closed under finite intersections;

(iii) the σ -algebra generated by A , equals F .

If µ1(A) = µ2(A) for all A ∈A , then µ1 = µ2.

Proof Let D denote the collection of all sets D ∈F with µ1(D) = µ2(D). Then A ⊆
D and D is a Dynkin system, that is,

• Ω ∈D ;
• if D1 ⊆ D2 with D1,D2 ∈D , then also D2 \D1 ∈D ;
• if D1 ⊆ D2 ⊆ . . . with all Dn ∈D , then also

⋃
n⩾1 Dn ∈D .
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By assumption we have D ⊆F = σ(A ), the σ -algebra generated by A ; we will
show that σ(A ) ⊆ D . To this end let D0 denote the smallest Dynkin system in F

containing A . We will show that σ(A ) ⊆ D0. In view of D0 ⊆ D , this proves the
lemma.

Let C = {D0 ∈ D0 : D0 ∩ A ∈ D0 for all A ∈ A }. This is a Dynkin system and
A ⊆ C since A is closed under taking finite intersections. It follows that D0 ⊆ C ,
since D0 is the smallest Dynkin system containing A . But obviously, C ⊆ D0, and
therefore C = D0.

Now let C ′ = {D0 ∈ D0 : D0 ∩D ∈ D0 for all D ∈ D0}. This is a Dynkin system
and the fact that C = D0 implies that A ⊆ C ′. Hence D0 ⊆ C ′, since D0 is the smallest
Dynkin system containing A . But obviously, C ′ ⊆D0, and therefore C ′ = D0.

It follows that D0 is closed under taking finite intersections. But a Dynkin system
with this property is a σ -algebra. Thus, D0 is a σ -algebra, and now A ⊆ D0 implies
that also σ(A )⊆D0.

Outer Measures

Let S be a set. The power set of S, that is, the set of all subsets of S, is denoted by 2S.

Definition E.5 (Outer measures). A mapping ν : 2S→ [0,∞] is called an outer measure
if

(i) ν(∅) = 0;
(ii) A⊆ B implies ν(A)⩽ ν(B);

(iii) for all A1,A2, . . . ∈ 2S we have

ν

(⋃
n⩾1

An

)
⩽ ∑

n⩾1
ν(An).

Lemma E.6. Let C ⊆ 2S satisfy ∅ ∈ C and suppose that µ : C → [0,∞] satisfies
µ(∅) = 0. For subsets A⊆ S define

µ
∗(A) := inf

{
∑
j⩾1

µ(C j) : A⊆
⋃
j⩾1

C j, where C j ∈ C for all j ⩾ 1
}

(E.1)

with the convention that µ∗(A) = ∞ if the above set is empty. Then µ∗ is an outer
measure.

Proof The mapping µ∗ : 2S→ [0,∞] clearly satisfies the conditions (i) and (ii) in Def-
inition E.5. In order to check condition (iii) let A1,A2, . . . be subsets of S and let ε > 0
be arbitrary. If µ∗(An) = ∞ for some n ⩾ 1, then (iii) trivially holds. We may therefore



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
Measure Spaces 661

assume that µ∗(An)< ∞ for all n ⩾ 1. By the definition of µ∗, for each fixed n ⩾ 1 we
can find Cn, j ∈ C such that

An ⊆
⋃
j⩾1

Cn, j and ∑
j⩾1

µ(Cn, j)⩽ µ
∗(An)+2−n

ε.

Then
⋃

n⩾1 An ⊆
⋃

∞
n, j=1 Cn, j, and, again by the definition of µ∗,

µ
∗
(⋃

n⩾1

An

)
⩽

∞

∑
n, j=1

µ(Cn, j)⩽ ∑
n⩾1

(µ∗(An)+2−n
ε) = ε + ∑

n⩾1
µ
∗(An).

Since ε > 0 was arbitrary, this proves the required estimate.

Let µ : 2S → [0,∞] be a mapping which satisfies µ(∅) = 0. A set A ⊆ S is called
µ-measurable if

µ(Q) = µ(Q∩A)+µ(Q∩∁A) for all Q ∈ 2S.

The collection of all µ-measurable sets is denoted by Mµ .

Theorem E.7 (Measures from outer measures). If ν : 2S→ [0,∞] is an outer measure,
then Mν is a σ -algebra and ν is a measure on (S,Mν).

For the proof of the theorem we need the following terminology. A ring in S is a
subset R of 2S with the following properties:

(i) ∅ ∈R;
(ii) A,B ∈R implies A\B ∈R;

(iii) A,B ∈R implies A∪B ∈R.

If R is a ring, the identity A∩B = A\ (A\B) implies that if A,B ∈R, then A∩B ∈R.

Proof of Theorem E.7 We proceed in two steps.

Step 1 – We begin by checking that if µ : 2S→ [0,∞] is any mapping which satisfies
µ(∅) = 0, then Mµ is a ring and µ is additive on Mµ .

It is clear that ∅ ∈Mµ . In order to check that Mµ is a ring we check the following:

(a) A ∈Mµ implies ∁A ∈Mµ ;
(b) A,B ∈Mµ implies A∩B ∈Mµ .

Given these properties it is straightforward to check that Mµ is a ring. Indeed, this
follows from the formulas B\A = B∩∁A and A∪B = ∁(∁A∩∁B).

Property (a) is clear. To check (b) let A,B ∈Mµ and set C := A∩B. Let Q ∈ 2S be
arbitrary. Observing that A∩∁B = ∁C∩A and ∁A = ∁C∩∁A, and making repeated use
of the definition of Mµ , we have

µ(Q) = µ(Q∩A)+µ(Q∩∁A)
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= µ(Q∩A∩B)+µ(Q∩A∩∁B)+µ(Q∩∁A)

= µ(Q∩C)+µ(Q∩∁C∩A)+µ(Q∩∁C∩∁A)

= µ(Q∩C)+µ(Q∩∁C).

Therefore, A∩B =C ∈Mµ .
To check that µ is additive on Mµ fix two disjoint sets A,B ∈Mµ and let Q := A∪B.

Then Q∩A = A and Q∩∁A = B. Since A ∈Mµ , we find

µ(A∪B) = µ(Q) = µ(Q∩A)+µ(Q∩∁A) = µ(A)+µ(B).

Step 2 – We now turn to the proof of the theorem. From Step 1 we know that Mν is
a ring and ν is additive on Mν . In view of property (a) it remains to check that for any
disjoint sequence (An)n⩾1 in Mµ ,

A :=
⋃
n⩾1

An ∈Mν and ν(A) = ∑
n⩾1

ν(An). (E.2)

Let Bn =
⋃n

j=1 A j for each n ⩾ 1. Fix an arbitrary subset Q of S. By Step 1, for all n ⩾ 1
we have ∁A⊆ ∁Bn, Bn ∈Mν , and

n

∑
j=1

ν(Q∩A j)+ν(Q∩∁A) = ν(Q∩Bn)+ν(Q∩∁A)

⩽ ν(Q∩Bn)+ν(Q∩∁Bn) = ν(Q).

Using the σ -subadditivity of ν and then passing to the limit n→ ∞, we infer

ν(Q∩A)+ν(Q∩∁A)⩽ ∑
j⩾1

ν(Q∩A j)+ν(Q∩∁A)⩽ ν(Q). (E.3)

On the other hand, by subadditivity also the converse inequality ν(Q) ⩽ ν(Q∩A)+
ν(Q∩ ∁A) holds. This shows that A ∈Mν and that the inequalities in (E.3) are in fact
equalities. Now (E.2) follows by taking Q = A in (E.3).

Carathéodory’s Extension Theorem

For additive functions µ : R→ [0,∞] one has the following result.

Lemma E.8. Let R be a ring and µ : R→ [0,∞] be additive, that is,

µ(
n⋃

j=1

An) =
n

∑
j=1

µ(A j)

holds for all disjoint sets A1, . . . ,An ∈R. The following assertions hold:

(1) if A,B ∈R and A⊆ B, then µ(A)⩽ µ(B);
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(2) if A1,A2, · · · ∈R and
⋃

j⩾1 A j ∈R and µ is countably additive on R, then

µ

(⋃
j⩾1

A j

)
⩽ ∑

j⩾1
µ(A j).

Proof (1): Writing B = A∪ (B\A), we see that

µ(B) = µ(A∪ (B\A)) = µ(A)+µ(B\A)⩾ µ(A).

(2): The sets B1 := A1, B2 := A2 \A1, B3 := A3 \ (A1 ∪A2), . . . are disjoint and we
have

⋃
j⩾1 B j =

⋃
j⩾1 A j. Therefore, by the countable additivity of µ ,

µ

(⋃
j⩾1

A j

)
= µ

(⋃
j⩾1

B j

)
= ∑

j⩾1
µ(B j)⩽ ∑

j⩾1
µ(A j).

Theorem E.9 (Carathéodory’s extension theorem). Let R be a ring in S and suppose
that µ : R → [0,∞] is countably additive on R and satisfies µ(∅) = 0. Let µ∗ be the
associated outer measure. Then:

(1) the outer measure µ∗ restricts to a measure on σ(R) extending µ;
(2) if µ∗ is σ -finite on σ(R) and if ν is another σ -finite measure on σ(R) extending

µ , then µ∗ = ν .

Proof By Theorem E.7, µ∗ is a measure on the σ -algebra Mµ∗ . We prove that it has
the following properties:

(i) R ⊆Mµ∗ ;
(ii) µ∗(A) = µ(A) for all A ∈R.

Clearly, part (1) of the theorem follows from the claim, which actually shows that there
is a further extension to the possibly larger σ -algebra Mµ∗ .

Step 1 – In this step we prove (i). Let A ∈R and Q⊆ S be given. The subadditivity of
µ∗ gives µ∗(Q)⩽ µ∗(Q∩A)+µ∗(Q∩∁A). The converse estimate µ∗(Q∩A)+µ∗(Q∩
∁A) ⩽ µ∗(Q) trivially holds if µ∗(Q) = ∞. If µ∗(Q) < ∞, choose B1,B2, · · · ∈R such
that Q⊆

⋃
n⩾1 Bn. Then Bn∩A and Bn∩∁A = Bn \A belong to R for all n ⩾ 1, and

Q∩A⊆
⋃
n⩾1

Bn∩A and Q∩∁A⊆
⋃
n⩾1

Bn∩∁A.

Using first the definition of µ∗ and then the additivity of µ on R, we find

µ
∗(Q∩A)+µ

∗(Q∩∁A)⩽ ∑
n⩾1

µ(Bn∩A)+ ∑
n⩾1

µ(Bn∩∁A) = ∑
n⩾1

µ(Bn).

Taking the infimum over all admissible sequences B1,B2, . . . as specified above, we
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obtain µ∗(Q∩A)+µ∗(Q∩∁A)⩽ µ∗(Q). Combining both estimates, we conclude that
A ∈Mµ∗ .

Step 2 – In this step we prove (ii). Let A ∈ R. It is clear that µ∗(A) ⩽ µ(A); this
follows by taking B1 = A and Bn =∅ for n ⩾ 2 in (E.1). The converse estimate µ(A)⩽
µ∗(A) trivially holds if µ∗(A) = ∞. If µ∗(A) < ∞, choose B1,B2, · · · ∈ R such that
A⊆

⋃
n⩾1 Bn. Then, by Lemma E.8, where part (1) is applied to the inclusion A∩Bn⊆Bn

and part (2) to the union A =
⋃

n⩾1 A∩Bn,

µ(A)⩽ ∑
n⩾1

µ(A∩Bn)⩽ ∑
n⩾1

µ(Bn).

Taking the infimum over all admissible sequences B1,B2, . . . as specified above, we
obtain µ(A)⩽ µ∗(A).

Let now the assumptions of part (2) be satisfied and choose pairwise disjoint sets
Sn ∈ σ(R) such that S =

⋃
n⩾1 Sn and µ∗(Sn)< ∞ and ν(Sn)< ∞. Then the restrictions

of µ∗ and ν agree on the σ -algebras {F ∩ Sn : F ∈ σ(R)} in Sn by Dynkin’s lemma
(which can be applied, noting that the collections Rn := {R∩Sn : R ∈R} are rings in
Sn and hence are closed under finite intersections). By countable additivity, this in turn
implies that µ∗ and ν agree on σ(R).

To verify the countable additivity condition in Carathéodory’s result one may use the
following sufficient condition.

Proposition E.10. Let R be a ring in a set S and let µ : R→ [0,∞] be an additive map
with the property that µ(∅) = 0. If for each nonincreasing sequence (An)n⩾1 in R with⋂

n⩾1 An =∅ we have limn→∞ µ(An) = 0, then µ is countably additive on R.

Proof Let (B j) j⩾1 be a disjoint sequence in R with B :=
⋃

j⩾1 B j ∈ R. We need to
show that

µ(B) = ∑
j⩾1

µ(B j). (E.4)

Let An =
⋃

j⩾n B j = B\ (B1∪·· ·∪Bn−1). Then An ∈R and
⋂

n⩾1 An =∅, and therefore
µ(An)→ 0 by assumption. On the other hand,

µ(B) = µ(An∪B1∪B2∪·· ·∪Bn−1) = µ(An)+
n−1

∑
j=1

µ(B j).

Therefore, 0 ⩽ µ(B)−∑
n−1
j=1 µ(B j) = µ(An)→ 0 as n→ ∞, and (E.4) follows.

Lebesgue Measure

As a first application of Carathéodory’s theorem we construct the Lebesgue measure.



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
Measure Spaces 665

For a = (a1, . . . ,ad) and b = (b1, . . . ,bd) such that a j ⩽ b j for j = 1, . . . ,d we write

(a,b] := {x ∈ Rd : a j < x j ⩽ b j, j = 1, . . . ,d}.

The collection I d of all finite unions of half-open rectangles is a ring and every set in
I d can be written as a finite union of disjoint half-open rectangles.

For I = (a,b] let

|I| :=
d

∏
j=1

(β j−α j).

For A ∈I d of the form A = I1∪·· ·∪ In, with disjoint I j ∈I d, define λd : I d → [0,∞]

by

λd(A) :=
n

∑
j=1
|I j|.

We must check that this number is well defined. To this end suppose that A = (a1,b1]∪
·· ·∪ (am,bm] = (c1,d1]∪·· ·∪ (cn,dn] are two representations of A as unions of disjoint
half-open rectangles. Then Ii j = (ai,bi]∩ (c j,d j] is either empty or a nonempty half-
open rectangle, and we have

m⋃
i=1

Ii j = (c j,d j] and
n⋃

j=1

Ii j = (ai,bi].

From the definition and the disjointness of the sets Ii j we obtain

m

∑
i=1

λd((ai,bi]) =
m

∑
i=1

λd

( n⋃
j=1

Ii j

)
=

m

∑
i=1

n

∑
j=1

λd(Ii j)

=
n

∑
j=1

m

∑
i=1

λd(Ii j) =
n

∑
j=1

λd

( m⋃
i=1

Ii j

)
=

n

∑
j=1

λd((c j,d j]),

which proves the asserted well-definedness.
When the dimension d is fixed and there is no danger of confusion we write λ for λd .

Lemma E.11. The function λ : I d → [0,∞] is countably additive on I d.

Proof By Proposition E.10 it suffices to prove that for each nonincreasing sequence
(An)n⩾1 in I d satisfying

⋂
n⩾1 An =∅ we have µ(An)→ 0. Fix such a sequence (An)n⩾1

and let ε > 0. We have to find N ∈ N such that λ (An)< ε for all n ⩾ N.

Step 1 – For each n ∈N choose a Bn ∈I d such that Bn ⊆ An and λ (An \Bn)⩽ 2−nε .
Since Bn⊆An, we also have

⋂
n⩾1 Bn =∅. It follows that the complements of the sets Bn

form an open cover of the set A1, which is compact by the Bolzano–Weierstrass theorem.
Therefore, there exists an N such that A1 ⊆

⋃N
n=1 ∁Bn. It follows that

⋂N
n=1 Bn ⊆ ∁A1.

Since Bn ⊆ A1 for all n ⩾ 1, we must have that
⋂N

n=1 Bn =∅.
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Step 2 – Let Cn =
⋂n

j=1 B j for n ⩾ 1. For every n ⩾ 1, An \Cn =
⋃n

j=1(An \B j) ⊆⋃n
j=1(A j \B j). Therefore, using Lemma E.8 (part (1) in (∗) and part (2) for finite unions

in (∗∗)) we find

λ (An \Cn)
(∗)
⩽ λ

( n⋃
j=1

(A j \B j)
) (∗∗)

⩽
n

∑
j=1

λ (A j \B j)⩽
n

∑
j=1

2− j
ε < ε.

Since Cn =∅ for all n ⩾ N, we conclude that λ (An) = λ (An \Cn)< ε for all n ⩾ N.

Theorem E.12 (Lebesgue measure). There exists a unique σ -finite Borel measure λ on
Rd satisfying

λ (I) = |I|

for all I ∈I d. Moreover, for all h ∈ Rd and A ∈B(Rd) we have

λ (A+h) = λ (A)

where A+h := {x+h : x ∈ A}.

Proof In Lemma E.11 we have shown that λ is countably additive on the ring I d.
Therefore, by Theorem E.9, λ admits a unique extension to a σ -finite measure on
σ(I d) = B(Rd).

To prove translation invariance, fix h ∈ Rd. We claim that for every A ∈B(Rd) the
set A+h belongs to B(Rd). To see this, let Ah = {A ∈B(Rd) : A+h ∈B(Rd)}. This
is a σ -algebra contained in B(Rd). For each open set A, the set A+h is open and hence
belongs to B(Rd). It follows that Ah contains all open sets. Since B(Rd) is the smallest
σ -algebra containing all open sets, it follows that B(Rd)⊆Ah. Since also Ah⊆B(Rd)

we obtain equality Ah = B(Rd). This proves the claim.
For A∈B(Rd) set µh(A) := λ (A+h). Then µh is a σ -finite Borel measure on B(Rd)

and for any half-open rectangle I, µh(I) = |I +h|= |I|= λ (I). By uniqueness, we find
that µh(A) = λ (A) for all A ∈B(Rd).

Product Measures

As a second application of Carathéodory’s theorem we prove the existence of product
measures.

Theorem E.13 (Product measures). Let (Ω j,F j,µ j), j = 1, . . . ,n, be σ -finite measure
spaces. Then there exists a unique σ -finite measure µ = ∏

n
j=1 µn on the product σ -

algebra F = ∏
n
j=1 F j which satisfies

µ(F1×·· ·×Fn) =
n

∏
j=1

µ j(Fj)
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whenever the sets Fj ∈F j satisfy µ j(Fj)< ∞ for j = 1, . . . ,n.

The measure µ is called the product of µ1, . . . ,µn.

Proof Let R be the ring consisting of all finite unions of measurable rectangles of
finite measure, that is, sets of the form ∏

n
j=1 Fj with Fj ∈ F j satisfying µ j(Fj) < ∞

for j = 1, . . . ,n. Since the intersection of finitely many measurable rectangles of finite
measure is a measurable rectangle of finite measure, every R ∈R can be written as a
finite union of disjoint measurable rectangles of finite measure, say R = R(1)∪·· ·∪R(k)

and we may define

µ(R) :=
k

∑
j=1

µ(R( j)),

where each µ(R( j)) is given by the product formula in the statement of the theorem.
The proof that µ(R) is well defined follows the lines of the proof for the Lebesgue
measure. It is clear that µ is additive on R. We claim that µ is countably additive on
R. Once we know this, the existence of a unique σ -finite product measure follows from
Carathéodory’s theorem.

A quick proof of the claim is obtained by applying Proposition E.10 in combination
with the dominated convergence theorem. The reader may check that no circularity is
introduced by borrowing this result at this stage. Thus let (A j) j⩾1 be a nonincreasing
sequence of sets in R satisfying

⋂
j⩾1 A j = ∅. We must show that lim j→∞ µ(A j) = 0.

We have

µ(A j) =
∫

Ωn

· · ·
∫

Ω1

1A j dµ1 · · · dµn,

using that A j is the finite union of measurable rectangles of finite measure and that
the identity holds for such sets by definition. The asserted convergence now follows by
applying dominated convergence n times consecutively.

Example E.14. The Lebesgue measure on (Rd,B(Rd)) is the product measure of d
copies of the Lebesgue measure on (R,B(R)).

Borel Measures on Metric Spaces

For a Borel measure µ on a topological space X , by complementation the following
properties are easily seen to be equivalent:

• for all Borel subsets B of X and all ε > 0 there is an open set U in X such that B⊆U
and µ(U \B)< ε;
• for all Borel subsets B of X and all ε > 0 there is a closed set F in X such that F ⊆ B

and µ(B\F)< ε;
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• for all Borel subsets B of X and all ε > 0 there is an open set U and a closed set F in
X such that F ⊆ B⊆U and µ(U \B)< ε .

Definition E.15 (Regular measures). A Borel measure µ on a topological space X is
called regular if it satisfies the above equivalent conditions.

Proposition E.16 (Regularity of Borel measures). Every finite Borel measure on a met-
ric space is regular.

Proof Let µ be a finite Borel measure on a metric space X . Denote by A (X) the
collection of all Borel sets A in X which have the property that for all ε > 0 there exist a
closed set F and an open set U such that F ⊆ A⊆U and µ(U \F)< ε . We must prove
that A (X) = B(X), the Borel σ -algebra of X .

Claim 1: A (X) is a σ -algebra. It is clear that ∅ ∈ A (X) and that A (X) is closed
under taking complements. To see that A (X) is closed under taking countable unions,
let (An)n⩾1 be a sequence of sets in A (X). Let ε > 0 be given and let (Fn)n⩾1 and
(Un)n⩾1 be sequences of closed and open sets such that Fn ⊆ An ⊆Un and µ(Un \Fn)<
ε

2n . The set U =
⋃

n⩾1 Un is open. In view of

µ

(
U \

⋃
n⩾1

Fn

)
⩽ ∑

n⩾1
µ(Un \Fn)< ε

there exists an index N such that

µ

(
U \

N⋃
n=1

Fn

)
< ε.

The set F :=
⋃N

n=1 Fn is closed, satisfies F ⊆
⋃

n⩾1 An ⊆U , and µ(U \F)< ε .

Claim 2: A (X) contains all closed subsets of X . To see this, let F be a closed subset
of X and define, for k ⩾ 1, Uk := {x ∈ X : d(x,F)< 1

k}. Then each Uk is open and we
have

⋂
k⩾1 Uk = F. Hence, limn→∞ µ(Uk) = µ(F) and the claim follows.

Combining the two claims we see that A (X) = B(X).

In order to state the theorem we need the following terminology.

Definition E.17 (Tight measures). A finite Borel measure µ on a topological space X is
called tight if for every ε > 0 there exists a compact set K in X such that µ(X \K)< ε .

The following proposition gives a sufficient condition for tightness.

Proposition E.18. Every finite Borel measure µ on a separable complete metric space
X is tight.
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Proof Let (xn)n⩾1 be a dense sequence in X and fix ε > 0. For each integer k ⩾ 1, the
closed balls B(xn; 1

k ) cover X , and therefore there exists an index Nk ⩾ 1 such that

µ

( Nk⋃
n=1

B(xn; 1
k )
)
⩾ µ(X)− ε

2k .

The set

K :=
⋂
k⩾1

Nk⋃
n=1

B(xn; 1
k )

is closed and totally bounded. Since X is assumed to be complete, K is compact by
Theorem D.10. Moreover,

µ(∁K)⩽ ∑
k⩾1

ε

2k = ε.

For separable complete metric spaces, this result implies the following improvement
to the regularity of Borel measures provided by Proposition E.16.

Corollary E.19. Let µ be a finite Borel measure on a separable complete metric space
X. Then for all Borel subsets B in X and all ε > 0 there is a compact set K in X such
that K ⊆ B and µ(B\K)< ε .

Proof The measure µ is regular by Proposition E.16, so for every Borel set B there is
a closed set F in X such that F ⊆ B and µ(B\F)< 1

2 ε . By Proposition E.18 there is a
compact set G in X such that µ(X \G) < 1

2 ε . Then K := F ∩G is compact, contained
in B, and satisfies µ(B\K)< ε .

Definition E.20 (Radon measures). A finite Borel measure µ on a topological space X
is called Radon, if for every Borel subset B of X and all ε > 0 there is a compact set K
in X and an open set U in X such that K ⊆ B⊆U and µ(U \K)< ε .

Proposition E.21. Every finite Borel measure µ on a separable complete metric space
X is Radon.

Proof The measure µ is outer regular by Proposition E.16, so for every Borel set B
there is an open set U in X such that B⊆U and µ(U \B)< 1

2 ε . By Corollary E.19 there
is a compact set K in X such that K ⊆ B and µ(B\K)< ε . This gives the result.
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Appendix F
Integration

In this appendix we review the Lebesgue integral.

Measurable Functions

Let (Ω1,F1) and (Ω2,F2) be measurable spaces. A function f : Ω1 → Ω2 is said to
be measurable if { f ∈ F} ∈F1 for all F ∈F2. Clearly, compositions of measurable
functions are measurable. If C2 is a subset of F2 with the property that σ(C2) = F2,
then a function f : Ω1→Ω2 is measurable if and only if

{ f ∈C} ∈F1 for all C ∈ C2.

Indeed, just notice that {F ∈F2 : { f ∈ F} ∈F1} is a sub-σ -algebra of F2 containing
C2.

If f : Ω1→Ω2 is measurable, then

f∗(µ1)(F2) := µ1{ f ∈ F2}, F2 ∈F2,

defines a measure f∗(µ1) on (Ω2,F2). This measure is called the image of µ1 under
f . Measurable functions f from a probability space (Ω,F ,P) to another measurable
space are called random variables and the image of the probability measure P under f
is called the distribution of f under P.

In most applications we are concerned with measurable functions f from a measur-
able space (Ω,F ) to (K,B(K)). Such functions are said to be Borel measurable. Since
open sets are Borel, continuous functions are Borel measurable.

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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In what follows we summarise some measurability properties of Borel measurable
functions. The adjective ‘Borel’ will be omitted except when confusion is likely to
arise. By the observation made earlier, a function f : Ω→ R is measurable if and only
if { f > a} ∈F for all a ∈ R, and a function f : Ω→ C is measurable if and only if
{Re f > a, Im f > b} ∈ F for all a,b ∈ R. From this it follows that linear combina-
tions, products, and quotients (if defined) of measurable functions are measurable. For
example, if the real-valued functions f and g are measurable, then f +g is measurable
since

{ f +g > a}=
⋃

q∈Q
{ f > q}∩{g > a−q}.

The measurability of the sum of two complex-valued measurable functions is proved in
the same way.

If f : Ω→ K and g : Ω→ K are measurable, then f g = 1
2 [( f + g)2− ( f 2 + g2)] is

measurable.
If f : Ω→C is measurable, then its complex conjugate f is measurable, and therefore

Re f = 1
2 ( f + f ) and Im f = 1

2i ( f − f ) are measurable. Conversely, if Re f and Im f are
measurable, so is f = Re f + i Im f .

If f = supn⩾1 fn pointwise and each fn : Ω→ R is measurable, then f is measurable
since

{ f > a}=
⋃
n⩾1

{ fn > a}.

It follows from infn⩾1 fn =−supn⩾1(− fn) that the pointwise infimum of a sequence of
measurable functions is measurable as well. From this we get that the pointwise limit
superior and limit inferior of measurable functions are measurable, since

limsup
n→∞

fn = lim
n→∞

(
sup
k⩾n

fk

)
= inf

n⩾1

(
sup
k⩾n

fk

)
and liminfn→∞ fn =− limsupn→∞(− fn). It follows that the pointwise limit limn→∞ fn of
a sequence of measurable functions fn : Ω→ R is measurable. By considering real and
imaginary parts separately, the latter extends to pointwise limits of functions fn : Ω→C.

In the above considerations involving suprema, infima, and limits it is implicitly as-
sumed that these suprema and infima exist and are finite pointwise. This restriction can
be lifted by considering functions f : Ω→ [−∞,∞]. Such functions are said to be Borel
measurable if the sets { f ∈ B}, B ∈B(R), as well as the sets { f = ∞} and { f =−∞}
are in F.

A simple function is a function f : Ω→K that can be represented in the form

f =
N

∑
n=1

cn1Fn
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with coefficients cn ∈K and disjoint sets Fn ∈F for all n = 1, . . . ,N.

Proposition F.1. A function f : Ω→ K is measurable if and only if it is the pointwise
limit of a sequence of simple functions fn : Ω→ K. This sequence may be chosen to
satisfy 0 ⩽ | fn| ↑ | f | pointwise. If f is bounded, it may in addition be arranged that the
convergence is uniform. If f is nonnegative, we may furthermore arrange that 0⩽ fn ↑ f
pointwise, and uniformly if f is bounded.

Proof There is no loss of generality in taking K= C.
The ‘if’ part is clear from the fact that measurability is preserved under taking point-

wise limits. It remains to prove the ‘only if’ part.
To prove the first assertion, for j,k ∈ Z and n ∈ N consider the rectangles R(n)

jk =

[ j
2n ,

j+1
2n )+ i[ k

2n ,
k+1
2n ) in the complex plane. Let c(n)jk be the unique point in the closure

of R(n)
jk with minimum modulus. Then the simple functions

fn =
22n

∑
j,k=−22n

c(n)jk 1
{ f∈R(n)

jk }

satisfy fn→ f and 0 ⩽ | fn| ↑ | f | pointwise. If f is bounded, the convergence is uniform.
To prove the second assertion, for j ∈ N and n ∈ N consider the intervals I(n)j =

[ j
2n ,

j+1
2n ) in the nonnegative real line. Then the simple functions

fn =
22n

∑
j=0

j
2n 1

{ f∈I(n)j }

satisfy 0 ⩽ fn ↑ f pointwise. If f is bounded, the convergence is uniform.

The Lebesgue Integral

The construction of the Lebesgue integral proceeds in two stages: in the first step, the
Lebesgue integral of an arbitrary nonnegative measurable function is defined (allow-
ing the value ∞); in the second step, the notion of integrability is introduced and the
Lebesgue integral of an integrable function is defined.

Let (Ω,F,µ) be a measure space. For a nonnegative simple function f = ∑
N
n=1 cn1Fn

we define ∫
Ω

f dµ :=
N

∑
n=1

cnµ(Fn).

We allow µ(Fn) to be infinite; this causes no problems because the coefficients cn are
nonnegative (we use the convention 0 ·∞ = 0). It is easy to check that this integral is
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well defined, in the sense that it does not depend on the particular representation of f as
a simple function. Also, the integral is linear with respect to addition and multiplication
with nonnegative scalars,∫

Ω

a f +bgdµ = a
∫

Ω

f dµ +b
∫

Ω

gdµ,

and monotone in the sense that if 0 ⩽ f ⩽ g pointwise, then∫
Ω

f dµ ⩽
∫

Ω

gdµ.

In what follows, a nonnegative function is a function with values in [0,∞]. Recall that
such a function is said to be (Borel) measurable if all sets { f ∈ B} with B ∈B(R), as
well as the set { f = ∞}, are in F.

For a nonnegative measurable function f we choose a sequence of simple functions
0 ⩽ fn ↑ f (see Proposition F.1) and define∫

Ω

f dµ := lim
n→∞

∫
Ω

fn dµ.

The following lemma implies that this definition does not depend on the approximating
sequence.

Lemma F.2. For a nonnegative measurable function f and nonnegative simple func-
tions fn and g such that 0 ⩽ fn ↑ f and g ⩽ f pointwise we have∫

Ω

gdµ ⩽ lim
n→∞

∫
Ω

fn dµ.

Proof First consider the case g = 1F . Fix ε > 0 arbitrary and let Fn := {1F fn ⩾ 1−ε}.
Then F1 ⊆ F2 ⊆ . . . and

⋃
n⩾1 Fn = F , and therefore µ(Fn) ↑ µ(F). Since 1F fn ⩾ (1−

ε)1Fn ,

lim
n→∞

∫
Ω

fn dµ ⩾ lim
n→∞

∫
Ω

1F fn dµ ⩾ (1− ε) lim
n→∞

µ(Fn)

= (1− ε)µ(F) = (1− ε)
∫

Ω

gdµ.

This proves the lemma for g = 1F . The general case follows by linearity.

The integral is linear and monotone on the set of nonnegative measurable functions.
Indeed, if f and g are such functions and 0 ⩽ fn ↑ f and 0 ⩽ gn ↑ g, then for a,b ⩾ 0 we
have 0 ⩽ a fn +bgn ↑ a f +bg and therefore∫

Ω

a f +bgdµ = lim
n→∞

∫
Ω

a fn +bgn dµ

= a lim
n→∞

∫
Ω

fn dµ +b lim
n→∞

∫
Ω

gn dµ = a
∫

Ω

f dµ +b
∫

Ω

gdµ.
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If such f and g satisfy f ⩽ g pointwise, then from 0 ⩽ fn ⩽ max{ fn,gn} ↑ g we see that∫
Ω

f dµ = lim
n→∞

∫
Ω

fn dµ ⩽ lim
n→∞

∫
Ω

max{ fn,gn}dµ ⩽
∫

Ω

gdµ.

Let us now take a closer look at the role of null sets. We begin with a simple obser-
vation.

Proposition F.3. If f is a nonnegative measurable function, then:

(1) if
∫

Ω
f dµ < ∞, then µ{ f = ∞}= 0;

(2) if
∫

Ω
f dµ = 0, then µ{ f ̸= 0}= 0.

Proof For all c > 0 we have 0 ⩽ c1{ f=∞} ⩽ f and therefore

0 ⩽ cµ{ f = ∞}⩽
∫

Ω

f dµ.

The first result follows from this by letting c→∞. For the second, note that for all n ⩾ 1
we have 1

n 1{ f⩾ 1
n }

⩽ f and therefore

1
n

µ

{
f ⩾

1
n

}
⩽
∫

Ω

f dµ = 0.

It follows that µ{ f ⩾ 1
n}= 0. Now note that { f > 0}=

⋃
n⩾1{ f ⩾ 1

n}.

The Monotone Convergence Theorem

The next theorem is the cornerstone of Integration Theory.

Theorem F.4 (Monotone Convergence Theorem). Let 0 ⩽ f1 ⩽ f2 ⩽ . . . be a sequence
of nonnegative measurable functions converging pointwise to a function f . Then,

lim
n→∞

∫
Ω

fn dµ =
∫

Ω

f dµ.

Proof First note that f is nonnegative and measurable. For each n ⩾ 1 choose a se-
quence of simple functions 0 ⩽ fnk ↑k fn. Set

gnk := max{ f1k, . . . , fnk}.

For m ⩽ n we have gmk ⩽ gnk. Also, for k ⩽ l we have fmk ⩽ fml , m = 1, . . . ,n, and
therefore gnk ⩽ gnl . We conclude that the functions gnk are monotone in both indices.

From fmk ⩽ fm ⩽ fn, 1 ⩽ m ⩽ n, we see that fnk ⩽ gnk ⩽ fn, and we conclude that
0 ⩽ gnk ↑k fn. From

fn = lim
k→∞

gnk ⩽ lim
k→∞

gkk ⩽ f
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we deduce that 0 ⩽ gkk ↑ f . Recalling that gkk ⩽ fk it follows that∫
Ω

f dµ = lim
k→∞

∫
Ω

gkk dµ ⩽ lim
k→∞

∫
Ω

fk dµ ⩽
∫

Ω

f dµ.

Example F.5. We have the following substitution formula. For any measurable f :
Ω1→Ω2 and nonnegative measurable φ : Ω2→ R,∫

Ω1

φ ◦ f dµ =
∫

Ω2

φ d f∗(µ).

To prove this, note that this is trivial for simple functions φ = 1F with F ∈ F2. By
linearity, the identity extends to nonnegative simple functions φ , and by monotone con-
vergence (using Proposition F.1) to nonnegative measurable functions φ .

From the monotone convergence theorem we deduce the following useful corollary.

Theorem F.6 (Fatou’s Lemma). Let ( fn)n⩾1 be a sequence of nonnegative measurable
functions on (Ω,F,µ). Then∫

Ω

liminf
n→∞

fn dµ ⩽ liminf
n→∞

∫
Ω

fn dµ.

Proof From infk⩾n fk ⩽ fm, m ⩾ n, we infer∫
Ω

inf
k⩾n

fk dµ ⩽ inf
m⩾n

∫
Ω

fm dµ.

Hence, by the monotone convergence theorem,∫
Ω

liminf
n→∞

fn dµ =
∫

Ω

lim
n→∞

inf
k⩾n

fk dµ = lim
n→∞

∫
Ω

inf
k⩾n

fk dµ

⩽ lim
n→∞

inf
m⩾n

∫
Ω

fm dµ = liminf
n→∞

∫
Ω

fn dµ.

The Dominated Convergence Theorem

A measurable function f : Ω→K is called integrable if∫
Ω

| f |dµ < ∞.

Clearly, if f and g are measurable and |g| ⩽ | f | pointwise, then g is integrable if f is
integrable. In particular, if f is integrable, then the nonnegative functions f+ and f−
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are integrable, and we define∫
Ω

f dµ :=
∫

Ω

f+ dµ−
∫

Ω

f− dµ.

For a set F ∈F we write ∫
F

f dµ :=
∫

Ω

1F f dµ,

noting that 1F f is integrable. The monotonicity and additivity properties of this integral
carry over to this more general situation, provided we assume that the functions we
integrate are integrable.

The next result is among the most useful in all of Analysis.

Theorem F.7 (Dominated Convergence Theorem). Let ( fn)n⩾1 be a sequence of inte-
grable functions such that limn→∞ fn = f pointwise. If there exists an integrable function
g such that | fn|⩽ |g| for all n ⩾ 1, then

lim
n→∞

∫
Ω

| fn− f |dµ = 0.

In particular,

lim
n→∞

∫
Ω

fn dµ =
∫

Ω

f dµ.

Proof We make the preliminary observation that if (hn)n⩾1 is a sequence of nonneg-
ative measurable functions such that limn→∞ hn = 0 pointwise and h is a nonnegative
integrable function such that hn ⩽ h for all n ⩾ 1, then by the Fatou lemma∫

Ω

hdµ =
∫

Ω

liminf
n→∞

(h−hn)dµ ⩽ liminf
n→∞

∫
Ω

h−hn dµ =
∫

Ω

hdµ− limsup
n→∞

∫
Ω

hn dµ.

Since
∫

Ω
hdµ is finite, it follows that 0 ⩽ limsupn→∞

∫
Ω

hn dµ ⩽ 0 and therefore

lim
n→∞

∫
Ω

hn dµ = 0.

The theorem follows by applying this to hn = | fn− f | and h = 2|g|.

If f is integrable and µ{ f ̸= 0}= 0, then∫
Ω

f dµ = 0.

Indeed, by considering f+ and f− separately we may assume f is nonnegative. Choose
simple functions 0⩽ fn ↑ f . Then µ{ fn > 0}⩽ µ{ f > 0}= 0 and therefore

∫
Ω

fn dµ = 0
for all n ⩾ 1. The claim follows from this. Consequently in the main results of the previ-
ous section, in particular in the monotone convergence theorem (Theorem F.4) and the
dominated convergence theorem (Theorem F.7), we may replace pointwise convergence
by pointwise convergence µ-almost everywhere, where the latter means that we allow



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
678 Integration

an exceptional set of µ-measure zero in the assumptions. For instance, in the monotone
convergence theorem it suffices to assume that 0 ⩽ fn ↑ f pointwise µ-almost every-
where, and similarly in the dominated convergence theorem it suffices to assume that
limn→∞ fn = f pointwise µ-almost everywhere and | fn| ⩽ |g| pointwise µ-almost ev-
erywhere for all n.

Fubini’s Theorem

Proposition F.8. Let (Ω1,F1) and (Ω2,F2) be measurable spaces and let f : Ω1×
Ω2→K be measurable with respect to the product σ -algebra F1×F2. Then:

(1) for all ω1 ∈Ω1 the function ω2 7→ f (ω1,ω2) is measurable;
(2) for all ω2 ∈Ω2 the function ω1 7→ f (ω1,ω2) is measurable.

Proof The collection F of all sets F ∈F1×F2 such that (1) and (2) hold for f = 1F

is a σ -algebra containing every set of the form F1×F2 with F1 ∈F1 and F2 ∈F2. Since
F1×F2 is the smallest σ -algebra containing these sets, it follows that F = F1×F2.

This proves that the proposition holds for all indicator functions 1F with F ∈F1×
F2. By taking linear combinations, the result extends to simple functions. The result for
arbitrary measurable functions then follows by pointwise approximation with simple
functions.

Theorem F.9 (Fubini, first version). Let (Ω1,F1,µ1) and (Ω2,F2,µ2) be σ -finite mea-
sure spaces. If f : Ω1×Ω2 → K is nonnegative and measurable with respect to the
product σ -algebra F1×F2, then:

(1) the nonnegative function ω2 7→
∫

Ω1
f (ω1,ω2)dµ1(ω1) is measurable;

(2) the nonnegative function ω1 7→
∫

Ω2
f (ω1,ω2)dµ2(ω2) is measurable;

(3) we have ∫
Ω1×Ω2

f d(µ1×µ2) =
∫

Ω2

∫
Ω1

f dµ1 dµ2 =
∫

Ω1

∫
Ω2

f dµ2 dµ1.

Proof First suppose that µ1(Ω1) = µ2(Ω2) = 1 and let F be the collection of all
sets F ∈F1×F2 such that (1)–(3) hold for f = 1F . We claim that F is a σ -algebra.
Indeed, (1)–(3) are trivial for f = 1∅ = 0. If (1)–(3) hold for a set F ∈F1×F2, then
1∁F(ω1,ω2) = 1−1F(ω1,ω2) implies that (1) and (2) hold for ∁F , and furthermore∫

Ω1×Ω2

1∁F d(µ1×µ2) =
∫

Ω1×Ω2

1−1F d(µ1×µ2)

= 1−
∫

Ω1×Ω2

1F d(µ1×µ2) = 1−
∫

Ω2

∫
Ω1

1F dµ1 dµ2
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=
∫

Ω2

∫
Ω1

1−1F dµ1 dµ2 =
∫

Ω2

∫
Ω1

1∁F dµ1 dµ2

and similarly for the other repeated integral, so (3) holds for F . If (1)–(3) hold for
disjoint sets 1F1 ,1F2 , · · · ∈ F1×F2, the monotone convergence theorem implies that
(1)–(3) hold for 1F with F =

⋃
n⩾1 Fn. This proves the claim. It is clear that (1)–(3) hold

for all rectangles F1×F2 with F1 ∈ F1 and F2 ∈ F2. Since F1×F2 is the smallest
σ -algebra containing these rectangles, it follows that F = F1×F2.

If µ1 and µ2 are finite, we apply the preceding step to the normalised measures
µ1/µ1(Ω1) and µ2/µ2(Ω2) and again find that (1)–(3) hold for all F ∈F1×F2. This
extends to the σ -finite case by approximation and monotone convergence.

By taking linear combinations, the result extends to nonnegative simple functions.
The result for arbitrary nonnegative measurable functions then follows by another ap-
plication of monotone convergence.

A variation of the Fubini theorem holds if we replace ‘nonnegative measurable’ by
‘integrable’:

Theorem F.10 (Fubini, second version). Let (Ω1,F1,µ1) and (Ω2,F2,µ2) be σ -finite
measure spaces. If f : Ω1×Ω2→ K is integrable with respect to the product measure
µ1×µ2, then:

(1) the function ω2 7→
∫

Ω1
f (ω1,ω2)dµ1(ω1) is integrable with respect to µ2;

(2) the function ω1 7→
∫

Ω2
f (ω1,ω2)dµ2(ω2) is integrable with respect to µ1;

(3) we have ∫
Ω1×Ω2

f d(µ1×µ2) =
∫

Ω2

∫
Ω1

f dµ1 dµ2 =
∫

Ω1

∫
Ω2

f dµ2 dµ1.

Proof By splitting into real and imaginary parts and then into positive and negative
parts, we may assume that f is nonnegative. Hence (3) holds by Theorem F.9, with a
finite left-hand side. It follows that the two repeated integrals are finite. Since an integral
with respect to a measure µ of a nonnegative function is finite only if the integrand is
finite µ-almost everywhere, assertions (1) and (2) follow as well.
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Appendix G
Notes

Historical perspectives on Functional Analysis are presented in Dieudonné (1981);
Monna (1973); Pietsch (2007). Among the many excellent textbooks on Functional
Analysis, our favourites include Bressan (2013); Brezis (2011); Conway (1990); Dun-
ford and Schwartz (1988a); Einsiedler and Ward (2017); Lax (2002); Rudin (1991);
Schechter (2002); Werner (2000); Yosida (1980).

Chapter 1

Exhaustive treatments of the theory of Banach spaces and the Bochner integral are
given in Albiac and Kalton (2006); Diestel (1984); Dunford and Schwartz (1988a); Li
and Queffélec (2004), and in Diestel and Uhl (1977); Dunford and Schwartz (1988a);
Hytönen et al. (2016), respectively. The proof of the Ulam–Mazur theorem outlined
in Problem 1.31 is taken from Nica (2012), where further references to its history are
given.

Chapter 2

The proofs of Propositions 2.19 and 2.23 are taken from Haase (2007). Our presenta-
tion of Proposition 2.34 and Section 2.3.d follows Hytönen et al. (2016), where more
detailed information on this topic can be found. The classical reference is Stein (1970).
The Fréchet–Kolmogorov compactness theorem is usually stated for bounded subsets

This book has been published by Cambridge University Press in the series “Cambridge Studies in
Advanced Mathematics”. The present corrected version is free to view and download for personal use
only. Not for re-distribution, re-sale or use in derivative works.
© Jan van Neerven
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of Lp(Rd). That boundedness follows from the assumptions (i) and (ii) was observed
later by Sudakov; the simple proof presented here is from Hanche-Olsen et al. (2019).
The presentation of Section 2.3.d follows Hytönen et al. (2016).

Our treatment of Theorems 2.45 and 2.46 follows Bogachev (2007b).
Comprehensive treatments of vector lattices, Banach lattices, and positive operators

are given in Aliprantis and Burkinshaw (1985); Luxemburg and Zaanen (1971); Meyer-
Nieberg (1991); Schaefer (1974); Zaanen (1997).

The problem of proving the boundedness of T ⊗ IX on Lp(Ω;X) for bounded oper-
ators T on Lp(Ω) discussed in Problem 2.28 is highly nontrivial. An interesting com-
plement to the results mentioned in the problem is the following result of Paley and
Marcinkiewicz–Zygmund: If T is bounded on Lp(Ω) with 1 ⩽ p < ∞ and X is a Hilbert
space, then T ⊗ IX admits a unique extension to a bounded operator on Lp(Ω;X) and
its norm equals ∥T∥. The proof uses properties of Gaussian random variables. It was
shown by Kwapień that the Fourier–Plancherel transform (see Section 5.5) extends to
a bounded operator on L2(Rd ;X) if and only if X is isomorphic to a Hilbert space (and
as such is unitary if X is a Hilbert space); by results of Bourgain and Burkholder, the
Hilbert transform (see Section 5.6) extends to a bounded operator on Lp(R;X) for some
1 < p < ∞ if and only if it extends to a bounded operator on Lp(R;X) for all 1 < p < ∞

if and only if X has the so-called UMD property; this abbreviation stands for “uncondi-
tionality of martingale differences”. Proofs of these results and their ramifications can
be found in Hytönen et al. (2016); Pisier (2016). The UMD property also characterises
the boundedness of the vector-valued extension of the Itô stochastic integral of Problem
3.27; see van Neerven et al. (2015) and the references given therein.

Chapter 3

Theorem 3.13 characterises Hilbert spaces up to isomorphism. More precisely, the fol-
lowing deep theorem has been proved in Lindenstrauss and Tzafriri (1971): A Banach
space X is isomorphic to a Hilbert space if and only if every closed subspace of X is the
range of a bounded projection in X .

The proof of the Radon–Nikodým theorem outlined in Problem 3.24 is due to von
Neumann and follows Rudin (1987). The construction, in Problem 3.26, of a linear op-
erator on ℓ2 which fails to be bounded depends on the existence of an algebraic basis
in ℓ2 (see Problem 3.25). This, in turn, is deduced with the help of Zorn’s lemma. The
latter being equivalent to the Axiom of Choice, this raises the question whether a con-
structive example of an unbounded operator can be given. Within Zermelo–Fraenkel Set
Theory (ZF) the answer is negative: it is consistent with ZF that every linear operator
on a Banach space is bounded. In fact, it is a theorem in ZF extended with the so-called
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Axiom of Determinacy and the Countable Axiom of Choice that every linear operator
on a Banach space is bounded (Fremlin, 2015, Theorem 567H (c)).

It can be quite hard to decide whether a given subspace is dense in a given Hilbert
space. The following example may illustrate this. Let H denote the Hilbert space of all
scalar sequences c = (cn)n⩾1 for which the norm

∥c∥2
H := ∑

n⩾1

1
n2 |cn|2

is finite. For x ∈ R let {x} denote its fractional part, that is, the unique real number
in [0,1) such that x = k + {x} for some integer k ∈ Z. For m = 1,2,3, . . . let c(m) :=
({ n

m})n⩾1 and note that these sequences belong to H. It is a theorem of Nyman and
Baez–Duarte that the linear span of the sequence (c(m))m⩾1 is dense in H if and only if
the Riemann hypothesis holds. This result, as well as several related ones, is surveyed in
Baghi (2006). The Riemann hypothesis is considered by many mathematicians as one
of the most important open problems in all of Mathematics.

Chapter 4

Our proof of Theorem 4.2 combines ideas of Folland (1999) and Ruzhansky and Tu-
runen (2010). One should be aware that different authors use slightly different defini-
tions of Radon measures.

The real version of the Hahn–Banach theorem is due to Banach; the extension to
complex scalars was added a decade later by Hahn. Banach also proved the sequen-
tial version of the Banach–Alaoglu theorem; the general version is due to Alaoglu. A
detailed survey of the Hahn–Banach theorem is given in Buskes (1993).

The weak and weak∗ topologies are special cases of so-called locally convex topolo-
gies. For systematic introductions to this subject we recommend Aliprantis and Burkin-
shaw (1985); Conway (1990); Rudin (1991). Theorem 4.34 is a special case of the
so-called principle of local reflexivity. Its full formulation can be found, for example, in
Albiac and Kalton (2006).

Our proof of Theorem 4.63 is closely related to that presented in Bogachev (2007a),
where more refined versions of the theorem can be found.

The result of Problem 4.10 is discussed in Phelps (1960). The converse also holds: If
every functional on a closed subspace on X has a unique Hahn–Banach extension of the
same norm, then X∗ is strictly convex; see Foguel (1958); Taylor (1939).

The result of Problem 4.34 is due to Sobczyk (1941).
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Chapter 5

General references on the theory of bounded operators include Beauzamy (1988); Go-
hberg et al. (2003, 2013); Nikolski (2002).

The proof of the uniform boundedness theorem sketched in Problem 5.3 is taken from
Pietsch (2007), where it is credited to Lebesgue.

Most treatments of the Fourier–Plancherel transform use the Schwartz space S (Rd)

of rapidly decreasing smooth functions instead of our F 2(Rd). Our treatment of the
Fourier transform and the Hilbert transform follows that of Hytönen et al. (2016). The
Lp-boundedness of the Hilbert transform is classical; we follow Grafakos (2008).

The theory of Fourier multiplier operators can be meaningfully extended to the Lp-
setting, where it becomes a powerful tool in the Calderón–Zygmund theory of singular
integral operators. The prime example of such an operator is the Hilbert transform.
Detailed treatments of the Hilbert transform and singular integral operators in the Lp-
setting are given in Grafakos (2008); Stein (1970, 1993). The theory of the Hilbert
transform extends to higher dimensions where analogous statements hold for the Riesz
transforms, defined as the Fourier multipliers operators associated with the functions
m j ∈ L∞(Rd) defined by

m j(ξ ) :=
ξ j

|ξ |
, j = 1, . . . ,d.

An exhaustive treatment of these matters belongs to the realm of Harmonic Analysis;
see Grafakos (2008); Stein (1970) and Chapter 5 of Hytönen et al. (2016).

The proof of the Riesz–Thorin theorem 5.38 presented here is taken from Hytönen
et al. (2016), where also the argument proving ∥TC∥ = ∥T∥ can be found. In this ref-
erence, the proof of the Clarkson inequalities sketched in Problem 5.27 is attributed
to Jürgen Voigt. It is a famous result of Beckner (1975) that the constant 1 in the
Hausdorff–Young inequality

∥F f∥Lq(Rd,m) ⩽ ∥ f∥Lp(Rd,m)

for the Fourier transform with respect to the normalised Lebesgue measure m, where
1 ⩽ p ⩽ 2 and 1

p +
1
q = 1, can be improved to

∥F f∥Lq(Rd,m) ⩽Cd
p∥ f∥Lp(Rd,m)

with Cp = (p1/p/q1/q)1/2. In the same paper, Beckner proved the improvement to the
Young inequality mentioned in the main text and showed that both results are sharp.
The proofs rely on (but go beyond) the techniques developed in Section 15.6. Coun-
terexamples to (5.7) in the range q < p can be found in Riesz (1926) and Maligranda
(1997).
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The Marcinkiewicz interpolation theorem is of fundamental importance in the the-
ory of singular integrals; see Grafakos (2008); Stein (1970); Hytönen et al. (2023). Our
treatment follows Hytönen et al. (2016). The Lp-boundedness of the Hilbert transform,
here derived as a consequence of the Riesz–Thorin theorem, can also be derived from
the Marcinkiewicz interpolation theorem; the required weak L1-bound is due to Kol-
mogorov; see Duoandikoetxea (2001).

The result of Problem 5.17 is due to Pettis (1938). It is no coincidence that the
counterexample for p = 1 in part (b) lives in the space c0: part (a) extends to p = 1
for all Banach spaces not containing a closed subspace isomorphic to c0. A proof of
this fact is given in Diestel and Uhl (1977). Further results on the Pettis integral can be
found in van Dulst (1989); Musiał (2002); Talagrand (1984).

Chapter 6

There are many excellent treatments of spectral theory, such as the monumental classic
Dunford and Schwartz (1988b) and the monographs Arveson (2002); Aupetit (1991);
Müller (2007). A discussion of the conditions (i) and (ii) for contours in Cauchy’s theo-
rem can be found in Rudin (1987). The result of Problem 6.17 is due to Gelfand (1941);
the proof outlined here is due to Allan and Ransford (1989).

Chapter 7

Our proofs of Proposition 7.27 and Theorems 7.29 and 7.31 follow Schechter (2002),
Bleecker and Booß Bavnbek (2013), and Böttcher and Silbermann (2006), respectively.
The proof of Theorem 7.33 follows Coburn (1966, 1967); see also Arveson (2002). An-
other proof is given in Douglas (1998), where also the results from the theory of Hardy
spaces alluded to in the proof can be found. Toeplitz operators are covered in more depth
in Arveson (2002); Böttcher and Silbermann (2006); Douglas (1998); Nikolski (2002).

The proofs outlined in Problems 7.16 and 7.18 follow Calkin (1941) and Halmos
(1982), respectively. The latter reference also presents a closely related, but slightly
more efficient proof of the result of Problem 7.16.

The winding number of a continuous closed curve in C \ {0} parametrised by the
function φ : [0,1]→C \{0}, t 7→ φ(e2πit) can be computed as follows. One shows that
there exists a continuous function g : [0,1]→ C such that

φ(e2πit) = e2πig(t), t ∈ [0,1].

The identity e2πig(1) = φ(1) = e2πig(0) implies that g(1)−g(0) ∈ Z. This integer equals
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the winding number of φ . Proofs and some easy consequences can be found in Arveson
(2002).

The result of Problem 7.4 has the following interesting complement, due to Pitt: For
all 1 ⩽ p < q < ∞, every bounded operator from ℓq to ℓp is compact. An immediate
consequence is that the spaces ℓp and ℓq are not isomorphic. The proof of Pitt’s theorem
requires some effort; see for instance Albiac and Kalton (2006); Ryan (2002). The result
of Problem 7.9 is due to Terzioğlu (1971).

By using some elementary C⋆-algebra techniques it is possible to derive Theorem
7.31 as a simple corollary to Theorem 7.33. We begin by introducing some terminology.
A Banach algebra is a Banach space A endowed with a composition mapping (x,y) 7→
xy such that

∥xy∥⩽ ∥x∥∥y∥

holds for all x,y ∈ A . A unital Banach algebra is a Banach algebra A with a unit
element, that is, an element e ∈A such that

ex = xe = x, x ∈A .

The spectrum σA (x) of an element x of a unital Banach algebra A is the set of all λ ∈C
for which no y ∈ A can be found such that (λ − x)y = y(λ − x) = e, and most of the
spectral theory contained in Chapter 6 can be routinely extended to this situation.

A C⋆-algebra is a Banach algebra A with an involution, that is, a mapping x 7→ x⋆ on
A satisfying

(x+ y)⋆ = x⋆+ y⋆, (cx)⋆ = cx⋆, (xy)⋆ = y⋆x⋆,

as well as

∥x∥= ∥x⋆∥, ∥x⋆x∥= ∥x∥∥x⋆∥

for all x,y ∈ A and c ∈ C. According to the Gelfand–Naimark theorem, every C⋆-
algebra A is ⋆-isometric to a closed ⋆-subalgebra of L (H) for a suitably chosen Hilbert
space H (a ⋆-subalgebra being a subalgebra closed under taking involutions and a ⋆-
isometric isomorphism being an isometric isomorphism x 7→ Tx with the additional prop-
erties that Txy = Tx ◦Ty and Tx⋆ = (Tx)

⋆ for all x,y ∈A ). This theorem connects the ab-
stract definition of C⋆-algebras given here with the concrete approach taken in Section
9.5.

The following generalisation of Proposition 8.19 holds (see (Folland, 2016, Proposi-
tion 1.23) or (Rudin, 1991, Theorem 11.29)): If A is a closed unital ⋆-subalgebra of a
unital C⋆-algebra B, then

σA (x) = σB(x), x ∈A . (G.1)

The proof follows Proposition 8.19, except for the fact that x = x⋆ implies σB(x⋆x) ⊆
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R; this fact can be proved by combining the Gelfand–Naimark theorem and Proposi-
tion 8.19. An elementary proof can be given as follows. If u ∈ B is unitary, that is,
uu⋆ = u⋆u = e, the argument suggested in Problem 8.2 proves that σB(u) ∈ T. Then,
the argument suggested in Problem 8.3 proves that if x = x⋆, then σB(x) ∈ R.

Using (G.1), let us now give a simple alternative proof of Theorem 7.31 based on
Theorem 7.33 (cf. Corollary 1 in (Arveson, 2002, Section 4.3)). The results of Problem
7.22 prove that for any Banach space X the Calkin L (X)/K (X) is a unital Banach
algebra. If H is a Hilbert space, then L (H)/K (H) is a unital C⋆-algebra.

In what follows we take H := H2(D). Since K (H) is contained in the Toeplitz alge-
bra T it is meaningful to consider the quotient space T /K (H). This space is a unital
⋆-subalgebra of L (H)/K (H). By Coburn’s theorem the mapping Tφ +K 7→ φ sets up
a ⋆-isometry from T onto C(T) and we have the commuting diagram

0 K (H)) T C(T) 0

0 K (H) L (H) L (H)/K (H) 0

= ⊆

π

j

π

where π are the quotient mappings and j is the composition of the ⋆-isometry from
C(T) onto T /K (H) provided by Theorem 7.33 and the natural inclusion mapping
from T /K (H) into L (H)/K (H). As such, j is injective.

Now suppose that φ ∈C(T) is such that Tφ ∈T is Fredholm. By Atkinson’s theorem
there exists an S ∈L (H2(D)) such that I−Tφ S and I− STφ are compact. This means
that Tφ defines an invertible element in L (H)/K (H). As an application of (G.1), Tφ

defines an invertible element in T /K (H). A moment’s reflection reveals that this im-
plies that S ∈T , say S = Tψ +K with ψ ∈C(T) and K ∈K (H). It then follows that

jφψ = π(Tψ Tφ ) = π(STφ ) = π(I) = j1,

and the injectivity of j implies φψ = 1. This is only possible if φ is zero-free.

Chapter 8

Our proof of Theorem 8.18 is taken from Rudin (1991). A proof of Runge’s theorem,
which was used in the proof of part (i) of Theorem 8.20, may be found in Rudin (1987).
The clever proof of Proposition 8.21 is taken from Whitley (1968). The proof of Theo-
rem 8.36 is taken from Davies (1980).

The proof of the Toeplitz–Hausdorff theorem proposed in Problem 8.12 is due to Li
(1994). More about numerical ranges can be found in Gustafson and Rao (1997).
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Chapter 9

Most treatments of the spectral theorem for normal operators proceed via the theory
of C⋆-algebras; see, for example, Arveson (2002); Rudin (1991). This permits concise
abstract proofs, but has the drawback that this theory depends on the existence of max-
imal ideals, a well-known consequence of Zorn’s lemma. Our approach avoids the use
of Zorn’s lemma. The idea to use Proposition 9.12 to prove that the projection-valued
measure is concentrated on the spectrum is from Haase (2018). Our treatment of the von
Neumann bicommutant theorem and the result stated in Problem 15.11 are taken from
Pedersen (2018).

Theorem 9.24 generalises to k-tuples T1, . . . ,Tk of commuting selfadjoint operators
and the operator S may be taken to be selfadjoint, provided one allows the functions
f1, . . . , fk to be bounded Borel. A proof may be found in Sz.-Nagy (1967).

The proof of the nontrivial inclusion ‘⊆’ of Theorem 9.28 presented here is due to
Marijn Waaijer (personal communication). Alternative proofs can be found in Conway
(2000) and, for the selfadjoint case, Dunford and Schwartz (1988c); Sz.-Nagy (1967).
The latter reference also contains an example that shows that the separability assumption
cannot be omitted.

The proofs of Proposition 9.29 and Theorem 9.30 are from Dunford and Schwartz
(1988c), where more general versions are presented for Boolean algebras of projections.

The presentation of Section 9.6 follows Koelink (1996).
In Heuser (2006) a direct, albeit tricky, proof is given of the result of Problem 9.15

which relies solely on the continuous functional calculus for selfadjoint operators.

Chapter 10

References for this chapter include Akhiezer and Glazman (1981a); Birman and Solom-
jak (1987); Dunford and Schwartz (1988b); Edmunds and Evans (2018b); Kato (1995);
Reed and Simon (1975); Schmüdgen (2012). Our proof of the spectral theorem com-
bines elements of Rudin (1991) and Schmüdgen (2012), and is elementary in that it
avoids the use of C∗-algebra techniques. For selfadjoint operators a more direct con-
struction of the measurable calculus can be given; see, for example, Rudin (1991), where
it is used to give a simpler proof of the existence and uniqueness of square roots for pos-
itive selfadjoint operators.
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Chapter 11

The connections between Functional Analysis and the theory of partial differential equa-
tions are emphasised in Bressan (2013); Brezis (2011); Jost (2013). The results of this
chapter barely scratch the surface of what can be said in this context.

Sobolev spaces are treated in detail in Adams and Fournier (2003); Evans (2010).
Some of our proofs are modelled after those presented in these references. Our pre-
sentation of Propositions 11.5 and 11.16 follows Hytönen et al. (2016). The proof of
Theorem 11.12 follows an idea of Krylov (2008).

Extension operators are treated in Adams and Fournier (2003); Evans (2010). The
proof of Step 1 of Theorem 11.28 is from Adams and Fournier (2003). Our proof of
Theorem 11.27 is based on unpublished lecture notes by Mark Veraar. The theorem,
which asserts the density of C∞(D) in W k,p(D) for bounded Ck-domains D, actually
gives the stronger result that for any f ∈W k,p(D) there exists a sequence of functions
fn ∈ C∞(Rd) whose restrictions to D satisfy limn→∞ ∥ fn− f∥W k,p(D) = 0. In this con-
nection it is worth mentioning that if D is a bounded Ck-domain, then every function
f ∈Ck(D) is the restriction of a function in Ck(Rd); the analogous result holds for func-
tions in C∞(D) when D is a bounded C∞-domain. In both cases, the extensions can be
realised through a linear mapping. This result is due to Seeley (1964).

The proof of Theorem 11.24 follows Arendt and Urban (2023) and Brezis (2011). The
C1-conditions of the second part of the theorem can be relaxed; see Biegert and Warma
(2006). If D is bounded and has C1-boundary ∂D, then for 1 ⩽ p < ∞ the mapping
f 7→ f |∂D for f ∈C∞(D) admits a unique extension to a bounded operator T , the trace
operator, from W 1,p(D) to Lp(∂D). Here, we think of ∂D as being equipped with its
surface measure. Moreover, for a function f ∈W 1,p(D) one has f ∈W 1,p

0 (D) if and
only if T f = 0. The details can be found in Adams and Fournier (2003); Brezis (2011);
Evans (2010).

It is not true in general that the weak solution of the Poisson problem −∆u = f with
f ∈ L2(D) subject to Dirichlet boundary conditions belongs to H2(D); a counterexample
can be found in Theorem 6.90 of Arendt and Urban (2023). Proofs of the H2-regularity
result mentioned in Remark 11.38 and its analogue for Neumann boundary conditions
can be found in Chapter 6 of Evans (2010).

Systematic treatments of the finite element method are presented in the monographs
Atkinson and Han (2009); Brenner and Scott (2008).

Problems 11.23 and 11.24 are taken from Krylov (2008) and reproduce Sobolev’s
original proof of the inequality named after him. The outline of the proof, in Problem
11.26, that for f ∈Cc(D) no solution in C2(D)∩C(D) to the Poisson problem may exist,
is taken from Arendt and Urban (2023). Problems 11.28 and 11.29 are modelled after
the same reference.
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Chapter 12

Excellent references for the theory of forms are Kato (1995); Ouhabaz (2005). Some of
our proofs follow the latter reference. For the spectral theory of differential operators
the reader is referred to Edmunds and Evans (2018a,b) and the references given therein,
and, for variational methods, Henrot (2006). More complete treatments of Dirichlet and
Neumann Laplacians can be found in the lecture notes Arendt (2006) and the survey
papers Arendt (2004); Grebenkov and Nguyen (2013), where further references to the
literature are given. A standard reference for the theory of elliptic second-order differ-
ential operators is Gilbarg and Trudinger (2001).

Our proof of Theorem 12.12 follows Arendt (2006). Further results along the lines of
this theorem and its corollary can be found there and in Ouhabaz (2005). Among other
things, under the assumptions of the corollary, D(A) is dense in D(a).

In some of the results about the Neumann Laplacian, the C1 assumption on the bound-
ary can be relaxed. For example, the Neumann Laplacian has point spectrum if ∂D has
the so-called segment property and D lies ‘on one side’ of it. The steps are as follows: If
∂D has the segment property, then W 1,2(D) is compactly embedded in L2(D) according
to Theorem 5.4.4 and 5.4.17 of Edmunds and Evans (2018b) and the Neumann Lapla-
cian has a compact resolvent. The assumption on the boundary in Theorem 12.26(2)
and Theorem 12.27 may be weakened accordingly.

Kac’s question “Can one hear the shape of a drum?” was asked in Kac (1966) and
answered to the negative in Gordon et al. (1992). Our presentation of Weyl’s theorem
follows Higson (2004). An example of a Jordan curve of positive area is given in Osgood
(1903).

The inequality µn ⩽ λn of Corollary 12.28 comparing the Dirichlet eigenvalues λn

and the Neumann eigenvalues µn admits a significant improvement, due to Friedlander
(1991) who proved that for all n ⩾ 1 we have

µn+1 ⩽ λn.

After reducing to smooth domains, an important step in the proof is the spectral flow
inequality

NNeum(λ )−NDir(λ ) = n(λ ),

for λ > 0 satisfying λ ̸∈ σ(−∆Dir)∪σ(−∆Neum), where

NDir(λ ) = #{λn ∈ σ(−∆Dir) : λn < λ},
NNeum(λ ) = #{λn ∈ σ(−∆Neum) : λn < λ},

and n(λ ) is the number of negative eigenvalues of the Dirichlet-to-Neumann operator
Rλ , counting multiplicities throughout. This is the operator on L2(D) which maps a
function f ∈ L2(∂D) to ∂u

∂ν
|∂D ∈ L2(D), where u ∈ H1(D) is the unique solution of the
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problem {
−∆u = λu on D,

u = f on ∂D.

It is selfadjoint, bounded below, and has compact resolvent.
A simpler proof of Friedlander’s theorem, based on a variant of the Courant–Fischer

theorem, was obtained by Filonov (2005). Levine and Weinberger (1986) obtained the
inequality

µn+d ⩽ λn

for bounded convex domains D in Rd, with strict inequality when ∂D is smooth.
Weyl’s theorem has been extended to other types of boundary conditions, including

Neumann boundary conditions, and positive selfadjoint elliptic operators. For more de-
tails the reader is referred to Safarov and Vassilev (1997). Such extensions are nontrivial
even for the Laplace operator because the domain monotonicity for Dirichlet eigenval-
ues of Lemma 12.30 generally fails for boundary conditions other than Dirichlet. This is
demonstrated by the following example, taken from Funano (2023). We use the notation
a ≲ b to express that a ⩽Cb for a universal constant C.

For 1 ⩽ p ⩽ 2 let Bℓ
p
d

denote the open unit ball of ℓp
d , the space Kd endowed with

the norm given by ∥x∥p
p = ∑

d
j=1 |x j|p. If the positive real number rd,p is defined by the

condition vol(rd,pBℓ
p
d
) = 1, then rd,p ≂ d1/p. The smallest Neumann eigenvalue for the

Laplace operator on D′ := rd,pBℓ
p
d

can be shown to satisfy

µ2,D′ ≳ 1

(keep in mind our convention that µ1,D′ = 0). Approximating the segment in D′ con-
necting the origin and the point (rd,p,0,0, . . . ,0) by a convex C1-domain D⊆ D′, it can
be shown that

µ2,D ≂
1

r2
d,p

≂
1

d2/p .

In the positive direction, in the same reference the following monotonicity result is
proved: If D,D′ ⊆ Rd bounded convex sets with C1 boundaries and if D⊆ D′, then for
all n ⩾ 1 we have

µn,D′ ≲ d2
µn,D, n ⩾ 1.

The counterexample (upon letting p ↓ 1) shows that the factor d2 is essentially optimal.
Problems 12.2–12.4 are taken from Arendt (2006).
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Chapter 13

Excellent introductions to the theory of C0-semigroups include the monographs Apple-
baum (2019); Davies (1980); Engel and Nagel (2000); Pazy (1983). For a discussion of
the examples in Section 13.6 we refer to these sources. The monumental 1957 treatise
Hille and Phillips (1957) is freely available online.

Parts of Sections 13.1–13.4 and Figure 13.1, as well as Figure 10.1 in Chapter 10,
are taken from Appendix G of Hytönen et al. (2017), which in turn is based on the
corresponding material in the author’s lecture notes for the 2006/07 Internet Seminar
“Stochastic Evolution Equations”, available on the author’s webpage.

Theorem 13.11 is due to Phillips (1955). Theorem 13.16 is a special case of a result of
Jorgensen (1982). The idea to use this result to prove Wiener’s tauberian theorem is from
van Neerven (1997). Theorem 13.17 was obtained independently by Hille and Yosida
near the end of the 1940s. An extension to arbitrary C0-semigroups, which is somewhat
more technical to state, was found soon afterwards. A detailed account of Theorem
13.17 and its history is given in Engel and Nagel (2000). The intimate connections
between semigroups and the theory of Laplace transforms are emphasised in Arendt
et al. (2011).

Fuller treatments of the abstract Cauchy problem are given in Amann (1995); Arendt
(2004); Tanabe (1979).

Analytic semigroups are treated in detail in Lunardi (1995). Maximal regularity for
bounded analytic C0-semigroups on Hilbert spaces was first proved in De Simon (1964).
The result remains valid if L2 is replaced by Lp with 1 < p < ∞ throughout; this follows
from rather deep extrapolation arguments for singular integral operators and falls out-
side our scope. For a full treatment as well as references to the extensive literature on the
subject the reader is referred to Hytönen et al. (2023) whose treatment we follow. The
method of applying maximal regularity to solving time-dependent problems of Section
13.4.d goes back to Clément and Li (1993/94) and has been extended to cover a wealth
of other nonlinear problems.

In the light of Example 13.39 (which is revisited at the end of this section) it is
of some interest to mention that, in the converse direction, every generator −A of an
analytic C0-semigroup of contractions on a complex Hilbert space H can be represented
in divergence form, in the following precise sense: There exists a Hilbert space H , a
closed operator V :D(V )⊆H→H with dense domain and dense range, and a bounded
coercive operator B ∈L (H ), that is, we have (Bx|x)H ⩾ β∥x∥H for some β > 0 and
all x ∈H , such that

A =V ⋆BV.

More precisely, there exists a densely defined, closed, sectorial form a in H with domain
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D(a) = D(V ) such that A is the operator associated with a and

a(g,h) = (BV g|V h), g,h ∈ D(V ).

A proof of this result can be found in Maas and van Neerven (2009), where it is also
shown that this representation is essentially unique.

Our proofs of Theorem 13.48 and Lemma 13.52 are taken from Arendt (2006).
The Ornstein–Uhlenbeck semigroup has many interesting properties, for which the

reader is referred to Hytönen et al. (2024+); Janson (1997); Nualart (2006). Probabilis-
tically, up to a time scaling it arises as the transition semigroup associated with the
solution (ux(t))t⩾0 of the stochastic differential equation

du(t) =−1
2

u(t)dt +dBt , t ⩾ 0,

with initial condition u(0) = x; the driving process (Bt)t⩾0 is a standard Brownian mo-
tion in Rd . More precisely, for all t ⩾ 0 and f ∈ L2(Rd,γ) one has

OU(t/2) f (x) = E( f (ux(t)))

for almost all x ∈ Rd .
The domain identification D(L) = W 2,p(Rd,γ) for the Ornstein–Uhlenbeck operator

L in Lp(Rd,γ) with 1 < p < ∞ is due, in a more general formulation, to Metafune et al.
(2002). This paper also contains references to earlier papers on this subject, in particular
regarding the special case p = 2. The Ornstein–Uhlenbeck semigroup extends to an
analytic C0-contraction semigroup in Lp(Rd,γ) for 1 < p < ∞, with optimal angle θ− p
given by

cosθp =
∣∣∣ 2

p
−1
∣∣∣.

This result is due to Epperson (1989), who also showed that the exact domain of holo-
morphy is the set

Ep := {z = x+ iy ∈ C : |sin(y)|< tan(θp)sinh(x)}.

A simpler proof of the latter was given in van Neerven and Portal (2018).
The Lp-to-Lq bound (13.35) for the free Schrödinger group (S(t))t∈R in Section

13.6.g is an example of a so-called dispersive estimate. It informs us that initial data in
L1(Rd)∩L2(Rd) are mapped instantaneously (in forward and backward time) to L∞(Rd)

and decay to 0 as |t| → ∞ with respect to the norm of Lq(Rd) for all 2 < q ⩽ ∞. This
bound lies at the basis of a class of deep estimates, named after Strichartz who proved
an analogous estimate for the wave group, the simplest of which gives a bound for the
Lp(R;Lq(Rd)) norm of S(·) f for initial data f ∈ L2(Rd) and suitable exponents p,q.
Such estimates, in turn, are the key to solving certain important classes of nonlinear
Schrödinger equations. For a detailed treatment of these matters the reader is referred to
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the lecture notes Hundertmark et al. (2013) and the references cited there; an elementary
introduction is presented in Stein and Shakarchi (2011).

The argument in the first part of Section 13.6.h is taken from Hundertmark et al.
(2013).

The example in Problem 13.18 is due to Arendt (1995).
If A is a densely defined operator acting in a Banach space X with the property that

(−∞,0)⊆ ρ(A) and

sup
λ∈(0,∞)

|λ |∥(λ +A)−1∥< ∞,

then there exists a unique densely defined closed operator A1/2 such that

(A1/2)2 = A.

Moreover, D(A) is dense in D(A1/2) and

A1/2x =
1
π

∫
∞

0
λ
−1/2(λ +A)−1Axdλ , x ∈ D(A).

A proof of this result can be found in Section 3.8 of Arendt et al. (2011). In particular it
applies to A = −B whenever B is the generator of a uniformly bounded C0-semigroup
on X . The result should be compared to Proposition 10.60, where it was shown that if
A is a positive selfadjoint operator acting in a Hilbert space, then A admits a unique
positive square root A1/2.

Let us now apply this to the divergence form operator Aa := −div(a∇) of Example
13.39 associated with the sesquilinear form

aa( f ,g) :=
∫
Rd

a∇ f ∇g, f ,g ∈ H1(Rd),

where the d × d matrix a = (ai j)
d
i, j=1 is assumed to have bounded measurable real-

valued coefficients satisfying the uniform ellipticity condition stated in the example.
Since −Aa generates an analytic C0-semigroup of contractions, by the above discussion
the square root A1/2

a is well defined. The Kato square root problem is to decide whether
the domain equality

D(A1/2
a ) = D(aa) = H1(Rd)

holds, with equivalence of homogeneous norms

∥A1/2
a f∥≂ ∥∇ f∥

for all functions f in this common domain. Starting with the papers Kato (1961) and
McIntosh (1982), this problem has witnessed a long and interesting history. It was fi-
nally resolved in the affirmative, in the generality stated here, in Auscher et al. (2002).
This paper also contains references to the various special cases that had been obtained



va
n

N
ee

rv
en

:F
un

ct
io

na
lA

na
ly

si
s,

C
U

P,
re

vi
si

on
M

ay
13

,2
02

5
Notes 695

before. An alternative proof based on the theory of bisectorial operators was obtained
subsequently in Axelsson et al. (2006).

Chapter 14

The results of Sections 14.1–14.3 are standard. The results of Section 14.4 are taken
from Attal (2013).

The argument in Step 1 of Proposition 14.21 follows (Dunford and Schwartz, 1988b,
Lemma XI.6.21). Our proof of Lidskii’s theorem (Theorem 14.34) is due to Simon
(1977), whose arguments we follow here. A survey of the connections between deter-
minants and traces, containing a proof of MacMahon’s formula as well as a treatment of
Fredholm determinants, is Cartier (1989). For much more on this topic the reader may
consult Simon (2005).

For positive kernel operators, Theorem 14.45 is due to Mercer (1909). The extension
to general integral operators of trace class is taken from Birman (1989). In that paper it
is also shown how to extend the result to general measure spaces as long as its L2 space
is separable. Further interesting results on this topic can be found in Brislawn (1988). It
is of interest to note that not every integral operator with continuous kernel is of trace
class; a classical counterexample can be found in Carleman (1916).

The proofs of Theorem 14.46 and its application to Proposition 7.24 are taken from
Murphy (1994). Theorem 14.47 is from Helton and Howe (1973). The derivation of
Euler’s formula from the trace of the Dirichlet Laplacian on the interval is taken from
Grieser (2007).

The proof outlined in Problem 14.8 is taken from Arendt (2006), where it is attributed
to Markus Haase. Problem 14.17 is taken from Helton and Howe (1973), Problems
14.18 is from Murphy (1994), and Problem 14.20 is taken from Connes and Consani
(2021).

Chapter 15

Historical aspects of the interaction between Functional Analysis and Quantum Me-
chanics are well recorded in Landsman (2019). An excellent modern introduction to
Quantum Mechanics from the mathematician’s point of view is Hall (2013). More ad-
vanced treatments are offered in Landsman (1998, 2017); Mackey (1968); Parthasarathy
(2005); Takhtajan (2008).

The mathematical formulation of Quantum Mechanics using the language of Hilbert
space theory is due to von Neumann (1968). Ever since the publication of this work
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in 1932, physicists, mathematicians, and philosophers have wondered as to why Na-
ture made that choice by looking for deeper criteria characterising Hilbert spaces. A
first important step in this direction was taken in Piron (1964) and Amemiya and Araki
(1966/1967) in the 1960s, who proved that a complex inner product space is a Hilbert
space if and only if it is orthomodular. By definition, an inner product space H is or-
thomodular if Y +Y⊥ = H for every closed subspace of H. The theorem of Piron and
Amemiya–Araki was extended by several mathematicians to inner product spaces over
R, C, and H, the field of quaternions. The definitive result in this direction was proved
in Solèr (1995). In order to state her result we need the following terminology.

Let H be a vector space over a field K. A Hermitian form on H is a mapping (·|·) : H×
H → K satisfying the axioms of an inner product except the requirement that (x|x) =
0 should imply x = 0. A Hermitian vector space is a vector space endowed with a
Hermitian form. A subspace Y of a Hermitian vector space H is called closed if Y⊥⊥ =

Y , orthogonal complements being defined in the obvious way using the Hermitian form.
A Hermitian vector space H is called orthomodular if Y +Y⊥ = H for every closed
subspace Y of H. A field K is called a ⋆-field if it admits an involution, that is, a mapping
c 7→ c⋆ from K onto itself satisfying (c1 + c2)

⋆ = c⋆1 + c⋆2, (c1c2)
⋆ = c⋆2c⋆1, and c⋆⋆ = c

for all c1,c2,c ∈K).
Now we are ready to state Solèr’s theorem: If H is a Hermitian vector space over a

⋆-field K admitting an infinite orthonormal sequence (orthonormality being defined in
the obvious way using the Hermitian form), then:

• K equals R, C, or H;
• the Hermitian form is an inner product;
• H is a Hilbert space over K.

A survey of Solèr’s theorem is given in Holland (1995). Very recently, the theorem was
used in Heunen and Kornell (2022) to give a characterisation of the category of Hilbert
spaces as the unique category (in the sense of category theory) satisfying certain natural
category theoretical axioms.

Modern treatments of the foundations of Quantum Mechanics replace the language
of operator theory on Hilbert spaces by that of C⋆-algebras. By a theorem of Gelfand,
Naimark, and Segal (see, for example, Rudin (1991)), every closed ⋆-subalgebra can be
represented as a ⋆-subalgebra of L (H) for an appropriate Hilbert space H, so not much
seems to be gained. The advantage of this approach, however, is that it covers both the
classical and the quantum settings: by a theorem due to Gelfand, every commutative C⋆-
algebra can be represented as a space C0(Ω) for some locally compact Hausdorff space
Ω, and by C(K) for some compact Hausdorff space K if the C⋆-algebra has a unit. In this
precise sense, the ‘classical world’ is commutative, while the ‘quantum world’ is non-
commutative. Comprehensive treatments of C⋆-algebras and states defined on them are
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offered in Blackadar (2006); Bratteli and Robinson (1987); Pedersen (2018); Takesaki
(2002).

Proofs of Gleason’s theorem mentioned at the end of Section 15.2.a can be found in
Landsman (2017); Parthasarathy (2005).

Our proof of Theorem 15.29 is taken from Akhiezer and Glazman (1981b). Another
proof can be derived from Stinespring’s dilation theorem. This approach is presented
in Han et al. (2014), which may be consulted for more on (positive) operator-valued
measures. Older references on the subject are Berberian (1966); Davies (1976); Holevo
(2011); Landsman (1998). For a detailed discussion and examples of unsharp observ-
ables the reader is referred to Busch et al. (1995), which is also the source for the results
of Section 15.3.d. The phase POVM Φ introduced in this section was studied in Garrison
and Wong (1970).

Let us now sketch an elegant proof of Naimark’s theorem based on Stinespring’s
theorem. We leave out some details which can be found in Stinespring (1955); see also
Paulsen (2002). Let Q be a POVM on (Ω,F ) and let ΨQ : Bb(Ω)→ L (H) be the
bounded functional calculus of Proposition 15.27. The crucial observation is that every
bounded operator Ψ : Bb(Ω)→L (H) is completely positive, that is, for all n = 1,2, . . .
and all f1, . . . fn ∈ Bb(Ω) and h1, . . . ,hn ∈ H we have

n

∑
j,k=1

(Ψ( f j fk)h j|hk)⩾ 0.

By Gelfand’s theorem there is no loss of generality in assuming that Ω is a compact
Hausdorff space and that F is its Borel σ -algebra. Fixing an integer n ⩾ 1, by the Riesz
representation theorem we find a finite Borel measure µ on Ω such that

n

∑
j=1

(Ψ(g)h j|h j) =
∫

Ω

gdµ, g ∈C(Ω).

By the Radon–Nikodým theorem there exist functions h jk ∈ L1(Ω,µ) such that

(Ψ(g)h j|hk) =
∫

Ω

gh jk dµ, g ∈C(Ω).

One then checks that the matrix (h jk)
n
j,k=1 is positive µ-almost everywhere. Also the

matrix ( f j fk)
n
j,k=1 is positive µ-almost everywhere. It follows that ∑

n
j,k=1 f j fkh jk ⩾ 0

µ-almost everywhere and therefore

n

∑
j,k=1

(Ψ( f j fk)h j|hk) =
∫

Ω

n

∑
j,k=1

f j fkh jk dµ ⩾ 0,

as was to be shown. Now (a special case of) Stinespring’s theorem asserts that every
completely positive bounded mapping Ψ : Bb(Ω)→L (H) satisfying ∥Ψ(1)∥= 1 is of
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the form

Ψ( f ) = J⋆Π( f )J,

where J is an isometry from H to a Hilbert space H̃ and Π : Bb(Ω) → L (H̃) is a
⋆-homomorphism. Applying this to ΨQ and restricting Π to indicator functions, Propo-
sition 15.24 gives us the desired projection-valued measure.

Physically, the qubit corresponds to the 2-dimensional irreducible unitary representa-
tion of SU(2) and as such it models a spin- 1

2 particle. For every n ∈N, SU(2) admits an
irreducible representation which acts on Cn+1 and represents a spin- 1

2 n particle (which
is a boson if n is even and a fermion if n is odd). More on this topic can be found in
Sternberg (1994); Woit (2017).

A complete proof of Theorem 15.33, including a proof of the algebraic fact that was
used in our proof for the qubit case, is given in Landsman (2017). Our proof for the qubit
case is extracted from it. Bargmann’s theorem mentioned in the text is in Bargmann
(1954); a complete proof is also found in Parthasarathy (2005).

Theorem 15.32 is a straightforward generalisation of the hidden variable result of
Holevo (2011), where also the resulting hidden variable model for the qubit is derived.
The existence of hidden variables for the qubit was first observed by Bell (1966). There
is an extensive literature on the nonexistence of hidden variables, but such results usually
work with more restrictive notions of hidden variables. A discussion of these results can
be found in Landsman (2017).

For introductions to Lie groups and LCA groups we recommend Folland (2016).
More complete treatments of covariance lead to the notion of systems of imprimitivity
studied in Mackey (1968). For in-depth discussions of covariance and the way it pins
down observables we recommend Parthasarathy (2005); Varadarajan (1985). A discus-
sion from the physicist’s point of view is given in Busch et al. (1995). Theorem 15.38
is a special case of a generalisation of Stone’s theorem (Theorem 13.44) for arbitrary
strongly continuous unitary representations of G; see Theorem 4.5 in Folland (2016).

The presentation of the Stone–von Neumann theorem follows Folland (1989) and
Hall (2013). The theorem admits a generalisation to LCA groups, essentially due to
Mackey. For modern references to the literature on this subject the reader is referred
to the survey article Rosenberg (2004). The formula for the Ornstein–Uhlenbeck semi-
group in Theorem 15.55 goes back, at least, to Unterberger (1979); in its present form
it is taken from van Neerven and Portal (2018).

Treatments of second quantisation can be found in Janson (1997); Parthasarathy
(1992); Simon (1974). For a discussion from the Physics perspective we recommend
Talagrand (2022). The proof of Theorem 15.69 is taken from Simon (1974). Theorems
15.70 and 15.71 are due to Segal (1956). Our discussion of the position and momen-
tum operators follows Parthasarathy (1992), except that we use different normalisations
designed to arrive at the physicist’s identities (15.43) and (15.44) for the quantum har-
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monic oscillator. Proposition 15.74 can be found in the notes to Chapter 1 of Nualart
(2006). As mentioned in the text, most results in Section 15.6 generalise to infinite di-
mensions if one replaces the Gaussian measure γ on Rd by a so-called H-isonormal
process defined on a probability space (Ω,P), where H is a real Hilbert space taking
the role of Rd. The resulting theory has deep connections with the theory of stochastic
integration; see, for example, Nualart (2006).

Let us finish with describing an interesting connection with Number Theory. Roughly
speaking it says that, spectrally, the positive integers are precisely the second quantised
primes. The starting point to make this into a rigorous statement one is a theorem of
Brown and Pearcy (1966) that if T is a bounded operator on a Hilbert space H, then the
spectrum of its n-fold tensor product T⊗n acting on the Hilbert space H⊗n equals

σ(T⊗n) = {λ1 · · ·λn : λ j ∈ σ(T ), j = 1, . . . ,n}.

If ∥T∥< 1, by taking direct sums one arrives at the formula

σ

(⊕
n∈N

T⊗n
)
=
⋃

n∈N

{
λ1 · · ·λn : λ j ∈ σ(T ) for 1 ⩽ j ⩽ n; n ⩾ 1

}
with contribution 1 for the spectrum of T⊗0 := I. Now let P = {2,3,5,7,11, . . .} be
the set of primes and consider the Hilbert space ℓ2(P). Denoting the standard unit basis
vectors of this space by e2,e3,e5, . . . we consider the contraction

T : ep 7→
1
p

ep, p ∈ P.

Then ∥T∥= 1
2 ,

σ(T ) = { 1
p

: p ∈ P}∪{0},

and accordingly

σ

(⊕
n∈N

T⊗n
)
=
{1

n
: n ∈ N, n ⩾ 1

}
∪{0},

with each point 1
n being a simple pole, thanks to the uniqueness of prime factorisation.

This observation (which extends to the symmetric second quantisation of T ), as well as
deeper connections, can be found in Bost and Connes (1995); Connes (1994).

Appendices

Most of the material is standard; some proofs are taken from Folland (1999); Kallenberg
(2002); Ryan (2002). Zorn’s lemma is equivalent with the Axiom of Choice. A proof of
this fact and further equivalences can be found in Jech (1973, 2003); Rubin and Rubin
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(1970). The proof of Tychonov’s theorem follows Ruzhansky and Turunen (2010). The
treatment of Carathéodory’s theorem is based on lecture notes by Mark Veraar.

Credits

John von Neumann’s picture is reprinted with permission from George Karger/The
Chronicle Collection/Getty Images. All other pictures are in the public domain.
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684
Gohberg, I., Goldberg, S., and Kaashoek, M. A. 2013. Classes of linear operators. Operator

Theory: Advances and Applications, vol. 63. Birkhäuser. 684
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de France Seminar, Vol. III (Paris, 1980/1981). Res. Notes in Math., vol. 70. Pitman,
Boston, Mass.-London. 694

Mercer, J. 1909. Functions of positive and negative type, and their connection to the theory of
integral equations. Phil. Trans. Royal Soc. London. Series A, 209(441-458), 415–446. 695

Metafune, G., Prüss, J., Rhandi, A., and Schnaubelt, R. 2002. The domain of the Ornstein–
Uhlenbeck operator on an Lp-space with invariant measure. Ann. Scuola Norm.-Sci, 1(2),
471–485. 693

Meyer-Nieberg, P. 1991. Banach lattices. Universitext. Berlin: Springer-Verlag. 682
Monna, A. F. 1973. Functional analysis in historical perspective. John Wiley & Sons, New

York-Toronto, Ont. 681
Müller, V. 2007. Spectral theory of linear operators and spectral systems in Banach algebras.

2nd edn. Operator Theory: Advances and Applications, vol. 139. Birkhäuser, Basel. 685
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Boston Inc. 681, 684
Piron, C. 1964. Axiomatique quantique. Helv. Phys. Acta, 37, 439–468. 696
Pisier, G. 2016. Martingales in Banach spaces. Cambridge Studies in Advanced Mathematics,

vol. 155. Cambridge University Press. 682
Reed, M., and Simon, B. 1975. Methods of modern mathematical physics. Vol. II: Fourier anal-

ysis, self-adjointness. New York: Academic Press. 688
Riesz, M. 1926. Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires. Acta
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Solèr, M. P. 1995. Characterization of Hilbert spaces by orthomodular spaces. Comm. Algebra,
23(1), 219–243. 696

Stein, E. M. 1970. Singular integrals and differentiability properties of functions. Princeton
Mathematical Series, No. 30. Princeton University Press, Princeton, NJ. 681, 684, 685

Stein, E. M. 1993. Harmonic analysis: real-variable methods, orthogonality, and oscillatory
integrals. Princeton University Press. 684

Stein, E. M., and Shakarchi, R. 2011. Functional analysis. Princeton University Press, Princeton,
NJ. Volume 4 of Princeton Lectures in Analysis. 694

Sternberg, S. 1994. Group theory and physics. Cambridge University Press, Cambridge. 698
Stinespring, W. F. 1955. Positive functions on C∗-algebras. Proc. Amer. Math. Soc., 6, 211–216.

697
Sz.-Nagy, B. 1967. Spektraldarstellung linearer Transformationen des Hilbertschen Raumes.

Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 39. Springer-Verlag, Berlin-New
York. 688

Takesaki, M. 2002. Theory of operator algebras. I. Encyclopaedia of Mathematical Sciences,
vol. 124. Springer-Verlag, Berlin. Reprint of the first (1979) edition, Operator Algebras and
Non-commutative Geometry, 5. 697

Takhtajan, L. A. 2008. Quantum mechanics for mathematicians. Graduate Studies in Mathemat-
ics, vol. 95. Amer. Math. Soc., Providence, RI. 695

Talagrand, M. 1984. Pettis integral and measure theory. Mem. Amer. Math. Soc., 51(307). 685
Talagrand, M. 2022. What is a quantum field theory? Cambridge University Press. 698
Tanabe, H. 1979. Equations of evolution. Monographs and Studies in Mathematics, vol. 6.

Pitman, Boston, Mass.-London. 692
Taylor, A. E. 1939. The extension of linear functionals. Duke Math. J., 5, 538–547. 683
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closure, xii, 637, 648
of a closable operator, 325
of a form, 420

cocycle identity, 588
codimension, 135
coercive form, 395, 410
commutant, 307
commutation

of selfadjoint operators, 318
commutation relation

Heisenberg, 594
Weyl, 590

commutator, 542
compact, 639

operator, 229
relatively, 639
sequentially, 653
weak∗, 154

compactness
and extreme points, 149
in C(K), 42
in Lp(Ω), 60
of the closed convex hull, 22
weak, 157
weak∗, 154

complement, xii
complementarity, 592
complemented, 134
complete, 650
completely positive, 697
completion

of a Banach space, 4
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5
714 Index

of a Hilbert space, 94
of a metric space, 652

complex conjugate, xii
conditional expectation, 113
conjugate dual, 413
conjugate exponents, 53
conjugate-linear, 89
connected, 368
conserved, 589
continuous, 638, 652

at a point, 638, 652
embedding, 412
form, 411
sequentially, 652
uniformly, 653

contraction, 14
as a convex combination of unitaries, 528
dilation to a unitary, 281
represented by a POVM, 579
von Neumann theorem, 305

convergence
strong, of operators, 14
uniform, of operators, 14
weak, of operators, 15

convergent, 2, 648
convex

function, 52
hull, 21
set, 95

convolution, 59
multiplicative, 84
twisted, 602

core, 441
countably generated, 582
covariant, 589
cover, 639
creation operator, 622

decomposition
Hahn, 69
Jordan, 69
orthogonal, 96
Wold, 285

decomposition property
of a vector lattice, 129

defect operator, 280
dense, 637
densely defined, 321
density

argument, 12
function, 560

derivative

weak, 361
diagonal argument, 98
dilation, 194

of a bounded operator, 285
unitary, 281

direct sum
orthogonal, 96

Dirichlet
boundary conditions, 383
kernel, 205
Laplacian, 423
problem, 405

Dirichlet-to-Neumann operator, 690
disc algebra, 579
disjoint

projections, 554
dispersive, 693
distance function, 647
distribution, 671
domain

of a form, 410
of a linear operator, 321

doubly submarkovian, 488
dual

conjugate, 413
of a normed space, 12
Pontryagin, 590

duality, 117
trace, 529

dyadic, 641
Dynkin system, 659

effect, 570
eigenspace, 234
eigenvalue, 212

approximate, 217
eigenvector, 212
elementary observable, 563
elliptic problem, 394
embedding

continuous, 412
energy

ground state, 500
energy functional

associated with a coercive form, 436
for the Dirichlet problem, 405
for the elliptic problem, 394
for the Poisson problem, 387, 393
for the wave equation, 505

entangled state, 568
equation

Schrödinger, 500
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5
Index 715

Schrödinger, abstract, 588
wave, 501

equicontinuous, 42
equivalent norm, 18
essential

range, 227
range, P-, 350
supremum, 50

essentially
bounded, 50
selfadjoint, 334

euclidean norm, 7
Euler’s identity ∑

∞
n=1

1
n2 = π2

6 , 104, 547
exact sequence, 252
existence and uniqueness of solutions

under a Lipschitz assumption, 44
existence of solutions

under a continuity assumption, 47
expected value, 39

of an observable, 564
extension

Friedrichs, 420
of a functional, 130
of a linear operator, 325
operator, 378

extension, vector-valued, 85, 682
exterior product, 535, 635
extreme point, 148

⋆-field, 696
face, 149
Fejér kernel, 103
fermion, 608
finite element method, 406
finite intersection property, 639
finite rank operator, 230
finitely additive, 571
first quantisation, 608
fixed point, 44

argument, 45, 463
form, 395, 410

accretive, 395, 410
bounded, 395
closed, 411, 417
coercive, 395, 410
continuous, 411
Hermitian, 696
sectorial, 474

formula
MacMahon, 536
Stone, 318

Fourier

coefficient, 103
multiplier, 190
series, 104
transform, 182, 188

Fourier–Plancherel transform, 187
Fredholm

alternative, 237
alternative, for integral equations, 239
determinant, 536

Friedrichs extension, 420
functional, 12

normal, 558
positive, Hilbertian, 558

functional calculus
bounded, 293
continuous, 271, 273
entire, 219
holomorphic, 220
measurable, 339

Gaussian
chaos, 609
measure, standard, 106, 494

Gelfand triple, 413
generator, 438
geometric multiplicity, 235
gradient, 368
Gram–Schmidt orthogonalisation, 101
graph

norm, 322
of a bounded operator, 179
of a linear operator, 322

Green function, 384
ground state energy, 500
group

free Schrödinger, 500
Heisenberg, 599
Schrödinger, 500
translation, 484
unitary, 482
wave, on Rd , 502
wave, on domains, 501

Haar
measure, 590
property, 167

Hahn decomposition, 69
Hardy space, 247
Hardy–Littlewood maximal function, 63
harmonic, 208
heat

equation, linear, 485
equation, positivity, 487
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5
716 Index

equation, semilinear, 463
kernel, 485
semigroup, on Rd , 485
semigroup, on domains, 487

Heisenberg
commutation relation, 594
group, 599

Hermite
operator, 499
polynomials, 106

Hermitian
form, 696
vector space, 696

hidden variables, 582
Hilbert space, 93

characterisation via category theory, 696
characterisation via complementation, 682
characterisation via Hermitian forms, 696

Hilbert transform, 193
Lp-boundedness, 199
and the Poisson semigroup, 493
characterisation, 194

holomorphic
X-valued function, 165
weakly, 204

homotopy, 248

ideal
left, 256
right, 256
two-sided, 256

ideal property
of compact operators, 230
of Hilbert–Schmidt operators, 518
of trace class operators, 528

identity
Parseval, 99

image measure, 671
imaginary part, xii
index, 241, 428
indicator function, xii
indiscernible, 582
inequality

Bessel, 110
Cauchy–Schwarz, 90, 283
Clarkson, 210
Hölder, 53
Hölder, converse to, 54, 179
Jensen, 84
Landau, 510
Minkowski, 50
Minkowski, continuous, 85

Poincaré, 384
Poincaré–Wirtinger, 391
triangle, 2, 647
Young, 58

infinite-dimensional, 9
infinitesimal generator, 438
inner product, 89

space, 89
integrable, 676

Bochner, 27
uniformly, 171

integral
Bochner, 25, 27
Lebesgue, 673
Pettis, 207
Riemann, 23
stochastic, 116

interior, xii, 637, 648
involution, 686
irreducible, 599
isometric isomorphism, 14
isometry, 4

partial, 276
spectrum of, 216

isomorphism, 14
Itô isometry, 116

Jordan
decomposition, 69
normal form, 236

Kato square root problem, 694
kernel

Dirichlet, 205
Fejér, 103
heat, 485
Poisson, 491
Poisson, for the disc, 111

ket, 562

Laguerre polynomials, 110
Laplace operator

Dirichlet, 423
Neumann, 424
on Rd , 422
weak, 380

Laplace transform, 443
inverse, 466
of a measure, 545

lattice, 76
Banach, 78
normed vector, 77
vector, 76
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Index 717

law of large numbers, 40
Lebesgue

measure, 664
measure, normalised, 183
point, 65
set, 86

Leibniz formula, 368
lemma

Céa, 406
Cotlar, 200
Dynkin, 659
Fatou, 676
Riemann–Lebesgue, 183
Riesz, 20
three lines, 195
Urysohn, 641
Vitali covering, 63
Zorn, 631

limit, 2, 648
Banach, 171

linear operator, 321
Lipschitz continuous, 44
locally compact, 120
locally integrable, 63, 358
lower bound, 76

m-accretive, 472
Malliavin calculus, 495, 609
maximal element, 631
maximal regularity

for bounded analytic semigroups, 476
for the Poisson problem on Rd , 426

measurable, 671
Borel, 671
set, 657
strongly, 26
weakly, 138

measurable space, 657
measure, 658

K-valued, 66
σ -finite, 659
atomic, 148, 552
Borel, 659
finite, 659
Lebesgue, 664
outer, 660
probability, 659
Radon, 669
Radon, K-valued, 120
regular, 668
standard Gaussian, 106, 494

measure space, 659

Mehler kernel, 497
metric, 647
metric space, 647
metrisable, 156
minimiser, 95, 387, 393, 394, 405, 436
Minkowski functional, 145
mixed state, 562
modulus, xii

of an operator, 276
mollification, 59
momentum operator, 335, 592, 625
multi-index, 357
multiplication

semigroup, 483
multiplicity, 269, 289

algebraic, 236
geometric, 235

multiplier
Fourier, 190
pointwise, 190

negation, 553
Nemytskii mapping, 464
Neumann

boundary conditions, 388
Laplacian, 424
series, 213

norm, 2
equivalent, 18
euclidean, 7
nonequivalent, 115
product, 6

normal, 640
functional, 558
operator, 260, 338

normed space, 2
null space, xii, 14
numerical

radius, 283
range, 283

observable, 552, 563
elementary, 552, 563
sharp, 563
unsharp, 572

open
ball, 647
cover, 639
set, 637, 648

operator
adjoint, Hilbertian, 143, 260
adjoint, of a bounded operator, 140
adjoint, of a densely defined operator, 326
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5
718 Index

angular momentum, 629
annihilation, 622
antiunitary, 586
bounded, 10
boundedly invertible, 212
closable, 325
closed, 179, 322
compact, 229
creation, 622
densely defined, 321
Dirichlet-to-Neumann, 690
divergence form, 425
doubly submarkovian, 488
essentially selfadjoint, 334
extension, 378
finite rank, 230
Fourier multiplier, 190
Fredholm, 241, 428
Hermite, 499
Hilbert–Schmidt, 515
linear, 321
momentum, 335, 625
normal, 260, 338
Ornstein–Uhlenbeck, 496
position, 302, 625
positive, 334
positive, Hilbertian, 260
positivity preserving, 78
quotient, 15
selfadjoint, 260, 334
symmetric, 334
Toeplitz, 248
trace, 689
trace class, 519
translation invariant, on L1(Rd), 159
translation invariant, on L2(Rd), 191
unbounded, 322
uniformly elliptic, 474
unitary, 260, 599
Volterra, 17

order
of a multi-index, 357

Ornstein–Uhlenbeck
operator, 496
semigroup, 495

orthogonal, 94
complement, 95
decomposition, 96
polynomials, 314
projection, 96, 262

orthomodular, 696

orthonormal
basis, 100
system, 100
system, maximal, 102

outer measure, 660

parallelogram identity, 91
partial

isometry, 276
order, 631
trace, 532

partition of unity, 642
smooth, 360

Pauli matrices, 567
perturbation, 450
Pettis integral, 207
phase, 580
point

evaluation, 16
spectrum, 212, 455

pointwise
bounded, 42
convergence, vs. norm convergence, 204
multiplier, 16, 190

Poisson
kernel, 2-dimensional, 208
kernel, d-dimensional, 491
kernel, for the disc, 111
problem, Dirichlet boundary conditions, 383
problem, inhomogeneous boundary conditions,

404
problem, Neumann boundary conditions, 388
semigroup, 491

polarisation, 260
polynomials

Bernstein, 38
Hermite, 106
Laguerre, 110

Pontryagin dual, 590
position operator, 302, 592, 625
positive

cone, 78
definite, 277, 577
functional, Hilbertian, 558
operator, 334
operator, Hilbertian, 260

positive definite, 540
positivity preserving, 78
potential, 499
POVM, 571
power bounded, 228
power set, 660
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5
Index 719

pre-annihilator, 136
principle of local reflexivity, 683
probability space, 659
problem

abstract Cauchy, inhomogeneous, 457
abstract Cauchy, linear, 438
abstract Cauchy, semilinear, 460
Dirichlet, 405
elliptic, 394
Poisson, 382
Sturm–Liouville, 397

product
σ -algebra, 658
cartesian, 644
measure, 667
metric, 656
norm, 6
rule, 367, 442

projection, 134
orthogonal, 96, 262
spectral, 223

projection-valued measure, 291
of a bounded normal operator, 299
of a normal operator, 347

pure state, 552, 561

quantisation
first, 608
second, 608

quantum harmonic oscillator, 499
quasi-optimality estimate, 406
quaternions, 696
quotient

Banach spaces, 6
map, 15
of ℓ1, 207
operator, 15

Radon measure, 669
random variable, 671
range, xii, 14
real part, xii

of a form, 410
recurrence

three point, 315
reflexive, 157
regular measure, 668
relation, 631
relatively compact, 639
representation, 277

irreducible, 599
projective, 598
Schrödinger, 599

unitary, 277
resolvent

identity, 214, 330
operator, 212
set, 211
set, of a linear operator, 330

Riemann
hypothesis, 683
integral, 24

Riesz projection, 248
ring, 661

σ -algebra, 657
Borel, 658
generated by C , 658
generated by f , 658

scalar homogeneity, 2
Schauder basis, 204
Schrödinger

equation, 500
equation, abstract, 588
group, 500
representation, 599

Schur
property, 171

Schur estimate, 85
second quantisation, 608
sector, 465
sectorial, 474
Segal–Plancherel transform, 620
selfadjoint

essentially, 334
operator, 260, 334

semigroup
heat, on Rd , 485
heat, on domains, 487
multiplication, 483
Ornstein–Uhlenbeck, 495
Poisson, 491

seminorm, 131
separable

metric space, 656
normed space, 9

sequence
convergent, 2
singular value, 520

sequentially
closed, 649
compact, 653
continuous, 652

sesquilinear, 89
sharp observable, 563
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5
720 Index

simple function, 672
µ-, 27
vector-valued, 26

singular integrals, 684
singular value, 520

decomposition, 289, 520
sequence, 520

Sobolev space, 369
solution

classical, of the linear Cauchy problem, 457
classical, of the semilinear Cauchy problem, 461
global, 44
local, 47
mild, of the inhomogeneous Cauchy problem, 458
mild, of the semilinear Cauchy problem, 460
strong, 457
weak, of the elliptic problem, 394
weak, of the inhomogeneous Cauchy problem,

511
weak, of the Poisson problem, 383, 389, 404

spectral
inclusion formula, 510
mapping theorem, for normal operators, 350
mapping, for compact semigroups, 454
mapping, the holomorphic calculus, 222
projection, 223
radius, 225

spectral flow, 690
spectrum, 212

approximate point, 217
Arveson, 448
of a compact operator, 234
of a linear operator, 330
point, 212, 455

spin, 698
state, 551, 560

entangled, 568
mixed, 562
pure, 552, 561
spin, 567, 698
vector, 561

stiffness matrix, 408
stochastic integral, 116
Stone’s formula, 318
Strichartz estimate, 693
strictly convex, 109, 167, 210
strong convergence, of operators, 14
strong operator topology, 307
strongly measurable, 26
Sturm–Liouville problem, 397
subadditive mapping, 202

subalgebra, 218
⋆-, 270

subcover, 639
subdifferential, 513
sublinear, 130
substitution formula, 676
substitution rule, 370
superposition, 562
support, 641

of a continuous function, 56
supremum norm, 37
symbol

of a Fourier multiplier operator, 190
of a Toeplitz operator, 248

symmetric
Fock space, 618
operator, 334
part, 410
second quantisation, 618
sesquilinear mapping, 396
tensor product, 615, 635

symmetry, 588

tensor basis, 108
tensor product

algebraic, 634
antisymmetric, 635
of Hilbert spaces, 532
of vector spaces, 634
symmetric, 615, 635

test function, 358
theorem

Arzelà–Ascoli, 42
Atkinson, 242
Baire, 174
Banach fixed point, 44
Banach–Alaoglu, 154
Beckner, 684
bicommutant, 308
Bolzano–Weierstrass, 655
Busch, 571
Cauchy, for Banach space-valued functions, 165
Chernoff, 228
closed graph, 179
closed range, 181
Coburn, 252
continuous functional calculus, 271, 273
Courant–Fischer, 430
Datko–Pazy, 512
Dieudonné, 245
Dini, 79
dominated convergence, 677
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5
Index 721

Euler formula, 452
Fedosov, 542
Fréchet–Kolmogorov, 60
Fredholm alternative, 237
Friedrichs, 420
Fubini, 678, 679
Fuglede–Putnam–Rosenblum, 269
Gearhart–Prüss, 512
Gelfand–Naimark, 686
Goldstine, 156
Green, 388
Hahn–Banach extension, for Banach spaces, 132
Hahn–Banach extension, for vector spaces, 130,

131
Hahn–Banach separation, 145
Hahn–Jordan, 69
Hardy–Littlewood maximal, 63
Hartman–Wintner, 250
Hausdorff–Young, 199
Hellinger–Toeplitz, 282
Helton–Howe, 544
Hille, 355
Hille–Yosida, 449
injectivity of the Fourier transform, 189
inversion of the Fourier transform, 184
Krein–Milman, 149
Lp-boundedness of the Hilbert transform, 199
Lax–Milgram, 396
Lebesgue differentiation, 65
Lidskii, 535
Lumer–Phillips, 470, 514
Lusin, 83
Marcinkiewicz, 202
Mercer, 540
min-max, 290, 430
monotone convergence, 675
Naimark, 576
Noether–Gohberg–Krein, 249
Nyman & Baez–Duarte, 683
open mapping, 177
Parseval, 99
Peano, 47
Pettis measurability, 26, 138
Phillips, 445
Picard–Lindelöf, 44
Plancherel, 187
Portmanteau, 161
Prokhorov, 161
Radon–Nikodým, 71, 114
Rellich–Kondrachov, 389
Riesz representation, for Hilbert spaces, 97

Riesz–Schauder, 234
Riesz–Thorin, 194
Segal, 621
singular value decomposition, 289, 520
Sobolev embedding, 402
Solèr, 696
spectral mapping, for bounded normal operators,

274
spectral mapping, for normal operators, 350
spectral mapping, for the holomorphic calculus,

222
spectral mapping, for the point spectrum, 455
spectral radius formula, 225
spectral, for bounded normal operators, 299
spectral, for compact normal operators, 287
spectral, for normal operators, 347
Stinespring, 697
Stone, 482, 508
Stone–von Neumann, 599
Stone–Weierstrass, 40
Sz.-Nagy, 281, 510
three-point recurrence, 316
Tietze extension, 643
Toeplitz–Hausdorff, 283
trace duality, 530
Tychonov, 644
Ulam–Mazur, 32
uniform boundedness, 174
von Neumann, bicommutant, 308
von Neumann, bicommutant of a normal operator,

310
von Neumann, on commuting selfadjoint

operators, 306
von Neumann, on contractions, 305
Weierstrass approximation, 38
Weyl, 432
Wiener’s Tauberian, 185
Wiener–Itô isometry, 615
Wigner, 587
Wintner, 627

three point recurrence, 315
tight, 668

uniformly, 160
Toeplitz operator, 248
topological space, 637

countably generated, 582
Hausdorff, 638
locally compact, 120
normal, 640

topology, 637
Borel, 648
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5
722 Index

generated by a collection of sets, 637
strong operator, 307
weak, 151
weak operator, 307
weak∗, 151

totally
bounded, 653
ordered, 631, 644

trace
class, 519
duality, 529
of a positive operator, 519
of a trace class operator, 523
operator, 689
partial, 532

trace formula
and Euler’s identity, 547
and Fredholm operators, 542
and Toeplitz operators, 544
for the Dirichlet heat semigroup, 545

transform
Fourier, 182, 188
Fourier–Plancherel, 187
Hilbert, 193
Segal–Plancherel, 620

transition probability, 586
translation, 590

adjoint of, 141
continuity of, in Lp, 57
invariant, operators on L1(Rd), 159
Wiener’s Tauberian theorem, 185

triangle inequality, 2, 647
reverse, 3

trigonometric polynomial, 42
twisted convolution, 602

UMD property, 682
unbounded operator, 322
uncertainty

of an observable, 565
principle, 565

uniform convergence
of functions, 8
of operators, 14

uniformly
bounded, 14
continuous, 653
contractive, 44
exponentially stable, 512
integrable, 171
tight, 160

unit ball, 3

unital, 686
unitary

dilation, 281
operator, 260, 599
representation, 277

unsharp
observable, 572

upper bound, 76, 631

vanishing at infinity, 120
variance

of an observable of A in the state |h⟩, 564
variation, 66
variational method

for the Poisson problem, 387, 393
vector lattice, 76

normed, 77
vector state, 561
Volterra operator

norm of, 265
spectrum of, 284

von Neumann algebra, 308

wave
equation, 501
function, 562
group, on Rd , 502
group, on domains, 501

weak
compactness, of BX , 157
convergence, 152
convergence, of measures, 160
convergence, of operators, 15
derivative, 361
Laplacian, 380
operator topology, 307
topology, 151

weak L1-bound, 63
weak∗

compactness, of BX∗ , 154
continuous, functional, 152
convergence, 152
topology, 151

weakly
bounded, 176
closed, 152
continuous, functional, 152
continuous, semigroup, 444
holomorphic, 204

well posed, 460, 462
Weyl commutation relation, 590
winding number, 220, 249, 685
Wold decomposition, 285
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