
Jan van Neerven

Stochastic Evolution Equations

ISEM Lecture Notes 2007/08





Contents

1 Integration in Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Pettis measurability theorem. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Strong measurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Strong µ-measurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The Bochner integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 The Bochner integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 The Lebesgue-Bochner spaces Lp(A;E) . . . . . . . . . . . . . . 12

1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Random variables in Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Convergence in probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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1

Integration in Banach spaces

When integrating a continuous function f : [a, b] → E, where E is a Banach
space, it usually suffices to use the Riemann integral. We shall be concerned
frequently with E-valued functions defined on some abstract measure space
(typically, a probability space), and in this context the notions of continuity
and Riemann integral make no sense. For this reason we start this first lecture
with generalising the Lebesgue integral to the E-valued setting.

1.1 Banach spaces

Throughout this lecture, E is a Banach space over the scalar field K, which
may be either R or C unless otherwise stated. The norm of an element x ∈ E
is denoted by ‖x‖E , or, if no confusion can arise, by ‖x‖. We write

BE = {x ∈ E : ‖x‖ 6 1}

for the closed unit ball of E.
The Banach space dual of E is the vector space E∗ of all continuous linear

mappings from E to K. This space is a Banach space with respect to the norm

‖x∗‖E∗ := sup
‖x‖61

|〈x, x∗〉|.

Here, 〈x, x∗〉 := x∗(x) denotes the duality pairing of the elements x ∈ E
and x∗ ∈ E∗. We shall simply write ‖x∗‖ instead of ‖x∗‖E∗ if no confusion
can arise. The elements of E∗ are often called (linear) functionals on E. The
Hahn-Banach separation theorem guarantees an ample supply of functionals
on E: for every convex closed set C ⊆ E and convex compact set K ⊆ E such
that C ∩K = ∅ there exist x∗ ∈ E∗ and real numbers a < b such that

Re〈x, x∗〉 6 a < b 6 Re〈y, x∗〉
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for all x ∈ C and y ∈ K. As is well-known, from this one derives the Hahn-
Banach extension theorem: if F is a closed subspace of E, then for all y∗ ∈ F ∗

there exists an x∗ ∈ E∗ such that x∗|F = y∗ and ‖x∗‖ = ‖y∗‖. This easily
implies that for all x ∈ E we have

‖x‖ = sup
‖x∗‖61

|〈x, x∗〉|.

A linear subspace F of E∗ is called norming for a subset S of E if for all
x ∈ S we have

‖x‖ = sup
x∗∈F
‖x∗‖61

|〈x, x∗〉|.

A subspace of E∗ which is norming for E is simply called norming. The
following lemma will be used frequently.

Lemma 1.1. If E0 is a separable subspace of E and F is a linear subspace of
E∗ which is norming for E0, then F contains a sequence of unit vectors that
is norming for E0.

Proof. Choose a dense sequence (xn)∞n=1 in E0 and choose a sequence of unit
vectors (x∗n)∞n=1 in F such that |〈xn, x

∗
n〉| > (1− εn)‖xn‖ for all n > 1, where

the numbers 0 < εn 6 1 satisfy limn→∞ εn = 0. The sequence (x∗n)∞n=1 is
norming for E0. To see this, fix an arbitrary x ∈ E0 and let δ > 0. Pick
n0 > 1 such that 0 < εn0 6 δ and ‖x− xn0‖ 6 δ. Then,

(1− δ)‖x‖ 6 (1− εn0)‖x‖ 6 (1− εn0)‖xn0‖+ (1− εn0)δ
6 |〈xn0 , x

∗
n0
〉|+ δ 6 |〈x, x∗n0

〉|+ 2δ.

Since δ > 0 was arbitrary it follows that ‖x‖ 6 supn>1 |〈x, x∗n〉|. ut

A linear subspace F of E∗ is said to separate the points of a subset S of E if
for every pair x, y ∈ S with x 6= y there exists an x∗ ∈ F with 〈x, x∗〉 6= 〈y, x∗〉.
Clearly, norming subspaces separate points, but the converse need not be true.

Lemma 1.2. If E0 is a separable subspace of E and F is a linear subspace of
E∗ which separates the points of E0, then F contains a sequence that separates
the points of E0.

Proof. By the Hahn-Banach theorem, for each x ∈ E0 \ {0} there exists a
vector x∗(x) ∈ F such that 〈x, x∗(x)〉 6= 0. Defining

Vx := {y ∈ E0 \ {0} : 〈y, x∗(x)〉 6= 0}

we obtain an open cover {Vx}x∈E0\{0} of E0 \{0}. Since every open cover of a
separable metric space admits a countable subcover it follows that there exists
a sequence (xn)∞n=1 in E0 \ {0} such that {Vxn

}∞n=1 covers E0 \ {0}. Then the
sequence {x∗(xn)}∞n=1 separates the points of E0: indeed, every x ∈ E0 \ {0}
belongs to some Vxn , which means that 〈x, x∗(xn)〉 6= 0. ut
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1.2 The Pettis measurability theorem

We begin with a discussion of weak and strong measurability of E-valued
functions. The main result in this direction is the Pettis measurability the-
orem which states, roughly speaking, that an E-valued function is strongly
measurable if and only if it is weakly measurable and takes its values in a
separable subspace of E.

1.2.1 Strong measurability

Throughout this section (A,A ) denotes a measurable space, that is, A is a
set and A is a σ-algebra in A, that is, a collection of subsets of A with the
following properties:

1. A ∈ A ;
2. B ∈ A implies {B ∈ A ;
3. B1 ∈ A , B2 ∈ A , . . . imply

⋃∞
n=1Bn ∈ A .

The first property guarantees that A is non-empty, the second expresses that
A is closed under taking complements, and the third that A is closed under
taking countable unions.

The Borel σ-algebra of a topological space T , notation B(T ), is the smallest
σ-algebra containing all open subsets of T . The sets in B(T ) are the Borel
sets of T .

Definition 1.3. A function f : A→ T is called A -measurable if f−1(B) ∈ A
for all B ∈ B(T ).

The collection of all B ∈ B(T ) satisfying f−1(B) ∈ A is easily seen to be
a σ-algebra. As a consequence, f is A -measurable if and only if f−1(U) ∈ A
for all open sets U in T .

When T1 and T2 are topological spaces, a function g : T1 → T2 is Borel
measurable if g−1(B) ∈ B(T1) for all B ∈ B(T2), that is, if g is B(T1)-
measurable. Note that if f : A → T1 is A -measurable and g : T1 → T2 is
Borel measurable, then the composition g ◦ f : A → T2 is A -measurable.
By the above observation, every continuous function g : T1 → T2 is Borel
measurable.

It is a matter of experience that the notion of A -measurability does not
lead to a satisfactory theory from the point of view of vector-valued analysis.
Indeed, the problem is that this definition does not provide the means for
approximation arguments. It is for this reason that we shall introduce next
another notion of measurability. We shall restrict ourselves to Banach space-
valued functions, although some of the results proved below can be generalised
to functions with values in metric spaces.

Let E be a Banach space and (A,A ) a measurable space. A function
f : A → E is called A -simple if it is of the form f =

∑N
n=1 1Anxn with

An ∈ A and xn ∈ E for all 1 6 n 6 N . Here 1A denotes the indicator
function of the set A, that is, 1A(ξ) = 1 if ξ ∈ A and 1A(ξ) = 0 if ξ 6∈ A.
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Definition 1.4. A function f : A → E is strongly A -measurable if there
exists a sequence of A -simple functions fn : A→ E such that limn→∞ fn = f
pointwise on A.

In order to be able to characterise strong A -measurability of E-valued
functions we introduce some terminology. A function f : A → E is called
separably valued if there exists a separable closed subspace E0 ⊆ E such
that f(ξ) ∈ E0 for all ξ ∈ A, and weakly A -measurable if the functions
〈f, x∗〉 : A→ K, 〈f, x∗〉(ξ) := 〈f(ξ), x∗〉, are A -measurable for all x∗ ∈ E∗.

Theorem 1.5 (Pettis measurability theorem, first version). Let (A,A )
be a measurable space and let F be a norming subspace of E∗. For a function
f : A→ E the following assertions are equivalent:

(1) f is strongly A -measurable;
(2) f is separably valued and 〈f, x∗〉 is A -measurable for all x∗ ∈ E∗;
(3) f is separably valued and 〈f, x∗〉 is A -measurable for all x∗ ∈ F .

Proof. (1)⇒(2): Let (fn)∞n=1 be a sequence of A -simple functions converging
to f pointwise and let E0 be the closed subspace spanned by the countably
many values taken by these functions. Then E0 is separable and f takes its
values in E0. Furthermore, each 〈f, x∗〉 is A -measurable, being the pointwise
limit of the A -measurable functions 〈fn, x

∗〉.
(2)⇒(3): This implication is trivial.
(3)⇒(1): Using Lemma 1.1, choose a sequence (x∗n)∞n=1 of unit vectors in

F that is norming for a separable closed subspace E0 of E where f takes its
values. By the A -measurability of the functions 〈f, x∗n〉, for each x ∈ E0 the
real-valued function

ξ 7→ ‖f(ξ)− x‖ = sup
n>1

|〈f(ξ)− x, x∗n〉|

is A -measurable. Let (xn)∞n=1 be a dense sequence in E0.
Define the functions sn : E0 → {x1, . . . , xn} as follows. For each y ∈ E0

let k(n, y) be the least integer 1 6 k 6 n with the property that

‖y − xk‖ = min
16j6n

‖y − xj‖

and put sn(y) := xk(n,y). Notice that

lim
n→∞

‖sn(y)− y‖ = 0 ∀y ∈ E0

since (xn)∞n=1 is dense in E0. Now define fn : A→ E by

fn(ξ) := sn(f(ξ)), ξ ∈ A.

For all 1 6 k 6 n we have
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{ξ ∈ A : fn(ξ) = xk}
=

{
ξ ∈ A : ‖f(ξ)− xk‖ = min

16j6n
‖f(ξ)− xj‖

}
∩

{
ξ ∈ A : ‖f(ξ)− xl‖ > min

16j6n
‖f(ξ)− xj‖ for l = 1, . . . , k − 1

}
.

Note that the sets on the right hand side are in A . Hence each fn is A -simple,
and for all ξ ∈ A we have

lim
n→∞

‖fn(ξ)− f(ξ)‖ = lim
n→∞

‖sn(f(ξ))− f(ξ)‖ = 0. ut

Corollary 1.6. The pointwise limit of a sequence of strongly A -measurable
functions is strongly A -measurable.

Proof. Each function fn takes its values in a separable subspace of E. Then
f takes its values in the closed linear span of these spaces, which is separable.
The measurability of the functions 〈f, x∗〉 follows by noting that each 〈f, x∗〉
is the pointwise limit of the measurable functions 〈fn, x

∗〉. ut

Corollary 1.7. If an E-valued function f is strongly A -measurable and φ :
E → F is continuous, where F is another Banach space, then φ◦f is strongly
A -measurable.

Proof. Choose simple functions fn converging to f pointwise. Then φ ◦ fn →
φ ◦ f pointwise and the result follows from the previous corollary. ut

Proposition 1.8. For a function f : A → E, the following assertions are
equivalent:

(1) f is strongly A -measurable;
(2) f is separably valued and for all B ∈ B(E) we have f−1(B) ∈ A .

Proof. (1)⇒(2): Let f be strongly A -measurable. Then f is separably-valued.
To prove that f−1(B) ∈ A for all B ∈ B(E) it suffices to show that f−1(U) ∈
A for all open sets U .

Let U be open and choose a sequence of A -simple functions fn converging
pointwise to f . For r > 0 let Ur = {x ∈ U : d(x, {U) > r}, where {U denotes
the complement of U . Then f−1

n (Ur) ∈ A for all n > 1, by the definition of
an A -simple function. Since

f−1(U) =
⋃

m>1

⋃
n>1

⋂
k>n

f−1
k (U 1

m
)

(the inclusion ‘⊆’ being a consequence of the fact that U is open) it follows
that also f−1(U) ∈ A .

(2)⇒(1): By assumption, f is A -measurable, and therefore 〈f, x∗〉 is A -
measurable for all x∗ ∈ E∗. The result now follows from the Pettis measura-
bility theorem. ut

Thus if E is separable, then an E-valued function f is strongly A -
measurable if and only if it is A -measurable.
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1.2.2 Strong µ-measurability

So far, we have considered measurability properties of E-valued functions
defined on a measurable space (A,A ). Next we consider functions defined on
a σ-finite measure space (A,A , µ), that is, µ is a non-negative measure on a
measurable space (A,A ) and there exist sets A(1) ⊆ A(2) ⊆ . . . in A with
µ(A(n)) <∞ for all n > 1 and A =

⋃∞
n=1A

(n).
A µ-simple function with values in E is a function of the form

f =
N∑

n=1

1An
xn,

where xn ∈ E and the sets An ∈ A satisfy µ(An) <∞.
We say that a property holds µ-almost everywhere if there exists a µ-null

set N ∈ A such that the property holds on the complement {N of N .

Definition 1.9. A function f : A → E is strongly µ-measurable if there
exists a sequence (fn)n>1 of µ-simple functions converging to f µ-almost ev-
erywhere.

Using the σ-finiteness of µ it is easy to see that every strongly A -
measurable function is strongly µ-measurable. Indeed, if f is strongly A -
measurable and limn→∞ fn = f pointwise with each fn an A -simple func-
tions, then also limn→∞ 1A(n)fn = f pointwise, where A =

⋃∞
n=1A

(n) as
before, and each 1A(n)fn is µ-simple. The next proposition shows that in the
converse direction, every strongly µ-measurable function is equal µ-almost
everywhere to a strongly A -measurable function.

Let us call two functions which agree µ-almost everywhere µ-versions of
each other.

Proposition 1.10. For a function f : A → E the following assertions are
equivalent:

(1) f is strongly µ-measurable;
(2) f has a µ-version which is strongly A -measurable.

Proof. (1)⇒(2): Suppose that fn → f outside the null set N ∈ A , with each
fn µ-simple. Then we have limn→∞ 1{Nfn = 1{Nf pointwise on A, and since
the functions 1{Nfn are A -simple, 1{Nf is strongly A -measurable. It follows
that 1{Nf is a strongly A -measurable µ-version of f .

(2)⇒(1): Let f̃ be a strongly A -measurable µ-version of f and let N ∈ A

be a null set such that f = f̃ on {N . If (f̃n)∞n=1 is a sequence of A -simple
functions converging pointwise to f̃ , then limn→∞ f̃n = f on {N , which means
that limn→∞ f̃n = f µ-almost everywhere.

Write A =
⋃∞

n=1A
(n) with A(1) ⊆ A(2) ⊆ · · · ∈ A and µ(A(n)) <∞ for all

n > 1. The functions fn := 1A(n) f̃n are µ-simple and we have limn→∞ fn = f
µ-almost everywhere. ut
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We say that f is µ-separably valued if there exists a closed separable sub-
space E0 of E such that f(ξ) ∈ E0 for µ-almost all ξ ∈ A, and weakly µ-
measurable if 〈f, x∗〉 is µ-measurable for all x∗ ∈ E∗.

Theorem 1.11 (Pettis measurability theorem, second version). Let
(A,A , µ) be a σ-finite measure space and let F be a norming subspace of E∗.
For a function f : A→ E the following assertions are equivalent:

(1) f is strongly µ-measurable;
(2) f is µ-separably valued and 〈f, x∗〉 is µ-measurable for all x∗ ∈ E∗;
(3) f is µ-separably valued and 〈f, x∗〉 is µ-measurable for all x∗ ∈ F .

Proof. The implication (1)⇒(2) follows the corresponding implication in The-
orem 1.5 combined with Proposition 1.10, and (2)⇒(3) is trivial. The impli-
cation (3)⇒(1) is proved in the same way as the corresponding implication
in Theorem 1.5, observing that this time the functions fn have µ-versions f̃n

that are A -simple. If we write A =
⋃∞

n=1A
(n) as before with each A(n) of fi-

nite µ-measure, the functions 1A(n) f̃n are µ-simple and converge to f µ-almost
everywhere. ut

By combining Proposition 1.10 with Corollaries 1.6 and 1.7 we obtain:

Corollary 1.12. The µ-almost everywhere limit of a sequence of strongly µ-
measurable E-valued functions is strongly µ-measurable.

Corollary 1.13. If an E-valued function f is strongly µ-measurable and φ :
E → F is continuous, where F is another Banach space, then φ◦f is strongly
µ-measurable.

The following result will be applied frequently.

Corollary 1.14. If f and g are strongly µ-measurable E-valued functions
which satisfy 〈f, x∗〉 = 〈g, x∗〉 µ-almost everywhere for every x∗ ∈ F , where F
is subspace of E∗ separating the points of E. Then f = g µ-almost everywhere.

Proof. Both f and g take values in a separable closed subspace E0 µ-almost
everywhere, say outside the µ-null set N . Since E0 is separable, by Lemma
1.2 some countable family of elements (x∗n)∞n=1 in F separates the points of
E0. Since 〈f, x∗n〉 = 〈g, x∗n〉 outside a µ-null set Nn, we conclude that f and g
agree outside the µ-null set N ∪

⋃∞
n=1Nn. ut

1.3 The Bochner integral

The Bochner integral is the natural generalisation of the familiar Lebesgue
integral to the vector-valued setting.

Throughout this section, (A,A , µ) is a σ-finite measure space.
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1.3.1 The Bochner integral

Definition 1.15. A function f : A → E is µ-Bochner integrable if there
exists a sequence of µ-simple functions fn : A → E such that the following
two conditions are met:

(1) limn→∞ fn = f µ-almost everywhere;

(2) lim
n→∞

∫
A

‖fn − f‖ dµ = 0.

Note that f is strongly µ-measurable. The functions ‖fn−f‖ are µ-measurable
by Corollary 1.13.

It follows trivially from the definitions that every µ-simple function is µ-
Bochner integrable. For f =

∑N
n=1 1Anxn we put∫

A

f dµ :=
N∑

n=1

µ(An)xn.

It is routine to check that this definition is independent of the representation
of f . If f is µ-Bochner integrable, the limit∫

A

f dµ := lim
n→∞

∫
A

fn dµ

exists in E and is called the Bochner integral of f with respect to µ. It is routine
to check that this definition is independent of the approximating sequence
(fn)∞n=1.

If f is µ-Bochner integrable and g is a µ-version of f , then g is µ-Bochner
integrable and the Bochner integrals of f and g agree. In particular, in the
definition of the Bochner integral the function f need not be everywhere
defined; it suffices that f be µ-almost everywhere defined.

If f is µ-Bochner integrable, then for all x∗ ∈ E∗ we have the identity〈∫
A

f dµ, x∗
〉

=
∫

A

〈f, x∗〉 dµ.

For µ-simple functions this is trivial, and the general case follows by approx-
imating f with µ-simple functions.

Proposition 1.16. A strongly µ-measurable function f : A → E is µ-
Bochner integrable if and only if∫

A

‖f‖ dµ <∞,

and in this case we have ∥∥∥∫
A

f dµ
∥∥∥ 6

∫
A

‖f‖ dµ.
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Proof. First assume that f is µ-Bochner integrable. If the µ-simple functions
fn satisfy the two assumptions of Definition 1.15, then for large enough n we
obtain ∫

A

‖f‖ dµ 6
∫

A

‖f − fn‖ dµ+
∫

A

‖fn‖ dµ <∞.

Conversely let f be a strongly µ-measurable function satisfying
∫

A
‖f‖ dµ <

∞. Let gn be µ-simple functions such that limn→∞ gn = f µ-almost every-
where and define

fn := 1{‖gn‖62‖f‖}gn.

Then fn is µ-simple, and clearly we have limn→∞ fn = f µ-almost everywhere.
Since we have ‖fn‖ 6 2‖f‖ pointwise, the dominated convergence theorem can
be applied and we obtain

lim
n→∞

∫
A

‖fn − f‖ dµ = 0.

The final inequality is trivial for µ-simple functions, and the general case
follows by approximation. ut

As a simple application, note that if f : A → E is µ-Bochner integrable,
then for all B ∈ A the truncated function 1Bf : A → E is µ-Bochner inte-
grable, the restricted function f |B : B → E is µ|B-Bochner integrable, and
we have ∫

A

1Bf dµ =
∫

B

f |B dµ|B .

Henceforth, both integrals will be denoted by
∫

B
f dµ.

In the following result, conv(V ) denotes the convex hull of a subset V ⊆ E,
i.e., the set of all finite sums

∑k
j=1 λjxj with λj > 0 satisfying

∑k
j=1 λj = 1

and xj ∈ V for j = 1, . . . , k. The closure of this set is denoted by conv(V ).

Proposition 1.17. Let f : A → E be a µ-Bochner integrable function. If
µ(A) = 1, then ∫

A

f dµ ∈ conv{f(ξ) : ξ ∈ A}.

Proof. Let us say that an element x ∈ E is strictly separated from a set V ⊆ E
by a functional x∗ ∈ E∗ if there exists a number δ > 0 such that

|Re〈x, x∗〉 − Re〈v, x∗〉| > δ ∀v ∈ V.

The Hahn-Banach separation theorem asserts that if V is convex and x 6∈ V ,
then there exists a functional x∗ ∈ E∗ which strictly separates x from V .

For x∗ ∈ E∗, let

m(x∗) := inf{Re〈f(ξ), x∗〉 : ξ ∈ A},
M(x∗) := sup{Re〈f(ξ), x∗〉 : ξ ∈ A},
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allowing these values to be −∞ and ∞, respectively. Then, since µ(A) = 1,

Re
〈 ∫

A

f dµ, x∗
〉

=
∫

A

Re〈f, x∗〉 dµ ∈ [m(x∗),M(x∗)].

This shows that
∫

A
f dµ cannot be strictly separated from the convex set

conv{f(ξ) : ξ ∈ A} by functionals in E∗. Therefore the conclusion follows by
an application of the Hahn-Banach separation theorem. ut

As a rule of thumb, results from the theory of Lebesgue integration carry
over to the Bochner integral as long as there are no non-negativity assumptions
involved. For example, there are no analogues of the Fatou lemma and the
monotone convergence theorem, but we do have the following analogue of the
dominated convergence theorem:

Proposition 1.18 (Dominated convergence theorem). Let fn : A → E
be a sequence of functions, each of which is µ-Bochner integrable. Assume
that there exist a function f : A → E and a µ-Bochner integrable function
g : A→ K such that:

(1) limn→∞ fn = f µ-almost everywhere;
(2) ‖fn‖ 6 |g| µ-almost everywhere.

Then f is µ-Bochner integrable and we have

lim
n→∞

∫
A

‖fn − f‖ dµ = 0.

In particular we have

lim
n→∞

∫
A

fn dµ =
∫

A

f dµ.

Proof. We have ‖fn−f‖ 6 2|g| µ-almost everywhere, and therefore the result
follows from the scalar dominated convergence theorem. ut

It is immediate from the definition of the Bochner integral that if f : A→
E is µ-Bochner integrable and T is a bounded linear operator from E into
another Banach space F , then Tf : A→ F is µ-Bochner integrable and

T

∫
A

f dµ =
∫

A

Tf dµ.

This identity has a useful extension to a suitable class of unbounded oper-
ators. A linear operator T , defined on a linear subspace D(T ) of E and taking
values in another Banach space F , is said to be closed if its graph

G (T ) := {(x, Tx) : x ∈ D(T )}

is a closed subspace of E × F . If T is closed, then D(T ) is a Banach space
with respect to the graph norm
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‖x‖D(T ) := ‖x‖+ ‖Tx‖

and T is a bounded operator from D(T ) to E.
The closed graph theorem asserts that if T : E → F is a closed operator

with domain D(T ) = E, then T is bounded.

Theorem 1.19 (Hille). Let f : A → E be µ-Bochner integrable and let T
be a closed linear operator with domain D(T ) in E taking values in a Banach
space F . Assume that f takes its values in D(T ) µ-almost everywhere and the
µ-almost everywhere defined function Tf : A → F is µ-Bochner integrable.
Then

∫
A
f dµ ∈ D(T ) and

T

∫
A

f dµ =
∫

A

Tf dµ.

Proof. We begin with a simple observation which is a consequence of Propo-
sition 1.16 and the fact that the coordinate mappings commute with Bochner
integrals: if E1 and E2 are Banach spaces and f1 : A → E1 and f2 : A → E2

are µ-Bochner integrable, then f = (f1, f2) : A → E1 × E2 is µ-Bochner
integrable and ∫

A

f dµ =
( ∫

A

f1 dµ,

∫
A

f2 dµ
)
.

Turning to the proof of the proposition, by the preceding observation the
function g : A → E × F , g(ξ) := (f(ξ), T f(ξ)), is µ-Bochner integrable.
Moreover, since g takes its values in the graph G (T ), we have

∫
A
g(ξ) dµ(ξ) ∈

G (T ). On the other hand,∫
A

g(ξ) dµ(ξ) =
( ∫

A

f(ξ) dµ(ξ),
∫

A

Tf(ξ) dµ(ξ)
)
.

The result follows by combining these facts. ut

We finish this section with a result on integration of E-valued functions
which may fail to be Bochner integrable.

Theorem 1.20 (Pettis). Let (A,A , µ) be a finite measure space and let 1 <
p < ∞ be fixed. If f : A → E is strongly µ-measurable and satisfies 〈f, x∗〉 ∈
Lp(A) for all x∗ ∈ E∗, then there exists a unique xf ∈ E satisfying

〈xf , x
∗〉 =

∫
A

〈f, x∗〉 dµ.

Proof. We may assume that f is strongly A -measurable.
It is easy to see that the linear mapping S : E∗ → Lp(A), Sx∗ := 〈f, x∗〉

is closed. Hence S is bounded by the closed graph theorem.
Put An := {‖f‖ 6 n}. Then An ∈ A and by Proposition 1.16 the integral∫

An
f dµ exists as a Bochner integral in E. For all x∗ ∈ E∗ and n > m, by

Hölder’s inequality we have
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An\Am

f dµ(x), x∗
〉∣∣∣ 6

(
µ(An\Am)

) 1
q

( ∫
A

|〈f, x∗〉|p dµ(x)
) 1

p

6
(
µ(An\Am)

) 1
q ‖S‖ ‖x∗‖.

Taking the supremum over all x∗ ∈ E∗ with ‖x∗‖ 6 1 we see that

lim sup
m,n→∞

∥∥∥∫
An\Am

f dµ
∥∥∥ 6 lim

m,n→∞

(
µ(An\Am)

) 1
q ‖S‖ = 0.

Hence the limit xf := limn→∞
∫

An
f dµ exists in E. Clearly,

〈xf , x
∗〉 = lim

n→∞

∫
An

〈f, x∗〉 dµ =
∫

A

〈f, x∗〉 dµ

for all x∗ ∈ E∗. Uniqueness is obvious by the Hahn-Banach theorem. ut
The element xf is called the Pettis integral of f with respect to µ.

1.3.2 The Lebesgue-Bochner spaces Lp(A; E)

Let (A,A , µ) be a σ-finite measure space. For 1 6 p <∞ we define Lp(A;E)
as the linear space of all (equivalence classes of) strongly µ-measurable func-
tions f : A→ E for which ∫

A

‖f‖p dµ <∞,

identifying functions which are equal µ-almost everywhere. Endowed with the
norm

‖f‖Lp(A;E) :=
( ∫

A

‖f‖p dµ
) 1

p

,

the space Lp(A;E) is a Banach space; the proof for the scalar case carries
over verbatim. Repeating the second part of the proof of Proposition 1.16 we
see that the µ-simple functions are dense in Lp(A;E).

Note that the elements of L1(A;E) are precisely the equivalence classes of
µ-Bochner integrable functions.

We define L∞(A;E) as the linear space of all (equivalence classes of)
strongly µ-measurable functions f : A → E for which there exists a number
r > 0 such that µ{‖f‖ > r} = 0. Endowed with the norm

‖f‖L∞(A;E) := inf
{
r > 0 : µ{‖f‖ > r} = 0

}
,

the space L∞(A;E) is a Banach space.

Example 1.21. For each 1 6 p 6 ∞, the Fubini theorem establishes a canonical
isometric isomorphism

Lp(A1;Lp(A2;E)) ' Lp(A1 ×A2;E),

which is uniquely defined by the mapping 1A1 ⊗ (1A2 ⊗ x) 7→ 1A1×A2 ⊗ x and
linearity. Here 1A ⊗ y ∈ Lp(A;F ) is defined by (1A ⊗ y)(ξ) := 1A(ξ)y.
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1.4 Exercises

1. (!)1 Let E be a separable Banach space and let C be a closed convex subset
of E. Prove that there exists a sequence (x∗n)∞n=1 of norm one elements in
E∗ and a sequence (Fn)∞n=1 of closed sets in K such that

C =
∞⋂

n=1

{
x ∈ E : 〈x, x∗n〉 ∈ Fn

}
.

Hint: Separate C from the elements of a dense sequence in its complement
{C using the Hahn-Banach separation theorem.

2. Prove that the function f : (0, 1) → L∞(0, 1) defined by f(t) = 1(0,t) is
weakly measurable, but not strongly measurable.
Hint: In the real case, elements in the dual of L∞(0, 1) can be decomposed
into a positive and negative part. The complex case, consider real and
imaginary parts separately.

3. Let E be a Banach space and f : [0, 1] → E a continuous function. Show
that f is Bochner integrable, and that its Bochner integral coincides with
its Riemann integral.

4. A familiar theorem of calculus asserts that

d

dx

∫ 1

0

f(x, y) dy =
∫ 1

0

∂f

∂x
(x, y) dy

for suitable functions f : [0, 1]× [0, 1] → K. Show that this is a special case
of Hille’s theorem and deduce a set of rigorous conditions for this result.

5. Let (A,A , µ) be a σ-finite measure space and let 1 6 p, q 6 ∞ satisfy
1
p + 1

q = 1. Let E be a Banach space and let F be a norming subspace
of E∗. Prove that Lq(A;F ) is a norming subspace of (Lp(A;E))∗ with
respect to the duality pairing

〈f, g〉 =
∫

A

〈f(ξ), g(ξ)〉 dµ(ξ), f ∈ Lp(A;E), g ∈ Lq(A;E∗).

Hint: First find simple functions in Lq(A;F ) which norm simple functions
in Lp(A;E).

Notes. The material in this lecture is standard and can be found in many
textbooks. More complete discussions of measurability in Banach spaces can
be found in the monographs by Bogachev [8] and Vakhania, Tarieladze,
Chobanyan [105]. Systematic expositions of the Bochner integral are pre-
sented in Arendt, Batty, Hieber, Neubrander [3], Diestel and Uhl
[36], Dunford and Schwartz [37] and Lang [66].
1 Results proved in the exercises marked with (!) are needed in the main text.
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The Pettis measurability theorems 1.5 and 1.11 as well as Theorem 1.20
are due to Pettis [90]. Both versions of the Pettis measurability theorem
remain correct if we only assume f to be weakly measurable with respect to
the functionals from a subspace F of E∗ which separates the points of E, but
the proof is more involved. For more details we refer to [36] and [105].



2

Random variables in Banach spaces

In this lecture we take up the study of random variables with values in a Ba-
nach space E. The main result is the Itô-Nisio theorem (Theorem 2.17), which
asserts that various modes of convergence of sums of independent symmetric
E-valued random variables are equivalent. This result gives us a powerful tool
to check the almost sure convergence of sums of independent symmetric ran-
dom variables and will play an important role in the forthcoming lectures. The
proof of the Itô-Nisio theorem is based on a uniqueness property of Fourier
transforms (Theorem 2.8).

From this lecture onwards, we shall always assume that all spaces are real.
This assumption is convenient when dealing with Fourier transforms and, in
later lectures, when using the Riesz representation theorem to identify Hilbert
spaces and their duals. However, much of the theory also works for complex
scalars and can in fact be deduced from the real case. For some results it
suffices to note that every complex vector space is a real space (by restricting
the scalar multiplication to the reals); in others one proceeds by considering
real and imaginary parts separately. We leave it to the interested reader to
verify this in particular instances.

2.1 Random variables

A probability space is a triple (Ω,F ,P), where P is a probability measure on
a measurable space (Ω,F ), that is, P is a non-negative measure on (Ω,F )
satisfying P(Ω) = 1.

Definition 2.1. An E-valued random variable is an E-valued strongly P-
measurable function X defined on some probability space (Ω,F ,P).

We think of X as a ‘random’ element x of E, which explains the choice of
the letter ‘X’.

The underlying probability space (Ω,F ,P) will always be considered as
fixed, and the prefix ‘P-’ will be omitted from our terminology unless confusion
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may arise. For instance, ‘strongly measurable’ means ‘strongly P-measurable’
and ‘almost surely’ means ‘P-almost surely’, which is used synonymously with
‘P-almost everywhere’. All integrals of E-valued random variables will be
Bochner integrals unless stated otherwise, and the prefix ‘Bochner’ will usually
be omitted.

The integral of an integrable random variable X is called its mean value
or expectation and is denoted by

EX :=
∫

Ω

X dP.

If X is an E-valued random variable, then by Proposition 1.10 X has a
strongly F -measurable version X̃ and by Proposition 1.8 the event

{X̃ ∈ B} := {ω ∈ Ω : X̃(ω) ∈ B}

belongs to F for all B ∈ B(E). The probability P{X̃ ∈ B} does not depend
on the particular choice of the F -measurable version X̃, a fact which justifies
the notation

P{X ∈ B} := P{X̃ ∈ B}

which will be used in the sequel without further notice.

Definition 2.2. The distribution of an E-valued random variable X is the
Borel probability measure µX on E defined by

µX(B) := P{X ∈ B}, B ∈ B(E).

Random variables having the same distribution are said to be identically dis-
tributed.

In the second part of this definition we allow the random variables to be
defined on different probability spaces. If X and Y are identically distributed
E-valued random variables and f : E → F is a Borel function, then f(X) and
f(Y ) are identically distributed. For example, for 1 6 p <∞ it follows that

E‖X‖p = E‖Y ‖p

if at least one (and then both) of these expectations are finite.
The next proposition shows that every E-valued random variable is tight:

Proposition 2.3. If X is a random variable in E, then for every ε > 0 there
exists a compact set K in E such that P{X 6∈ K} < ε.

Proof. Since X is separably valued outside some null set, we may assume that
E is separable. Let (xn)∞n=1 be a dense sequence in E and fix ε > 0. For each
integer k > 1 the closed balls B(xn,

1
k ) cover E, and therefore there exists an

index Nk > 1 such that
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P
{
X ∈

Nk⋃
n=1

B
(
xn,

1
k

)}
> 1− ε

2k
.

The set K :=
⋂

k>1

⋃Nk

n=1B
(
xn,

1
k

)
is closed and totally bounded. Since E is

complete, K is compact. Moreover,

P{X 6∈ K} <
∞∑

k=1

ε

2k
= ε. ut

This result motivates the following definition.

Definition 2.4. A family X of random variables in E is uniformly tight if
for every ε > 0 there exists a compact set K in E such that

P{X 6∈ K} < ε ∀X ∈ X .

The following lemma will be useful in the proof of the Itô-Nisio theorem.

Lemma 2.5. If X is uniformly tight, then X −X = {X1 −X2 : X1, X2 ∈
X } is uniformly tight.

Proof. Let ε > 0 be arbitrary and fixed. Choose a compact set K in E such
that P{X ∈ K} > 1 − ε for all X ∈ X . The set L = {x − y : x, y ∈ K}
is compact, being the image of the compact set K ×K under the continuous
map (x, y) 7→ x− y. Since X1(ω), X2(ω) ∈ K implies X1(ω)−X2(ω) ∈ L,

P{X1 −X2 6∈ L} 6 P{X1 6∈ K}+ P{X2 6∈ K} < 2ε. ut

2.2 Fourier transforms

We begin with a definition.

Definition 2.6. The Fourier transform of a Borel probability measure µ on
E is the function µ̂ : E∗ → C defined by

µ̂(x∗) :=
∫

E

exp(−i〈x, x∗〉) dµ(x).

The Fourier transform of a random variable X : Ω → E is the Fourier trans-
form of its distribution µX .
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Note that the above integral converges absolutely, as | exp(−i〈x, x∗〉)| = 1
for all x ∈ E since we are assuming that E is a real Banach space. By a change
of variable, the Fourier transform of a random variable X on E is given by

X̂(x∗) := E exp(−i〈X,x∗〉) =
∫

E

exp(−i〈x, x∗〉) dµX(x).

The proof of the next theorem is based upon a uniqueness result known as
Dynkin’s lemma. It states that two probability measures agree if they agree
on a sufficiently rich family of sets.

Lemma 2.7 (Dynkin). Let µ1 and µ2 be two probability measures defined
on a measurable space (Ω,F ). Let A ⊆ F be a collection of sets with the
following properties:

(1) A is closed under finite intersections;
(2) σ(A ), the σ-algebra generated by A , equals F .

If µ1(A) = µ2(A) for all A ∈ A , then µ1 = µ2.

Proof. Let D denote the collection of all sets D ∈ F with µ1(D) = µ2(D).
Then A ⊆ D and D is a Dynkin system, that is,

• Ω ∈ D ;
• if D1 ⊆ D2 with D1, D2 ∈ D , then also D2 \D1 ∈ D ;
• if D1 ⊆ D2 ⊆ . . . with all Dn ∈ D , then also

⋃
n>1Dn ∈ D .

By assumption we have D ⊆ F = σ(A ); we will show that σ(A ) ⊆ D . To
this end let D0 denote the smallest Dynkin system in F containing A . We
will show that σ(A ) ⊆ D0. In view of D0 ⊆ D , this will prove the lemma.

Let C = {D0 ∈ D0 : D0 ∩ A ∈ D0 for all A ∈ A }. Then C is a Dynkin
system and A ⊆ C since A is closed under taking finite intersections. It
follows that D0 ⊆ C , since D0 is the smallest Dynkin system containing A .
But obviously, C ⊆ D0, and therefore C = D0.

Now let C ′ = {D0 ∈ D0 : D0 ∩ D ∈ D0 for all D ∈ D0}. Then C ′

is a Dynkin system and the fact that C = D0 implies that A ⊆ C ′. Hence
D0 ⊆ C ′, since D0 is the smallest Dynkin system containing A . But obviously,
C ′ ⊆ D0, and therefore C ′ = D0.

It follows that D0 is closed under taking finite intersections. But a Dynkin
system with this property is a σ-algebra. Thus, D0 is a σ-algebra, and now
A ⊆ D0 implies that also σ(A ) ⊆ D0. ut

Theorem 2.8 (Uniqueness of the Fourier transform). Let X1 and X2

be E-valued random variables whose Fourier transforms are equal:

X̂1(x∗) = X̂2(x∗) ∀x∗ ∈ E∗.

Then X1 and X2 are identically distributed.
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Proof. Since X1 and X2 are µ-separably valued there is no loss of generality
in assuming that E is separable.

Step 1 - First we prove: if λ1 and λ2 are Borel probability measures on
Rd with the property that λ̂1(t) = λ̂2(t) for all t ∈ Rd, then λ1 = λ2. By
Dynkin’s lemma, for the latter it suffices to prove that λ1(K) = λ2(K) for
all compact subsets K of Rd. By the dominated convergence theorem, for the
latter suffices to prove that∫ ∞

−∞
f(ξ) dλ1(ξ) =

∫ ∞

−∞
f(ξ) dλ2(ξ) ∀f ∈ Cc(Rd), (2.1)

where Cc(Rd) denote the space of all compactly supported continuous func-
tions on Rd.

Let ε > 0 be arbitrary and fix an f ∈ Cc(Rd). We may assume that
‖f‖∞ 6 1. Let r > 0 be so large that the support of f is contained in [−r, r]d
and such that λj

(
{[−r, r]d

)
6 ε for j = 1, 2. By the Stone-Weierstrass theorem

there exists a trigonometric polynomial p : Rd → C of period 2r such that
supt∈[−r,r]d |f(t)− p(t)| 6 ε. Then,∣∣∣ ∫

Rd

f(ξ) dλ1(ξ)−
∫

Rd

f(ξ) dλ2(ξ)
∣∣∣

6 4ε+ 2(1 + ε)ε+
∣∣∣ ∫

Rd

p(ξ) dλ1(ξ)−
∫

Rd

p(ξ) dλ2(ξ)
∣∣∣

= 4ε+ 2(1 + ε)ε,

where the terms 2(1 + ε)ε come from the estimate ‖p‖∞ 6 1 + ε and the
last equality follows from the equality of the Fourier transforms of λ1 and λ2.
Since ε > 0 was arbitrary, this proves (2.1).

Step 2 - If µ is any Borel probability measure on E, then for all d > 1 and
all t = (t1, . . . , td) ∈ Rd and x∗1, . . . , x

∗
d ∈ E∗ we have

µ̂
( d∑

j=1

tjx
∗
j

)
=

∫
E

e−i
Pd

j=1〈x,tjx∗j 〉 dµ(x) =
∫

Rd

e−i〈t,ξ〉 d(Tµ)(ξ) = T̂ µ(t),

where Tµ denotes Borel probability measure on Rd obtained as the image
measure of µ under the map T : E → Rd, x 7→ (〈x, x∗1〉, . . . , 〈x, x∗d〉), that is,

Tµ(B) := µ
{
x ∈ E : (〈x, x∗1〉, . . . , 〈x, x∗d〉) ∈ B

}
.

Step 3 - Applying Step 2 to the measures µX1 and µX2 it follows that
T̂ µX1(t) = T̂ µX2(t) for all t ∈ Rd. By Step 1, TµX1 = TµX2 . Hence µX1 and
µX2 agree on the collection C (E) consisting of all Borel sets in E of the form{

x ∈ E : (〈x, x∗1〉, . . . , 〈x, x∗d〉) ∈ B
}

with d > 1, x∗1, . . . , x
∗
d ∈ E∗ and B ∈ B(Rd). Since E is separable, every

closed ball {x ∈ E : ‖x− x0‖ 6 r} can be written as a countable intersection
of sets in C (E) (see Exercise 1.1). Thus the family C (E) generates the Borel
σ-algebra B(E) and µX1 = µX2 by Dynkin’s Lemma. ut
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2.3 Convergence in probability

In the absence of integrability conditions the following definition for conver-
gence of random variables is often very useful.

Definition 2.9. A sequence (Xn)∞n=1 of E-valued random variables converges
in probability to an E-valued random variable X if for all r > 0 we have

lim
n→∞

P{‖Xn −X‖ > r} = 0.

If limn→∞Xn = X in Lp(Ω;E) for some 1 6 p <∞, then limn→∞Xn =
X in probability. This follows from Chebyshev’s inequality, which states that
if ξ ∈ Lp(Ω), then for all r > 0 we have

P{|ξ| > r} 6
1
rp

E|ξ|p.

The proof is simple:

P{|ξ| > r} =
1
rp

∫
{|ξ|p>rp}

rp dP 6
1
rp

∫
{|ξ|p>rp}

|ξ|p dP 6
1
rp

E|ξ|p.

Our first aim is to show that if (Xn)∞n=1 converges in probability, then
some subsequence converges almost surely. For this we need a lemma which
is known as the Borel-Cantelli lemma.

Lemma 2.10 (Borel-Cantelli). If (A,A , µ) is a measure space and (An)∞n=1

is a sequence in A satisfying
∑∞

n=1 µ(An) <∞, then

µ
( ⋂

k>1

⋃
n>k

An

)
= 0.

Proof. Let k0 > 1. Then,

µ
( ⋂

k>1

⋃
n>k

An

)
6 µ

( ⋃
n>k0

An

)
6

∞∑
n=k0

µ(An),

and the right hand side tends to 0 as k0 →∞. ut

Note that ω ∈
⋂

k>1

⋃
n>k An if and only if ω ∈ An for infinitely many

indices n.

Proposition 2.11. If a sequence (Xn)∞n=1 of E-valued random variables con-
verges in probability, then it has an almost surely convergent subsequence
(Xnk

)∞k=1.
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Proof. Let limn→∞Xn = X in probability. Choose an increasing sequence of
indices n1 < n2 < . . . satisfying

P
{
‖Xnk

−X‖ > 1
k

}
<

1
2k

∀k > 1.

By the Borel-Cantelli lemma,

P
{
‖Xnk

−X‖ > 1
k

for infinitely many k > 1
}

= 0.

Outside this null set we have limk→∞Xnk
= X pointwise. ut

2.4 Independence

Next we recall the notion of independence. The reader who is already familiar
with it may safely skip this section.

Definition 2.12. A family of random variables (Xi)i∈I , where I is some in-
dex set and each Xi takes values in a Banach space Ei, is independent if for
all choices of distinct indices i1, . . . , iN ∈ I and all Borel sets B1, . . . , BN in
Ei1 , . . . , EiN

we have

P{Xi1 ∈ B1, . . . , XiN
∈ BN} =

N∏
n=1

P{Xin ∈ Bn}.

Note that (Xi)i∈I is independent if and only if every finite subfamily of
(Xi)i∈I is independent. Thus, in order to check independence of a given family
of random variables it suffices to consider its finite subfamilies.

We assume that the reader is familiar with the elementary properties of
independent real-valued random variables such as covered in a standard course
on probability. Here we content ourselves recalling that if η and ξ are real-
valued random variables which are integrable and independent, then their
product ηξ is integrable and E(ηξ) = Eη Eξ.

In the next two propositions, X1, . . . , XN are random variables with values
in the Banach spaces E1, . . . , EN , respectively. If ν1, . . . , νn are probability
measures, we denote by ν1× · · ·× νn their product measure. The distribution
of the EN -valued random variable (X1, . . . , XN ) is denoted by µ(X1,...,XN ).

Proposition 2.13. The random variables X1, . . . , XN are independent if and
only if

µ(X1,...,XN ) = µX1 × · · · × µXN
.

Proof. By definition, the random variables X1, . . . , XN are independent if
and only if µ(X1,...,XN ) and µX1 × · · · × µXN

agree on all Borel rectangles
B1× · · ·×BN in E1× · · ·×EN . By Dynkin’s lemma this happens if and only
if µ(X1,...,XN ) = µX1 × · · · × µXN

. ut
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We record two corollaries.

Proposition 2.14. If limn→∞Xn = X and limn→∞ Yn = Y in probability
and each Xn is independent of Yn, then X and Y are independent.

Proof. By passing to a subsequence we may assume that limn→∞Xn = X
and limn→∞ Yn = Y almost surely. We consider the E × E-valued random
variables Zn = (Xn, Yn) and Z = (X,Y ). Identifying the dual of E × E with
E∗ × E∗, by dominated convergence we obtain

µ̂Z(x∗, y∗) = E exp(−i(〈X,x∗〉+ 〈Y, y∗〉))
= lim

n→∞
E exp(−i(〈Xn, x

∗〉+ 〈Yn, y
∗〉))

= lim
n→∞

E exp(−i〈Xn, x
∗〉)E exp(−i〈Yn, y

∗〉)

= E exp(−i〈X,x∗〉)E exp(−i〈Y, y∗〉)
= µ̂X(x∗)µ̂Y (y∗) = ̂µX × µY (x∗, y∗).

From Theorem 2.8 we conclude that µZ = µX × µY . Now the result follows
from Proposition 2.13. ut

Definition 2.15. An E-valued random variable X is called symmetric if X
and −X are identically distributed.

Proposition 2.16. If X is symmetric and independent of Y , then for all
1 6 p <∞ we have

E‖X‖p 6 E‖X + Y ‖p.

Proof. The symmetry of X and the independence of X and Y imply that
X + Y and −X + Y are identically distributed, and therefore(

E‖X‖p
) 1

p = 1
2

(
E‖(X + Y ) + (X − Y )‖p

) 1
p

6 1
2

(
E‖X + Y ‖p

) 1
p + 1

2

(
E‖X − Y ‖p

) 1
p =

(
E‖X + Y ‖p

) 1
p . ut

2.5 The Itô-Nisio theorem

In this section we prove a celebrated result, due to Itô and Nisio, which
states that a sum of symmetric and independent E-valued random variables
converges (weakly) almost surely if and only if it converges in probability.

Here is the precise statement of the theorem:

Theorem 2.17 (Itô-Nisio). Let Xn : Ω → E, n > 1, be independent sym-
metric random variables, put Sn :=

∑n
j=1Xj, and let S : Ω → E be a random

variable. The following assertions are equivalent:
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(1) for all x∗ ∈ E∗ we have limn→∞〈Sn, x
∗〉 = 〈S, x∗〉 almost surely;

(2) for all x∗ ∈ E∗ we have limn→∞〈Sn, x
∗〉 = 〈S, x∗〉 in probability;

(3) we have limn→∞ Sn = S almost surely;
(4) we have limn→∞ Sn = S in probability.

If these equivalent conditions hold and E‖S‖p <∞ for some 1 6 p <∞, then

lim
n→∞

E‖Sn − S‖p = 0.

We begin with a tail estimate known as Lévy’s inequality.

Lemma 2.18. Let X1, . . . , Xn be independent symmetric E-valued random
variables, and put Sk :=

∑k
j=1Xj for k = 1, . . . , n. Then for all r > 0 we

have
P
{

max
16k6n

‖Sk‖ > r
}

6 2P{‖Sn‖ > r}.

Proof. Put

A :=
{

max
16k6n

‖Sk‖ > r
}
,

Ak := {‖S1‖ 6 r, . . . , ‖Sk−1‖ 6 r, ‖Sk‖ > r}; k = 1, . . . , n.

The sets A1, . . . , An are disjoint and
⋃n

k=1Ak =
{

max16k6n ‖Sk‖ > r
}
.

The identity Sk = 1
2 (Sn + (2Sk − Sn)) implies that

{‖Sk‖ > r} ⊆ {‖Sn‖ > r} ∪ {‖2Sk − Sn‖ > r}.

We also note (X1, . . . , Xn) and (X1, . . . , Xk,−Xk+1, . . . ,−Xn) are identically
distributed (see Exercise 2), which, in view of the identities

Sn = Sk +Xk+1 + · · ·+Xn, 2Sk − Sn = Sk −Xk+1 − · · · −Xn,

implies that (X1, . . . , Xk, Sn) and (X1, . . . , Xk, 2Sk − Sn) are identically dis-
tributed. Hence,

P(Ak) 6 P(Ak ∩ {‖Sn‖ > r}) + P(Ak ∩ {‖2Sk − Sn‖ > r})
= 2P(Ak ∩ {‖Sn‖ > r}).

Summing over k we obtain

P(A) =
n∑

k=1

P(Ak) 6 2
n∑

k=1

P(Ak ∩ {‖Sn‖ > r}) = 2P{‖Sn‖ > r}. ut
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Proof (Proof of Theorem 2.17). We prove the implications (2)⇒(4)⇒(3), the
implications (3)⇒(1)⇒(2) being clear.

(2)⇒(4): We split this proof into two steps.

Step 1 – In this step we prove that the sequence (Sn)n>1 is uniformly tight.
For all m > n and x∗ ∈ E∗ the random variables 〈Sm − Sn, x

∗〉 and
±〈Sn, x

∗〉 are independent. Hence by Proposition 2.14, 〈S − Sn, x
∗〉 and

±〈Sn, x
∗〉 are independent. Next we claim that S and S − 2Sn are identi-

cally distributed. Indeed, denote their distributions by µ and λn, respectively.
By the independence of 〈S − Sn, x

∗〉 and ±〈Sn, x
∗〉 and the symmetry of Sn,

for all x∗ ∈ E∗ we have

µ̂(x∗) = E
(
e−i〈S,x∗〉) = E

(
e−i〈S−Sn,x∗〉) · E (

e−i〈Sn,x∗〉)
= E

(
e−i〈S−Sn,x∗〉) · E (

e−i〈−Sn,x∗〉)
= E

(
e−i〈S−2Sn,x∗〉) = λ̂n(x∗).

By Theorem 2.8, this shows that µ = λn and the claim is proved.
Given ε > 0 we can find a compact set K ⊆ E with µ(K) = P{S ∈ K} >

1− ε. The set L := 1
2 (K −K) is compact as well, and arguing as in the proof

of Lemma 2.5 we have

P{Sn 6∈ L} 6 P{S 6∈ K}+ P{S − 2Sn 6∈ K} = 2P{S 6∈ K} < 2ε.

It follows that P{Sn ∈ L} > 1 − 2ε for all n > 1, and therefore the sequence
(Sn)∞n=1 is uniformly tight.

Step 2 – By Lemma 2.5, the sequence (Sn − S)n>1 is uniformly tight. Let
νn denote the distribution of Sn − S. We need to prove that for all ε > 0 and
r > 0 there exists an index N > 1 such that

P{‖Sn − S‖ > r} = νn({B(0, r)) < ε ∀n > N.

Suppose, for a contradiction, that such an N does not exist for some ε > 0
and r > 0. Then there exists a subsequence (Snk

)k>1 such that

νnk
({B(0, r)) > ε, k > 1.

On the other hand, by uniform tightness we find a compact set K such that
νnk

(K) > 1− 1
2ε for all k > 1. It follows that

νnk
(K ∩ {B(0, r)) > 1

2ε, k > 1.

By covering the compact set K ∩ {B(0, r) with open balls of radius 1
2r and

passing to a subsequence, we find a ball B not containing 0 and a number
δ > 0 such that

νnkj
(K ∩B) = P{Snkj

− S ∈ K ∩B} > δ, j > 1.
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By the Hahn-Banach separation theorem, there is a functional x∗ ∈ E∗ such
that 〈x, x∗〉 > 1 for all x ∈ B. For all ω ∈ {Snk

− S ∈ K ∩ B} it follows
that 〈Snkj

(ω) − S(ω), x∗〉 > 1. Thus, 〈Snk
, x∗〉 fails to converge to 〈S, x∗〉 in

probability. This contradiction concludes the proof.

(4)⇒(3): Assume that limn→∞ Sn = S in probability for some random
variable S. By Proposition 2.11 there is a subsequence (Snk

)∞k=1 converging
almost surely to S. Fix k and let m > nk. Then by Lévy’s inequality,

P
{

sup
nk6j6m

‖Sj − Snk
‖ > r

}
6 2P(‖Sm − Snk

‖ > r)

6 2P
{
‖Sm − S‖ >

r

2

}
+ 2P

{
‖S − Snk

‖ >
r

2

}
.

Letting m→∞ we find

P
{

sup
j>nk

‖Sj − Snk
‖ > r

}
6 2P

{
‖S − Snk

‖ >
r

2

}
,

and hence, upon letting k →∞,

lim
k→∞

P
{

sup
j>nk

‖Sj − Snk
‖ > r

}
= 0.

Since Snk
→ S pointwise a.e., it follows that

P
{

lim
k→∞

sup
j>nk

‖Sj − S‖ > 2r
}

6 lim
k→∞

P
{

sup
j>nk

‖Sj − S‖ > 2r
}

6 lim
k→∞

P
{

sup
j>nk

‖Sj − Snk
‖ > r

}
+ lim

k→∞
P
{

sup
j>nk

‖Snk
− S‖ > r

}
= 0.

It remains to prove the assertion about Lp-convergence. First we note that
S = Sn+(S−Sn) with Sn and S−Sn independent (by the independence of Sn

and Sm−Sn for m > n and Proposition 2.14), and therefore E‖Sn‖p 6 E‖S‖p

by Proposition 2.16. Hence by an integration by parts (see Exercise 1) and
Lévy inequality,

E sup
16k6n

‖Sk‖p =
∫ ∞

0

prp−1P
{

sup
16k6n

‖Sk‖ > r
}
dr

6 2
∫ ∞

0

prp−1P{‖Sn‖ > r} dr = 2E‖Sn‖p 6 2E‖S‖p.

Hence E supk>1 ‖Sk‖p 6 2E‖S‖p by the monotone convergence theorem. Now
limn→∞ ‖Sn − S‖p = 0 follows from the dominated convergence theorem. ut

2.6 Exercises

1. (!) Let ξ be a non-negative random variable and let 1 6 p <∞. Prove the
integration by parts formula
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Eξp =
∫ ∞

0

pλp−1P{ξ > λ} dλ.

Hint: Write P{ξ > λ} = E1{ξ>λ} and apply Fubini’s theorem.

2. (!) Let X1, . . . , XN be independent symmetric E-valued random variables.
Show that for all choices of ε1, . . . , εN ∈ {−1,+1} the EN -valued random
variables (X1, . . . , XN ) and (ε1X1, . . . , εNXN ) are identically distributed.

3. (!) Define the convolution of two Borel measures µ and ν on E by

µ ∗ ν(B) :=
∫

E

∫
E

1B(x+ y) dµ(x) dν(y), B ∈ B(E).

Prove that for all x∗ ∈ E∗ we have µ̂ ∗ ν(x∗) = µ̂(x∗)ν̂(x∗).

4. A sequence of E-valued random variables (Xn)∞n=1 is Cauchy in probability
if for all ε > 0 and r > 0 there exists an index N > 1 such that

P{‖Xn −Xm‖ > r} < ε ∀m,n > N.

Show that (Xn)∞n=1 is Cauchy in probability if and only if (Xn)∞n=1 con-
verges in probability.
Hint: For the ‘if’ part, first show that some subsequence of (Xn)∞n=1

converges almost surely.

5. Let (Xn)∞n=1 be a sequence of E-valued random variables. Prove that if
limn→∞Xn = X in probability, then (Xn)∞n=1 is uniformly tight.

Notes. There are many excellent introductory texts on Probability Theory,
among them the classic by Chung [21]. The more analytically inclined reader
might consult Stromberg [101]. A comprehensive treatment of modern Prob-
ability Theory is offered by Kallenberg [55].

Thorough discussions of Banach space-valued random variables can be
found in the monographs by Kwapień and Woyczyński [65], Ledoux and
Talagrand [69], and Vakhania, Tarieladze, and Chobanyan [105].

The Itô-Nisio theorem was proved by Itô and Nisio in their beautiful
paper [52] which we recommend for further reading. The usual proofs of this
theorem are based upon the following celebrated and non-trivial compactness
theorem due to Prokhorov:

Theorem 2.19 (Prokhorov). For a family M of Borel probability mea-
sures on a separable complete metric space M the following assertions are
equivalent:

(1) M is uniformly tight;
(2) Every sequence (µn)∞n=1 in M has a weakly convergent subsequence.
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Here, (1) means that for all ε > 0 there exists a compact set K in M such
that µ({K) < ε for all µ ∈ M , and (2) means that there exist a subsequence
(µnk

)k>1 and a Borel probability measure µ such that

lim
k→∞

∫
M

f dµnk
=

∫
M

f dµ

for all bounded continuous functions f : M → R. This theorem is the starting
point of measure theory on metric spaces. Expositions of this subject can be
found in the monographs by Billingsley [7] and Parthasarathy [88], as
well as in the recent two-volume treatise on measure theory by Bogachev
[9]. Readers familiar with it will have noticed that some of the results which
we have stated for E-valued random variables, such as Proposition 2.3 and
Theorem 2.8, could just as well be stated for probability measures on E.
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Sums of independent random variables

This lecture collects a number of estimates for sums of independent random
variables with values in a Banach space E. We concentrate on sums of the
form

∑N
n=1 γnxn, where the γn are real-valued Gaussian variables and the

xn are vectors in E. As we shall see later on such sums are the building
blocks of general E-valued Gaussian random variables and, perhaps more
importantly, stochastic integrals of E-valued step functions are of this form.
Furthermore, they are used in the definition of various geometric properties
of Banach spaces, such as type and cotype.

The highlights of this lecture are the Kahane contraction principle (The-
orem 3.1), a covariance domination principle (Theorem 3.9) and the Kahane-
Khintchine inequalities (Theorems 3.11 and 3.12).

3.1 Gaussian sums

We begin with an important inequality for sums of independent symmetric
random variables, due to Kahane.

Theorem 3.1 (Kahane contraction principle). Let (Xn)∞n=1 be a se-
quence of independent symmetric E-valued random variables. Then for all
a1, . . . , aN ∈ R and 1 6 p <∞,

E
∥∥∥ N∑

n=1

anXn

∥∥∥p

6
(

max
16n6N

|an|
)p E

∥∥∥ N∑
n=1

Xn

∥∥∥p

.

Proof. For all (ε1, . . . , εN ) ∈ {−1,+1}N the EN -valued random variables
(X1, . . . , XN ) and (ε1X1, . . . , εNXN ) are identically distributed and therefore

E
∥∥∥ N∑

n=1

εnXn

∥∥∥p

= E
∥∥∥ N∑

n=1

Xn

∥∥∥p

.
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For the general case we may assume that |an| 6 1 for all n = 1, . . . , N . Then
a = (a1, . . . , aN ) is a convex combination of the 2N elements of {−1,+1}N ,
say a =

∑2N

j=1 λ
(j)ε(j). Hence,

E
∥∥∥ N∑

n=1

anXn

∥∥∥p

= E
∥∥∥ 2N∑

j=1

λ(j)
N∑

n=1

ε(j)n Xn

∥∥∥p

6 E
( 2N∑

j=1

λ(j)
∥∥∥ N∑

n=1

ε(j)n Xn

∥∥∥)p

6 E
2N∑
j=1

λ(j)
∥∥∥ N∑

n=1

ε(j)n Xn

∥∥∥p

=
2N∑
j=1

λ(j)E
∥∥∥ N∑

n=1

Xn

∥∥∥p

= E
∥∥∥ N∑

n=1

Xn

∥∥∥p

,

where the third step follows from the convexity of the function t 7→ tp (or an
application of Jensen’s inequality). ut

As an application of the Kahane contraction principle we shall prove an
inequality which shows that Rademacher sums have the ‘smallest’ Lp-norms
among all random sums. Rademacher sums are easier to handle than the
Gaussian sums in which we are ultimately interested, and, as we shall see, there
are various techniques to pass on results for Rademacher sums to Gaussian
sums.

Let us begin with a definition. An {−1,+1}-valued random variable r is
called a Rademacher variable if

P{r = −1} = P{r = +1} =
1
2
.

Throughout these lectures, the notation (rn)∞n=1 will be used for a Rademacher
sequence, that is, a sequence of independent Rademacher variables.

Theorem 3.2 (Comparison). Let (ϕn)∞n=1 be a sequence of independent
symmetric integrable real-valued random variables satisfying E|ϕn| > 1 for all
n > 1. Then for all x1, . . . , xN ∈ E and 1 6 p <∞ we have

E
∥∥∥ N∑

n=1

rnxn

∥∥∥p

6 E
∥∥∥ N∑

n=1

ϕnxn

∥∥∥p

.

The proof of this theorem relies on an auxiliary lemma, for which we need
two definitions based on the following easy observation: if X1, . . . , XN are
random variables with values in E1, . . . , EN , then (X1, . . . , XN ) is a random
variable with values in E1 × · · · × EN .



3.1 Gaussian sums 31

Definition 3.3. Two families of random variables (Xi)i∈I and (Yi)i∈I , where
I is some index set and Xi and Yi take values in a Banach space Ei, are
identically distributed if for all choices of i1, . . . , iN ∈ I the random variables
(Xi1 , . . . , XiN

) and (Yi1 , . . . , YiN
) are identically distributed.

Note that by Proposition 2.13, if (Xi)i∈I and (Yi)i∈I are families of inde-
pendent random variables such that Xi and Yi are identically distributed for
all i ∈ I, then (Xi)i∈I and (Yi)i∈I are identically distributed.

Definition 3.4. Two families of random variables (Xi)i∈I and (Yj)j∈J , where
I and J are index sets, Xi takes values in Ei for all i ∈ I and Yj takes values in
Fj for all j ∈ J , are independent of each other if for all choices i1, . . . , iM ∈ I
and j1, . . . , jN ∈ I the random variables (Xi1 , . . . , XiM

) and (Yj1 , . . . , YiN
) are

independent.

Lemma 3.5. Let (ϕn)∞n=1 be a sequence of independent symmetric real-valued
random variables and let (rn)∞n=1 be a Rademacher sequence independent of
(ϕn)∞n=1. The sequences (ϕn)∞n=1 and (rn|ϕn|)∞n=1 are identically distributed.

Proof. By independence and symmetry we have

P{rn|ϕn| ∈ B}
= P{rn = 1, ϕn > 0, ϕn ∈ B}+ P{rn = 1, ϕn < 0, ϕn ∈ −B}

+ P{rn = −1, ϕn > 0, ϕn ∈ −B}+ P{rn = −1, ϕn < 0, ϕn ∈ B}
= 1

2P{ϕn > 0, ϕn ∈ B}+ 1
2P{ϕn < 0, ϕn ∈ −B}

+ 1
2P{ϕn > 0, ϕn ∈ −B}+ 1

2P{ϕn < 0, ϕn ∈ B}
= 1

2P{ϕn > 0, ϕn ∈ B}+ 1
2P{ϕn > 0, ϕn ∈ B}

+ 1
2P{ϕn 6 0, ϕn ∈ B}+ 1

2P{ϕn < 0, ϕn ∈ B}
= P{ϕn ∈ B}.

Since (ϕn)∞n=1 and (rn|ϕn|)∞n=1 are sequences of independent random vari-
ables, the lemma now follows from the observation preceding Definition 3.4.

ut

Proof (Proof of Theorem 3.2). We may assume that the sequences (ϕn)∞n=1

and (rn)∞n=1 are defined on distinct probability spaces Ωϕ and Ωr. By consid-
ering the ϕn and rn as random variables on the probability space Ωϕ × Ωr,
we may assume that (ϕn)∞n=1 and (rn)∞n=1 are independent of each other.

Since Eϕ|ϕn| > 1, with the Kahane contraction principle and Jensen’s
inequality we obtain

Er

∥∥∥ N∑
n=1

rnxn

∥∥∥p

6 Er

∥∥∥Eϕ

N∑
n=1

rn|ϕn|xn

∥∥∥p

6 ErEϕ

∥∥∥ N∑
n=1

rn|ϕn|xn

∥∥∥p

= Eϕ

∥∥∥ N∑
n=1

ϕnxn

∥∥∥p

,
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where the last identity follows from Lemma 3.5. ut

A real-valued random variable γ is called standard Gaussian if its distri-
bution has density

fγ(t) =
1√
2π

exp(− 1
2 t

2)

with respect to the Lebesgue measure on R. For later reference we note that
γ is standard Gaussian if and only if its Fourier transform is given by

E exp(−iξγ) = exp(− 1
2ξ

2), ξ ∈ R. (3.1)

The ‘only if’ statement follows from the identity

1√
2π

∫ ∞

−∞
exp(−iξt− 1

2 t
2) dt = exp(− 1

2ξ
2)

which can be proved by completing the squares in the exponential and then
shifting the path of integration from iξ+R to R by using Cauchy’s formula; the
‘if’ part then follows from the injectivity of the Fourier transform (Theorem
2.8).

For a standard Gaussian random variable γ we have

E|γ| = 1√
2π

∫ ∞

−∞
|t| exp(− 1

2 t
2) dt =

2√
2π

∫ ∞

0

t exp(− 1
2 t

2) dt =
√

2/π. (3.2)

From this point on, (γn)∞n=1 will always denote a Gaussian sequence, that is,
a sequence of independent standard Gaussian variables.

From (3.2) and Theorem 3.2 we obtain the following comparison result.

Corollary 3.6. For all x1, . . . , xN ∈ E and 1 6 p <∞,

E
∥∥∥ N∑

n=1

rnxn

∥∥∥p

6 (π/2)
p
2 E

∥∥∥ N∑
n=1

γnxn

∥∥∥p

. (3.3)

The geometric notions of type and cotype will be introduced in the exer-
cises. Without proof we state the following important converse to Corollary
3.6 for Banach spaces with finite cotype. Examples of spaces with finite cotype
are Hilbert spaces, Lp-spaces for 1 6 p <∞, and the UMD spaces which will
be introduced in later lectures.

Theorem 3.7. If E has finite cotype, there exists a constant C > 0 such that
for all x1, . . . , xN ∈ E,

E
∥∥∥ N∑

n=1

γnxn

∥∥∥2

6 C2 E
∥∥∥ N∑

n=1

rnxn

∥∥∥2

.
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The Kahane-Khintichine inequalities (Theorems 3.11 and 3.12 below) can
be used to extend this inequality to arbitrary exponents 1 6 p <∞.

The proof of Theorem 3.7 is beyond the scope of these lectures; we refer to
the Notes at the end of the lecture for references to the literature. When taken
together, Corollary 3.6 and Theorem 3.7 show that in spaces with finite cotype,
Gaussian sequences and Rademacher sums can be used interchangeably.

Without any assumptions on E, Theorem 3.7 fails. This is shown by the
next example.

Example 3.8. Let E = c0 and let (un)∞n=1 be the standard unit basis of c0.
Then

E
∥∥∥ N∑

n=1

rnun

∥∥∥
c0

= E
(

max
16n6N

|rn|
)

= 1.

Next we estimate E
∥∥∑N

n=1 γnun

∥∥
c0

from below. First, if γ is standard Gaus-
sian, the inequality 1− x 6 e−x implies

P
{

max
16n6N

|γn| 6 r
}

=
[
1− P{|γ| > r}

]N
6 exp(−NP{|γ| > r}).

For r = 1
2

√
logN we estimate

P{|γ| > 1
2

√
logN} >

2√
2π

∫ √
log N

1
2

√
log N

e−
1
2 x2

dx

>
2√
2π

· 1
2

√
logN · e− 1

2 log N =

√
logN
2πN

.

Hence, using the integration by parts formula of Exercise 2.1,

E
∥∥∥ N∑

n=1

γnun

∥∥∥
c0

= E
(

max
16n6N

|γn|
)

=
∫ ∞

0

P
{

max
16n6N

|γn| > r
}
dr

>
∫ 1

2

√
log N

0

[
1− exp(−NP{|γ| > r})

]
dr

> 1
2

√
logN ·

[
1− exp

(
−

√
N logN

2π

)]
h 1

2

√
logN as N →∞.

Similar estimates show that the bound O(
√

logN) for N → ∞ is of the
correct order.

We conclude this section with an important comparison result for Gaussian
sums.
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Theorem 3.9 (Covariance domination). Let (γm)∞m=1 and (γ′n)∞n=1 be
Gaussian sequences on probability spaces Ω and Ω′, respectively, and let
x1, . . . , xM and y1, . . . , yN be elements of E satisfying

M∑
m=1

〈xm, x
∗〉2 6

N∑
n=1

〈yn, x
∗〉2 ∀x∗ ∈ E∗.

Then, for all 1 6 p <∞,

E
∥∥∥ M∑

m=1

γmxm

∥∥∥p

6 E′
∥∥∥ N∑

n=1

γ′nyn

∥∥∥p

.

Proof. Denote by F the linear span of {x1, . . . , xM , y1, . . . , yN} in E. Define
Q ∈ L (F ∗, F ) by

Qz∗ :=
N∑

n=1

〈yn, z
∗〉yn −

M∑
m=1

〈xm, z
∗〉xm, z∗ ∈ F ∗.

The assumption of the theorem implies that 〈Qz∗, z∗〉 > 0 for all z∗ ∈ F ∗,
and it is clear that 〈Qz∗1 , z∗2〉 = 〈Qz∗2 , z∗1〉 for all z∗1 , z

∗
2 ∈ F ∗. Since F is finite-

dimensional, by linear algebra we can find a sequence (xj)M+k
j=M+1 in F such

that Q is represented as

Qz∗ =
M+k∑

j=M+1

〈xj , z
∗〉xj , z∗ ∈ F ∗.

We leave the verification of this statement as an exercise for the moment and
shall return to this issue from a more general point of view in the next lecture.

Now,
M+k∑
m=1

〈xm, z
∗〉2 =

N∑
n=1

〈yn, z
∗〉2, z∗ ∈ F ∗. (3.4)

It follows from (3.1) that the random variables X :=
∑M+k

m=1 γmxm and Y :=∑N
n=1 γ

′
nyn have Fourier transforms

E exp(−i〈X,x∗〉) =
M+k∏
m=1

E exp(−iγm〈xm, x
∗〉)

=
M+k∏
m=1

exp
(
− 1

2
〈xm, x

∗〉2
)

= exp
(
− 1

2

M+k∑
m=1

〈xm, x
∗〉2

)
and similarly E′ exp(−i〈Y, x∗〉) = exp(− 1

2

∑N
n=1〈yn, x

∗〉2). Hence by (3.4) and
Theorem 2.8, X and Y are identically distributed. Thus, for all 1 6 p <∞,
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E
∥∥∥ M+k∑

m=1

γmxm

∥∥∥p

= E′
∥∥∥ N∑

n=1

γ′nyn

∥∥∥p

.

By Proposition 2.16,

E
∥∥∥ M∑

m=1

γmxm

∥∥∥p

6 E
∥∥∥ M+k∑

m=1

γmxm

∥∥∥p

,

and the proof is complete. ut

3.2 The Kahane-Khintchine inequality

The main result of this section states that all Lp-norms of an E-valued Gaus-
sian sum are comparable, with universal constants depending only on p. First
we prove the analogous result for Rademacher sums; then we use the central
limit theorem to pass it on to Gaussian sums.

The starting point is the following inequality, which is a consequence of
Lévy’s inequality.

Lemma 3.10. For all x1, . . . , xN ∈ E and r > 0 we have

P
{∥∥∥ N∑

n=1

rnxn

∥∥∥ > 2r
}

6 4
[
P
{∥∥∥ N∑

n=1

rnxn

∥∥∥ > r
}]2

.

Proof. Let us write Sn :=
∑n

j=1 rjxj . As in the proof of Lemma 2.18 we put

An := {‖S1‖ 6 r, . . . , ‖Sn−1‖ 6 r, ‖Sn‖ > r}.

If for an ω ∈ An we have ‖SN (ω)‖ > 2r, then ‖SN (ω)−Sn−1(ω)‖ > r. Now the
crucial observation is that (r1, . . . , rN ) and (r1, . . . , rn, rnrn+1, . . . , rnrN )
are identically distributed; we leave the easy proof as an exercise. From this
and the fact that |rn| = 1 almost surely we obtain

P(An ∩ {‖SN − Sn−1‖ > r}) = P
(
An ∩

{∥∥∥ N∑
j=n

rjxj

∥∥∥ > r
})

= P
(
An ∩

{∥∥∥rn N∑
j=n

rjxj

∥∥∥ > r
})

= P
(
An ∩

{∥∥∥xn +
N∑

j=n+1

rnrjxj

∥∥∥ > r
})

= P
(
An ∩

{∥∥∥xn +
N∑

j=n+1

rjxj

∥∥∥ > r
})

= P(An ∩ {‖xn + (SN − Sn)‖ > r}),
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and similarly P{‖SN − Sn−1‖ > r} = P{‖xn + (SN − Sn)‖ > r}. Hence, by
the independence of An and SN − Sn,

P(An ∩ {‖SN‖ > 2r}) 6 P(An ∩ {‖SN − Sn−1‖ > r})
= P(An)P{‖xn + (SN − Sn)‖ > r}
= P(An)P{‖SN − Sn−1‖ > r} 6 2P(An)P{‖SN‖ > r},

where the last step follows from Lévy’s inequality after changing the order
of summation. Summing over n = 1, . . . , N and using Lévy’s inequality once
more we obtain

P{‖SN‖ > 2r} =
N∑

n=1

P(An ∩ {‖SN‖ > 2r}) 6 2
N∑

n=1

P(An)P{‖SN‖ > r}

= 2P
{

max
16n6N

‖Sn‖ > r
}

P{‖SN‖ > r} 6 4[P{‖SN‖ > r}]2. ut

We are now ready to prove the following result, which is the Banach space
generalisation due to Kahane of a classical result for scalar random variables
of Khintchine.

Theorem 3.11 (Kahane-Khintchine inequality - Rademacher sums).
For all 1 6 p, q < ∞ there exists a constant Kp,q, depending only on p and
q, such that for all finite sequences x1, . . . , xN ∈ E we have(

E
∥∥∥ N∑

n=1

rnxn

∥∥∥p) 1
p

6 Kp,q

(
E

∥∥∥ N∑
n=1

rnxn

∥∥∥q) 1
q

.

Proof. By Hölder’s inequality it suffices to consider the case p > 1 and q = 1.
Fix vectors x1, . . . , xN ∈ E. Writing Xn = rnxn and SN =

∑N
n=1Xn, we

may assume that E‖SN‖ = 1.
Let j > 1 be the unique integer such that 2j−1 < p 6 2j . By successive

applications of Lemma 3.10 for r > 0 we have

P{‖SN‖ > 2jr} 6 42j−1(P{‖SN‖ > r})2
j

.

Chebyshev’s inequality gives rP{‖SN‖ > r} 6 E‖SN‖ = 1. Hence,

E‖SN‖p =
∫ ∞

0

ptp−1P{‖SN‖ > t} dt

= 2jp

∫ ∞

0

prp−1P{‖SN‖ > 2jr} dr

6 2jp42j−1

∫ ∞

0

prp−1(P{‖SN‖ > r})2
j

dr

6 (2p)p42p−1

∫ ∞

0

prp−1(P{‖SN‖ > r})p dr

6 (2p)p42p−1

∫ ∞

0

pP{‖SN‖ > r} dr

6 (2p)p42p−1p.
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ut

The best possible constants Kp,q in this inequality are called the Kahane-
Khintchine constants. Note that Kp,q = 1 if p 6 q by Hölder’s inequality.
The bound on Kp,1 produced in the above proof is not the best possible: for
instance it is known that Kp,1 = 21− 1

p ; see the Notes at the end of the lecture.
By an application of the central limit theorem, the Kahane-Khintchine

inequality extends to Gaussian sums:

Theorem 3.12 (Kahane-Khintchine inequality - Gaussian sums). For
all 1 6 p, q <∞ and all finite sequences x1, . . . , xN ∈ E we have

(
E

∥∥∥ N∑
n=1

γnxn

∥∥∥p) 1
p

6 Kp,q

(
E

∥∥∥ N∑
n=1

γnxn

∥∥∥q) 1
q

,

where Kp,q is the Kahane-Khintchine constant.

Proof. Fix k = 1, 2, . . . and define ϕ(k)
n := 1√

k

∑k
j=1 rnk+j . For each k we have

(
E

∥∥∥ N∑
n=1

ϕ(k)
n xn

∥∥∥p) 1
p

=
(
E

∥∥∥ N∑
n=1

k∑
j=1

rnk+j
xn√
k

∥∥∥p) 1
p

6 Kp,q

(
E

∥∥∥ N∑
n=1

k∑
j=1

rnk+j
xn√
k

∥∥∥q) 1
q

= Kp,q

(
E

∥∥∥ N∑
n=1

ϕ(k)
n xn

∥∥∥q) 1
q

.

The proof is completed by passing to the limit k →∞ and using the central
limit theorem. ut

The attentive reader has noticed that we are cheating a bit in the above
proof, as the usual formulation of the central limit theorem only asserts that
limk→∞(ϕ(k)

1 , . . . , ϕ
(k)
N ) = (γ1, . . . , γN ) in distribution, that is,

lim
k→∞

Ef(ϕ(k)
1 , . . . , ϕ

(k)
N ) = Ef(γ1, . . . , γN )

for all bounded continuous functions f : RN → R. We will show next how,
in the present situation, the convergence of the Lr-norms (with r = p, q) of
the sums can be deduced from this. The main idea is contained in the next
lemma.

Lemma 3.13. Suppose ϕ0, ϕ1, . . . and ϕ are RN -valued random variables
such that for all bounded continuous functions f : RN → R we have

lim
k→∞

Ef(ϕk) = Ef(ϕ).
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Let Φ : RN → R be a Borel function such that supk>1 E |Φ(ϕk)| < ∞ and
E |Φ(ϕ)| <∞. If g : RN → R is a continuous function satisfying

|g(t)| 6 |c(t)||Φ(t)|, t ∈ RN ,

where c : RN → R is a bounded function satisfying lim|t|→∞ |c(t)| = 0, then

lim
k→∞

Eg(ϕk) = Eg(ϕ).

Proof. Let gR := g · 1{|g|<R} +R · 1{g>R}−R · 1{g6−R} denote the truncation
of g at the levels ±R. By assumption we have

lim
k→∞

EgR(ϕk) = EgR(ϕ). (3.5)

Furthermore, by dominated convergence,

lim
R→∞

EgR(ϕ) = Eg(ϕ). (3.6)

Fix ε > 0 and choose R0 > 0 so large that sup|t|>R0
|c(t)| < ε. Choose

R1 > 0 so large that |g(t)| > R1 implies |t| > R0. Then, for all R > R1,

sup
k>0

E|g(ϕk)− gR(ϕk)| 6 sup
k>0

E(1{|g|>R}(ϕk)|g(ϕk)|)

6 sup
k>0

E(1{|g|>R}(ϕk)|c(t)||Φ(ϕk)|)

6 ε sup
k>0

E|Φ(ϕk)|,

(3.7)

Combined with (3.6) and (3.5), this gives the desired result. ut

Now we can finish the proof of Theorem 3.12:

Lemma 3.14. With the notations of Theorem 3.12, for all 1 6 r < ∞ and
x1, . . . , xN ∈ E we have

lim
k→∞

E
∥∥∥ N∑

n=1

ϕ(k)
n xn

∥∥∥r

= E
∥∥∥ N∑

n=1

γnxn

∥∥∥r

,

where γ1, . . . , γN are independent standard Gaussian variables.

Proof. Without loss of generality we may assume that max16n6N ‖xn‖ 6 1.
We fix 1 6 r < ∞ and check the condition of Lemma 3.13 for the functions
Φ : RN → R and g : RN → R defined by

Φ(t) := exp
( N∑

n=1

|tn|‖xn‖
)
, g(t) :=

∥∥∥ N∑
n=1

tnxn

∥∥∥r

,

where ϕk := (ϕ(k)
1 , . . . , ϕ

(k)
N ) and ϕ := (γ1, . . . , γN ).
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If ϕ is a symmetric real-valued random variable, then

E exp(|ϕ|) = E exp(−1{ϕ<0}ϕ) + E exp(1{ϕ>0}ϕ)
= E exp(1{−ϕ<0}ϕ) + E exp(1{ϕ>0}ϕ) 6 2E exp(ϕ).

Hence, since max16n6N ‖xn‖ 6 1,

EΦ(ϕk) 6
N∏

n=1

E exp(|ϕ(k)
n |) 6 2N

N∏
n=1

E exp(ϕ(k)
n )

= 2N
N∏

n=1

k∏
j=1

E exp
(rnk+j√

k

)
= 2N

(1
2

exp
( 1√

k

)
+

1
2

exp
(−1√

k

))kN

= 2NO
(
1 +

1
2k

)kN

= 2N exp(N/2) · O(1) as k →∞. ut

3.3 Exercises

1. Let (Xn)N
n=1 be a sequence of independent symmetric E-valued random

variables, and let (rn)N
n=1 be a Rademacher sequence which is indepen-

dent of (Xn)N
n=1. Prove that the sequences (Xn)N

n=1 and (rnXn)N
n=1 are

identically distributed.
Hint: As in the proof of Theorem 3.2 it may be assumed that (Xn)N

n=1 and
(rn)N

n=1 are defined on distinct probability spaces. Use Fubini’s theorem
together with the result of Exercise 2.2.
Remark: This technique for introducing Rademacher variables is known
as randomisation. It enables one to apply inequalities for Rademacher
sums in E to sums of independent symmetric random variables in E.

2. (!) Let (r′n)∞n=1 and (r′′n)∞n=1 be independent Rademacher sequences on
probability spaces (Ω′,F ′,P′) and (Ω′′,F ′′,P′′). Prove that on the prod-
uct (Ω,F ,P) = (Ω′ ×Ω′′,F ′ ⊗F ′′,P′ ⊗ P′′), the sequence (r′mr

′′
n)∞m,n=1

consists of Rademacher variables, but as a (doubly indexed) sequence it
fails to be a Rademacher sequence (that is, the random variables r′mr

′′
n

fail to be independent).

3. (!) We continue with the notations of the previous exercise. Prove that
for 1 6 p < ∞ the following version of the contraction principle holds
for double Rademacher sums in the spaces Lp(A), where (A,A , µ) is a
σ-finite measure space: there exists a constant Cp > 0 such that for all
finite sequences (fmn)N

m,n=1 in Lp(A) and all scalars (amn)N
m,n=1 we have

E
∥∥∥ N∑

m,n=1

amnr
′
mr

′′
nfmn

∥∥∥p

6 Cp
p

(
max

16m,n6N
|amn|p

)
E

∥∥∥ N∑
m,n=1

r′mr
′′
nfmn

∥∥∥p

.
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Hint: Proceed in three steps: (i) the result holds for E = R with exponent
2; (ii) the result holds for E = R with exponent p; (iii) the result holds
for E = Lp(A) with exponent p.

4. Let 1 6 p 6 2. A Banach space E is said to have type p if there exists a
constant Cp > 0 such that for all finite sequences x1, . . . , xN in E we have

(
E

∥∥∥ N∑
n=1

rnxn

∥∥∥2) 1
2

6 Cp

( N∑
n=1

‖xn‖p
) 1

p

.

Let 2 6 q 6 ∞. The space E is said to have cotype q if there exists a
constant Cq > 0 such that for all finite sequences x1, . . . , xN in E we have

( N∑
n=1

‖xn‖q
) 1

q

6 Cq

(
E

∥∥∥ N∑
n=1

rnxn

∥∥∥2) 1
2
.

For q = ∞ we make the obvious adjustment in the second definition.
Prove the following assertions:
a) Every Banach space has type 1 and cotype ∞ (accordingly, a Banach

space is said to have non-trivial type if it has type p ∈ (1, 2] and finite
cotype if it has cotype q ∈ [2,∞)).

b) Every Hilbert space has type 2 and cotype 2.
c) If a Banach space has type p for some p ∈ [1, 2], then it has type p′

for all p′ ∈ [1, p]; if a Banach space has cotype q for some q ∈ [2,∞],
then it has cotype q′ for all q′ ∈ [q,∞].

d) Let p ∈ [1, 2]. Prove that if E has type p, then the dual space E∗ has
cotype p′, 1

p + 1
p′ = 1.

Hint: For each x∗n ∈ E∗ choose xn ∈ E of norm one such that ‖x∗n‖ >
1
2 |〈xn, x

∗
n〉|. Then use Hölder’s inequality to the effect that for all scalar

sequences (bn)N
n=1 one has

( N∑
n=1

|bn|p
′
) 1

p′ = sup
{ N∑

n=1

anbn :
( N∑

n=1

|an|p
) 1

p

6 1
}
.

Remark: The analogous result for spaces with cotype fails. Indeed, the
reader is invited to check that l1 has cotype 2 while its dual l∞ fails to
have non-trivial type.

5. Let p ∈ [1, 2]. Prove that a Banach space E has type p if and only if it
has Gaussian type p, that is, if and only if there exists a constant C > 0
such that for all finite sequences x1, . . . , xN in E we have

(
E

∥∥∥ N∑
n=1

γnxn

∥∥∥2) 1
2

6 C
( N∑

n=1

‖xn‖p
) 1

p

.
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Hint: One direction follows from Corollary 3.6. For the other direction
use a randomisation argument.
Remark: The corresponding assertion for cotype is also true but much
harder to prove; see the Notes.

Notes. The results of this lecture are classical and can be found in many
textbooks. Our presentation borrows from Albiac and Kalton [1] and Di-
estel, Jarchow, Tonge [35]. Both are excellent starting points for further
reading.

The Kahane contraction principle is due to Kahane [54], who also ex-
tended the classical scalar Khintchine inequality to arbitrary Banach spaces.
It is an open problem to determine the best constants Kp,q in the Kahane-
Khintchine inequality; a recent result of Latala and Oleszkiewicz [67] as-
serts that the constant Kp,1 = 21− 1

p is optimal for 1 6 p 6 2.
For a proof of Theorem 3.7 see, e.g., [35]. The proofs of Theorems 3.9 and

3.11 are taken from Albiac and Kalton [1]. The central limit argument in
Lemma 3.14 is adapted from Tomczak-Jaegermann [102].

The contraction principle for double Rademacher sums of Exercise 3 has
been introduced by Pisier [92]. This property, nowadays known under the
rather unsuggestive name ‘property (α)’ plays an important role in many
advanced results in Banach space-valued harmonic analysis. It can be shown
that the Rademachers can be replaced by Gaussians without changing the
class of spaces under consideration. Not every Banach space has property (α);
a counterexample is the space c0.

The notions of type and cotype were developed in the 1970s by Maurey
and Pisier. As we have seen in Exercise 4, Hilbert spaces have type 2 and
cotype 2. A celebrated theorem of Kwapień [64] asserts that Hilbert spaces
are the only spaces with this property: a Banach space E is isomorphic to a
Hilbert space if and only if E has type 2 and cotype 2. Another class of spaces
of which the type and cotype can be computed are the Lp-spaces. For the
interested reader we include a proof that the spaces Lp(A), with 1 6 p < ∞
and (A,A , µ) σ-finite, have type min{p, 2}. A similar argument can be used
to prove that they have cotype max{p, 2}.

Let f1, . . . , fN ∈ Lp(A) and put r := min{p, 2}. Using the Fubini theo-
rem, the scalar Kahane-Khintchine inequality, the type p inequality, Hölder’s
inequality, and the triangle inequality in L

p
r (A), we obtain
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(
E

∥∥∥ N∑
n=1

rnfn

∥∥∥p

Lp(A)

) 1
p

=
( ∫

A

E
∣∣∣ N∑

n=1

rnfn(ξ)
∣∣∣p dµ(ξ)

) 1
p

6 Kp,2

( ∫
A

(
E

∣∣∣ N∑
n=1

rnfn(ξ)
∣∣∣2) p

2
dµ(ξ)

) 1
p

= Kp,2

( ∫
A

( N∑
n=1

|fn(ξ)|2
) p

2
dµ(ξ)

) 1
p

6 Kp,2

( ∫
A

( N∑
n=1

|fn(ξ)|r
) p

r

dµ(ξ)
) 1

p

= Kp,2

∥∥∥ N∑
n=1

|fn|r
∥∥∥ 1

r

L
p
r (A)

6 Kp,2

( N∑
n=1

∥∥∥|fn|r
∥∥∥

L
p
r (A)

) 1
r

= Kp,2

( N∑
n=1

‖fn‖r
Lp(A)

) 1
r

.

An application of the Kahane-Khintchine inequality for Lp(A) to replace the
Lp-moment in the left hand side by the L2-moment finishes the proof.

It was noted in Exercise 4 that if E has type p, then E∗ has cotype p′

(where 1
p + 1

p′ = 1) and that the analogous duality result for cotype fails. It
is a deep result of Pisier [93] that if E has cotype q ∈ [2,∞) and non-trivial
type, then E∗ has type q′, 1

q + 1
q′ = 1.

The fact that a Banach space has cotype q if and only if it has Gaussian
cotype q can be deduced from a deep result of Maurey and Pisier (see
[1, Chapter 11]) which gives a purely geometric characterisation of type and
cotype. For the details we refer to [35].
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Gaussian random variables

Having studied E-valued Gaussian sums of the form
∑N

n=1 γnxn in the previ-
ous lecture, we now turn to general theory of Gaussian random variables with
values in a Banach space E. The results of this lecture will be important for
the construction of an E-valued stochastic integral with respect to Brownian
motion.

We start with a proof of the Fernique theorem on integrability of Gaus-
sian random variables. This theorem makes it possible to investigate Lp-
convergence of sequences of Gaussian random variables. As it turns out, every
E-valued Gaussian random variable can be represented in a canonical way
as an Lp-convergent (finite or infinite) sum

∑
n>1 γnxn. This representation

theorem permits us to extend the covariance domination principle and the
Kahane-Khintchine inequality to arbitrary E-valued Gaussians.

4.1 Fernique’s theorem

A real-valued random variable γ is called Gaussian if there exists a number
q > 0 such that its Fourier transform is given by

E
(
exp(−iξγ)

)
= exp(− 1

2qξ
2), ξ ∈ R.

By uniqueness of Fourier transforms one deduces that γ = 0 almost surely if
q = 0, and that γ has a distribution with density

fγ(t) =
1√
2πq

exp(
−t2

2q
)

if q > 0. It follows that Eγ = 0 and Eγ2 = q, which means that γ is centred
and has variance q. We call γ standard Gaussian if q = 1; this definition is
consistent with the one given in Lecture 3.

Let E be a real Banach space.
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Definition 4.1. An E-valued random variable X is Gaussian if the real-
valued random variable 〈X,x∗〉 is Gaussian for all x∗ ∈ E∗.

Much of the theory of Banach space-valued Gaussian random variables
depends on a fundamental integrability result due to Fernique. For its proof
we need a lemma.

Lemma 4.2. Let X and Y be independent and identically distributed E-valued
Gaussian random variables. Then U := (X + Y )/

√
2 and V := (X − Y )/

√
2

are independent and have the same distribution as X and Y .

Proof. Let µ be the common distribution of X and Y . Then µ̂(x∗) =
exp(− 1

2q(x
∗)), where q(x∗) = E〈X,x∗〉2 = E〈Y, x∗〉2. Using the independence

of X and Y we have

E exp(−i〈U, x∗〉) = E exp(−i 12
√

2〈X,x∗〉)E exp(−i 12
√

2〈Y, x∗〉)
= exp(− 1

4q(x
∗)) exp(− 1

4q(x
∗)) = exp(− 1

2q(x
∗)).

By the uniqueness theorem for the Fourier transform, this shows that U has
the same distribution as X and Y . A similar computation shows that V has
the same distribution as X and Y .

We will prove that U and V are independent by checking that µ(U,V ) =
µ × µ, where µ(U,V ) is the distribution of the E × E-valued random variable
(U, V ). Identifying (E × E)∗ with E∗ × E∗ with pairing 〈(x, y), (x∗, y∗〉) =
〈x, x∗〉 + 〈y, y∗〉, by the uniqueness theorem for the Fourier transform it is
enough to prove that µ̂(U,V )(x∗, y∗) = µ̂(x∗)µ̂(y∗) for all x∗, y∗ ∈ E∗. But this
follows from

µ̂(U,V )(x∗, y∗) = E exp
(
−i

(
〈U, x∗〉+ 〈V, y∗〉

))
= E exp

(
− 1

2 i
√

2
(
〈X,x∗ + y∗〉+ 〈Y, x∗ − y∗〉

))
= E exp

(
− 1

2 i
√

2〈X,x∗ + y∗〉
)
E exp

(
− 1

2 i
√

2〈Y, x∗ − y∗〉
)

= exp
(
− 1

4q(x
∗ + y∗)

)
exp

(
− 1

4q(x
∗ − y∗)

)
= exp

(
− 1

2 (q(x∗) + q(y∗))
)

= µ̂(x∗)µ̂(y∗). ut

Theorem 4.3 (Fernique). Let X be an E-valued Gaussian variable. There
exists a constant β > 0 such that

E exp(β‖X‖2) <∞. (4.1)

Proof. On a possibly larger probability space, let X ′ be independent copy of
X. For instance, identify X with the random variable X(ω1, ω2) := X(ω1) on
Ω ×Ω and define X ′ on Ω ×Ω by X ′(ω1, ω2) := X(ω2).
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Fix t > s > 0. By the lemma,

P{‖X‖ 6 s} · P{‖X ′‖ > t}

= P
{∥∥X −X ′

√
2

∥∥ 6 s
}
· P

{∥∥X +X ′
√

2

∥∥ > t
}

6 P
{∣∣‖X‖ − ‖X ′‖√

2

∣∣ 6 s,
‖X‖+ ‖X ′‖√

2
> t

}
(∗)
6 P

{
‖X‖ > t− s√

2
, ‖X ′‖ > t− s√

2

}
= P

{
‖X‖ > t− s√

2

}
· P

{
‖X ′‖ > t− s√

2

}
,

where in (∗) we used that the set{
(ξ, η) ∈ R2

+ : |ξ − η| 6 s
√

2 and ξ + η > t
√

2
}

is contained in the set{
(ξ, η) ∈ R2

+ : ξ >
t− s√

2
and η >

t− s√
2

}
.

Hence, since X and X ′ have the same distribution,

P{‖X‖ 6 s}P{‖X‖ > t} 6
(
P
{
‖X‖ > t− s√

2

})2

. (4.2)

Choose r > 0 such that P{‖X‖ 6 r} > 2
3 . Define t0 := r and tn := r+

√
2tn−1

for n > 1. By induction it is checked that tn = r((
√

2)n+1 − 1)/(
√

2 − 1), so
tn 6 r(

√
2)n+4. Put

αn :=
P{‖X‖ > tn}
P{‖X‖ 6 r}

.

Note that α0 6 (1− 2
3 )/ 2

3 = 1
2 . From (4.2) with s = r, t = tn+1 we obtain

αn+1 6

(
P{‖X‖ > tn}
P{‖X‖ 6 r}

)2

= α2
n.

Therefore αn 6 α2n

0 6 2−2n

and it follows that

P{‖X‖ > tn} = αnP{‖X‖ 6 r} 6 2−2n

.

Using these estimates we obtain
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E(exp(β‖X‖2)) 6 P{‖X‖ 6 t0} · exp(βt20)

+
∞∑

n=0

P{tn < ‖X‖ 6 tn+1} · exp(βt2n+1)

6 exp(βr2) +
∞∑

n=0

2−2n

exp(βr22n+5)

= exp(βr2) +
∞∑

n=0

exp(2n[− log 2 + 32βr2]),

and this sum converges if β > 0 is taken small enough. ut

In what follows we need much less: it will suffice to know that E‖X‖p <∞
for all 1 6 p <∞.

As a simple corollary to Fernique’s theorem we note that the expectation
of a Gaussian random variable is well-defined. In fact we have the following
result:

Corollary 4.4. If X is E-valued Gaussian, then EX = 0.

Proof. For all x∗ ∈ E∗ we have 〈EX,x∗〉 = E〈X,x∗〉 = 0 and we may appeal
to the Hahn-Banach theorem. ut

4.2 The covariance operator

In order to characterise Gaussian variables in terms of their Fourier transforms
we introduce the following terminology.

Definition 4.5. A bounded operator Q ∈ L (E∗, E) is called

• positive, if 〈Qx∗, x∗〉 > 0 for all x∗ ∈ E∗;
• symmetric, if 〈Qx∗, y∗〉 = 〈Qy∗, x∗〉 for all x∗, y∗ ∈ E∗.

Proposition 4.6. For an E-valued random variable X the following asser-
tions are equivalent:

(1) X is Gaussian;
(2) there exists a positive symmetric operator Q ∈ L (E∗, E) such that the

Fourier transform of X is given by

E exp(−i〈X,x∗〉) = exp
(
− 1

2 〈Qx
∗, x∗〉

)
, x∗ ∈ E∗.

The operator Q is uniquely determined by (2). Moreover,

E〈X,x∗〉2 = 〈Qx∗, x∗〉, x∗ ∈ E∗.
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Proof. (1)⇒(2): Since X is square integrable by Theorem 4.3, the random
variable 〈X,x∗〉X is integrable and we may define

Qx∗ := E〈X,x∗〉X, x∗ ∈ E∗.

From 〈Qx∗, y∗〉 = E〈X,x∗〉〈X, y∗〉 we see that Q is positive and symmetric.
Since 〈X,x∗〉 is Gaussian with variance E〈X,x∗〉2 = 〈Qx∗, x∗〉, we have

E exp(−i〈X,x∗〉) = exp(− 1
2 〈Qx

∗, x∗〉).

(2)⇒(1): Replacing x∗ by ξx∗ in the assumption, we see that the Fourier
transform of 〈X,x∗〉 equals

E exp(−iξ〈X,x∗〉) = exp
(
− 1

2ξ
2〈Qx∗, x∗〉

)
.

Thus 〈X,x∗〉 is Gaussian with variance 〈Qx∗, x∗〉.
If R is another positive symmetric operator satisfying condition (2), then

〈Qx∗, x∗〉 = 〈Rx∗, x∗〉 for all x∗ ∈ E∗. By polarisation this implies 〈Qx∗, y∗〉 =
〈Rx∗, y∗〉 for all x∗, y∗ ∈ E∗, and therefore Q = R. ut

The operatorQ is called the covariance operator ofX. The reader is warned
that not every positive symmetric operator Q ∈ L (E∗, E) is the covariance
of an E-valued random variable X. This may happen even if E is a separable
infinite-dimensional Hilbert space (see Exercise 2).

Corollary 4.7. Every E-valued Gaussian random variable is symmetric.

Proof. Just note that X and −X have the same Fourier transforms. ut

We proceed with two simple constructions to produce new Gaussian vari-
ables from old ones. The first asserts that sums of independent Gaussian
variables are Gaussian.

Proposition 4.8. Let X1, . . . , XN be independent E-valued Gaussian random
variables with covariance operators Q1, . . . , QN . Then the sum X :=

∑N
n=1Xn

is Gaussian with covariance operator Q =
∑N

n=1Qn.

Proof. For all x∗ ∈ E∗ we have, by independence,

E exp(−i〈X,x∗〉) = E
N∏

n=1

exp(−i〈Xn, x
∗〉) =

N∏
n=1

E(exp(−i〈Xn, x
∗〉))

=
N∏

n=1

exp(− 1
2 〈Qnx

∗, x∗〉) = exp(− 1
2 〈Qx

∗, x∗〉). ut

Compositions of Gaussians with bounded operators are Gaussian again:
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Proposition 4.9. If X is E-valued Gaussian with covariance operator Q, and
if T ∈ L (E,F ) is a bounded operator, then TX is F -valued Gaussian with
covariance operator TQT ∗.

Proof. This follows by computing the Fourier transform of TX:

E(exp(−i〈TX, x∗〉)) = E(exp(−i〈X,T ∗x∗〉))
= exp(− 1

2 〈QT
∗x∗, T ∗x∗〉)) = exp(− 1

2 〈TQT
∗x∗, x∗〉)). ut

As an application we prove next that if the E-valued random variables
X1, . . . , XN are jointly Gaussian, that is, if the EN -valued random variable
(X1, . . . , XN ) is Gaussian, then X1, . . . , XN are independent if and only if
they are uncorrelated in the sense that

E〈Xm, x
∗〉〈Xn, y

∗〉 = 0, ∀m 6= n, x∗, y∗ ∈ E∗.

Proposition 4.10. Let X1, . . . , XN be E-valued random variables such that
the EN -valued random variable X = (X1, . . . , XN ) is Gaussian. The following
assertions are equivalent:

(1) X1, . . . , XN are independent;
(2) X1, . . . , XN are uncorrelated.

Proof. We proceed in two steps.
Step 1 – First we consider the scalar case. Let γ1, . . . , γN be real-valued

random variables such that the RN -valued random variable γ = (γ1, . . . , γN )
is Gaussian. Note that each γn is Gaussian; this follows from Proposition
4.9 by applying coordinate projections. We shall prove that γ1, . . . , γN are
independent if and only if γ1, . . . , γN are uncorrelated.

The ‘only if’ part follows from Eγmγn = EγmEγn = 0 for all m 6= n. For
the ‘if’ part we note that if γ1, . . . , γN are uncorrelated, the covariance matrix
of γ is diagonal: Q = diag(q1, . . . , qN ) with qn = E γ2

n. Then the Fourier
transform of γ is given by

E
(
exp(−i〈γ, ξ〉)

)
= exp(− 1

2 〈Qξ, ξ〉) = exp
(
− 1

2

N∑
n=1

qnξ
2
n

)
=

N∏
n=1

exp(− 1
2qnξ

2
n) =

N∏
n=1

E exp(−iξnγn), ξ ∈ RN .

Let µ and µn denote the distributions of γ and γn, respectively. The above
identity implies that µ and the product measure µ1× · · · ×µN have the same
Fourier transform. Hence from Theorem 2.8 we deduce that µ = µ1×· · ·×µN .
This implies that γ1, . . . , γN are independent.

Step 2 – Next we turn to the proof of the proposition. For all choices
of x∗1, . . . , x

∗
N ∈ E∗ the RN -valued random variable (〈X1, x

∗
1〉, . . . , 〈XN , x

∗
N 〉)
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is Gaussian by Proposition 4.9, since it is the image of (X1, . . . , XN ) under the
linear transformation from EN to RN , (x1, . . . , xn) 7→ (〈x1, x

∗
1〉, . . . , 〈xN , x

∗
N 〉).

(1)⇒(2): This implication follows from the corresponding implication in
Step 1 since the independence of X1, . . . , Xn implies the independence of
〈X1, x

∗
1〉, . . . , 〈XN , x

∗
N 〉.

(2)⇒(1): By Step 1, for all x∗1, . . . , x
∗
N ∈ E∗ the random variables

〈X1, x
∗
1〉, . . . , 〈XN , x

∗
N 〉 are independent and therefore

̂µ(X1,...,XN )(x∗1, . . . , x
∗
N ) = E exp(−i

N∑
n=1

〈Xn, x
∗
n〉) =

N∏
n=1

E exp(−i〈Xn, x
∗
n〉)

=
N∏

n=1

µ̂Xn(x∗n) = ̂µX1 × · · · × µXN
(x∗1, . . . , x

∗
N ).

Hence µ(X1,...,XN ) = µX1 × · · · × µXN
by Theorem 2.8. ut

The joint Gaussianity condition cannot be relaxed to Gaussianity of each
of the Xn; see Exercise 1.

4.3 Series representation

The main result of this section states that every E-valued Gaussian random
variable can be represented as a Gaussian sum of the form

∑
n>1 γnxn, where

(γn)n>1 is a Gaussian sequence and (xn)n>1 is a (finite or infinite) sequence
in E. This fact enables us to extend various results for Gaussian sums, such as
the Kahane-Khintchine inequality, to arbitrary Gaussian random variables.

We start with a simple proposition stating that limits of Gaussian variables
are Gaussian.

Proposition 4.11. If (Xn)∞n=1 is a sequence of E-valued Gaussian variables
and X is a random variable such that

lim
n→∞

〈Xn, x
∗〉 = 〈X,x∗〉 in probability for all x∗ ∈ E∗,

then X is Gaussian. Its covariance operator Q ∈ L (E∗, E) is given by
〈Qx∗, y∗〉 = limn→∞〈Qnx

∗, y∗〉 for x∗, y∗ ∈ E∗.

Proof. Fixing x∗ ∈ E∗, after passing to a subsequence we may assume that
limn→∞〈Xn, x

∗〉 = 〈X,x∗〉 almost surely. Then, by the dominated conver-
gence theorem,

E exp(−iξ〈X,x∗〉) = lim
n→∞

E exp(−iξ〈Xn, x
∗〉) = lim

n→∞
exp(− 1

2ξ
2〈Qnx

∗, x∗〉).

Since each of the terms 〈Qnx
∗, x∗〉 is non-negative, this implies that the limit

q(x∗) := limn→∞〈Qnx
∗, x∗〉 exists. From the resulting identity
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E exp(−iξ〈X,x∗〉) = exp(− 1
2ξ

2q(x∗))

we conclude that 〈X,x∗〉 is Gaussian for all x∗ ∈ E∗. By definition this means
that X is Gaussian.

Denote by Q the covariance operator of X. For all ξ ∈ R,

exp(− 1
2ξ

2〈Qx∗, x∗〉) = E exp(−iξ〈X,x∗〉) = exp(− 1
2ξ

2q(x∗)).

From this we deduce that 〈Qx∗, x∗〉 = q(x∗) = limn→∞〈Qnx
∗, x∗〉. Applying

this to x∗ + y∗ we find 〈Qx∗, y∗〉 = limn→∞〈Qnx
∗, y∗〉 for all x∗, y∗ ∈ E∗. ut

For a Gaussian random variable X with covariance operator Q, we denote
by HX the closed linear subspace in L2(Ω) spanned by the random variables
{〈X,x∗〉 : x∗ ∈ E∗}. The operator iX : HX → E,

iX〈X,x∗〉 := E〈X,x∗〉X = Qx∗, (4.3)

is well-defined and bounded by Hölder’s inequality and Fernique’s theorem.
Its adjoint is given by i∗Xx

∗ = 〈X,x∗〉. This leads to the factorisation

Q = iX i
∗
X . (4.4)

Here, and in similar situations later on, we identify HX and its dual H∗
X by

means of the Riesz representation theorem. Since we are working over the real
scalar field this identification is linear and should never lead to any confusion.
For a generalisation of the factorisation (4.4) to arbitrary positive symmetric
operators Q see Exercise 3.

Theorem 4.12 (Karhunen-Loève expansion). Let X be an E-valued
Gaussian random variable.

(1) The space HX is separable.
(2) If (γn)n>1 is an orthonormal basis of HX , then (γn)n>1 is a Gaussian

sequence and ∑
n>1

γniXγn = X,

where convergence holds almost surely and in Lp(Ω;E) for all 1 6 p <∞.

Proof. Define H̃X as the closed linear subspace of L2(E,µX) spanned by
E∗; here we think of the functionals x∗ ∈ E∗ as functions on E. In view of
E〈X,x∗〉2 =

∫
E
〈x, x∗〉2 dµX(x), the mapping x∗ 7→ 〈X,x∗〉 extends uniquely

to an isometry of Hilbert spaces H̃X ' HX .
Let E0 be a separable closed subspace of E containing the essential range

of X. Then µX(E0) = 1 and therefore the identity mapping gives an isometry
L2(E0, µX) ' L2(E,µX). Since the Borel σ-algebra B(E0) is generated by
a countable family of open sets (take a dense sequence (xn)∞n=1 in E0 and
consider the open balls B(xn, q) with rational q > 0), the space L2(E0, µX) is
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separable. It follows that L2(E,µX) is separable and hence so is H̃X , it being
a closed subspace of L2(E,µX). It follows that HX is separable.

Let (γn)n>1 be a (finite or countably infinite) orthonormal basis of HX .
Every random variable in HX is Gaussian by Proposition 4.11. In particu-
lar, linear combinations of the γn are Gaussian, which means that all vectors
(γn1 , . . . , γnN

) are Gaussian as RN -valued random variables. Therefore Propo-
sition 4.10 implies that the γn are independent.

For all x∗ ∈ E∗ we have the identities∑
n>1

γn〈iXγn, x
∗〉 =

∑
n>1

γn Eγn〈X,x∗〉 = 〈X,x∗〉

in HX , noting that the middle expression is the expansion of 〈X,x∗〉 with
respect to the orthonormal basis (γn)n>1 of HX . The result now follows from
the Itô-Nisio theorem. ut

For the readers familiar with weak∗-topologies we sketch an alternative,
more functional analytic proof of the separability of HX . The dual E∗

0 is
weak∗-separable, by the separability of E0. Regarding iX as a bounded injec-
tive operator from HX to E0, the adjoint i∗X is weak∗-continuous and maps
E∗

0 onto a weak∗-separable and weak∗-dense subspace of HX . But the weak∗-
topology of the Hilbert space HX is the same as the weak topology. By the
Hahn-Banach theorem, the weak closure of i∗XE

∗
0 equals its strong closure,

and the separability of HX follows.
As an application of Theorem 4.12 we extend Theorem 3.12 to arbitrary

E-valued Gaussian random variables.

Corollary 4.13 (Kahane-Khintchine inequality). Let X be an E-valued
Gaussian variable. Then for all 1 6 p, q <∞ we have

(E‖X‖p)
1
p 6 Kp,q(E‖X‖q)

1
q .

Proof. For the special case whereX =
∑N

n=1 γnxn this was proved in Theorem
3.12. The general case follows by combining this with the Karhunen-Loève
expansion. ut

4.4 Convergence

As an application of the Kahane-Khintchine inequality, we show next that
if a sequence of Gaussian random variables converges in probability, then it
converges in Lp for all 1 6 p <∞.

We start with a classical inequality for non-negative random variables.

Lemma 4.14 (Paley-Zygmund inequality). Let ξ be a non-negative ran-
dom variable. If 0 < Eξ2 6 c(Eξ)2 <∞ for some c > 0, then for all 0 < r < 1
we have

P{ξ > rEξ} >
(1− r)2

c
.
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Proof. Using the non-negativity of ξ we have

(1− r)Eξ = E(ξ − rEξ) 6 E(1{ξ>rEξ}(ξ − rEξ)) 6 E(1{ξ>rEξ}ξ)

and therefore, by the Cauchy-Schwarz inequality,

(1− r)2(Eξ)2 6
(
E(1{ξ>rEξ}ξ)

)2
6 E1{ξ>rEξ}Eξ2.

The result follows upon dividing both sides by Eξ2. ut

Theorem 4.15. For a sequence (Xn)∞n=1 of E-valued Gaussian random vari-
ables the following assertions are equivalent:

(1) the sequence (Xn)∞n=1 converges in probability to a random variable X;
(2) for some 1 6 p < ∞ the sequence (Xn)∞n=1 converges in Lp(Ω;E) to a

random variable X;
(3) for all 1 6 p < ∞ the sequence (Xn)∞n=1 converges in Lp(Ω;E) to a

random variable X.

In this situation the limit random variable X is Gaussian.

Proof. Fix 1 6 p <∞. It suffices to prove that limn→∞Xn = X in probability
implies limn→∞Xn = X in Lp(Ω;E). Note that X is Gaussian by Proposition
4.11.

Step 1 - Fix 1 6 q <∞. By Fernique’s theorem we have E‖Xn‖q <∞ for
all n > 1. In this step we prove the uniform bound

sup
n>1

E‖Xn‖q <∞. (4.5)

From the Paley-Zygmund inequality, for all n > 1 we obtain

P
{
‖Xn‖2 >

1
2

E‖Xn‖2
}

>
1

4K4
4,2

, (4.6)

where K4,2 is the Kahane-Khintchine constant corresponding to p = 4 and
q = 2. On the other hand, given ε > 0, for any r > 0 we find an index N > 1
such that for all n > N ,

P
{
‖Xn‖2 > r

}
6 P

{
‖X‖ > 1

2
√
r
}

+ P
{
‖Xn −X‖ > 1

2
√
r
}

6 P
{
‖X‖ > 1

2
√
r
}

+ ε.

Thus for large enough r0 > 0 we find an index N0 > 1 such that for n > N0,

P
{
‖Xn‖2 > r0

}
< 2ε.

If for some subsequence we had limk→∞ E‖Xnk
‖2 = ∞, then for all sufficiently

large k we would obtain
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P
{
‖Xnk

‖2 > 1
2

E‖Xnk
‖2

}
6 P

{
‖Xnk

‖2 > r0
}
< 2ε,

contradicting (4.6). We conclude that supn>1 E‖Xn‖2 <∞. Now (4.5) follows
from the Kahane-Khintchine inequality.

Step 2 - Fix 1 6 p < q <∞. By Step 1, the triangle inequality in Lq(Ω;E),
and a scaling argument we may assume that supk>1 E‖Xk −X‖q 6 1. Using
this together with Hölder’s inequality (with 1

p = 1
q + 1

r ), for fixed ε > 0 we
obtain

E‖Xk −X‖p = E(1{‖Xk−X‖6ε}‖Xk −X‖p) + E(1{‖Xk−X‖>ε}‖Xk −X‖p)
6 εp + E(1{‖Xk−X‖>ε}‖Xk −X‖p)

6 εp + (P{‖Xk −X‖ > ε})
p
r .

Since limk→∞Xk = X in probability, it follows that

lim sup
k→∞

E‖Xk −X‖p 6 εp.

This being true for all ε > 0 we arrive at lim supk→∞ E‖Xk −X‖p = 0. ut

4.5 Exercises

1. This exercise presents an example of two uncorrelated Gaussian random
variables which are not independent. This shows that the joint Gaussianity
condition in Proposition 4.10 cannot be omitted.
Let γ be a standard Gaussian random variable on a probability space
(Ω1,F1,P1) and let r be a Rademacher variable on a probability space
(Ω2,F2,P2). Define the random variables ϕ1 and ϕ2 on the product space
(Ω,F ,P) = (Ω1 ×Ω2,F1 ×F2,P1 × P2) by

ϕ1(ω1, ω2) = γ(ω1), ϕ2(ω1, ω2) = γ(ω1)r(ω2).

a) Show that ϕ1 and ϕ2 are Gaussian.
b) Show that ϕ1 and ϕ2 are uncorrelated.
c) Show that ϕ1 and ϕ2 fail to be independent.

Hint: Consider, for instance, the events {|ϕ1| 6 1} and {|ϕ2| 6 1}.

2. In this exercise we prove Sazanov’s theorem: a bounded linear operator
Q on a separable Hilbert space H with inner product [·, ·] is a Gaussian
covariance operator if and only if Q is positive, self-adjoint and the sum∑∞

n=1[Qhn, hn] converges for some (equivalently, for every) orthonormal
basis (hn)∞n=1 of H.
a) Suppose Q satisfies the conditions of the Sazanov theorem, let (hn)∞n=1

be an orthonormal basis of H, and put xn := Q
1
2hn. Show that the

Gaussian sum
∑∞

n=1 γnxn converges in L2(Ω;H) and defines a Gaus-
sian H-valued random variable with covariance Q.
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b) Suppose conversely that X is an H-valued Gaussian random variable
with covariance operator Q. Then Q is positive and symmetric. Show
that if (hn)∞n=1 is any orthonormal basis for H, then

∞∑
n=1

[Qhn, hn] = E‖X‖2.

c) Deduce that the identity operator on a separable infinite-dimensional
Hilbert space fails to be a Gaussian covariance operator.

3. (!) The identity (4.4) shows that every Gaussian covariance operator can
be written as Q = TT ∗ for a suitable operator T from a Hilbert space
into E. In this exercise we generalise this observation to arbitrary positive
symmetric operators.
Let Q ∈ L (E∗, E) be positive and symmetric.
a) Show that the formula

[Qx∗, Qy∗] := 〈Qx∗, y∗〉

defines an inner product on the range of Q.
The Hilbert space completion of the range of Q with respect to this inner
product is denoted by HQ.
b) Show that the identity mapping Qx∗ 7→ Qx∗ extends uniquely to a

bounded operator iQ from HQ into E.
c) Prove the identity

iQi
∗
Q = Q.

d) Prove the statement concerning Q in the proof of Theorem 3.9.
Hint: Consider an orthonormal basis of the (finite-dimensional)
Hilbert space HQ.

4. Suppose that X is an E-valued Gaussian random variable with covariance
operator Q. We compare the mappings iX : HX → E defined by (4.3) and
iQ : HQ → E of the previous exercise.
a) Show that the mapping 〈X,x∗〉 7→ i∗Qx

∗ extends uniquely to an isom-
etry from HX onto HQ.

b) Prove that iX(HX) = iQ(HQ) and show that X takes its values in
iX(HX) = iQ(HQ) almost surely.

5. Let Q be a positive self-adjoint operator on a Hilbert space H and let
√
Q

be its unique positive square root.
a) Show that the range of

√
Q is a Hilbert space with respect to the norm

|||
√
Qh||| := inf{‖h′‖ : h′ ∈ H,

√
Qh′ =

√
Qh}.

b) Show that the identity mapping Qh 7→ Qh extends uniquely to an
isometry

HQ ' range(
√
Q),

where HQ is defined as in the previous two exercises.
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Notes. A comprehensive treatment of the theory of Gaussian variables is
given in Bogachev [8]. See also the monographs of Janson [53], Vakhania,
Tarieladze, Chobanyan [105], and the older lecture notes of Kuo [62].

Theorem 4.3 is a celebrated result due to Fernique [39]. By a (non-trivial)
modification of the proof one obtains the following stronger result: if X is
a uniformly tight family of E-valued Gaussian random variables, then there
exist constants β > 0 and C > 0 such that

E(exp(β‖X‖2) 6 C ∀X ∈ X .

Using powerful concentration of measure inequalities it can be shown that
the supremum of all admissible constants β for which the conclusion of Fer-
nique’s theorem holds is equal to 1/2σ2(X), where

σ2(X) = sup
‖x∗‖61

E〈X,x∗〉2.

We refer to Kwapień and Woyczyński [65], Ledoux [68], and Ledoux and
Talagrand [69] for expositions of this result and further reading.

The proof of Theorem 4.15 is taken from Rosiński and Suchanecki [96].
For more on the Karhunen-Loève expansion of Gaussian variables we rec-

ommend [65]. The convergence of the series can be alternatively deduced
from the martingale convergence theorem for Banach space-valued martin-
gales, but we have chosen not to do so here in order to keep the presentation
self-contained.

A Borel measure µ on a Banach space E is called Gaussian if it is the
distribution of an E-valued Gaussian random variable X, or equivalently, if
the image measure 〈µ, x∗〉 are Gaussian on R for all x∗ ∈ E∗ (to see that
the latter implies the former consider the random variable X(x) := x on the
probability space (E,µ)). The covariance operator of µ is then defined as the
covariance operator Q of X. In view of the identities 〈Qx∗, x∗〉 = E〈X,x∗〉2 =∫

E
〈x, x∗〉2 dµ(x) this is well-defined. For the sake of unity of presentation we

have stated all results in terms of random variables. Some results, such as
Theorem 4.3 and Propositions 4.6 and 4.9, can equally well be formulated in
terms of Gaussian measures.

Exercise 2 c) tells us that on an infinite-dimensional Hilbert space H there
is no standard Gaussian measure, that is, a Gaussian measure whose covari-
ance operator is the identity operator. More can be said, however. Let us call
a subset C of H cylindrical if it is of the form

C = {h ∈ H : ([h, h1], . . . , [h, hn]) ∈ B}

for certain h1, . . . , hn ∈ H and a Borel set B in Rn. More generally, cylindrical
sets in Banach spaces can be defined by replacing the role of the hj by func-
tionals x∗j . We have already used cylindrical sets in the proof of the uniqueness
theorem for the Fourier transform (Theorem 2.8). The cylindrical sets form
an algebra of sets in H. It can be shown that there exists a unique finitely
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additive measure γH on this algebra with the property that the restrictions
of γH to finite-dimensional subspaces of H are standard Gaussian measures.

The pair (iQ,HQ) constructed in Exercise 3 is called the reproducing kernel
associated with Q. The operator iQ : HQ → E is in fact injective, and the
factorisation Q = iQi

∗
Q is minimal in the following sense: if H is a Hilbert

space and T : H → E is a bounded operator such that Q = TT ∗, then there
exists a bounded surjection P : H → HQ such that T = iQP . For more
information on reproducing kernel Hilbert spaces as well as an explanation
of the terminology we refer the interested reader to Schwartz [98] and the
book by Vakhania, Tarieladze, Chobanyan [105].
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γ-Radonifying operators

Experience has taught that many results in analysis involving L2-techniques,
such as the Plancherel theorem in harmonic analysis and the Itô isometry in
stochastic analysis, carry over without difficulty to the Hilbert space-valued
setting. Often this fact characterises Hilbert spaces among all Banach spaces.

It has only been recently realised that many results do generalise beyond
the Hilbert space case if one does three things:

• Replace ‘functions’ by ‘γ-radonifying (integral) operators’;
• Replace ‘uniform boundedness’ by ‘γ-boundedness’;
• Replace ‘orthogonality’ by ‘unconditionality’.

This paradigm has had enormous impact in the areas of (parabolic) evolution
equations and harmonic analysis, more recently, in the theory of stochastic
(parabolic) evolution equations.

In this lecture we address the first item in the list and investigate properties
of γ-radonifying operators. These operators will be used in the next lecture to
give necessary and sufficient conditions for stochastic integrability, the main
idea being that the L2-norms occurring in the Itô isometry are replaced by
the γ-radonifying norms of associated integral operators.

5.1 γ-Summing operators

We begin with a discussion of the class of γ-summing operators. In the next
section, γ-radonifying operators are defined as the γ-summing operators which
can be approximated in the γ-summing norm by finite rank operators.

Continuing the notational conventions of the previous lectures, (γn)∞n=1

always denotes a Gaussian sequence, H is a Hilbert space (with inner prod-
uct [·, ·]), and E is a Banach space. Although we have made the standing
assumption that all spaces are real, most results of this lecture extend with
only minor changes to complex scalars.
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Definition 5.1. A linear operator S : H → E is called γ-summing if for some
(equivalently, for all) 1 6 p <∞,

‖S‖γ∞p (H,E) := sup
(
E

∥∥∥ k∑
j=1

γj Shj

∥∥∥p) 1
p

<∞,

the supremum being taken over all finite orthonormal systems {h1, . . . , hk}.

By considering singletons {h} we see that every γ-summing operator is
bounded and satisfies ‖S‖ 6 ‖S‖γ∞p (H,E).

With respect to any one of the norms S 7→ ‖S‖γ∞p (H,E), which are mutually
equivalent by the Kahane-Khintchine inequalities, the linear space γ∞(H,E)
of all γ-summing operators from H to E is a normed space. Unless otherwise
stated we shall write

‖S‖γ∞(H,E) := ‖S‖γ∞2 (H,E).

Proposition 5.2. The space γ∞(H,E) is a Banach space.

Proof. If (Sn)∞n=1 is Cauchy in γ∞(H,E), then supn>1 ‖Sn‖γ∞(H,E) < ∞.
Let us denote this supremum by C. Since (Sn)∞n=1 is a Cauchy sequence in
L (H,E) it tends to an operator S in L (H,E). We will prove that S ∈
γ∞(H,E) and that limn→∞ Sn = S in the norm of γ∞(H,E).

If {h1, . . . , hk} is an orthonormal system in H, then by Fatou’s lemma,

E
∥∥∥ k∑

j=1

γj Shj

∥∥∥2

6 lim inf
n→∞

E
∥∥∥ k∑

j=1

γj Snhj

∥∥∥2

6 C.

It follows that S ∈ γ∞(H,E) and ‖S‖γ∞(H,E) 6 C.
Next we check that limn→∞ Sn = S in the norm of γ∞(H,E). Given

ε > 0, we choose N > 1 such that ‖Sn − Sm‖γ∞(H,E) < ε for all m,n > N .
Let {h1, . . . , hk} be an orthonormal system in H. By another application of
the Fatou lemma,

E
∥∥∥ k∑

j=1

γj (Sn − S)hj

∥∥∥2

6 lim inf
m→∞

E
∥∥∥ k∑

j=1

γj (Sn − Sm)hj

∥∥∥2

< ε2.

Therefore, ‖Sn − S‖γ∞(H,E) 6 ε for all n > N . ut

Proposition 5.3 (γ-Fatou lemma). Let (Sn)∞n=1 be a bounded sequence in
γ∞p (H,E). If S ∈ L (H,E) is an operator such that

lim
n→∞

〈Snh, x
∗〉 = 〈Sh, x∗〉 ∀h ∈ H, x∗ ∈ E∗,

then S ∈ γ∞(H,E) and for all 1 6 p <∞ we have

‖S‖γ∞p (H,E) 6 lim inf
n→∞

‖Sn‖γ∞p (H,E).
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Proof. Let {h1, . . . , hk} be an orthonormal system in H. Let (x∗n)∞n=1 be
a sequence of unit vectors in E∗ which is norming for the linear span of
{Sh1, . . . , Shk}. For all M > 1 we have, by the Fatou lemma,

E sup
m=1,...,M

∣∣∣〈 k∑
j=1

γj Shj , x
∗
m

〉∣∣∣p 6 lim inf
n→∞

E sup
m=1,...,M

∣∣∣〈 k∑
j=1

γj Snhj , x
∗
m

〉∣∣∣p
6 lim inf

n→∞
‖Sn‖p

γ∞p (H,E).

Taking the limit M →∞ we obtain, by the monotone convergence theorem,

E
∥∥∥ k∑

j=1

γj Shj

∥∥∥p

6 lim inf
n→∞

‖Sn‖p
γ∞p (H,E)

and the proposition follows. ut

The next result shows that the class of γ-summing operators enjoys a
certain ideal property:

Proposition 5.4 (Ideal property I). Let S ∈ γ∞(H,E). If H ′ is another
Hilbert space and E′ another Banach space, then for all T ∈ L (H ′,H) and
U ∈ L (E,E′) we have UST ∈ γ∞(H ′, E′) and for all 1 6 p <∞ we have

‖UST‖γ∞p (H′,E′) 6 ‖U‖ ‖S‖γ∞p (H,E)‖T‖.

Proof. It suffices to prove that ST ∈ γ∞(H ′, E) and ‖ST‖γ∞(H′,E) 6
‖S‖γ∞(H,E)‖T‖, the assertions concerning U being trivial.

Let {h′1, . . . , h′k} be an orthonormal system in H ′. We denote by H̃ ′ and H̃
the spans in H ′ and H of {h′1, . . . , h′k} and {Th′1, . . . , Th′k}, respectively. Let
Ẽ be the span in E of {STh′1, . . . , STh′k}. Then S and T restrict to operators
S̃ : H̃ → Ẽ and T̃ : H̃ ′ → H̃.

Let {h1, . . . , hN} be an orthonormal basis for H̃. For all x∗ ∈ Ẽ∗ we have

k∑
j=1

〈S̃T̃ h′j , x∗〉2 = ‖T̃ ∗S̃∗x∗‖2eH′ 6 ‖T̃ ∗‖2 ‖S̃∗x∗‖2eH = ‖T̃‖2
N∑

n=1

〈S̃hn, x
∗〉2.

Hence, by Theorem 3.9,

E
∥∥∥ k∑

j=1

γj STh
′
j

∥∥∥p

6 ‖T‖p E
∥∥∥ N∑

n=1

γn Shn

∥∥∥p

6 ‖T‖p ‖S‖p
γ∞p (H,E)

and the result follows. ut

As a corollary we observe that we may ignore the kernel of S:
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Corollary 5.5. If S ∈ γ∞(H,E) and H0 is a closed subspace of H containing
(kerS)⊥, then the restriction S0 of S to H0 belongs to γ∞(H0, E) and for all
1 6 p <∞,

‖S0‖γ∞p (H0,E) = ‖S‖γ∞p (H,E).

Proof. The only nontrivial thing to prove is the inequality ‖S‖γ∞p (H,E) 6
‖S0‖γ∞p (H0,E). Let P0 be the orthonormal projection of H onto H0. Then
S = S0P0 and the desired inequality follows from Proposition 5.4. ut

We are now in a position to prove the following characterisation of γ-
summing operators in terms of orthonormal bases. We formulate the result for
separable infinite-dimensional spaces; for finite-dimensional spaces the same
result holds with a slightly simpler proof.

Proposition 5.6. If H is separable and (hn)∞n=1 is an orthonormal basis for
H, then an operator S ∈ L (H,E) belongs to γ∞(H,E) if and only if for some
(equivalently, for all) 1 6 p <∞,

sup
N>1

E
∥∥∥ N∑

n=1

γn Shn

∥∥∥p

<∞.

In this case,

‖S‖p
γ∞p (H,E) = sup

N>1
E

∥∥∥ N∑
n=1

γn Shn

∥∥∥p

.

Proof. Let {h′1, . . . , h′k} be an orthonormal system in H. For K > 1 let PK

denote the orthogonal projection onto the span of {h1, . . . , hK}. For all x∗ ∈
E∗ and K > k we have

k∑
j=1

〈SPKh
′
j , x

∗〉2 6 ‖PKS
∗x∗‖2 =

K∑
n=1

〈Shn, x
∗〉2.

Let 1 6 p <∞. From Theorem 3.9 it follows that

E
∥∥∥ k∑

j=1

γj SPKh
′
j

∥∥∥p

6 E
∥∥∥ K∑

n=1

γn Shn

∥∥∥p

6 sup
N>1

E
∥∥∥ N∑

n=1

γn Shn

∥∥∥p

.

Hence by Fatou’s lemma,

E
∥∥∥ k∑

j=1

γj Sh
′
j

∥∥∥p

6 lim inf
K→∞

E
∥∥∥ k∑

j=1

γj SPKh
′
j

∥∥∥p

6 sup
N>1

E
∥∥∥ N∑

n=1

γn Shn

∥∥∥p

.

It follows that

‖S‖p
γ∞p (H,E) 6 sup

N>1
E

∥∥∥ N∑
n=1

γn Shn

∥∥∥p

.

The converse inequality trivially holds and the proof is complete. ut
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5.2 γ-Radonifying operators

When h is an element of a Hilbert space H and x an element of a Banach
space E, we denote by h⊗ x the operator in L (H,E) defined by

(h⊗ x)h′ := [h, h′]x, h′ ∈ H.

An operator in L (H,E) is said to be of finite rank if it is a linear combination
of operators of the above form. It is a trivial observation that every finite rank
operator from H to E belongs to γ∞(H,E). In fact we have:

Lemma 5.7. If S =
∑N

n=1 hn ⊗ xn is a finite rank operator with h1, . . . , hN

orthonormal in H and x1, . . . , xN ∈ E arbitrary, then S ∈ γ∞(H,E) and for
all 1 6 p <∞ we have

‖S‖p
γ∞p (H,E) = E

∥∥∥ N∑
n=1

γn xn

∥∥∥p

.

Proof. Testing on h1, . . . , hN gives the inequality ‘>’. To prove the inequality
‘6’ let P be the orthogonal projection fromH onto the span H̃ of {h1, . . . , hN}
and define S̃ ∈ L (H̃, E) by S̃ = SP ∗. The inequality then follows from
Proposition 5.4 applied to S = S̃P , and Proposition 5.6 applied to S̃. ut

In view of this observation the following definition makes sense.

Definition 5.8. The space γ(H,E) is defined as the closure in γ∞(H,E) of
all finite rank operators. The operators in γ(H,E) are called γ-radonifying.

By definition, γ(H,E) is a Banach space with respect to the norm inherited
from γ∞(H,E). For notational simplicity, for R ∈ γ(H,E) we shall write

‖R‖γ(H,E) := ‖R‖γ∞(H,E)

and more generally ‖R‖γp(H,E) := ‖R‖γ∞p (H,E) for 1 6 p <∞.
A bounded operator is compact if the image of the unit ball is rela-

tively compact. Every γ-radonifying operator R is compact: if limn→∞ ‖Rn−
R‖γ(H,E) = 0 with each Rn of finite rank, then limn→∞ ‖Rn−R‖ = 0 and the
claim follows since each Rn is compact. Here we use that the uniform limit of
a sequence of compact operators is compact.

Without proof we mention the following theorem, which rephrases a fa-
mous result due to Hoffmann-Jorgensen and Kwapień on the almost sure
convergence of random sums whose partial sums are almost surely bounded.

Theorem 5.9 (Hoffmann-Jorgensen and Kwapień). Let H be an infin-
ite-dimensional Hilbert space. For a Banach space E the following assertions
are equivalent:
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(1) γ∞(H,E) = γ(H,E);
(2) E does not contain a closed subspace isomorphic to c0.

An explicit example of an operator which is γ-summing but not γ-
radonifying is the multiplication operator R : `2 → c0 defined by

R
(
(αn)∞n=1

)
:= (αn/

√
log(n+ 1))∞n=1

The proof of this statement depends on some subtle estimates for Gaussian
sums and is omitted.

As an immediate consequence of Definition 5.8, every R ∈ γ(H,E) is
‘supported’ on a separable closed subspace of H:

Proposition 5.10. If R ∈ γ(H,E), then (ker(R))⊥ is separable.

Proof. Suppose that R = limn→∞Rn in γ(H,E) with each Rn of finite rank,
say Rnh =

∑kn

j=1[h, hjn]xjn. LetH0 denote the closed linear span of all vectors
hjn, n > 1, 1 6 j 6 kn. Then H0 is separable and if h ⊥ H0, then Rnh = 0
for all n > 1 and consequently Rh = 0. ut

The ideal property of γ∞(H,E) carries over to γ(H,E):

Proposition 5.11 (Ideal property II). Let R ∈ γ(H,E). If H ′ is another
Hilbert space and E′ another Banach space, then for all T ∈ L (H ′,H) and
U ∈ L (E,E′) we have URT ∈ γ(H ′, E′) and for all 1 6 p <∞ we have

‖URT‖γp(H′,E′) 6 ‖U‖ ‖R‖γp(H,E)‖T‖.

Proof. If R is of finite rank, then also URT is of finite rank. Moreover if
limn→∞Rn = R in γ∞p (H,E), then ‖U(R − Rn)T‖γ∞p (H′,E′) 6 ‖U‖ ‖R −
Rn‖γ∞p (H,E)‖T‖ and therefore URT ∈ γ(H ′, E′). The estimate follows from
the corresponding estimate for the γ-summing norms. ut

We mention a simple but useful application.

Proposition 5.12 (Convergence by right multiplication). If H1 and H2

are Hilbert spaces and S1, S2, . . . and S are operators in L (H1,H2) satisfy-
ing S∗h = limn→∞ S∗nh for all h ∈ H2, then for all R ∈ γ(H2, E) we have
limn→∞RSn = RS in γ(H1, E).

Proof. The uniform boundedness principle implies that supn>1 ‖Sn‖ < ∞.
Hence, by the estimate ‖RT‖γ(H1,E) 6 ‖R‖γ(H2,E)‖T‖ for T ∈ L (H1,H2), it
suffices to consider finite rank operators R ∈ γ(H2, E). Fix such an operator,
say R =

∑M
m=1 h

′
m⊗xm, and let (hj)k

j=1 be orthonormal in H1. Then, by the
triangle inequality in L2(Ω;E),
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(
E

∥∥∥ k∑
j=1

γjR(S − Sn)hj

∥∥∥2) 1
2

=
(
E

∥∥∥ M∑
m=1

k∑
j=1

γj [S∗h′m − S∗nh
′
m, hj ]xm

∥∥∥2) 1
2

6
M∑

m=1

(
E

∣∣∣ k∑
j=1

γj [S∗h′m − S∗nh
′
m, hj ]

∣∣∣2) 1
2 ‖xm‖

=
M∑

m=1

( k∑
j=1

|[S∗h′m − S∗nh
′
m, hj ]|2

) 1
2 ‖xm‖

6
M∑

m=1

‖S∗h′m − S∗nh
′
m‖‖xm‖.

Hence,

‖R(S − Sn)‖γ(H1,E) 6
M∑

m=1

‖S∗h′m − S∗nh
′
m‖‖xm‖,

and by assumption the right hand side tends to zero as n→∞. ut

Here is a simple illustration:

Example 5.13. Consider an operator R ∈ γ(H,E) and let (hn)∞n=1 be an or-
thonormal basis for (ker(R))⊥. Let Pn denote the orthogonal projection in H
onto the span of {h1, . . . , hn}. Then limn→∞RPn = R in γ(H,E).

Proposition 5.14 (Measurability). Let (A,A , µ) be a σ-finite measure
space and H a separable Hilbert space. For a function Φ : A → γ(H,E)
define Φh : A → E by (Φh)(ξ) := Φ(ξ)h for h ∈ H. The following assertions
are equivalent:

(1) Φ is strongly µ-measurable;
(2) Φh is strongly µ-measurable for all h ∈ H.

Proof. It suffices to prove that (2) implies (1). If (hn)∞n=1 is an orthonormal
basis for H, then with the notations of the Example 5.13 for all ξ ∈ A we have

Φ(ξ) = lim
n→∞

Φ(ξ)Pn = lim
n→∞

n∑
j=1

[ · , hj ]Φ(ξ)hj ,

with convergence in the norm of γ(H,E). ut

We proceed with the main result of this section which states, loosely speak-
ing, that an operator is γ-radonifying if and only if it maps orthonormal se-
quences into γ-summable sequences.

Theorem 5.15. If H is separable, then for an operator R ∈ L (H,E) the
following assertions are equivalent:

(1) R ∈ γ(H,E);
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(2) for all orthonormal bases (hn)∞n=1 in H and all 1 6 p < ∞ the sum∑∞
n=1 γnRhn converges in Lp(Ω;E);

(3) for some orthonormal basis (hn)∞n=1 in H and some 1 6 p < ∞ the sum∑∞
n=1 γnRhn converges in Lp(Ω;E).

In this situation, the sums in (2) and (3) converge almost surely and define
an E-valued Gaussian random variable with covariance operator RR∗. For all
orthonormal bases (hn)∞n=1 of H and 1 6 p <∞ we have

‖R‖p
γp(H,E) = E

∥∥∥ ∞∑
n=1

γnRhn

∥∥∥p

.

Proof. (1)⇒(2): Fix R ∈ γ(H,E) and 1 6 p < ∞, and let (hn)∞n=1 be an
orthonormal basis of H. Let Pn denote the orthogonal projection in H onto
the linear span of {h1, . . . , hn}. By Proposition 5.12 we have limn→∞RPn = R
in γ(H,E), and by Proposition 5.6 for all m < n we have

E
∥∥∥ n∑

j=m+1

γjRhj

∥∥∥p

= ‖RPn −RPm‖p
γp(H,E).

Since the right-hand side tends to 0 as m,n→∞, this proves the convergence
of the sum

∑∞
n=1 γnRhn in Lp(Ω;E).

(2)⇒(3): This implication is trivial.
(3)⇒(1): With the notations as before, by Proposition 5.6 we have

lim
m,n→∞

‖RPn −RPm‖p
γp(H,E) = lim

m,n→∞
E

∥∥∥ n∑
j=m+1

γjRhj

∥∥∥p

= 0.

It follows that (RPn)∞n=1 is a Cauchy sequence in γ(H,E). Its limit equals R,
since limn→∞RPnh = Rh for all h ∈ H.

This proves the equivalence of (1), (2), (3) as well as the final identity. The
almost sure convergence in (2) and (3) follows from the Itô-Nisio theorem. ut

We are now ready to characterise Gaussian covariance operators in terms
of γ-radonifying operators.

Theorem 5.16. Suppose Q ∈ L (E∗, E) and R ∈ L (H,E) satisfy Q = RR∗.
The following assertions are equivalent:

(1) Q is a Gaussian covariance operator;
(2) R ∈ γ(H,E).

If X is an E-valued random variable with covariance operator Q, then

E‖X‖p = ‖R‖p
γp(H,E), 1 6 p <∞.
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Proof. (1)⇒(2): LetX be E-valued Gaussian with covariance Q. By Theorem
4.12 the Hilbert space HX is separable, and from the identities E〈X,x∗〉2 =
〈Qx∗, x∗〉 = ‖R∗x∗‖2 it follows that the mapping jX : 〈X,x∗〉 7→ R∗x∗ extends
uniquely to an isometry from HX onto H̃ := ran(R∗).

Let (γn)∞n=1 be an orthonormal basis of HX and put hn := jXγn. Then
(hn)∞n=1 is an orthonormal basis of H̃. By the Karhunen-Loève theorem (The-
orem 4.12) we have X =

∑∞
n=1 γniXγn, where iX : HX → E is given by

iX〈X,x∗〉 = Qx∗ = RR∗x∗ = RjX〈X,x∗〉.

It follows that iX = RjX , and therefore
∞∑

n=1

γnRhn =
∞∑

n=1

γnRjXγn =
∞∑

n=1

γniXγn = X. (5.1)

Let R̃ denote the restriction of R to H̃. By the implication (3)⇒(1) of Theorem
5.15, we have proved that R̃ ∈ γ(H̃, E). Since R = 0 on H̃⊥ = ker(R), we
have R = R̃P where P is the orthogonal projection from H onto H̃. From
Proposition 5.11 we infer that R ∈ γ(H,E).

(2)⇒(1): Using Proposition 5.10, let (hn)∞n=1 be an orthonormal basis of
the separable Hilbert space H̃ = (ker(R))⊥. The E-valued random variable
X :=

∑∞
n=1 γnRhn is Gaussian and has covariance operator RR∗ = Q.

The final identity follows from (5.1) and Theorem 5.15. ut

We continue with a domination result for γ-radonifying operators.

Theorem 5.17 (Domination). Let H1 and H2 be Hilbert spaces and let
R1 ∈ L (H1, E) and R2 ∈ L (H2, E). If

‖R∗1x∗‖ 6 ‖R∗2x∗‖ ∀x∗ ∈ E∗,

then R2 ∈ γ(H2, E) implies R1 ∈ γ(H1, E) and for all 1 6 p <∞ we have

‖R1‖γp(H1,E) 6 ‖R2‖γp(H2,E).

Proof. Put H̃1 = ran(R∗1) and H̃2 = ran(R∗2). By assumption, the mapping
j : R∗2x

∗ 7→ R∗1x
∗ extends to a contraction from H̃2 to H̃1. For all h1 ∈ H̃1

and x∗ ∈ E∗ we have 〈R2j
∗h1, x

∗〉 = [h1, jR
∗
2x

∗] = [h1, R
∗
1x

∗] = 〈R1h1, x
∗〉.

Hence R2j
∗P = R1, where P is the orthogonal projection of H1 onto H̃1, and

the result follows from Proposition 5.11. ut

Corollary 5.18 (Covariance domination). Let X1 and X2 be E-valued
Gaussian random variables satisfying

E〈X1, x
∗〉2 6 E〈X2, x

∗〉2 ∀x∗ ∈ E∗.

Then, for all 1 6 p <∞,

E‖X1‖p 6 E‖X2‖p.

Proof. Combine Theorems 5.16 and 5.17. ut
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5.3 Examples of γ-radonifying operators

For certain range spaces, a complete characterisation of γ-radonifying oper-
ators can be given in non-probabilistic terms. The simplest example occurs
when the range space is a Hilbert space.

Theorem 5.19 (Operators into Hilbert spaces). If E is a Hilbert space,
then R ∈ γ(H,E) if and only if R ∈ L2(H,E), and in this case we have

‖R‖γ(H,E) = ‖R‖L2(H,E).

Here, L2(H,E) denotes the space of all Hilbert-Schmidt operators from H
to E, that is, completion of the space of all finite rank operators R ∈ L (H,E)
with respect to the norm

‖R‖2L2(H,E) :=
N∑

n=1

‖xn‖2,

where R =
∑N

n=1 hn ⊗ x with the h1, . . . , hN orthonomal in H.

Proof. This is trivial, since for R =
∑N

n=1 hn⊗x with h1, . . . , hN orthonomal
in H we have

‖R‖2γ(H,E) = E
∥∥∥ N∑

n=1

γnxn

∥∥∥2

=
N∑

n=1

‖xn‖2 = ‖R‖2L2(H,E).

ut

In what follows we shall use the notation A hp B to express the fact
that there exist constants 0 < c 6 C < ∞, depending only on p, such that
cA 6 B 6 CA. The notation A .p B has a similar meaning.

The next result shows that an operator from a separable Hilbert space
into an Lp-space is γ-radonifying if and only if it satisfies a square function
estimate.

Theorem 5.20 (Operators into Lp-spaces). Let (A,A , µ) be a σ-finite
measure space, let H be a separable Hilbert space, and let 1 6 p <∞. For an
operator R ∈ L (H,Lp(A)) the following assertions are equivalent:

(1) R ∈ γ(H,Lp(A));

(2) For all orthonormal bases (hn)∞n=1 of H the function
( ∑∞

n=1 |Rhn|2
) 1

2

belongs to Lp(A);

(3) For some orthonormal basis (hn)∞n=1 of H the function
( ∑∞

n=1 |Rhn|2
) 1

2

belongs to Lp(A).

In this case we have ‖R‖γ(H,Lp(A)) hp

∥∥( ∑∞
n=1 |Rhn|2

) 1
2
∥∥.
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Proof. Applying the identity
∑N

n=M |cn|2 = E|
∑N

n=M cnγn|2 with cn = fn(ξ),
ξ ∈ A, then applying the scalar Kahane-Khintchine inequality, then Fubini’s
theorem, and finally the Kahane-Khintchine inequality in Lp(A), for all M 6
N and fM , . . . , fN ∈ Lp(A) we obtain

∥∥∥( N∑
n=M

|fn|2
) 1

2
∥∥∥

p
=

∥∥∥(
E

∣∣∣ N∑
n=M

γnfn

∣∣∣2) 1
2
∥∥∥

p
hp

∥∥∥(
E

∣∣∣ N∑
n=M

γnfn

∣∣∣p) 1
p
∥∥∥

p

=
(
E

∥∥∥ N∑
n=M

γnfn

∥∥∥p

p

) 1
p hp

(
E

∥∥∥ N∑
n=M

γnfn

∥∥∥2

p

) 1
2
.

The equivalences (1)⇔(2), (1)⇔(3), and the final two-sided estimate now
follow by taking fn := Rhn, where (hn)∞n=1 is an orthonormal basis of H. ut

Here is a neat application:

Corollary 5.21. Let (A,A , µ) be a finite measure space and H a separable
Hilbert space. For all T ∈ L (H,L∞(A)) and 1 6 p < ∞ we have T ∈
γ(H,Lp(A)) and

‖T‖γ(H,Lp(A)) .p ‖T‖L (H,L∞(A)).

Proof. Let (hn)∞n=1 be an orthonormal basis of H. Fixing N > 1 and c ∈ RN ,
for µ-almost all ξ ∈ A we have

∣∣∣ N∑
n=1

cn(Thn)(ξ)
∣∣∣ 6

∥∥∥ N∑
n=1

cnThn

∥∥∥
∞

6 ‖T‖L (H,L∞(A))

∥∥∥ N∑
n=1

cnhn

∥∥∥
H

= ‖T‖L (H,L∞(A))‖c‖.

Taking the supremum over a countable dense set in the unit ball of RN we
obtain the following estimate, valid for µ-almost all ξ ∈ A:

( N∑
n=1

|(Thn)(ξ)|2
) 1

2
6 ‖T‖L (H,L∞(A)).

Now apply Theorem 5.20. ut

Every f ∈ Lp(A;H) defines a bounded operator Rf ∈ L (H,Lp(A)) by
putting

(Rfh)(ξ) := [f(ξ), h], ξ ∈ A, h ∈ H.

The next result shows thatRf ∈ γ(H,Lp(A)), and that everyR ∈ γ(H,Lp(A))
is of this form; this gives an alternative description of γ(H,Lp(A)). For later
use it will be useful to formulate this result in a more slightly more general
form. The isomorphism γ(H,Lp(A)) ' Lp(A;H) is obtained in the special
case E = R in the next theorem.
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Theorem 5.22 (γ-Fubini isomorphism). Let (A,A , µ) be a σ-finite mea-
sure space, let H be a Hilbert space, and let 1 6 p < ∞. The mapping
U : Lp(A; γ(H,E)) → L (H,Lp(A;E)) defined by

((Uf)h)(ξ) := f(ξ)h, ξ ∈ A, h ∈ H,

defines an isometry U from Lp(A; γp(H,E)) onto γp(H,Lp(A;E)).

Proof. Let f ∈ Lp(A; γp(H,E)) be a simple function of the form f =∑M
m=1 1Am ⊗ Um, where the operators Um are of the form

∑N
n=1 hn ⊗ xmn

for some orthonormal system {h1, . . . , hN} in H. Let H̃ be the span of
{h1, . . . , hN}. Using Corollary 5.5, Lemma 5.7, and Fubini’s theorem we ob-
tain

‖Uf‖γp(H,Lp(A;E)) = ‖Uf‖γp( eH,Lp(A;E))

=
(
E

∥∥∥ N∑
n=1

γn (Uf)hn

∥∥∥p

Lp(A;E)

) 1
p

=
( ∫

A

E
∥∥∥ N∑

n=1

γn fhn

∥∥∥p

dµ
) 1

p

=
( ∫

A

‖f‖p

γp( eH,E)
dµ

) 1
p

=
( ∫

A

‖f‖p
γp(H,E) dµ

) 1
p

= ‖f‖Lp(A;γp(H,E)).

Since the simple functions f of the above form are dense, these estimates imply
that U extends to an isomorphism of Lp(A; γp(H,E)) onto a closed subspace
of γp(H,Lp(A;E)). To show that this operator is surjective it is enough to
show that its range is dense. But

U
( N∑

n=1

1An
⊗

( K∑
k=1

hk ⊗ xkn

))
=

K∑
k=1

hk ⊗
( N∑

n=1

1An
⊗ xkn

)
,

for all An ∈ A with µ(An) <∞, orthonormal h1, . . . , hK ∈ H, and arbitrary
xkn ∈ E. The elements on the right hand side are dense in γp(H,Lp(A;E)).

ut

The final example is important in the theory of Brownian motion.

Theorem 5.23 (Indefinite integration). The operator IT : L2(0, T ) →
C[0, T ] defined by

(IT f)(t) :=
∫ t

0

f(s) ds, f ∈ L2(0, T ), t ∈ [0, T ],

is γ-radonifying.

A proof is outlined in Exercise 5.
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5.4 Exercises

1. Let 1 6 p < ∞. Determine for which scalar sequences a = (an)∞n=1 the
diagonal operator un 7→ anun defines a γ-radonifying operator from `2 to
`p. Here un = (0, . . . , 0, 1, 0, . . . ), with the ‘1’ in the n-th entry, is the n-th
unit vector of `p.
Hint: Apply Theorem 5.20.

2. Let (hn)∞n=1 be a Hilbert sequence in a Hilbert space H, that is, there
exists a constant C > 0 such that for all scalars α1, . . . , αN ,

∥∥∥ N∑
n=1

αnhn

∥∥∥ 6 C
( N∑

n=1

|αn|2
) 1

2
.

Show that if R ∈ γ(H,E), then
∑∞

n=1 γnRhn converges in L2(Ω;E) and

E
∥∥∥ ∞∑

n=1

γnRhn

∥∥∥2

6 C2‖R‖2γ(H,E).

3. (!) Let (A,A , µ) be a σ-finite measure space and define Φ : A→ γ(H,E)
by Φ := φ⊗U, where φ ∈ L2(A) and U ∈ γ(H,E). Prove that the operator
RΦ : L2(A;H) → E,

RΦf :=
∫

A

Φ(ξ)f(ξ) dµ(ξ) =
∫

A

φ(ξ)Uf(ξ) dµ(ξ)

belongs to γ(L2(A;H), E) with norm

‖RΦ‖γ(L2(A;H),E) = ‖φ‖L2(A)‖U‖γ(H,E).

4. (!) Let again (A,A , µ) be a σ-finite measure space. For µ-simple functions
φ : A→ γ(H,E) we define Rφ : L2(A;H) → E by

Rφf :=
∫

A

φ(ξ)f(ξ) dµ(ξ).

By the previous exercise, Rφ ∈ γ(L2(A;H), E).
a) Prove that if E has type 2, then the mapping φ 7→ Rφ has a unique ex-

tension to a continuous embedding L2(A; γ(H,E)) ↪→ γ(L2(A;H), E).
Hint: Consider simple functions whose values are finite rank opera-
tors.

b) Prove the following converse for H = R and A = (0, 1): if the mapping
φ 7→ Rφ, defined for simple functions φ : (0, 1) → E, extends to a
bounded operator R from L2(0, 1;E) to γ(L2(0, 1), E), then E has
type 2.
Hint: Consider step functions.
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Examples of Banach space with type 2 are Hilbert spaces and Lp-spaces
for 2 6 p <∞ (see Exercise 3.4).
Remark: The following ‘dual’ result also holds, with a similar proof: if E
has cotype 2, then the mapping RΦ 7→ Φ is well defined and has a unique
extension to a continuous embedding γ(L2(A;H), E) ↪→ L2(A; γ(H,E)).
Conversely, if the mapping Rφ 7→ φ extends to a continuous embedding
γ(L2(0, 1), E) ↪→ L2(0, 1;E), then E has cotype 2.

5. We present a proof of Theorem 5.23 due to Ciesielski. Another proof
will be outlined in the next lecture.
Without loss of generality we take T = 1 and set IT = I1 =: I.
a) Let γ be a standard Gaussian variable. Prove that

P{|γ| > t} 6
2

t
√

2π
e−

1
2 t2 .

b) Let (γn)∞n=1 be a Gaussian sequence. Use a) and the Borel-Cantelli
lemma to prove that for any α > 1, almost surely we have

|γn| 6
√

2α log(n+ 1)

for all but at most finitely many n > 1.
The Haar basis of L2(0, 1) is defined by h1 ≡ 1 and hn := φjk for n > 2,
where n = 2j + k with j = 0, 1, 2, . . . and k = 1, . . . , 2j , and

φjk = 2j/21(
k−1
2j ,

k−1/2
2j

) − 2j/21(k−1/2
2j ,

k
2j

).
c) Prove that (hn)∞n=1 is an orthonormal basis for L2(0, 1).
d) Prove that, almost surely, the sum

∑∞
n=1 γn(Ihn)(t) converges abso-

lutely and uniformly with respect to t ∈ [0, 1].
Hint: Use b) together with the observation that for all j > 0 and
t ∈ [0, 1], we have Iφjk(t) = 0 for all but at most one k ∈ {1, . . . , 2j}
and that for this k we have 0 6 Iφjk(t) 6 2−j/2−1.

e) Combine d) with Theorem 5.15 and the final assertion of the Itô-Nisio
theorem to deduce that I is γ-radonifying from L2(0, 1) to C[0, 1].

Notes. The class of γ-summing operators was introduced by Linde and
Pietsch [70]. A detailed study of γ-summing operators is presented in Di-
estel, Jarchow, Tonge [35, Chapter 12]. The notion of a γ-radonifying
operator is older and has its origins in the work of Gross [43]. Frequently
H is assumed to be separable and the equivalent conditions (2) and (3) of
Theorem 5.15 are taken as the definition of a γ-radonifying operator.

To explain the name ‘γ-radonifying’, let us first introduce some termi-
nology. A probability measure µ on a topological space E is called a Radon
measure if for all Borel sets B ⊆ E and ε > 0 there exists a compact subset
K ⊆ B such that µ(B \K) < ε. If µ is the distribution of a random variable
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with values in a Banach space E, then µ is a Radon measure on E; this can
be deduced from Proposition 2.3 and some additional thought. Now Theorem
5.16 can be interpreted as saying that a bounded operator T : H → E is
γ-radonifying if and only if it maps the finitely additive standard Gaussian
measure γH (see the discussion in the Notes of Lecture 4) to a Radon measure
µ on E (viz., the Gaussian measure µ with covariance operator TT ∗).

In some sense, the class of γ-radonifying operators is the Gaussian ana-
logue of the class of p-absolutely summing operators, a fact with indicates
its importance from the point of view of Banach space theory. The interme-
diate notion of p-radonifying operators has been studied thoroughly by the
French school. We refer to Vakhania, Tarieladze, Chobanyan [105] for
more information and references to the literature.

The γ-Fatou lemma is essentially due to Kalton and Weis [58]. The
authors used γ-radonifying norms to extend certain results in spectral theory
involving square functions to the Banach space-valued setting. Propositions
5.12 and 5.14 are taken from [82].

Corollary 5.18 can be improved as follows: if X and Y are E-valued Gaus-
sian random variables satisfying E〈X,x∗〉2 6 E〈Y, x∗〉2 for all x∗ ∈ E∗ and
C ⊆ E is closed, convex, and symmetric, then

P{X 6∈ C} 6 P{Y 6∈ C}. (5.2)

This result is due to Anderson [2].
Without proof we mention the following result, essentially due to Neid-

hardt [85], which can be proved using Prokhorov’s theorem (Theorem 2.19)
and a Anderson’s inequality (see the Notes of Lecture 4):

Theorem 5.24 (γ-Dominated convergence). Suppose (Tn)∞n=1 is a se-
quence in L (H,E) and assume that there exist R ∈ γ(H,E) and T ∈
L (H,E) such that for all x∗ ∈ E∗ we have:

(1) ‖T ∗nx∗‖ 6 ‖R∗x∗‖,
(2) limn→∞ T ∗nx

∗ = T ∗x∗ in H.

Then T ∈ γ(H,E) and limn→∞ Tn = T in the norm of γ(H,E).

The main idea is as follows. If X is a family E-valued Gaussian random
variables whose covariances are dominated by R in the sense of (1), then by
using Anderson’s inequality (5.2) it can be shown that X is uniformly tight,
and Prokhorov’s theorem can be applied.

The square function characterisation of γ-radonifying operators into Lp-
spaces of Theorem 5.20 is taken from [83]. For p = 2, Corollary 5.21 asserts
that if (A,A , µ) is a finite measure space, then every bounded operator from
H to L2(A) which factors through L∞(A) is Hilbert-Schmidt. In its present
form, the corollary was suggested to us by Haase. A related result is contained
in [83]; see also [106, Lemma 8.7.2]. The γ-Fubini isomorphism is taken from
[82].
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Exercise 2 is from [44]. Exercise 4 goes back to Hoffmann-Jorgensen
and Pisier [49] and Rosiński and Suchanecki [96]. In its present form it
was noted in [84]. From Kwapień’s theorem (see the notes of Lecture 3 and
Exercise 4) we deduce that the mapping φ 7→ Rφ induces an isomorphism of
Banach spaces

L2(0, 1;E) ' γ(L2(0, 1), E)

if and only if E is isomorphic to a Hilbert space.
The proof of Theorem 5.23 sketched in Exercise 5 is due to Ciesielski. He

used the uniform convergence of the sum
∑∞

n=1 γnIThn to give an elementary
proof that a Brownian motion admits a version with continuous trajectories;
we return to this point in the lext lecture. According to Theorem 5.16, the
operator IT I∗T is the covariance of a Gaussian measure w on C[0, T ], the so-
called Wiener measure. A straightforward computation shows that

〈IT I∗T δs, δt〉 =
∫

C[0,T ]

f(s)f(t) dw(f) = min{s, t}, s, t ∈ [0, T ].

Here δs and δt are the Dirac measures concentrated at s and t. We refer to
the textbook of Steele [99] for a discussion of Ciesielki’s result as well as
some of its ramifications.
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Stochastic integration I: the Wiener integral

The hard work in the previous lectures will pay off in this lecture, which is
devoted to stochastic integration. In view of future applications to stochastic
Cauchy problems we shall consider a setting where the integrands take values
in the space of operators L (H,E), whereH is a Hilbert space and E a Banach
space, and the integrator is a H-cylindrical Brownian motion on a probability
space (Ω,F ,P). It is advisable, however, to keep in mind the special case
H = R which concerns the stochastic integration of E-valued functions with
respect to a real-valued Brownian motion (cf. Corollary 6.18).

In this lecture we only consider stochastic integrals of functions Φ :
(0, T ) → L (H,E); such integrals are sometimes called Wiener integrals.
The more delicate problem of stochastic integration of stochastic processes
Φ : (0, T )×Ω → L (H,E) will be considered later on in this course. The theory
developed in the present lecture suffices for applications to linear stochastic
evolution equations with additive noise, which is the topic of the next couple
of lectures.

6.1 Brownian motion

An E-valued stochastic process (briefly, an E-valued process) indexed by a
set I is a family of E-valued random variables (X(i))i∈I defined on some
underlying probability space (Ω,F ,P).

Definition 6.1. An E-valued process (X(i))i∈I is called Gaussian if for all
N > 1 and i1, . . . , iN ∈ I the EN -valued random variable (X(i1), . . . , X(iN ))
is Gaussian.

6.1.1 Brownian motion

We start with the definition.
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Definition 6.2. A real-valued process (W (t))t∈[0,T ] is called a Brownian mo-
tion if it enjoys the following properties:

(i) W (0) = 0 almost surely;
(ii) W (t)−W (s) is Gaussian with variance t− s for all 0 6 s 6 t 6 T ;
(iii) W (t)−W (s) is independent of {W (r) : 0 6 r 6 s} for all 0 6 s 6 t 6 T .

In some texts, Brownian motions are called Wiener processes.

Proposition 6.3. Every Brownian motion is a Gaussian process.

Proof. Fix t1, . . . , tN ∈ [0, T ]. By independence, the RN -valued random vari-
able (W (t1), W (t2)−W (t1), . . . ,W (tN )−W (tN−1)) is Gaussian, and the ran-
dom variable (W (t1), . . . ,W (tN )) is obtained from it under the linear trans-
formation (ρ1, . . . , ρN ) 7→ (ρ1, ρ1 + ρ2, . . . , ρ1 + · · ·+ ρN ). ut

Here is a simple way to recognise Brownian motions:

Proposition 6.4. A real-valued Gaussian process (W (t))t∈[0,T ] is a Brownian
motion if and only if

E(W (s)W (t)) = min{s, t} ∀0 6 s, t 6 T.

Proof. Let us first prove the ‘if’ part. Property (i) follows from E(W (0))2 = 0.
To prove (ii) let 0 6 s 6 t 6 T . Then

E(W (t)−W (s))2 = t− 2 min{s, t}+ s = t− s.

For (iii) we must prove thatW (t)−W (s) is independent of (W (r1), . . . ,W (rN ))
whenever 0 6 r1, . . . , rN 6 s 6 t 6 T (cf. Definition 3.4). Noting that
(W (r1), . . . ,W (rN )) is the image of (W (r1),W (r2) − W (r1), . . . ,W (rN ) −
W (rN−1)) under a linear transformation, it suffices to prove that W (t)−W (s)
is independent of (W (r1),W (r2) −W (r1), . . . ,W (rN ) −W (rN−1)). For this,
in turn, it is enough to check that the random variables W (r1),W (r2) −
W (r1), . . . ,W (rN )−W (rN−1),W (t)−W (s) are independent. By Proposition
4.10, all we have to check is their orthogonality in L2(Ω). But this follows
from a simple computation using E(W (s)W (t)) = min{s, t}.

To prove the ‘only if’ part let (W (t))t∈[0,T ] be a Brownian motion. Then
for all 0 6 s 6 t 6 T ,

2E(W (s)W (t)) = EW (s)2 + EW (t)2 − E(W (t)−W (s))2

= s+ t− (t− s) = 2s = 2min{s, t}. ut

In order to prove the existence of Brownian motions it will be helpful to
introduce the notion of an isonormal process.

Let H be a Hilbert space with inner product [·, ·].
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Definition 6.5. An H -isonormal process on Ω is a mapping W : H →
L2(Ω) with the following two properties:

(i) For all h ∈ H the random variable W h is Gaussian;
(ii) For all h1, h2 ∈ H we have E(W h1 ·W h2) = [h1, h2].

From (ii) it follows that for all scalars c1, c2 and all h1, h2 ∈ H one has

E(W (c1h1 + c2h2)− (c1W (h1) + c2W (h2)))2 = 0.

As a consequence, H -isonormal processes are linear. By linearity we have∑N
n=1 cnW hn = W (

∑N
n=1 cnhn), which shows that for all h1, . . . , hN ∈ H the

RN -valued random variable (W h1, . . . ,W hN ) is Gaussian. Stated differently,
(W h)h∈H is a Gaussian process.

Example 6.6. If H is a separable Hilbert space with orthonormal basis
(hn)∞n=1 and (γn)∞n=1 is a Gaussian sequence, then W h :=

∑∞
n=1 γn[h, hn]

defines an H -isonormal process W . The verification is an easy exercise.

The next theorem provides the existence of Brownian motions:

Theorem 6.7. If W is an L2(0, T )-isonormal process, then W (t) := W 1[0,t]

defines a Brownian motion on [0, T ].

Proof. By the observation preceding Example 6.6, (W (t))t∈[0,T ] is a Gaussian
process. Since it satisfies E(W (s)W (t)) = [1[0,s], 1[0,t]]L2(0,T ) = min{s, t}, it is
a Brownian motion by Proposition 6.4. ut

The Brownian motion constructed in Theorem 6.7 is given explicitly by

W (t) =
∞∑

n=1

γn[hn, 1[0,t]] =
∞∑

n=1

γn

∫ t

0

hn(s) ds, (6.1)

where (γn)∞n=1 is a Gaussian sequence and (hn)∞n=1 is an orthonormal basis
for L2(0, T ). This formula gives a profound connection between Brownian
motions and the integration operator IT : L2(0, T ) → C[0, T ] of Theorem
5.23. We return to this point in Exercise 2.

So far, we have never worried about the distinction between a pointwise
defined random variable X : Ω → E and its equivalence class modulo null
sets. When considering stochastic processes (X(i))i∈I , however, one is often
interested in properties of the trajectories i 7→ X(i, ω) := (X(i))(ω), where
ω ∈ Ω. Of course these are well-defined only if the X(i) are defined pointwise.
Since random variables are often given only as equivalence classes (for in-
stance, when they are constructed as elements of Lp(Ω;E)), one is confronted
with the problem of selecting, for each i ∈ I, a pointwise defined representa-
tive of X(i). The question then arises whether these representatives can be
chosen in a way that the trajectories have ‘good’ properties.

This discussion leads naturally to the following definition.
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Definition 6.8. Two (pointwise defined) processes X = (X(i))i∈I and X̃ =
(X̃(i))i∈I are versions of each other if for all i ∈ I we have X(i) = X̃(i)
almost surely.

Stated differently, X and X̃ are versions of each other if and only if X(i)
and X̃(i) define the same equivalence class for each i ∈ I. From now we shall
tacitly assume that processes are always pointwise defined.

The next result, due to Kolmogorov, gives a sufficient condition for the
existence of a (Hölder) continuous version of an E-valued process (X(t))t∈[0,T ].

Theorem 6.9 (Kolmogorov). Let (X(t))t∈[0,T ] be an E-valued process on
Ω with the property that there exist real constants C > 0, α > 0, β > 0, such
that

E‖X(t)−X(s)‖α 6 C(t− s)1+β ∀0 6 s 6 t 6 T.

Then for all 0 6 γ < β
α , X has a version X̃ with Hölder continuous trajectories

of exponent γ, that is, for all ω ∈ Ω there is a constant C̃(ω) > 0 such that

‖X̃(t, ω)− X̃(s, ω)‖ 6 C̃(ω)|t− s|γ ∀0 6 s, t 6 T.

Proof. We may assume that T = 1 for notational simplicity. For j = 0, 1, . . .
put

Yj := sup
06k62j−1

‖X(k+1)2−j −Xk2−j‖.

Clearly,

EY α
j 6

2j−1∑
k=0

E‖X(k+1)2−j −Xk2−j‖α 6 2j · C2−(1+β)j = C2−βj .

Set Dj := {k2−j : k = 0, . . . , 2j−1} and D :=
⋃∞

j=0Dj . Fix j > 0 and s, t ∈ D
satisfying |t− s| 6 2−j . For each n > 0 let sn and tn be the largest elements
in Dn such that sn 6 s and tn 6 t. Then either sn = tn or |tn − sn| = 2−n.
Similarly, sn+1 − sn and tn+1 − tn can only take the values 0 or 2−(n+1).
Moreover, eventually sn = s and tn = t. Hence,

‖Xt −Xs‖ 6 ‖Xsj −Xtj‖+
∞∑

n=j

‖Xtn+1 −Xtn‖+
∞∑

n=j

‖Xsn+1 −Xsn‖

6 Yj + 2
∞∑

n=j+1

Yn 6 2
∞∑

n=j

Yn,

where all sums are actually finite. Fixing 0 6 γ < β
α we obtain

Z := sup{‖Xt −Xs‖/|t− s|γ : s, t ∈ D, s 6= t}

6 sup
j>0

{
2(j+1)γ sup

2−(j+1)<|t−s|62−j

‖Xt −Xs‖ : s, t ∈ D, s 6= t
}

6 sup
j>0

(
2(j+1)γ · 2

∞∑
n=j

Yn

)
6 2γ+1

∞∑
n=0

2γnYn.
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In case α > 1, the triangle inequality in Lα(Ω) gives

(EZα)
1
α 6 2γ+1

∞∑
n=0

2γn(EY α
n )

1
α 6 2γ+1

∞∑
n=0

2γn(C2−βn)
1
α ,

which is finite since we assumed that γ < β/α. For 0 < α < 1 we reason
similarly, replacing the triangle inequality by the inequality (

∑∞
n=0 |cn|)α 6∑∞

n=0 |cn|α. In either case, it follows that Z <∞ almost surely.
In particular, almost surely X is uniformly continuous on D. On the set

{Z < ∞} we define X̃t = lims→t
s∈D

Xs and on the remaining null set we set

X̃t := 0. The process X̃ thus obtained has Hölder continuous trajectories of
exponent γ. By Fatou’s lemma and the assumption of the theorem, for all
t ∈ [0, 1] we have X̃t = Xt almost surely. Therefore X̃ is a version of X. ut

Corollary 6.10. Every Brownian motion has a version with Hölder continu-
ous trajectories for any exponent γ < 1

2 .

Proof. From E|W (t) − W (s)|2 = |t − s| and Exercise 1 (or the Kahane-
Khintchine inequality), for k = 1, 2, . . . we obtain

E|W (t)−W (s)|2k = Ck|t− s|k,

and the result follows from Kolmogorov’s theorem upon letting k →∞. ut

6.1.2 Cylindrical Brownian motion

Definition 6.11. An L2(0, T ;H)-isonormal process is called an H-cylindrical
Brownian motion on [0, T ].

H-Cylindrical Brownian motions will be denoted by WH . For t ∈ [0, T ]
and h ∈ H we put

WH(t)h := WH(1(0,t) ⊗ h).

For each fixed h ∈ H the process (WH(t)h)h∈H is a Brownian motion, which
is standard if and only if ‖h‖H = 1.

Example 6.12. If (W (n))∞n=1 is a sequence of independent Brownian motions
and H is a separable Hilbert space with orthonormal basis (hn)∞n=1, then

WH(t)h :=
∞∑

n=1

W (n)(t)[h, hn]

defines an H-cylindrical Brownian motion (WH(t))t∈[0,T ]. The easy proof is
left as an exercise.

Remark 6.13. Let H = L2(D), where D is an open subset of Rd. An L2(D)-
cylindrical Brownian motion provides the mathematical model for ‘space-time
white noise’ on [0, T ]×D. This explains why H-cylindrical Brownian motions
appear naturally in the context of stochastic partial differential equations. We
will return to this in later lectures.
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6.2 The stochastic Wiener integral

After these preliminaries we turn to the problem of defining a stochastic in-
tegral of suitable functions Φ : (0, T ) → L (H,E) with respect to an H-
cylindrical Brownian motion WH .

For an L (H,E)-valued step function of the form Φ = 1(a,b) ⊗ (h ⊗ x)
with 0 6 a < b 6 T and h ∈ H, x ∈ E, we define the random variable∫ T

0
ΦdWH ∈ L2(Ω;E) by∫ T

0

ΦdWH := WH(1(a,b) ⊗ h)⊗ x = (WH(b)h−WH(a)h)⊗ x

and extend this definition by linearity to step functions with values in the
finite rank operators in L (H,E); such functions will be called finite rank
step functions. In order to extend the stochastic integral to a broader class
of L (H,E)-valued functions, just as in the classical scalar-valued theory we
shall compute its square expectation.

We make the preliminary observation that any step function Φ : (0, T ) →
L (H,E) uniquely defines a bounded operator RΦ ∈ L (L2(0, T ;H), E) by
the formula

RΦf :=
∫ T

0

Φ(t)f(t) dt, f ∈ L2(0, T ;H).

Theorem 6.14 (Itô isometry). For all finite rank step functions Φ :
(0, T ) → L (H,E) we have RΦ ∈ γ(L2(0, T ;H), E), the stochastic integral∫ T

0
ΦdWH is a Gaussian random variable, and

E
∥∥∥∫ T

0

ΦdWH

∥∥∥2

= ‖RΦ‖2γ(L2(0,T ;H),E).

Proof. Let Φ :=
∑N

n=1 1(tn−1,tn) ⊗ Un with 0 6 t0 < · · · < tN 6 T and
the operators Un ∈ L (H,E) of finite rank. It is an easy exercise in linear
algebra to check that there is no loss of generality in assuming that Un =∑k

j=1 hj ⊗ xjn, where the vectors h1, . . . , hk ∈ H are orthonormal (and do
not depend on n). Since RΦ is of finite rank, it belongs to γ(L2(0, T ;H), E).

Put φn := cn1(tn−1,tn), where the normalising constant cn := 1/
√
tn − tn−1

assures that the functions φ1, . . . , φN are orthonormal in L2(0, T ). The se-
quence (φn ⊗ hj) 16j6k

16n6N
is orthonormal in L2(0, T ;H), and from Lemma 5.7

we obtain that
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‖RΦ‖2γ(L2(0,T ;H);E) = E
∥∥∥ k∑

j=1

N∑
n=1

γjnRΦ(φn ⊗ hj)
∥∥∥2

= E
∥∥∥ k∑

j=1

N∑
n=1

γjn

∫ T

0

cn1(tn−1,tn)(t)Unhj dt
∥∥∥2

= E
∥∥∥ k∑

j=1

N∑
n=1

γjn

√
tn − tn−1xjn

∥∥∥2

,

where (γjn) 16j6k
16n6N

is a Gaussian sequence. On the other hand,

E
∥∥∥∫ T

0

ΦdWH

∥∥∥2

= E
∥∥∥ k∑

j=1

N∑
n=1

(WH(tn)hj −WH(tn−1)hj)⊗ xjn

∥∥∥2

= E
∥∥∥ k∑

j=1

N∑
n=1

WH(tn)hj −WH(tn−1)hj√
tn − tn−1

⊗
√
tn − tn−1xjn

∥∥∥2

.

Putting γ′jn := (WH(tn)hj −WH(tn−1)hj)/
√
tn − tn−1, the desired identity

now follows since (γ′jn) 16j6k
16n6N

is a Gaussian sequence. ut

As a consequence, the linear mapping JWH

T : RΦ 7→
∫ T

0
ΦdWH uniquely

extends to an isometric embedding

JWH

T : γ(L2(0, T ;H), E) → L2(Ω;E).

Accordingly, the stochastic integral of an operator R ∈ γ(L2(0, T ;H), E)
can be defined as JWH

T (R). In order for this to be useful we need a way
to recognise those L (H,E)-valued functions which ‘represent’ an operator in
γ(L2(0, T ;H), E). To this problem we turn next.

For a function Φ : (0, T ) → L (H,E) and elements h ∈ H and x∗ ∈ E∗

we define Φh : (0, T ) → E and Φ∗x∗ : (0, T ) → H by (Φh)(t) := Φ(t)h and
(Φ∗x∗)(t) := Φ∗(t)x∗ (where of course Φ∗(t) := (Φ(t))∗).

Definition 6.15. A function Φ : (0, T ) → L (H,E) is said to be stochas-
tically integrable with respect to the H-cylindrical Brownian motion WH if
there exists a sequence of finite rank step functions Φn : (0, T ) → L (H,E)
such that:

(i) for all h ∈ H we have limn→∞ Φnh = Φh in measure;

(ii) there exists an E-valued random variable X such that lim
n→∞

∫ T

0

Φn dWH =

X in probability.

The stochastic integral of a stochastically integrable function Φ : (0, T ) →
L (H,E) is then defined as the limit in probability
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0

ΦdWH := lim
n→∞

∫ T

0

Φn dWH .

Three remarks are in order.

(a) Condition (i) means limn→∞ |{t ∈ (0, T ) : ‖Φn(t)h−Φ(t)h‖ > r}| = 0 for
all h ∈ H and r > 0, where |B| denotes the Lebesgue measure of B.

(b) The stochastic integral is well defined in the sense that it is independent
of the approximating sequence.

(c) From Theorem 4.15 it follows that the convergence in probability in condi-
tion (ii) is equivalent to convergence in Lp(Ω;E) for some (all) 1 6 p <∞.

In the special case E = R we may identify L (H,R) = H∗ with H by the
Riesz representation theorem. Under this identification, Theorem 6.14 reduces
to the statement that the stochastic integral of a step function φ : (0, T ) → H
satisfies

E
∥∥∥∫ T

0

φdWH

∥∥∥2

= ‖φ‖2L2(0,T ;H). (6.2)

From this it is immediate that a strongly measurable function φ : (0, T ) → H
is stochastically integrable with respect to WH if and only if φ ∈ L2(0, T ;H),
and the isometry (6.2) extends to functions φ ∈ L2(0, T ;H).

Definition 6.16. A function Φ : (0, T ) → L (H,E) is called H-strongly mea-
surable if for each h ∈ H the function Φh : (0, T ) → E is strongly measurable.

By Theorem 6.14 and a limiting argument, we see that if a function Φ is
stochastically integrable with respect to WH , then the integral operator RΦ

associated with Φ is well-defined and γ-radonifying. Interestingly, the converse
is true as well. These two statements are contained in the next theorem, which
is the main result of this lecture.

Theorem 6.17. Let WH be an H-cylindrical Brownian motion. For an H-
strongly measurable function Φ : (0, T ) → L (H,E) the following assertions
are equivalent:

(1) Φ is stochastically integrable with respect to WH ;
(2) Φ∗x∗ ∈ L2(0, T ;H) for all x∗ ∈ E∗, and there exists an E-valued random

variable X such that for all x∗ ∈ E∗, almost surely we have

〈X,x∗〉 =
∫ T

0

Φ∗x∗ dWH ;

(3) Φ∗x∗ ∈ L2(0, T ;H) for all x∗ ∈ E∗, and there exists an operator R ∈
γ(L2(0, T ;H), E) such that for all f ∈ L2(0, T ;H) and x∗ ∈ E∗ we have

〈Rf, x∗〉 =
∫ T

0

〈Φ(t)f(t), x∗〉 dt.
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If these equivalent conditions are satisfied, the random variable X and the
operator R are uniquely determined, we have X =

∫ T

0
ΦdWH almost surely,

and

E
∥∥∥∫ T

0

ΦdWH

∥∥∥2

= ‖R‖2γ(L2(0,T ;H),E).

In the situation of (3) we say that Φ represents the operator R. Note that
condition (3) does not depend on the particular choice of WH .

Proof. We shall prove the implications (1)⇒(2)⇒(4)⇒(3)⇒(1), where

(4) Φ∗x∗ ∈ L2(0, T ;H) for all x∗ ∈ E∗, and there exists a γ-radonifying
operator R̃ from a Hilbert space H̃ to E such that for all x∗ ∈ E∗ we have

‖Φ∗x∗‖L2(0,T ;H) 6 ‖R̃∗x∗‖ eH .
(1)⇒(2): Let (Φn)∞n=1 be an approximating sequence of finite rank step

functions for Φ and take X :=
∫ T

0
ΦdWH . As we have already observed,

limn→∞
∫ T

0
Φn dWH = X in L2(Ω;E). Hence,

lim
n→∞

∫ T

0

Φ∗nx
∗ dWH = lim

n→∞

〈 ∫ T

0

Φn dWH , x
∗
〉

= 〈X,x∗〉

in L2(Ω), where the first identity is verified by writing out the definitions. By
the special case of the Itô isometry contained in (6.2), the sequence (Φ∗nx

∗)∞n=1

is Cauchy in L2(0, T ;H). Let f be its limit. Since limn→∞〈Φnh, x
∗〉 = 〈Φh, x∗〉

in measure, it follows that f = Φ∗x∗ in L2(0, T ;H). Once more by (6.2),

lim
n→∞

∫ T

0

Φ∗nx
∗ dWH =

∫ T

0

Φ∗x∗ dWH .

(2)⇒(4): Let iX ∈ γ(HX , E) be defined by (4.3). Then, by (6.2),∫ T

0

‖Φ∗(t)x∗‖2 dt = E
∥∥∥∫ T

0

Φ∗x∗ dWH

∥∥∥2

= E〈X,x∗〉2 = ‖i∗Xx∗‖2.

(4)⇒(3): The formula

(RΦf)(x∗) :=
∫ T

0

[f(t), Φ∗(t)x∗] dt, f ∈ L2(0, T ;H), x∗ ∈ E∗,

defines a bounded operator RΦ from L2(0, T ;H) to E∗∗. Once we know that
RΦ maps L2(0, T ;H) into E, Theorem 5.17 shows thatRΦ ∈ γ(L2(0, T ;H), E).

For the proof that RΦ takes values in E we invoke Theorem 1.20. By
assumption, for all h ∈ H the function Φh is strongly measurable and the
functions 〈Φh, x∗〉 = [h, Φ∗x∗] are square integrable. It follows that Φh is
Pettis integrable. Therefore, for step functions f , the element RΦf ∈ E∗∗ is
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given by the Pettis integral
∫ T

0
Φ(t)f dt in E. Thus, RΦf ∈ E for all step

functions f : (0, T ) → H. Since these functions are dense in L2(0, T ;H), a
limiting argument implies that RΦf ∈ E for all f ∈ L2(0, T ;H).

(3)⇒(1): We split the proof into three steps.
Step 1 - We begin by constructing an E-valued random variable X, which

will turn out later to be the stochastic integral
∫ T

0
ΦdWH .

By Proposition 5.10 there is a separable closed subspace H0 of L2(0, T ;H)
such that Rf = 0 for all f ∈ H ⊥

0 . Choose a separable closed subspace H0

of H such that H0 ⊆ L2(0, T ;H0). Note that the range of R∗ is contained in
H0, hence in L2(0, T ;H0).

Let (fm)∞m=1 and (hn)∞n=1 be orthonormal bases for L2(0, T ) and H0,
respectively. The functions φmn := fm ⊗ hn define an orthonormal ba-
sis (φmn)∞m,n=1 for L2(0, T ;H0). By (6.2) the random variables γmn :=∫ T

0
φmn dWH are standard Gaussian, and the linearity of the stochastic in-

tegral implies that they are jointly Gaussian. The orthonormality of the φmn

implies that the γmn are orthonormal in L2(Ω), and therefore independent
by Proposition 4.10. Thus we have shown that (γmn)∞m,n=1 is a Gaussian se-
quence.

Put

X :=
∞∑

m,n=1

γmnRφmn.

This sum converges in L2(Ω;E) by Theorem 5.15. Moreover, the identity
〈Rφmn, x

∗〉 = [Φ∗x∗, φmn]L2(0,T ;H0) implies Φ∗x∗ = R∗x∗ ∈ L2(0, T ;H0) and

〈X,x∗〉 =
∞∑

m,n=1

∫ T

0

〈Rφmn, x
∗〉φmn dWH

=
∫ T

0

∞∑
m,n=1

〈Rφmn, x
∗〉φmn dWH =

∫ T

0

Φ∗x∗ dWH ,

(6.3)

where the second identity follows from L2(0, T ;H)-convergence and (6.2).
Step 2 - Define the operators Φk(t) ∈ L (H,E) by

Φk(t)h :=
2k∑

j=1

1
(
(j−1)T

2k , jT

2k )
(t)RUjkh,

where Ujk ∈ L (H,L2(0, T ;H)) is given by Ujkh := 2k

T 1
(
(j−1)T

2k , jT

2k )
⊗ h. Note

that RUjk ∈ γ(H,E) by the ideal property. Hence, each Φk is an γ(H,E)-
valued step function. The identity

〈Φk(t)h, x∗〉 =
2k∑

j=1

1
(
(j−1)T

2k , jT

2k )

2k

T

∫ jT

2k

(j−1)T

2k

〈Φ(t)h, x∗〉 dt

shows that Φk is obtained from Φ by averaging. We will show that
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(i) limk→∞ Φkh = Φh in measure for all h ∈ H,
(ii) limk→∞

∫ T

0
Φk dWH = X in probability, where X is as in Step 1.

To prove (i) fix h ∈ H and assume that ‖h‖ = 1. To get around the difficulty
that we cannot be sure that Φh ∈ L2(0, T ;E) we do a trunction argument.

Fix an arbitrary ε > 0. For r > 0 define S(r) ∈ L (L2(0, T ;H)) by S(r)f :=
1{‖Φ(t)h‖6r}f. Using Proposition 5.12 choose r0 > 0 so large that

‖R−RS(r0)‖γ(L2(0,T ;H),E) < ε, |{t ∈ (0, T ) : ‖Φ(t)h− f (r0)(t)‖ > ε}| < ε,

where f (r0)(t) := 1{‖Φ(t)h‖6r0}Φ(t)h. Since f (r0) ∈ L2(0, T ;E), by the proper-
ties of averaging operators (see Exercise 3) we have

f (r0) = lim
k→∞

2k∑
j=1

1
(
(j−1)T

2k , jT

2k )

2k

T

∫ jT

2k

(j−1)T

2k

f (r0)(t) dt = lim
k→∞

f
(r0)
k (6.4)

in L2(0, T ;E), where f (r0)
k :=

∑2k

j=1 1
(
(j−1)T

2k , jT

2k )
RS(r0)Ujkh.

If s ∈ ( (j−1)T
2k , jT

2k ), then

‖f (r0)
k (s)−Φk(s)h‖ = ‖RS(r0)Ujkh−RUjkh‖ 6 ‖R−RS(r0)‖γ(L2(0,T ;H),E) < ε.

Hence,
|{t ∈ (0, T ) : ‖Φ(t)h− Φk(t)h‖ > 3ε}|

6 ε+ |{t ∈ (0, T ) : ‖f (r0)(t)− f
(r0)
k (t)‖ > ε}|

+ |{t ∈ (0, T ) : ‖f (r0)
k (t)− Φk(t)h‖ > ε}|

= ε+ |{t ∈ (0, T ) : ‖f (r0)(t)− f
(r0)
k ‖ > ε}|.

Since ε > 0 was arbitrary, (i) follows from (6.4) by letting k →∞.
We continue with the proof of (ii). Put

X1 =
∫ T

0

Φ1 dWH , Xn =
∫ T

0

(Φn − Φn−1) dWH for n > 2.

We claim that the random variables Xn are independent. By the linearity
of the stochastic integral, the random variables Xn are jointly Gaussian and
therefore by Proposition 4.10 it suffices to check that E〈Xm, x

∗〉〈Xn, y
∗〉 = 0

for m 6= n and x∗, y∗ ∈ E∗. By (6.2) and linearity, the expectation equals∫ T

0

[Φ∗m(t)x∗ − Φ∗m−1(t)x
∗, Φ∗n(t)y∗ − Φ∗n−1(t)y

∗] dt

using the convention that Φ0 = 0. By a direct computation using the proper-
ties of the averaging operators, this expression equals 0.

Put SN :=
∑N

n=1Xn =
∫ T

0
ΦN dWH . By (6.3), (6.2), and the properties of

averaging operators, for all x∗ ∈ E∗ we have
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lim
N→∞

E〈X − SN , x
∗〉2 = lim

N→∞
‖Φ∗x∗ − Φ∗Nx

∗‖2L2(0,T ;H) = 0

and therefore limN→∞〈SN , x
∗〉 = 〈X,x∗〉 in probability. The Itô-Nisio theo-

rem implies that limN→∞ SN = X in probability.
Step 3 – So far, we have found a sequence of γ(H,E)-valued step functions

(Φn)∞n=1 with the convergence properties as required in Definition 6.15. To
conclude the proof we approximate the values of the functions Φn by finite
rank operators. ut

Corollary 6.18. A strongly measurable function φ : (0, T ) → E is stochasti-
cally integrable with respect to a real-valued Brownian motion if and only if φ
represents an operator R ∈ γ(L2(0, T ), E).

As an application of Theorem 6.17 we have the following domination cri-
terion for stochastic integrability.

Theorem 6.19. Suppose that Φ1, Φ2 : (0, T ) → L (H,E) are H-strongly mea-
surable functions, and assume that Φ2 stochastically integrable with respect to
the H-cylindrical Brownian motion WH . If∫ T

0

‖Φ∗1(t)x∗‖2 dt 6
∫ T

0

‖Φ∗2(t)x∗‖2 dt ∀x∗ ∈ E∗,

then Φ1 is stochastically integrable with respect to WH , and for all 1 6 p <∞
we have

E
∥∥∥∫ T

0

Φ1 dWH

∥∥∥p

6 E
∥∥∥∫ T

0

Φ2 dWH

∥∥∥p

.

Proof. First note that by Theorem 6.17, for all x∗ ∈ E∗ the function Φ∗2x
∗

belongs to L2(0, T ;H). By (4) in the proof of Theorem 6.17, Φ2 represents an
operator R2 ∈ γ(L2(0, T ;H), E). In view of R∗2x

∗ = Φ∗2x
∗ we have∫ T

0

‖Φ∗2(t)x∗‖2 dt = ‖R∗2x∗‖2L2(0,T ;H).

Let RΦ1 ∈ γ(L2(0, T ;H), E) denote the operator representing Φ1 whose exis-
tence is assured by Theorem 6.17 (3). The first assertion follows by applying
Theorem 6.17 to Φ1 and the Lp-inequality follows from Corollary 5.18. ut

6.3 Exercises

1. (!) Let γ be a Gaussian random variable with variance Eγ2 = q. Compute
Eγ2k, k = 1, 2, . . .
Hint: Express Eγ2k+2 in terms of Eγ2k.
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2. In view of the identity (6.1), Theorem 5.23 provides another proof of the
existence of a continuous version for Brownian motions. In this exercise
we show that in the converse direction Theorem 5.23 can be deduced from
the path continuity of Brownian motions.
Let W be a Brownian motion and let W̃ be a version of it with continuous
trajectories.
a) Use the Pettis measurability theorem to prove that the function XT :

Ω → C[0, T ] defined by (XT (ω))(t) := W̃ (t, ω) is strongly measurable.
Hint: The Dirac measures span a norming subspace in (C[0, T ])∗.

b) Show that the random variable XT is Gaussian.
c) Show that the covariance operator QT of XT is given by QT = IT I

∗
T ,

where IT : L2(0, T ) → C[0, T ] is the integration operator of Theorem
5.23, and deduce from this that IT is γ-radonifying.

3. Fix 1 6 p < ∞. For n = 0, 1, 2, . . . define the linear operators An :
Lp(0, T ;E) → Lp(0, T ;E) by

Anf :=
2n∑

j=1

1
(
(j−1)T

2n , jT
2n )

⊗ xjn,

where

xjn :=
2n

T

∫ jT
2n

(j−1)T
2n

f(t) dt.

a) Show that each An is bounded and satisfies ‖An‖ = 1.
b) Show that limn→∞Anf = f in Lp(0, T ;E) for all f ∈ Lp(0, T ;E).

Hint: What happens if f is a dyadic step function?
c) Prove the assertion involving averaging operators in Step 3 (ii) of the

proof of (3)⇒(1) of Theorem 6.17.

4. Let the function Φ : (0, T ) → L (H,E) be stochastically integrable with
respect to WH .
a) Show that for all t ∈ [0, T ] the restriction of Φ|(0,t) is stochastically

integrable on (0, t) with respect to WH , that 1(0,t)Φ is stochastically
integrable on (0, T ) with respect to WH , and that almost surely∫ t

0

ΦdWH =
∫ T

0

1(0,t)ΦdWH .

We consider the E-valued process X, where Xt =
∫ t

0
ΦdWH for t ∈ [0, T ].

b) Show that X is a Gaussian process.
c) Show that X has trajectories in Lp(0, T ;E) almost surely for every

1 6 p <∞.
Hint: Prove the stronger statement that E

∫ T

0
‖X(t)‖p dt <∞.
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Remark: Using martingale techniques it can be shown that X has a
continuous version. We return to this later on.

5. Suppose that Φ : (0, T ) → L (H,E) is stochastically integrable with re-
spect to the H-cylindrical Brownian motion WH .
a) Show that for each h ∈ H function Φh is stochastically integrable with

respect to the Brownian motions WHh.
b) Prove the following series expansion: if H is separable, then for any

orthonormal basis (hn)∞n=1 of H we have∫ T

0

ΦdWH =
∞∑

n=1

∫ T

0

Φhn dWHhn,

with convergence almost surely and in Lp(Ω;E) for all 1 6 p <∞.
Hint: First consider the functions ΦPn, where Pn is the orthogonal
projection in H onto the span of {h1, . . . , hn}.

Notes. The notion of Brownian motion has its origin in the observations
by the botanist Brown (1773-1858) who observed that small particles sus-
pended in a fluid display random movements. The first rigorous mathematical
treatment was given by Wiener in the 1920s.

The proof of Theorem 6.9 is taken from Revuz and Yor [94]. Its Corollary
6.10 is nearly optimal in the following sense: almost surely, one has

lim sup
δ↓0

max
|t−s|6δ

|W (t)−W (s)|√
2|t− s| ln(1/|t− s|)

= 1.

This is a classical result of Lévy. In particular it shows that almost surely the
paths of a Brownian motion are nowhere Hölder continuous of exponent 1

2 .
For proofs and further results on Brownian motion we refer to Karatzas and
Shreve [59] and Revuz and Yor [94]. A more recent result of Ciesielski
[23] asserts that almost surely, the trajectories of Brownian motions belong

to the Besov space B
1
2
p,∞ for all 1 6 p < ∞. This result was extended to

Banach space-valued Brownian motions, with a simpler proof, by Hytönen
and Veraar [51].

For accessible introductions to the classical (scalar-valued) theory of
stochastic integration we refer to the books by Chung and Williams [22],
Kuo [63], Oksendal [86], and Steele [99]. For scalar-valued functions,
the isometry of Theorem 6.14 goes back to Wiener and was generalised to
stochastic processes in the fundamental work of Itô.

By combining the observation on Kwapień’s theorem in the Notes of the
previous lecture with Corollary 6.18 we obtain that the following assertions
are equivalent for a Banach space E:

(1) the space of strongly measurable E-valued functions f : (0, T ) → E which
are stochastically integrable with respect to Brownian motion equals
L2(0, T ;E);
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(2) the space E is isomorphic to a Hilbert space.

An explicit example of a uniformly bounded function f : (0, 1) → lp for
1 6 p < 2 which fails to be stochastically integrable was constructed in an
early stage of the theory by Yor [110]. Further examples along this line were
constructed Rosiński and Suchanecki [96] who also proved (for H = R)
the equivalence (1)⇔(2) of Theorem 6.17. Step 3 of the proof of (3)⇒(1) in
Theorem 6.17 is a variation of their argument. In its present formulation,
Theorem 6.17 can be found in [84]; a preliminary version was obtained in [16]
by using different methods. The idea in Step 2 of the proof of (3)⇒(1) is taken
from [84]. The implication (3)⇒(1) can alternatively be derived from variant
of Theorem 5.24. This is the approach taken in [84], where also Theorems
6.14, 6.19, and the result of Exercise 5 were obtained.

In the Hilbert space literature, the series expansions of Example 6.12 and
Exercise 5 are often taken as the starting point for defining the stochastic
integral; see for instance the monograph of Da Prato and Zabczyk [27].

A more probabilistic approach to the theory of stochastic integration in
Banach spaces is taken by Métivier and Pellaumail [76].





7

Semigroups of linear operators

Having developed the probabilistic tools needed for our study of stochastic
evolution equations, in this lecture we turn to the theory of C0-semigroups.
We review their basic properties and show how semigroups are used to solve
the (deterministic) inhomogeneous abstract Cauchy problem

u′(t) = Au(t) + f(t).

Here A generates a C0-semigroup on E and the forcing term f is a locally in-
tegrable E-valued function. As we shall see in the next lecture, the techniques
for solving this problem by means of so-called weak and strong solutions can
be extended to stochastic abstract Cauchy problems with additive noise, the
main difference being that Bochner integrals are replaced by the stochastic
integrals introduced in the previous lecture. Heuristically, the reason why this
works is that the noise can be viewed as a ‘random’ forcing term.

7.1 C0-semigroups

Linear equations of mathematical physics can often be cast in the abstract
form {

u′(t) = Au(t), t ∈ [0, T ],
u(0) = x,

(ACP)

where A is a linear, usually unbounded, operator defined on a linear subspace
D(A), the domain of A, of a Banach space E. Typically, E is a Banach space
of functions suited for the particular problem and A is a partial differential op-
erator. The abstract initial value problem (ACP) is referred to as the abstract
Cauchy problem associated with A.

Example 7.1. Let D be an open domain in Rd with topological boundary ∂D.
On D we consider the heat equation
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∂u

∂t
(t, ξ) = ∆u(t, ξ), t ∈ [0, T ], ξ ∈ D;

u(t, ξ) = 0, t ∈ [0, T ], ξ ∈ ∂D;
u(0, ξ) = u0(ξ), ξ ∈ D.

(7.1)

For initial values x = u0 ∈ Lp(D) with 1 6 p < ∞, this problem can be
rewritten in the abstract form (ACP) by taking E = Lp(D) and defining A
by

D(A) := {f ∈W 2,p(D) : f |∂D ≡ 0} = W 2,p(D) ∩W 1,p
0 (D),

Af := ∆f, f ∈ D(A).

Here, W k,p(D) is the Sobolev space of all f ∈ Lp(D) whose weak partial
derivatives up to order k exist and belong to Lp(D), W k,p

0 (D) is the closure
in W k,p(D) of all test functions f ∈ C∞

c (D), and ∆ =
∑d

j=1
∂2

∂ξ2
j

is the
Laplacian. Note how the boundary condition is built into the definition of A
by the specification of its domain.

The idea is now that instead of looking for a solution u : [0, T ] ×D → R
of (7.1) one looks for a solution u : [0, T ] → Lp(D) of (ACP). To get an idea
how this may be done we first take a look at the much simpler case where
E = Rd and A : D(A) = E → E is represented by a (d × d)-matrix. In that
case, the unique solution of (ACP) is given by

u(t) = etAu0, t ∈ [0, T ],

where etA =
∑∞

n=0
tnAn

n! . The matrices etA may be thought of as ‘solution
operators’ mapping the initial value u0 to the solution etAu0 at time t. Clearly,
e0A = I, etAesA = e(t+s)A, and t 7→ etA is continuous. We generalise these
properties to infinite dimensions as follows.

Let E be a real or complex Banach space.

Definition 7.2. A family S = {S(t)}t>0 of bounded linear operators acting
on a Banach space E is called a C0-semigroup if the following three properties
are satisfied:

S1. S(0) = I;
S2. S(t)S(s) = S(t+ s) for all t, s > 0;
S3. limt↓0 ‖S(t)x− x‖ = 0 for all x ∈ E.

The infinitesimal generator, or briefly the generator, of S is the linear operator
A with domain D(A) defined by

D(A) = {x ∈ E : lim
t↓0

1
t
(S(t)x− x) exists},

Ax = lim
t↓0

1
t
(S(t)x− x), x ∈ D(A).
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We shall frequently use the trivial observation that if A generates the C0-
semigroup (S(t))t>0, then A− µ generates the C0-semigroup (e−µtS(t))t>0.

The next two propositions collect some elementary properties of C0-
semigroups and their generators.

Proposition 7.3. Let S be a C0-semigroup on E. There exist constants M >
1 and µ ∈ R such that ‖S(t)‖ 6 Meµt for all t > 0.

Proof. There exists a number δ > 0 such that supt∈[0,δ] ‖S(t)‖ =: σ < ∞.
Indeed, otherwise we could find a sequence tn ↓ 0 such that limn→∞ ‖S(tn)‖ =
∞. By the uniform boundedness theorem, this implies the existence of an
x ∈ E such that supn>1 ‖S(tn)x‖ = ∞, contradicting the strong continuity
assumption (S3). This proves the claim. By the semigroup property (S2), for
t ∈ [(k − 1)δ, kδ] it follows that ‖S(t)‖ 6 σk 6 σ(t+1)/δ, where the second
inequality uses that σ > 1 by (S1). This proves the proposition, with M = σ

1
d

and µ = 1
d lnσ. ut

Proposition 7.4. Let S be a C0-semigroup on E with generator A.

(1) For all x ∈ E the orbit t 7→ S(t)x is continuous for t > 0.
(2) For all x ∈ D(A) and t > 0 we have S(t)x ∈ D(A) and AS(t)x = S(t)Ax.
(3) For all x ∈ E we have

∫ t

0
S(s)x ds ∈ D(A) and

A

∫ t

0

S(s)x ds = S(t)x− x.

If x ∈ D(A), then both sides are equal to
∫ t

0
S(s)Axds.

(4) The generator A is a closed and densely defined operator.
(5) For all x ∈ D(A) the orbit t 7→ S(t)x is continuously differentiable for

t > 0 and
d

dt
S(t)x = AS(t)x = S(t)Ax, t > 0.

Proof. (1): The right continuity of t 7→ S(t)x follows from the right continuity
at t = 0 (S3) and the semigroup property (S2). For the left continuity, observe
that

‖S(t)x− S(t− h)x‖ 6 ‖S(t− h)‖‖S(h)x− x‖ 6 sup
s∈[0,t]

‖S(s)‖‖S(h)x− x‖,

where the supremum is finite by Proposition 7.3.
(2): This follows from the semigroup property:

lim
h↓0

1
h

(S(t+ h)x− S(t)x) = S(t) lim
h↓0

1
h

(S(h)x− x) = S(t)Ax.

(3): The first identity follows from
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lim
h↓0

1
h

(S(h)− I)
∫ t

0

S(s)x ds = lim
h↓0

1
h

( ∫ t

0

S(s+ h)x ds−
∫ t

0

S(s)x ds
)

= lim
h↓0

1
h

( ∫ t+h

t

S(s)x ds−
∫ h

0

S(s)x ds
)

= S(t)x− x,

where we used the continuity of t 7→ S(t)x. The identity for x ∈ D(A) will
follow from the second part of the proof of (4).

(4): Denseness of D(A) follows from the first part of (3), since by (1) we
have limt↓0

1
t

∫ t

0
S(s)x ds = x.

To prove that A is closed we must check that the graph G (A) = {(x,Ax) :
x ∈ D(A)} is closed in E × E. Suppose that (xn)∞n=1 is a sequence in D(A)
such that limn→∞ xn = x and limn→∞Axn = y in E. We must show that
x ∈ D(A) and Ax = y. Using that limt↓0

1
t (S(t) − I)S(s)xn = S(s)Axn

uniformly for s ∈ [0, h], we obtain

1
h

(S(h)x− x) = lim
n→∞

1
h

(S(h)xn − xn)

= lim
n→∞

1
h

(
A

∫ h

0

S(s)xn ds
)

= lim
n→∞

1
h

lim
t↓0

1
t
(S(t)− I)

∫ h

0

S(s)xn ds

= lim
n→∞

1
h

lim
t↓0

∫ h

0

1
t
(S(t)− I)S(s)xn ds

= lim
n→∞

1
h

∫ h

0

S(s)Axn ds

=
1
h

∫ h

0

S(s)y ds.

Passing to the limit for h ↓ 0 this gives x ∈ D(A) and Ax = y. The above
identities also prove the second part of (3).

(5): This follows from (1), (2), and the definition of A. ut

In hindsight, the second part of (3) is a special case of Hille’s theorem.
However, our proof of the closedness of A already gave the result in this
particular case.

Definition 7.5. A classical solution of (ACP) is a continuous function u :
[0, T ] → E which belongs to C1((0, T ];E) ∩ C((0, T ];D(A)) and satisfies
u(0) = x and u′(t) = Au(t) for all t ∈ (0, T ].

Here D(A) is regarded as a Banach space endowed with the graph norm.

Corollary 7.6. For initial values x ∈ D(A) the problem (ACP) has a unique
classical solution, which is given by u(t) = S(t)x.
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Proof. Part (5) of the proposition proves that t 7→ u(t) = S(t)x is a classical
solution. Suppose that t 7→ v(t) is another classical solution. It is easy to check
that the function s 7→ S(t − s)v(s) is continuous on [0, t] and continuously
differentiable on (0, t) with derivative

d

ds
S(t− s)v(s) = −AS(t− s)v(s) + S(t− s)v′(s) = 0

where we used that v is a classical solution. Thus, s 7→ S(t−s)v(s) is constant
on every interval [0, t]. Since v(0) = x it follows that v(t) = S(t − t)v(t) =
S(t− 0)v(0) = S(t)x = u(t). ut

Note that for x ∈ D(A) the orbit t 7→ S(t)x even belongs to C1([0, T ];E)∩
C([0, T ];D(A)). The reason for defining classical solutions as we did above is
that there exist important classes of C0-semigroups which have the property
that t 7→ S(t)x is a classical solution not only for x ∈ D(A), but for all x ∈ E.
An example is the class of analytic C0-semigroups which will be studied later
on in this course.

Definition 7.7. Let T be a linear operator with domain D(T ) on a complex
Banach space E. The resolvent set of T is the set %(T ) consisting of all λ ∈ C
for which there exists a (necessarily unique) bounded linear operator R(λ, T )
on E such that

(i) R(λ, T )(λ− T )x = x for all x ∈ D(T );
(ii) R(λ, T )x ∈ D(T ) and (λ− T )R(λ, T )x = x for all x ∈ E.

The spectrum of T is the complement σ(T ) := C \ %(T ).

We call R(λ, T ) = (λ−T )−1 the resolvent of T at λ. It is routine to check
the resolvent identity: for all λ1, λ2 ∈ %(T ) we have

R(λ1, T )−R(λ2, T ) = (λ2 − λ1)R(λ1, T )R(λ2, T ).

When T is an operator on a real Banach space we put %(T ) := %(TC) and
σ(T ) := σ(TC), where TC is the complexification of T (see Exercise 1).

In the next two lemmas, A is the generator of a C0-semigroup S on a
Banach space E (in the case of a real Banach space, all formulas involving
complex numbers should be interpreted in terms of complexifications). We fix
constants M > 1 and µ ∈ R such that ‖S(t)‖ 6 Meµt for all t > 0.

Proposition 7.8. We have {λ ∈ C : Reλ > µ} ⊆ %(A) and on this set the
resolvent of A is given by

R(λ,A)x =
∫ ∞

0

e−λtS(t)x dt, x ∈ E.

As a consequence, for Reλ > µ we have

‖R(λ,A)‖ 6
M

Reλ− µ
.
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Proof. Fix x ∈ E and define Rλx :=
∫∞
0
e−λtS(t)x dt. From a straightforward

computation using the semigroup property we obtain the identity

lim
h↓0

1
h

(S(h)− I)Rλx = λRλx− x

from which it follows that Rλx ∈ D(A) and ARλx = λRλx − x. This shows
that the bounded operator Rλ is a right inverse for λ−A.

Integrating by parts and using that d
dtS(t)x = S(t)Ax for x ∈ D(A) we

obtain

λ

∫ T

0

e−λtS(t)x dt = −e−λTS(T )x+ x+
∫ T

0

e−λtS(t)Axdt.

Since Reλ > µ, sending T →∞ gives λRλx = x+RλAx. This shows that Rλ

is also a left inverse. ut

Lemma 7.9. For all x ∈ E we have limλ→∞ λR(λ,A)x = x.

Proof. First we prove this for x ∈ D(A) by using the resolvent identity. Pick
λ′ > µ. Writing (λ′ −A)x =: y we have

λR(λ,A)x− x =
λ

λ− λ′
(R(λ′, A)y −R(λ,A)y)−R(λ′, A)y

Passing to the limit λ→∞ the right hand side tends to 0. This gives the result
for x ∈ D(A). By the estimate of Proposition 7.8, the operators λR(λ,A) are
uniformly bounded for λ > µ0 > µ. Therefore the result for x ∈ E follows by
density. ut

This lemma self-improves to limλ→∞ λnR(λ,A)nx = x, which shows that
D(An) is dense in E for all n > 1.

7.2 Duality

For the discussion of the inhomogeneous Cauchy problem in the next sec-
tion we need some preliminary material on duality of densely defined linear
operators.

Let E1 and E2 be Banach spaces. To keep track of domains it will be
useful to define a linear operator A with domain D(A) from E1 to E2 as a
pair (A,D(A)), where D(A) is a linear subspace of E1 and A : D(A) → E2

is a linear mapping. If (A,D(A)) is densely defined, that is, if D(A) is dense
in E1, we may define a linear operator (A∗,D(A∗)) from E∗

2 to E∗
1 in the

following way. Define D(A∗) to be the set of all x∗2 ∈ E∗
2 with the property

that there exists an element x∗1 ∈ E∗
1 such that

〈x, x∗1〉 = 〈Ax, x∗2〉, ∀x ∈ D(A).
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Since D(A) is dense in E1, the element x∗1 ∈ E∗
1 (if it exists) is unique and we

set
A∗x∗2 := x∗1, x∗2 ∈ D(A∗).

Definition 7.10. Let (A,D(A)) be a densely defined linear operator. The op-
erator (A∗,D(A∗)) is called the adjoint of (A,D(A)).

In order to discuss the properties of A∗ in a systematic way it is helpful
to consider the topology on the dual space E∗ induced by the elements of a
Banach space E, the so-called weak∗-topology.

Definition 7.11. The weak∗-topology on E∗ is the topology generated by all
sets of the form

{x∗ ∈ E∗ : |〈x, y∗ − x∗〉| < ε}

where x ∈ E, y∗ ∈ E∗, and ε > 0.

It is easily checked that the mappings x∗ 7→ 〈x, y∗−x∗〉 are continuous with
respect to the weak∗-topology, and that the weak∗-topology is the coarsest
topology on E∗ with this property.

Lemma 7.12. Let V be a non-empty subset of E. The annihilator

V ⊥ := {x∗ ∈ E∗ : 〈v, x∗〉 = 0 for all v ∈ V }

is weak∗-closed.

Proof. Let y∗ 6∈ V ⊥ be arbitrary. By assumption there exists v ∈ V such that
〈v, y∗〉 6= 0. The set

U :=
{
x∗ ∈ E∗ : |〈v, y∗ − x∗〉| < 1

2
|〈v, y∗〉|

}
is weak∗-open, contains y∗, and is disjoint from V ⊥. It follows that the com-
plement of V ⊥ is weak∗-open. ut

It is an exercise in linear algebra to check that a linear subspace F of E∗

is weak∗-dense if and only if it separates the points of E, that is, whenever
x 6= y in E there is an x∗ ∈ F such that 〈x, x∗〉 6= 〈y, x∗〉. This fact is not
really needed however. Whenever we say that a subspace F of E∗ is weak∗-
dense, what we shall actually use is that F separates the points of E and all
formulations could be adapted accordingly.

Proposition 7.13. Let E1 and E2 be Banach spaces and let (A,D(A)) be a
densely defined linear operator from E1 to E2.

(1) The adjoint (A∗,D(A∗)) is weak∗-closed from E∗
2 to E∗

1 , that is, the graph
of A∗ is weak∗-closed in E∗

2 × E∗
1 .

(2) If (A,D(A)) is also closed, then (A∗,D(A∗)) is weak∗-densely defined,
that is, the domain of A∗ is weak∗-dense in E∗

2 .
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Proof. We start with the preliminary remark that if E and F are Banach
spaces, then the pairing

〈(x, y), (x∗, y∗)〉 := 〈x, x∗〉+ 〈y, y∗〉

allows us to identify E∗ × F ∗ with the dual of E × F .
(1): Let G (A∗) = {(x∗1, A∗x∗1) : x∗1 ∈ D(A∗)} be the graph of A∗ in

E∗
2 × E∗

1 . By definition of D(A∗) we have (x∗2, x
∗
1) ∈ G (A∗) if and only if

〈(−Ax1, x1), (x∗2, x
∗
1)〉 = 0, ∀x1 ∈ D(A).

In other words, G (A∗) is the annihilator of ρ(G (A)), where ρ : E1 × E2 →
E2×E1 is defined by ρ(x1, x2) = (−x2, x1). By Lemma 7.12, G (A∗) is weak∗-
closed. This proves that A∗ is weak∗-closed.

(2): Now assume that (A,D(A)) is also closed. We will show that D(A∗)
separates the points of E2. Suppose x2 6= y2 in E2. Then (0, x2− y2) is a non-
zero element of E1×E2 which does not belong to G (A). Since G (A) is closed,
by the Hahn-Banach theorem there exists an element (x∗1, x

∗
2) ∈ (G (A))⊥ such

that
〈(0, x2 − y2), (x∗1, x

∗
2)〉 = 〈x2 − y2, x

∗
2〉 6= 0.

To finish the proof we check that x∗2 ∈ D(A∗). For all x1 ∈ D(A) we have
(x1, Ax1) ∈ G (A) and therefore

0 = 〈(x1, Ax1), (x∗1, x
∗
2)〉 = 〈x1, x

∗
1〉+ 〈Ax1, x

∗
2〉.

But this means that x∗2 ∈ D(A∗) and A∗x∗2 = −x∗1. ut

The following simple result ‘dualises’ the definition of D(A∗).

Proposition 7.14. Let (A,D(A)) be a closed and densely defined linear oper-
ator from E1 to E2. If x1 ∈ E1 and x2 ∈ E2 are such that 〈x2, x

∗
2〉 = 〈x1, A

∗x∗2〉
for all x∗2 ∈ D(A∗), then x1 ∈ D(A) and Ax1 = x2.

Proof. We must prove that (x1, x2) ∈ G (A). Since G (A) is closed in E1 ×E2,
by the Hahn-Banach theorem it suffices to check that 〈(x1, x2), (x∗1, x

∗
2)〉 = 0

for all (x∗1, x
∗
2) ∈ (G (A))⊥.

Fix an arbitrary (x∗1, x
∗
2) ∈ (G (A))⊥. As in the second part of the previous

proof we have x∗2 ∈ D(A∗) and A∗x∗2 = −x∗1. Hence,

〈(x1, x2), (x∗1, x
∗
2)〉 = 〈x1,−A∗x∗2〉+ 〈x2, x

∗
2〉 = 0. ut

7.3 The abstract Cauchy problem

We now take a look at the inhomogeneous abstract Cauchy problem
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u′(t) = Au(t) + f(t), t ∈ [0, T ],
u(0) = x

(IACP)

with initial value x ∈ E. We assume that A generates a C0-semigroup S on
E and take f ∈ L1(0, T ;E).

Adapting the notion of a classical solution to the problem (IACP) leads
to the so-called problem of maximal regularity. Instead of going into this, we
refer to the Notes for more information and introduce here two alternative
notions of solutions in terms of the integrated equation.

Definition 7.15. A strong solution of (IACP) is a function u ∈ L1(0, T ;E)
such that for all t ∈ [0, T ] we have

∫ t

0
u(s) ds ∈ D(A) and

u(t) = x+A

∫ t

0

u(s) ds+
∫ t

0

f(s) ds.

A weak solution of (IACP) is a function u ∈ L1(0, T ;E) such that for all
t ∈ [0, T ] and x∗ ∈ D(A∗) we have

〈u(t), x∗〉 = 〈x, x∗〉+
∫ t

0

〈u(s), A∗x∗〉 ds+
∫ t

0

〈f(s), x∗〉 ds.

As an immediate consequence of Proposition 7.14 we make the following
observation:

Proposition 7.16. Every weak solution of (IACP) is a strong solution.

Of course the converse holds trivially. We proceed with an existence and
uniqueness result for strong solutions of (IACP).

Theorem 7.17. For all x ∈ E and f ∈ L1(0, T ;E) the problem (IACP)
admits a unique strong solution u, which is given by the convolution formula

u(t) = S(t)x+
∫ t

0

S(t− s)f(s) ds. (7.2)

If f ∈ Lp(0, T ;E) with 1 6 p <∞, then u ∈ Lp(0, T ;E).

Proof. For the existence part, by Proposition 7.16 it suffices to show that
(IACP) admits a weak solution. It is an easy consequence of Proposition 7.4
(3) that u is a weak solution corresponding to the initial value x if and only
if t 7→ u(t) − S(t)x is a weak solution corresponding to the initial value 0.
Therefore, without loss of generality we may assume that x = 0.

Let u be given by (7.2). Then u ∈ L1(0, T ;E); if f ∈ Lp(0, T ;E), then
u ∈ Lp(0, T ;E). By Fubini’s theorem and Proposition 7.4 (3), for all t ∈ [0, T ]
and x∗ ∈ D(A∗) we have
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0

〈u(s), A∗x∗〉 ds =
∫ t

0

∫ s

0

〈f(r), S∗(s− r)A∗x∗〉 dr ds

=
∫ t

0

∫ t

r

〈f(r), S∗(s− r)A∗x∗〉 ds dr

=
∫ t

0

〈f(r), S∗(t− r)x∗ − x∗〉 dr

= 〈u(t), x∗〉 −
∫ t

0

〈f(r), x∗〉 dr.

To prove uniqueness, suppose that u and ũ are strong solutions of (IACP).
Then v := u− ũ is integrable and satisfies v(t) = A

∫ t

0
v(s) ds for all t ∈ [0, T ].

Put

w(t) :=
∫ t

0

∫ s

0

v(r) dr ds.

By the fundamental theorem of calculus, w is continuously differentiable on
[0, T ], and using Hille’s theorem we see that w(t) ∈ D(A) and

w′(t) =
∫ t

0

v(s) ds =
∫ t

0

A

∫ s

0

v(r) dr ds = Aw(t).

Fix t ∈ [0, T ] and put g(s) := S(t − s)w(s). Then g is continuously differen-
tiable on [0, t] with derivative

g′(s) = −AS(t− s)w(s) + S(t− s)w′(s) = 0.

It follows that g is constant on [0, t]. Hence

w(t) = g(t) = g(0) = S(t)w(0) = 0.

We have shown that
∫ t

0

∫ s

0
v(r) dr ds = 0 for all t ∈ [0, T ]. It follows that v = 0

almost everywhere. ut

7.4 Examples of C0-semigroups

In this section we collect, without proofs, a number of important examples
of C0-semigroups. We encourage the reader to formulate the corresponding
initial value problems; cf. Example 7.1. References to the literature are given
in the Notes.

Example 7.18 (Multiplication semigroup). Let (A,A , µ) be a σ-finite measure
space and let m : A → R be µ-measurable. If ess supξ∈Af(ξ) < ∞, then the
formula

S(t)f(ξ) := etm(ξ)f(ξ)

defines a C0-semigroup on Lp(A) for 1 6 p <∞. The domain of its generator
A consists of all f ∈ Lp(A) such that mf ∈ Lp(A), and for f ∈ D(A) we have
Af = mf .
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Example 7.19 (Translation semigroup). On the space Lp(R+), 1 6 p <∞, the
formula

(S(t)f)(ξ) := f(ξ + t)

defines a C0-semigroup S. The domain of its generator A consists of all f ∈
Lp(R) whose weak derivative f ′ exists and belongs to Lp(R), and for f ∈ D(A)
we have Af = f ′.

These two examples represent perhaps the simplest constructions of C0-
semigroups and can be extended in various ways. We continue with two ex-
amples involving the Laplace operator.

Example 7.20 (Heat semigroup). On Lp(Rd), 1 6 p <∞, the formula

(S(t)f)(ξ) :=
1√

(4πt)n

∫
Rd

f(η) exp
(
− |ξ − η|2

4t

)
dη

defines a C0-semigroup. Its generator A is given by D(A) = W 2,p(Rd) and
Af = ∆f .

Example 7.21 (Heat semigroup on bounded domains with Dirichlet boundary
conditions). Let D be a bounded domain in Rd with C2-boundary ∂D. On
the space Lp(D) with 1 6 p < ∞, the Dirichlet Laplacian is the operator A
defined by

D(A) := W 2,p(D) ∩W 1,p
0 (D),

Af := ∆f for f ∈ D(A).

See Example 7.1. This operator is the generator of a C0-semigroup on Lp(D).

The previous two examples admit far-reaching generalisations to more gen-
eral second order elliptic operators, and also different kinds of boundary con-
ditions can be allowed.

We continue with two examples of operators generating a C0-group. These
are defined in the same way as C0-semigroups, except that the index set is
now the whole real line.

Example 7.22 (Wave group). On the space W 1,2(Rd) × L2(Rd) we consider
the operator A defined by

D(A) := W 2,2(Rd)×W 1,2(Rd),
A(f1, f2) := (f2,∆f1) for (f1, f2) ∈ D(A).

This operator is the generator of a C0-group on W 1,2(Rd)× L2(Rd) which is
associated with the wave equation u′′(t) = ∆u, written as a system u′ = v,
v′ = ∆u.

Example 7.23 (Unitary C0-groups on Hilbert spaces). If A is a self-adjoint
operator on a complex Hilbert space H, then iA is the generator of a C0-group
S of unitary operators on H. This classical result of Stone is of fundamental
importance in quantum mechanics. By the spectral theorem for self-adjoint
operators, this example can be viewed as a special case of Example 7.18.
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7.5 Exercises

1. Suppose that E is a real Banach space. The product E ×E can be given
the structure of a complex vector space by introducing a complex scalar
multiplication as follows:

(a+ ib)(x, y) := (ax− by, bx+ ay).

The idea is, of course, to think of the pair (x, y) ∈ E × E as if it were
x+ iy. The resulting complex vector space is denoted by EC.
a) Prove that the formula

‖(x, y)‖ := sup
θ∈[0,2π]

‖(cos θ)x+ (sin θ)y‖

defines a norm on EC which turns EC into a complex Banach space.
b) Check that this norm on EC extends the norm of E in the sense that

for all x ∈ E,
‖(x, 0)‖ = ‖(0, x)‖ = ‖x‖.

c) Check that for all x, y ∈ E we have ‖(x, y)‖ = ‖(x,−y)‖.
d) Show that if T is a (real-)linear bounded operator on E, then T ex-

tends to a bounded (complex-)linear operator TC on EC by putting

TC(x, y) := (Tx, Ty),

and check that ‖TC‖ = ‖T‖.
A norm on EC with the properties b), c), d) is called a complexification
of the norm of E. The norm introduced in a) is by no means the unique
complexification of the norm of E, and in concrete examples there is often
a more natural choice.
e) Show that any two complex norms on EC which satisfy b) and c) are

equivalent.
By e), the spectrum of TC is independent of the particular complexification
chosen.

2. In this exercise we prove some properties of resolvents. We assume that
(T,D(T )) is a linear operator from E to E with resolvent set %(T ).
a) Prove that if %(T ) 6= ∅, then T is closed.
b) Prove the resolvent identity: for all λ1, λ2 ∈ %(T ) we have

R(λ1, T )−R(λ2, T ) = (λ2 − λ1)R(λ1, T )R(λ2, T ).

c) Prove that %(T ) is an open subset of C.
d) Prove that

lim
λ→µ

R(λ, T )−R(µ, T )
λ− µ

= −R(µ, T )2

with convergence in the operator norm.
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e) Prove that if T is closed and densely defined, then %(T ∗) = %(T ) and

R(λ, T ∗) = R(λ, T )∗, λ ∈ %(T ) = %(T ∗).

f) Show that every closed subset of C is the spectrum of a suitable closed
operator T .

3. Let S be a C0-semigroup on E which is uniformly bounded, that is,
supt>0 ‖S(t)‖ < ∞. We show that there exists an equivalent norm ||| · |||
on E such that S is a contraction semigroup with respect to ||| · |||, that is,
|||S(t)||| 6 1 for all t > 0.
a) Show that |||x||| := supt>0 ‖S(t)x‖ defines an equivalent norm on E.
b) Show that S is a contraction semigroup with respect to ||| · |||.

4. Let S be a C0-semigroup on E with generator A, and suppose that
‖S(t)‖ 6 Meµt for all t > 0. Prove that

‖(R(λ,A))k‖ 6 M/(Reλ− µ)k, Reλ > µ, k = 1, 2, . . . .

Hint: By considering A − µ instead of A we may assume that µ = 0. In
that situation observe that |||R(λ,A)||| 6 1/Reλ.
Remark: A celebrated theorem of Hille and Yosida asserts that the
converse holds as well. We refer to the Notes for more information.

5. Let (A,A , µ) be a σ-finite measure space. Suppose f : A → E∗ is a
function such that ξ 7→ 〈x, f(ξ)〉 belongs to L1(A) for all x ∈ E.
a) Show that the map S : E → L1(A) defined by Sx := 〈x, f〉 is closed.
b) Conclude from this that the formula

〈x, x∗〉 :=
∫

A

〈x, f〉 dµ

defines a bounded linear functional x∗ ∈ E∗.
The functional x∗ is called the weak∗-integral of f with respect to µ,
notation:

x∗ =: weak∗
∫

A

f dµ.

c) Show that the weak∗-integral commutes with adjoints of bounded op-
erators on E.

d) Show that if f is an E∗-valued Bochner integrable function, then the
Bochner integral and the weak∗-integral of f agree.

Now suppose that A generates a C0-semigroup on E and put S∗(t) :=
(S(t))∗ for t > 0.
e) Prove the following dual version of the identities in Proposition 7.4 (3):

for all x∗ ∈ E∗ and t > 0 we have weak∗
∫ t

0
S∗(s)x∗ ds ∈ D(A∗) and

A∗
(
weak∗

∫ t

0

S∗(s)x∗ ds
)

= S∗(t)x∗ − x∗.

If x∗ ∈ D(A∗), then both sides are equal to weak∗
∫ t

0
S∗(s)A∗x∗ ds.
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Notes. Excellent recent introductions to the theory of C0-semigroups include
the monographs by Arendt, Batty, Hieber, Neubrander [3], Davies [29],
Engel and Nagel [38], Goldstein [41], Pazy [89]. For a discussion of the ex-
amples in Section 7.4 we refer to these sources. Their monumental 1957 treatise
of Hille and Phillips[48] is freely available on-line (http://www.ams.org/
online bks/coll31/).

Due to limitations of space and time we have chosen not to discuss the
two basic generation theorems of semigroup theorem. The first of these, the
Hille-Yosida theorem, reads as follows.

Theorem 7.24 (Hille-Yosida theorem). For a densely defined operator A
on a Banach space E and constants M > 1 and µ ∈ R, the following assertions
are equivalent:

(1) A generates a C0-semigroup on E satisfying ‖S(t)‖ 6 Meµt for all t > 0;
(2) {λ ∈ C : λ > µ} ⊆ %(A) and ‖(R(λ,A))k‖ 6 M/(Reλ− µ)k for all λ > µ

and k = 1, 2, . . . ;
(3) {λ ∈ C : Reλ > µ} ⊆ %(A) and ‖(R(λ,A))k‖ 6 M/(Reλ− µ)k for all

Reλ > µ and k = 1, 2, . . . .

For C0-contraction semigroups, Theorem 7.24 was obtained independently
and simultaneously by Hille [47] and Yosida [111]; the extension to arbitrary
C0-semigroups is due to Feller, Miyadera, Phillips. The easy implication
(1)⇒(3) has been discussed in Exercise 4 and (3)⇒(2) is trivial; the difficult
implication is (2)⇒(1).

In order to state the second generation theorem, the Lumer-Phillips theo-
rem, for x ∈ E define ∂(x) := {x∗ ∈ E∗ : ‖x∗‖ = ‖x‖, 〈x, x∗〉 = ‖x‖‖x∗‖}.
By the Hahn-Banach theorem, ∂(x) 6= ∅.

Theorem 7.25 (Lumer-Phillips theorem). For a densely defined operator
A on a Banach space E with %(A) ∩ (0,∞) 6= ∅ the following assertions are
equivalent:

(1) A generates a C0-contraction semigroup on E;
(2) For all x ∈ D(A) and λ > 0 we have ‖(λ−A)x‖ > λ‖x‖;
(2) For all x ∈ D(A) and all x∗ ∈ ∂(x) we have Re〈Ax, x∗〉 6 0;
(3) For all x ∈ D(A) there exists x∗ ∈ ∂(x) such that Re〈Ax, x∗〉 6 0.

This theorem, as its name suggests, is due to Lumer and Phillips [71].
We shall return to it later in the context of analytic C0-semigroups. A detailed
account of Theorems 7.24 and 7.25 and their history is given in [38].

The terminology for the various notions of solutions is not entirely stan-
dard. Ours is suggested by that of Da Prato and Zabczyk [27] for solutions
of stochastic evolution equations.

The results of Section 7.2 can be found in any introductory text on func-
tional analysis.
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Theorem 7.17 is due to Ball [5], who also proved the following converse:
if (IACP) admits a unique weak solution for all f ∈ L1(0, T ;E) and initial
values x ∈ E, then A is the generator of a C0-semigroup on E.

The convolution formula (7.2) is often taken as the definition of a mild
solution. Typical questions then revolve around proving regularity properties
of mild solutions in terms of properties of the forcing function f and the
semigroup S. We refer to [89, Chapter 4] for some elementary results in this
direction. For the treatment of certain classes of non-linear Cauchy problems it
is of particular importance to know whether the mild solutions have maximal
Lp-regularity, meaning that for all f ∈ Lp(0, T ;E) the solution u belongs to
W 1,p(0, T ;E) ∩ Lp(0, T ;D(A)). A necessary condition for this is that S be
analytic; it is a classical result that this condition is also sufficient in Hilbert
spaces. For analytic C0-semigroups on Banach spaces the maximal regularity
problem has recently be settled by Kalton and Lancien [57] (who gave a
counterexample in Lp-spaces E) and Weis [108] (who obtained necessary and
sufficient conditions for maximal Lp-regularity in UMD Banach spaces E).
We refer to the lectures by Kunstmann and Weis [61] for a detailed account
of this problem and its history, as well as a number of non-trivial examples.

A systematic discussion of complexifications is given in Muñoz, Saran-
topoulos, Tonge [79]. The reader is warned that not every complex Banach
space is the complexification of some underlying real Banach space. The first
(non-constructive) proof of this fact was given by Bourgain [11]. An explicit
counterexample was found subsequently by Kalton [56].





8

Linear equations with additive noise I

Let A be the generator of a C0-semigroup S on E. In the previous lecture we
have seen that the inhomogeneous abstract Cauchy problem

u′(t) = Au(t) + f(t), u(0) = x,

is solved by the convolution formula

u(t) = S(t)x+
∫ t

0

S(t− s)f(s) ds,

We now turn to the stochastic analogue of this equation,{
dU(t) = AU(t) dt+B dWH ,

u(0) = x,

where WH is an H-cylindrical Brownian motion, and B ∈ L (H,E) is a
bounded operator. In concrete examples, WH models space-time white noise
and B ‘injects’ this noise into the state space E. Reasoning by analogy, this
equation should be solved by the stochastic convolution

U(t) = S(t)x+
∫ t

0

S(t− s)B dWH .

We shall see that this is indeed correct, provided the L (H,E)-valued function
S(·)B is stochastically integrable with respect to WH .

8.1 Stochastic preliminaries

In this section we collect several results which are needed in the proof of the
main result of this lecture, Theorem 8.6. We begin with an integrations by
parts formula.
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Lemma 8.1 (Integration by parts). For all φ ∈ C1[0, T ] and h ∈ H,
almost surely the following identity holds:∫ T

0

φ′(t)WH(t)h dt = φ(T )WH(T )h−
∫ T

0

φ⊗ h dWH .

Before we prove the lemma we clarify the meaning of the integral on the left
hand side. Recalling that WHh is a Brownian motion, using Corollary 6.10 we
select a version of WHh whose trajectories are continuous almost surely. Then
the integral on the left hand side is well defined almost surely as a Lebesgue
integral.

Proof. We may assume that φ′(0) = 0; this somewhat simplifies the calcula-
tions below.

We begin by noting that
∫ T

0
φ⊗ h dWH =

∫ T

0
φdWHh. For step functions

this is clear from the definitions and the general case follows by approximation.
Rescaling h to unit length, it is therefore enough to prove the almost sure
identity ∫ T

0

φ′(t)W (t) dt = φ(T )W (T )−
∫ T

0

φdW

for functions φ ∈ C1[0, T ], where W is a scalar Brownian motion. This identity
is a special case of Itô’s formula, but for those readers who are not familiar
with it we shall give a self-contained argument (which is indeed nothing but
the proof of Itô’s formula in the special case considered here). Let

g :=
N∑

n=1

cn1(tn−1,tn], G :=
N∑

n=1

n∑
m=1

cm(tm − tm−1)1(tn−1,tn]

with c1, . . . , cN scalars and 0 = t0 < · · · < tN = T . Then, almost surely,∫ T

0

g(t)W (t) dt =
N∑

n=1

cn

∫ tn

tn−1

W (t) dt

and

G(T )W (T )−
∫ T

0

GdW

=
N∑

m=1

cm(tm − tm−1)W (T )−
N∑

n=1

n∑
m=1

cm(tm − tm−1)(W (tn)−W (tn−1))

=
N∑

m=1

cm(tm − tm−1)W (T )−
N∑

m=1

N∑
n=m

cm(tm − tm−1)(W (tn)−W (tn−1))

=
N∑

m=1

cm(tm − tm−1)W (T )−
N∑

m=1

cm(tm − tm−1)(W (T )−W (tm−1))

=
N∑

m=1

cm(tm − tm−1)W (tm−1).
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Now let φ ∈ C1[0, T ] be given and put gk :=
∑Nk

n=1 φ
′(tk,n−1)1(tk,n−1,tk,n],

assuming that limk→∞ sup16n6Nk
(tk,n − tk,n−1) = 0. Then limk→∞ gk = φ′

uniformly on (0, T ]. Defining the functions Gk in terms of the gk as above, we
have limk→∞Gk = φ uniformly on (0, T ]. The above computation gives the
following identity, which almost surely holds for all k:∣∣∣ ∫ T

0

gk(t)W (t) dt−
(
Gk(T )W (T )−

∫ T

0

Gk dW
)∣∣∣

=
∣∣∣ Nk∑

n=1

φ′(tk,n−1)
∫ tk,n

tk,n−1

W (t) dt−
Nk∑
n=1

φ′(tk,n−1)(tk,n − tk,n−1)W (tk,n−1)
∣∣∣.

As k → ∞, the left hand side tends to |
∫ T

0
φ′(t)W (t) dt − (φ(T )W (T ) −∫ T

0
φdW )| in L2(Ω) and hence in measure, whereas the right hand side tends

to 0 almost surely by path continuity. This proves the lemma. ut

We continue with a Fubini theorem for interchanging a Bochner integral
and a stochastic integral of an H-valued function. In this context it is natural
to impose an integrability condition which is L1 with respect to the vari-
able of Bochner integration and L2 with respect to the variable of stochastic
integration.

Lemma 8.2 (Stochastic Fubini theorem). Let φ : (0, T )× (0, T ) → H be
a strongly measurable function satisfying∫ T

0

( ∫ T

0

‖φ(s, t)‖2H dt
) 1

2
ds <∞.

(1) t 7→ φ(s, t) belongs to L2(0, T ;H) for almost all s ∈ (0, T ), and the L2(Ω)-
valued function s 7→

∫ T

0
φ(s, t) dWH(t) belongs to L1(0, T ;L2(Ω));

(2) s 7→ φ(s, t) belongs to L1(0, T ;H) for almost all t ∈ (0, T ), and the H-
valued function t 7→

∫ T

0
φ(s, t) ds belongs to L2(0, T ;H);

(3) in L2(Ω) we have∫ T

0

(∫ T

0

φ(s, t) dWH(t)
)
ds =

∫ T

0

(∫ T

0

φ(s, t) ds
)
dWH(t).

Proof. (1): By assumption we have φ ∈ L1(0, T ;L2(0, T ;H)), and therefore
(1) is an immediate consequence of the Itô isometry (6.2).

(2): We claim that for a step function φ : (0, T )× (0, T ) → H we have

‖φ‖L2(0,T ;L1(0,T ;H)) 6 ‖φ‖L1(0,T ;L2(0,T ;H)).

It suffices to prove this for T = 1. If φ =
∑M

j=1

∑N
k=1 1(sj−1,sj)1(tk−1,tk)⊗ hjk,

then
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‖φ‖2L2(0,T ;L1(0,T ;H)) =
N∑

k=1

(tk − tk−1)
( M∑

j=1

(sj − sj−1)‖hjk‖
)2

=
M∑
i=1

M∑
j=1

(si − si−1)(sj − sj−1)
N∑

k=1

(tk − tk−1)‖hik‖‖hjk‖

and similarly

‖φ‖2L1(0,T ;L2(0,T ;H)) =
( M∑

j=1

(sj − sj−1)
( N∑

k=1

(tk − tk−1)‖hjk‖2
) 1

2
)2

=
M∑
i=1

M∑
j=1

(si − si−1)(sj − sj−1)

×
( N∑

k=1

(tk − tk−1)‖hik‖2
) 1

2
( N∑

k=1

(tk − tk−1)‖hjk‖2
) 1

2
.

In view of the Cauchy-Schwarz inequality, this proves the claim. It follows that
the identity mapping on step functions extends to a continuous embedding of
L1(0, T ;L2(0, T ;H)) into L2(0, T ;L1(0, T ;H)). This gives (2).

(3): For step functions φ the identity follows by a trivial computation, and
its extension to functions φ ∈ L1(0, T ;L2(0, T ;H)) is obtained by approxima-
tion using (1) and (2). ut

8.2 Semigroup preliminaries

Let A be the generator of a C0-semigroup S on E. Define

E� := D(A∗),

the closure being taken with respect to the norm topology of E∗. Note that
E� is a closed and weak∗-dense subspace of E∗. We let A� be the part of A∗

in E�, that is,

D(A�) := {x∗ ∈ D(A∗) : A∗x∗ ∈ E�},
A�x∗ := A∗x∗, x∗ ∈ D(A�).

Proposition 8.3. Let A be the generator of a C0-semigroup S on E. The
adjoint semigroup S∗ restricts to a C0-semigroup S� on E� whose generator
equals A�.

Proof. For t ∈ [0, T ], x ∈ E, and x∗ ∈ D(A∗) we have

|〈x, S∗(t)x∗ − x∗〉| 6
∫ t

0

|〈x, S∗(s)A∗x∗〉| ds 6 t‖x‖ · sup
s∈[0,T ]

‖S(s)‖ · ‖A∗x∗‖.
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Taking the supremum over all x ∈ E of norm ‖x‖ 6 1 gives

lim sup
t↓0

‖S∗(t)x∗ − x∗‖ 6 lim
t↓0

t · sup
s∈[0,T ]

‖S(s)‖ · ‖A∗x∗‖ = 0.

Since D(A∗) is invariant under S∗ (by duality we have A∗S∗(t)x∗ = S∗(t)A∗x∗

for x∗ ∈ D(A∗) and t > 0) and S∗(t) is uniformly bounded on [0, T ], it follows
that S∗ restricts to a C0-semigroup S� on E�.

Let B denote the generator of S�. If x� ∈ D(B), then for all x ∈ D(A)
we have

〈x,Bx�〉 = lim
t↓0

1
t
〈x, S�(t)x� − x�〉 = lim

t↓0

1
t
〈S(t)x− x, x�〉 = 〈Ax, x�〉.

Hence x� ∈ D(A∗) and A∗x� = Bx�. Since Bx� ∈ E� it follows that
x� ∈ D(A�) and A�x� = A∗x� = Bx�. Conversely, if x� ∈ D(A�), then
A�x� ∈ E� and s 7→ S�(s)A�x� is strongly continuous and, for all x ∈ E,∣∣∣〈x,A�x� − 1

t
(S�(t)x� − x�)

〉∣∣∣ 6 ‖x‖
∥∥∥A�x� − 1

t

∫ t

0

S�(s)A�x� ds
∥∥∥.

Hence,∥∥∥A�x� − 1
t
(S�(t)x� − x�)

∥∥∥ 6
∥∥∥A�x� − 1

t

∫ t

0

S�(s)A�x� ds
∥∥∥.

Since A�x� ∈ E�, the right hand side tends to 0 as t ↓ 0 by strong continuity.
This proves that x� ∈ D(B) and Bx� = A�x�. ut

This proposition will be used in combination with the next approximation
result.

Lemma 8.4. For k = 0, 1, 2, . . . , linear combinations of the functions φ ⊗ x
with φ ∈ Ck[0, T ] and x ∈ E are dense in Ck([0, T ];E).

Proof. We begin with the case k = 0, which is proved by a standard partition
of unity argument. Let f ∈ C([0, T ];E) be arbitrary. Let ε > 0. Since f
is uniformly continuous we may choose δ > 0 such that ‖f(t) − f(s)‖ < ε
whenever |t − s| < δ. Let I1, . . . , IN be open intervals of length < δ covering
[0, T ] and let φ1, . . . , φN be a partition of unity with respect to this cover,
that is, 0 6 φn 6 1, φn is supported in In, and

∑N
n=1 φn = 1. Choose points

tn ∈ [0, T ] ∩ In, let xn := f(tn), and put fε :=
∑N

n=1 φn ⊗ xn. Fix t ∈ [0, T ].
If t ∈ In, then |t − tn| < δ and therefore ‖f(t) − xn‖ < ε. If t 6∈ In, then
φn(t) = 0. Hence, using that f =

∑N
n=1 φnf ,

‖f(t)− fε(t)‖ 6
N∑

n=1

φn(t)‖f(t)− xn‖ 6 ε
∑

n: t∈In

φn(t) 6 ε.
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This proves that ‖f − fε‖ 6 ε.
The general case is proved with induction on k. Suppose the lemma has

been proved for k = 0, . . . , l and let f ∈ Cl+1([0, T ];E) be arbitrary. Then
f ′ ∈ Cl([0, T ];E) and therefore we can find functions gj ∈ Cl([0, T ];E) of
the form gj =

∑Nj

n=1 φjn ⊗ xjn with φjn ∈ Cl[0, T ] and xjn ∈ E such that
limj→∞ gj = f ′ in Cl([0, T ];E). Let ψjn(t) :=

∫ t

0
φjn(s) ds, put x0 := f(0),

and set

fj := 1⊗ x0 +
Nj∑

n=1

ψjn ⊗ xjn.

Then limj→∞ fj = f in C([0, T ];E) and limn→∞ f ′j = f ′ in Cl([0, T ];E), so
limj→∞ fj = f in Cl+1([0, T ];E). ut

8.3 Existence and uniqueness: cylindrical Brownian
motion

We consider the stochastic abstract Cauchy problem{
dU(t) = AU(t) dt+B dWH(t), t ∈ [0, T ],
U(0) = x.

(SACP)

Here A is the generator of a C0-semigroup {S(t)}t>0 on E, WH is an H-
cylindrical Brownian motion on (Ω,F ,P), and B ∈ L (H,E) is a given
bounded operator.

An E-valued process {U(t)}t∈[0,T ] will be called strongly measurable if it
has a version which is strongly B([0, T ])×F -measurable on [0, T ]×Ω.

Definition 8.5. A weak solution of the problem (SACP) is an E-valued pro-
cess {Ux(t)}t∈[0,T ] which has a strongly measurable version with the following
properties:

(i) almost surely, the paths t 7→ Ux(t) are integrable;
(ii) for all t ∈ [0, T ] and x∗ ∈ D(A∗) we have, almost surely,

〈Ux(t), x∗〉 = 〈x, x∗〉+
∫ t

0

〈Ux(s), A∗x∗〉 ds+WH(t)B∗x∗.

In order not to overburden notations, we do not distinguish notationally
the process {Ux(t)}t∈[0,T ] from its version with the properties (i) and (ii).

Theorem 8.6. The following assertions are equivalent:

(1) the problem (SACP) has a weak solution {Ux(t)}t∈[0,T ];
(2) t 7→ S(t)B is stochastically integrable on (0, T ) with respect to WH .
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In this situation, for every t ∈ (0, T ) the function s 7→ S(t− s)B is stochasti-
cally integrable on (0, t) with respect to WH and almost surely we have

Ux(t) = S(t)x+
∫ t

0

S(t− s)B dWH(s). (8.1)

Proof. We start by noting that t 7→ Ux(t) is a weak solution corresponding
to the initial value x if and only if t 7→ Ux(t)− S(t)x is a weak solution cor-
responding to the initial value 0. Without loss of generality we shall therefore
assume that x = 0 and write U(t) := U0(t) for convenience.

(1) ⇒ (2): We will show first that for all t ∈ [0, T ] and x∗ ∈ D(A�2),
almost surely we have

〈U(t), x∗〉 =
∫ t

0

B∗S∗(t− s)x∗ dWH(s). (8.2)

Fix t ∈ [0, T ] and x� ∈ D(A�). By Fubini’s theorem, almost surely the
identity

〈U(s), x�〉 =
∫ s

0

〈U(r), A�x�〉 dr +WH(s)B∗x� (8.3)

holds for almost all s ∈ (0, t); here we use that both terms on the right hand
side are jointly measurable on (0, t)×Ω. In combination with Lemma 8.1 this
gives, for any C1-function φ : [0, t] → R,∫ t

0

φ′(s)〈U(s), x�〉 ds

=
∫ t

0

φ′(s)
(∫ s

0

〈U(r), A�x�〉 dr
)
ds+

∫ t

0

φ′(s)WH(s)B∗x� ds

= φ(t)
∫ t

0

〈U(s), A�x�〉 ds−
∫ t

0

φ(s)〈U(s), A�x�〉 ds

+ φ(t)WH(t)B∗x� −
∫ t

0

φ(s)B∗x� dWH(s)

almost surely. Multiplying both sides of (8.3) with φ(t), putting f := φ⊗ x�

and rewriting, we obtain

〈U(t), f(t)〉 =
∫ t

0

〈U(s), f ′(s) +A�f(s)〉 ds+
∫ t

0

B∗f(s) dWH(s) (8.4)

almost surely. By Lemma 8.4 applied to the Banach space D(A�), this identity
extends to arbitrary functions f ∈ C1([0, t];D(A�)). In particular we may
take f(s) = S�(t−s)x�, with x� ∈ D(A�2). For this choice of f , the identity
(8.4) reduces to (8.2).

So far we have proved that (8.2) holds for functionals x∗ ∈ D(A�2). We
shall prove next that (8.2) holds for functionals x∗ ∈ E∗. Then the stochastic
integrability of s 7→ S(t− s)B on (0, t) follows from Theorem 6.17.
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The extension of (8.2) from functionals x∗ ∈ D(A�2) to functionals x∗ ∈
E∗ is not entirely straightforward since in general D(A�2) is only weak∗-dense
in E∗. Let x∗ ∈ E∗ be arbitrary and fixed, and let weak∗-limn→∞ x∗n = x∗

with all x∗n ∈ D(A�2) (for instance, take x∗n = λ3
nR(λn, A

∗)3x∗ with suitable
λn →∞). By dominated convergence, for all f ∈ L2(0, t;H) we have

lim
n→∞

[f,B∗S∗(t− ·)x∗n]L2(0,t;H) = [f,B∗S∗(t− ·)x∗]L2(0,t;H).

It follows that for all N > 1, B∗S∗(t − ·)x∗ belongs to the weak closure in
L2(0, t;H) of the tail sequence (B∗S∗(t − ·)x∗n)∞n=N . By the Hahn-Banach
theorem, B∗S∗(t − ·)x∗ belongs to the strong closure in L2(0, t;H) of the
convex hull of this sequence. It follows that there exist vectors y∗N , belonging
to the convex hull of (x∗n)∞n=N , such that

‖B∗S∗(t− ·)y∗N −B∗S∗(t− ·)x∗‖L2(0,t;H) <
1
N
.

The isometry (6.2) implies that

lim
N→∞

∫ t

0

B∗S∗(t− s)y∗N dWH(s) =
∫ t

0

B∗S∗(t− s)x∗ dWH(s)

in L2(Ω). By passing to a subsequence and using that weak∗-limN→∞ y∗N = x∗

(this follows from the fact that we used the tail sequence (x∗n)∞n=N to define
y∗N ), we obtain

〈U(t), x∗〉 = lim
j→∞

〈U(t), y∗Nj
〉 = lim

j→∞

∫ t

0

B∗S∗(t− s)y∗Nj
dWH(s)

=
∫ t

0

B∗S∗(t− s)x∗ dWH(s)

almost surely.
(2) ⇒ (1): Suppose now that the function t 7→ S(t)B is stochastically

integrable on (0, T ). This implies the stochastic integrability of s 7→ S(t −
s)B on (0, t) for all t ∈ (0, T ]. We check that the process U defined by the
convolution (8.1) with x = 0 has a strongly measurable version which is a
weak solution of the problem (SACP) with initial value x = 0.

To prove that U has a strongly measurable version we argue as follows.
As in the proof of Step 1 of Theorem 6.17 (3)⇒(1) we may assume that H
is separable. Then by Proposition 5.14 the γ(L2(0, T ;H), E)-valued function
t 7→ Rt is strongly measurable, where Rt is the integral operator associated
with s 7→ 1(0,t)(s)S(t− s)B. By covariance domination, ‖Rt‖γ(L2(0,T ;H),E) 6
‖RT ‖γ(L2(0,T ;H),E). Applying the Itô isometry of Theorem 6.14 we see that
U defines an element of L∞(0, T ;L2(Ω;E)). The existence of a strongly mea-
surable version follows from this (cf. Example 1.21).

Fix x∗ ∈ D(A∗) and t ∈ [0, T ]. Then almost surely
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〈U(t), A∗x∗〉 =
∫ t

0

B∗S∗(t− s)A∗x∗ dWH(s).

By the stochastic Fubini theorem applied to φ(s, t) := 1{06s6t6T}B
∗S∗(t −

s)x∗, the L2(Ω)-valued function t 7→ 〈U(t), A∗x∗〉 is integrable on (0, T ) and∫ t

0

〈U(s), A∗x∗〉 ds =
∫ t

0

∫ s

0

B∗S∗(s− r)A∗x∗ dWH(r) ds

=
∫ t

0

∫ t

r

B∗S∗(s− r)A∗x∗ ds dWH(r)

=
∫ t

0

B∗S∗(t− r)x∗ −B∗x∗ dWH(r)

= 〈U(t), x∗〉 −WH(t)B∗x∗,

where all identities are understood in the sense of L2(Ω). In particular the
identities hold almost surely.

It remains to check that the trajectories of U are integrable almost surely.
Let µt be the distribution of U(t) and let Qt be its covariance operator. We
have

〈Qt x
∗, x∗〉 =

∫ t

0

‖B∗S∗(s)x∗‖2H ds 6 〈QTx
∗, x∗〉 = 〈Rx∗, x∗〉.

Hence by Fubini’s theorem and covariance domination, for arbitrary but fixed
1 6 p <∞ we obtain

E
∫ T

0

‖U(t)‖p dt =
∫ T

0

∫
E

‖x‖p dµt(x) dt 6 T

∫
E

‖x‖p dµT (x) <∞.

This implies that almost all trajectories t 7→ U(t, ω) belong to Lp(0, T ;E). ut
Note that theorem 8.6 contains the following uniqueness assertion: if Ux

and Ũx are both weak solutions of (SACP), then Ux and Ũx are versions of
each other: both Ux(t) and Ũx(t) equal the right hand side of (8.1) almost
surely. This justifies us to speak of ‘the’ solution of (SACP).

Comparing the proof of Theorem 8.6 with that of Theorem 7.17 we observe
that the existence proofs are essentially identical, whereas the uniqueness parts
are very different. The reason is that the exceptional sets in the definition of
a weak solution of the stochastic problem (SACP) depend on t and x∗, which
prevents us from applying Proposition 7.14 almost surely. Because of this it
is no longer clear whether a weak solution is always a strong solution (cf.
Proposition 7.16).

8.4 Existence and uniqueness: Brownian motion

Next we consider the problem (SACP) under the assumption that B ∈
γ(H,E). In this situation the term ‘B dWH ’ may be replaced by ‘dWB ’, where
WB is an E-valued Brownian motion canonically associated with B.
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Definition 8.7. An E-valued process (W (t))t∈[0,T ] is called an E-valued
Brownian motion if it enjoys the following properties:

i) W (0) = 0 almost surely;
ii) W (t − s) and W (t) −W (s) are identically distributed Gaussian random

variables for all 0 6 s 6 t 6 T ;
iii) W (t)−W (s) is independent of {W (r) : 0 6 r 6 s} for all 0 6 s 6 t 6 T .

Proposition 8.8. Let (WH(t))t∈[0,T ] be an H-cylindrical Brownian motion
and let B ∈ γ(H,E). If (hn)∞n=1 is an orthonormal basis of (ker(B))⊥, then:

(1) the sum

WB(t) :=
∞∑

n=1

WH(t)hn ⊗Bhn

converges almost surely and in Lp(Ω;E), 1 6 p <∞, for all t ∈ [0, T ];
(2) up to a null set, WB(t) is independent of the choice of the basis (hn)∞n=1;
(3) the process (WB(t))t∈[0,T ] defines an E-valued Brownian motion.

The proof involves a straightforward application of Theorem 5.15, noting
that for 0 6 s 6 t 6 T the covariance operator of WB(t) −WB(s) equals
(t− s)BB∗.

This proposition shows that for operators B ∈ γ(H,E) the problem
(SACP) may be restated as{

dU(t) = AU(t) dt+ dWB(t), t ∈ [0, T ],
U(0) = x.

In the converse direction, every E-valued Brownian motion is of the form
WB for canonical choices of H and B ∈ γ(H,E) (Exercise 2).

Definition 8.9. Let B ∈ γ(H,E). A strong solution of (SACP) is a strongly
measurable E-valued process (Ux(t))t∈[0,T ] with the following properties:

i) the trajectories of Ux are integrable almost surely;
ii) for all t ∈ [0, T ], almost surely we have

∫ t

0
Ux(s) ds ∈ D(A) and

Ux(t) = x+A

∫ t

0

Ux(s) ds+WB(t).

Theorem 8.10. Let B ∈ γ(H,E). The following assertions are equivalent:

(1) the problem (SACP) has a strong solution;
(2) the problem (SACP) has a weak solution.

In this situation, the weak and strong solutions are versions of each other, and
both are given by (8.1).
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Proof. We only need to prove that (2) implies (1). We may assume that x = 0.
Let U be a weak solution of (SACP) with initial value x = 0. Fix t ∈ [0, T ].
We claim that the function Ψt : (0, t) → L (H,E),

Ψt(r)h :=
∫ t

r

S(s− r)Bhds,

is stochastically integrable with respect to WH and∫ t

0

Ψt(r) dWH(r) =
∫ t

0

U(s) ds. (8.5)

To see this, note that for all x∗ ∈ E∗ the stochastic Fubini theorem gives∫ t

0

Ψ∗t (r)x∗ dWH(r) =
∫ t

0

∫ t

r

B∗S∗(s− r)x∗ ds dWH(r)

=
∫ t

0

∫ s

0

B∗S∗(s− r)x∗ dWH(r) ds =
∫ t

0

〈U(s), x∗〉 ds,

where the last identity follows from the assumption that U is a weak solution
and therefore satisfies (8.1). The claim now follows from Theorem 6.17.

Also, from Ψt(r)h ∈ D(A) and AΨt(r)h = S(t− r)Bh−Bh it follows that
AΨt : (0, t) → L (H,E) is stochastically integrable with respect to WH and∫ t

0

AΨt(r) dWH(r) =
∫ t

0

(S(t− r)B −B) dWH(r) = U(t)−WB(t),

where in the second identity we used that WH(t)B∗x∗ = 〈WB(t), x∗〉.
Combining these facts it follows that Ψt is stochastically integrable as a

function from (0, t) to L (H,D(A)). It follows that the left hand side of (8.5)
defines a D(A)-valued Gaussian random variable. Moreover, as A is bounded
from D(A) to E, almost surely we have

A

∫ t

0

U(s) ds = A

∫ t

0

Ψt(r) dWH(r) =
∫ t

0

AΨt(r) dWH(r) = U(t)−WB(t).

This shows that U is a strong solution. ut

We may now apply the result of Exercise 5.4 as follows:

Corollary 8.11. Let E have type 2 and assume that B ∈ γ(H,E). Then the
problem (SACP) has a unique strong solution, and this solution is given by
the convolution (8.1).

It can be shown that this solution has a version with continuous trajecto-
ries; this follows from the Da Prato-Kwapień-Zabczyk factorisation principle
which will be discussed later on. It appears to be an open problem whether,
in the more general situation of Theorems 8.6 and 8.10, a solution (if it exists)
always has a continuous version.
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8.5 Non-existence

In this section we present an example of a stochastic evolution equation driven
by a rank one Brownian motion which has no (weak or strong) solution.

Example 8.12. Let E = Lp(T), where T denotes the unit circle in the complex
plane with its normalized Lebesgue measure. We let A = d/dθ denote the
generator of the rotation (semi)group S on Lp(T), S(t)f(θ) = f(θ+t mod 2π).
Consider the stochastic Cauchy problem{

dU(t) = AU(t) + φdW, t ∈ [0, 2π],
U(0) = 0,

(8.6)

whereW is a standard real Brownian motion and φ ∈ Lp(T) is a fixed element.
This problem has a weak solution if and only if the operator R := R2π :
L2(T) → Lp(T) of Theorem 8.6 (with T = 2π) is γ-radonifying. Let (hn)∞n=1

be an orthonormal basis for L2(T). For all N > M > 1, by Fubini’s theorem
and the Khintchine inequality we have

E
∥∥∥ N∑

n=M

γnRhn

∥∥∥p

Lp(T)
=

∫ 2π

0

E
∣∣∣ N∑
n=M

γnRhn(θ)
∣∣∣p dθ

hp

∫ 2π

0

( N∑
n=M

|Rhn(θ)|2
) p

2
dθ =

∥∥∥( N∑
n=M

|Rhn|2
) 1

2
∥∥∥p

Lp(T)
.

Now,

N∑
n=M

|Rhn(θ)|2 =
N∑

n=M

∣∣∣∫ 2π

0

hn(t)φ(θ + t mod 2π) dt
∣∣∣2 =

N∑
n=M

∣∣[hn, φθ]L2(T)

∣∣2
where φθ(t) := φ(θ+ t mod 2π). Via an application of the Kahane-Khintchine
inequality we deduce that R ∈ γ(L2(T), Lp(T)) if and only if φ ∈ L2(T). In
particular, for p ∈ [1, 2) and φ ∈ Lp(T) \ L2(T) the resulting initial value
problem has no weak solution.

It is not a coincidence that a nonexistence is obtained in the range p ∈ [1, 2)
only. Indeed, for p ∈ [2,∞) the space Lp(T) has type 2, and therefore Corollary
8.11 guarantees the existence of a strong solution for (8.6).

8.6 Exercises

1. This exercise offers an alternative approach to the integration by parts
formula of Lemma 8.1. The starting point is the fact that if H is a real
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Hilbert space, φ : [0, T ] → R is of bounded variation, and ψ : [0, T ] → H
is continuous, then∫ T

0

ψ(t) dφ(t) = φ(T )ψ(T )−
∫ T

0

φ(t) dψ(t),

where both integrals are interpreted as Riemann-Stieltjes integrals in H .
Let (W (t))t∈[0,T ] be a standard Brownian motion.
a) Show that the function ψ : [0, t] → L2(Ω), ψ(t) := W (t), is continuous.
b) Deduce Lemma 8.1 from the above integration by parts formula.

2. Let (W (t))t∈[0,T ] be an E-valued Brownian motion. Show that there exists
a unique Gaussian covariance operator Q ∈ L (E∗, E) such that

E〈W (s), x∗〉〈W (t), y∗〉 = min{s, t}〈Qx∗, y∗〉

for all 0 6 s, t 6 T and x∗, y∗ ∈ E∗.
Hint: Consider Q := QT /T , where QT is the covariance of W (T ).

3. We consider the problem (SACP) with initial value x = 0 and assume
that it admits a weak solution U . Prove that U is a Gaussian process with
covariance

E〈U(s), x∗〉〈U(t), y∗〉 =
∫ min{s,t}

0

[B∗S∗(s− r)x∗, B∗S∗(t− r)y∗] ds

for all 0 6 s, t 6 T and x∗, y∗ ∈ E∗.

4. We consider the problem (SACP) with initial value x and assume that it
admits a weak solution Ux.
a) Prove that the solvability of the problem (SACP) is independent of

the time T . More precisely, show that if (SACP) has a weak (resp.
strong) solution on some interval [0, T ], then it has a weak (resp.
strong) solution on every interval [0, T ].
Hint: Use the semigroup property and Theorem 8.6.

By a) and uniqueness, Ux extends to a solution on [0,∞). For f ∈ Cb(E)
and t > 0 we define the function P (t)f : E → R by

P (t)f(x) := Ef(Ux(t)), x ∈ E.

b) Explain why for all f ∈ Cb(E) and t > 0 we have the identity

Ef(Ux(t)) =
∫

E

f(S(t)x+ y) dµt(y),

where µt denotes the distribution of the random variable U0(t).
c) Deduce that P (t)f ∈ Cb(E).
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d) Prove the identity
µt+s = µt ∗ S(t)µs,

where ∗ denotes convolution and S(t)µs is the image measure of µs

under the operator S(t).
Hint: Use Fourier transforms and observe that for the covariances Qt

of U0(t), t > 0, we have the identity

Qt+s = Qt + S(t)QsS
∗(t).

e) Deduce that P = (P (t))t>0 is a semigroup of operators on Cb(E), in
the sense that P (0) = I and P (t)P (s) = P (t+ s) for all t, s > 0.

f) Prove that for all x ∈ E and f ∈ Cb(E) we have

lim
t→0

P (t)f(x) = f(x)

uniformly on compact subsets K of E.
Hint: By the remark in Exercise 6.4, the process

V x(t) := S(t)x+
∫ t

0

S(s)B dWH(s), t ∈ [0, T ],

has a continuous version (a proof will be given later in this course).
Now use b) together with the observation that for each fixed t ∈ [0, T ]
the random variables Ux(t) and V x(t) are identically distributed.

Remark: By considering (real and imaginary parts of) trigonometric poly-
nomials of the form x 7→ exp(i〈x, x∗〉) it is not hard to show that P fails
to be a C0-semigroup on Cb(E) (and even on the closed subspace UCb(E)
of all bounded uniformly continuous functions) unless A = 0.

5. In addition to the assumptions of the previous exercise, let us assume that
there exists a Borel probability measure µ∞ on E such that limt→∞ µt =
µ∞ in the sense that

lim
t→∞

∫
E

f(x) dµt(x) =
∫

E

f(x) dµ∞(x)

for all f ∈ Cb(E).
a) Prove the identity

µ∞ = µt ∗ S(t)µ∞.

b) Prove that µ∞ is an invariant measure in the sense that for all f ∈
Cb(E) and t > 0 we have∫

E

P (t)f dµ∞ =
∫

E

f dµ∞.

c) Prove that P extends to a C0-semigroup of contractions on the space
Lp(E,µ∞), 1 6 p <∞.
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Notes. The theory of (linear and non-linear) stochastic evolution equations in
Hilbert spaces dates back to the 1970s and was developed extensively through
the efforts of the Italian and Polish schools around Da Prato and Zabczyk.
A comprehensive overview is given in the monographs [27, 28] by these two
authors. Parts of the theory have been extended to (martingale-)type 2 spaces;
we refer to the review paper by Brzeźniak [15] and the references given there.

The results of Section 8.3 are taken from [84] and generalise known Hilbert
space results and improve the preliminary Banach space results of [16]. The
proof of theorem Theorem 8.6 essentially follows the Hilbert space proof in
[27]. The theory of adjoint semigroups was initiated by Phillips, who proved
Proposition 8.3 and noted as a consequence that E� = E∗ if E is reflexive.

The equivalence of weak and strong solutions in the case where B is γ-
radonifying is taken from an unpublished note by Veraar.

The example in Section 8.5 is from [84]. Such examples cannot exist in
Hilbert spaces, due to Corollary 8.11.

The semigroup P of Exercises 4 and 5 is called the Ornstein-Uhlenbeck
semigroup associated with A and B. The literature on this class of semigroups
is extensive, with contributions by many mathematicians. Using Itô’s formula
it can be shown that the infinitesimal generator L of P is given, on a suitable
dense subspace of D(L) consisting of cylindrical functions, by

Lf(x) =
1
2
Tr (BB∗D2f(x)) + 〈Ax,Df(x)〉, x ∈ D(A),

where D denotes the Fréchet derivative and Tr the trace. The first term in the
right hand side is the ‘diffusion part’ corresponding to BWH and the second
is the ‘drift part’ corresponding to A.

The clever argument in part f) of Exercise 4 is due to Veraar. A self-
contained analytic proof can be found in see [42].

For a systematic account on invariant measures for stochastic evolution
equations we refer to Da Prato and Zabczyk [28].
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γ-Boundedness

In this lecture we address the second topic in the paradigm sketched in the
introduction of Lecture 5: a ‘Gaussian’ generalisation to a Banach space set-
ting of the notion of uniform boundedness of families of operators in Hilbert
spaces. Roughly speaking, a family of operators T is said to be ‘γ-bounded’ if
a Kahane contraction principle holds with scalars replaced by operators from
T . This makes γ-boundedness into a powerful tool for estimating Gaussian
sums. Perhaps more important is the fact that there are numerous abstract
methods to create γ-bounded families, which can be used to show that fam-
ilies of operators arising naturally in the context of parabolic PDEs (such as
resolvents) and stochastic analysis (such as families of conditional expectation
operators) are γ-bounded.

9.1 Randomised boundedness

Throughout this lecture ϕ = (ϕn)∞n=1 denotes a sequence of independent sym-
metric real-valued random variables satisfying Eϕ2

n = 1, n > 1. For instance,
ϕ could be a Rademacher sequence or a Gaussian sequence.

We begin with a simple observation.

Proposition 9.1. Let H1 and H2 be Hilbert spaces. For a subset T ⊆
L (H1,H2) and a constant M > 0 the following assertions are equivalent:

(1) T is uniformly bounded and supT∈T ‖T‖ 6 M ;
(2) for all N > 1, all T1, . . . , TN ∈ T , and all x1, . . . , xN ∈ H1,(

E
∥∥∥ N∑

n=1

ϕnTnxn

∥∥∥2) 1
2

6 M
(
E

∥∥∥ N∑
n=1

ϕnxn

∥∥∥2) 1
2
.

Proof. For the proof of (1)⇒(2), write ‖h‖2 = [h, h] and use that Eϕjϕk = δjk.
For the proof of (2)⇒(1), consider the case N = 1 in (2) to obtain ‖Th‖ 6
M‖h‖ for all T ∈ T and h ∈ H1. ut
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With Hilbert spaces replaced by Banach spaces the implication (1)⇒(2)
does not hold in general. This motivates the following definition.

Definition 9.2. Let E1 and E2 be Banach spaces. An operator family T ⊆
L (E1, E2) is said to be ϕ-bounded if there exists a constant M > 0 such that

(
E

∥∥∥ N∑
n=1

ϕnTnxn

∥∥∥2) 1
2

6 M
(
E

∥∥∥ N∑
n=1

ϕnxn

∥∥∥2) 1
2
,

for all N > 1, all T1, . . . , TN ∈ T , and all x1, . . . , xN ∈ E1. When ϕ is a
Rademacher sequence, a ϕ-bounded family is called R-bounded; when ϕ is a
Gaussian sequence the family is called γ-bounded.

The least admissible constant M is called the ϕ-bound of T , notation:
ϕ(T ). As in the Hilbert space case, every ϕ-bounded family T is uniformly
bounded and we have

sup
T∈T

‖T‖ 6 ϕ(T ).

When ϕ is a Rademacher sequence or a Gaussian sequence, the bound ϕ(T )
is denoted by R(T ) and γ(T ), respectively. In these two cases, the Kahane-
Khintchine inequality shows that the exponent 2 in the definition may be
replaced by any exponent 1 6 p <∞; this only affects the numerical value of
the bounds. R-bounds and γ-bounds relative to the Lp-norm will be denoted
by Rp(T ) and γp(T ). As a rule, we will state our results relative to the
L2-norm, but frequently the results carry over to Lp-norms if we make this
modification.

Proposition 9.3 below shows that every R-bounded family is γ-bounded,
and Corollary 3.6 and Theorem 3.7 imply that the converse holds if E1 has
finite cotype.

Proposition 9.3. Any R-bounded family T is ϕ-bounded and ϕ(T ) 6 R(T ).

Proof. Let (r′n)∞n=1 be a Rademacher sequence on an independent probability
space (Ω′,F ′,P′). Then for all T1, . . . , TN ∈ T and x1, . . . , xN ∈ E1, by
randomising we obtain

E
∥∥∥ N∑

n=1

ϕnTnxn

∥∥∥2

= EE′
∥∥∥ N∑

n=1

r′nϕnTnxn

∥∥∥2

6 R(T )2EE′
∥∥∥ N∑

n=1

r′nϕnxn

∥∥∥2

= R(T )2E
∥∥∥ N∑

n=1

ϕnxn

∥∥∥2

. ut

The proof of the next proposition is left as an exercise to the reader.

Proposition 9.4. If T ⊆ L (E1, E2) and S ⊆ L (E1, E2) are ϕ-bounded,
then the family S + T = {S + T : S ∈ S , T ∈ T } is ϕ-bounded in
L (E1, E2) and
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ϕ(S + T ) 6 ϕ(S ) + ϕ(T ).

Likewise, if T ⊆ L (E1, E2) and S ⊆ L (E2, E3) are ϕ-bounded, then the
family S T = {ST : S ∈ S , T ∈ T } is ϕ-bounded in L (E1, E3) and

ϕ(S T ) 6 ϕ(S )ϕ(T ).

The strong operator topology of L (E1, E2) is the topology generated by
all sets of the form

V (S, x, ε) := {T ∈ L (E1, E2) : ‖Sx− Tx‖ < ε}

with given S ∈ L (E1, E2), x ∈ E, and ε > 0. Note that a set O ⊆ L (E1, E2)
is open in this topology if and only if for all S ∈ O there exist x1, . . . , xk ∈ E1

and a number ε > 0 such that

k⋂
j=1

{T ∈ L (E1, E2) : ‖Sxj − Txj‖ < ε} ⊆ O.

It is an easy exercise to check that limn→∞ Tn = T in the strong operator
topology if and only if limn→∞ Tnx = Tx for all x ∈ E1.

Proposition 9.5 (Strong closure). If T ⊆ L (E1, E2) is ϕ-bounded, then
its closure T in the strong operator topology is ϕ-bounded and ϕ(T ) = ϕ(T ).

Proof. Let T 1, . . . , TN ∈ T and x1, . . . , xN ∈ E1 be arbitrary. Given an
ε > 0, choose operators T1, . . . , TN ∈ T such that ‖Tnxn − Tnxn‖ < 2−nε,
n = 1, . . . , N . Then, by the triangle inequality in L2(Ω;E2) applied twice,

(
E

∥∥∥ N∑
n=1

ϕnTnxn

∥∥∥2) 1
2

6
(
E

∥∥∥ N∑
n=1

ϕnTnxn

∥∥∥2) 1
2

+
(
E

∥∥∥ N∑
n=1

ϕn(Tnxn−Tnxn)
∥∥∥2) 1

2

6 ϕ(T )
(
E

∥∥∥ N∑
n=1

ϕnxn

∥∥∥2) 1
2

+
N∑

n=1

‖Tnxn − Tnxn‖

6 ϕ(T )
(
E

∥∥∥ N∑
n=1

ϕnxn

∥∥∥2) 1
2

+ ε.

This proves that T is ϕ-bounded with ϕ(T ) 6 ϕ(T ). The converse inequality
is trivial. ut

The absolute convex hull of a set V , notation abs conv(V ), is the set of all
vectors of the form

∑k
j=1 λjxj with

∑k
j=1 |λj | 6 1 and xj ∈ V for j = 1, . . . , k.
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Proposition 9.6 (Convex hull). If T is ϕ-bounded in L (E1, E2), then the
convex hull and the absolute convex hull of T are ϕ-bounded in L (E1, E2)
and ϕ(T ) = ϕ(conv(T )) = ϕ(abs conv(T )).

Proof. First we prove the statement for the convex hull. Choose S1, . . . Sn ∈
conv(T ) arbitrarily. Noting that

conv(T )× · · · × conv(T ) = conv(T × · · · ×T )

we can find λ1, . . . , λk ∈ [0, 1] with
∑k

j=1 λj = 1 such that Sn =
∑k

j=1 λjTjn

with Tjn ∈ T for all j = 1, . . . , k and n = 1, . . . , N . Then, for all x1, . . . , xN ∈
E1,(

E
∥∥∥ N∑

n=1

ϕnSnxn

∥∥∥2) 1
2

6
k∑

j=1

λj

(
E

∥∥∥ N∑
n=1

ϕnTjnxn

∥∥∥2) 1
2

6 ϕ(T )
k∑

j=1

λj

(
E

∥∥∥ N∑
n=1

ϕnxn

∥∥∥2) 1
2

= ϕ(T )
(
E

∥∥∥ N∑
n=1

ϕnxn

∥∥∥2) 1
2
.

This proves the ϕ-boundedness of conv(T ) with the estimate ϕ(conv(T )) 6
ϕ(T ). The opposite inequality ϕ(T ) 6 ϕ(conv(T )) is trivial.

The result for the absolute convex hull follows by noting that this hull
is contained in the convex hull of T ∪ {0} ∪ −T ; the set T ∪ {0} ∪ −T is
ϕ-bounded with the same ϕ-bound as T (use Proposition 2.16 to add the
zero operator and replace some of the ϕn by −ϕn in the random sums). ut

By combining Propositions 9.5 and 9.6 we obtain that the strongly closed
absolutely convex hull of every ϕ-bounded set is ϕ-bounded. This may be used
to show that ϕ-boundedness is preserved by taking integral means.

Theorem 9.7 (Integral means I). Let (A,A , µ) be a σ-finite measure space
and let T be a ϕ-bounded subset of L (E1, E2). Suppose f : A → L (E1, E2)
is a function with the following properties:

(i) the function ξ 7→ f(ξ)x is strongly µ-measurable for all x ∈ E1;
(ii) we have f(ξ) ∈ T for µ-almost all ξ ∈ A.

For φ ∈ L1(A) define Tφ
f ∈ L (E1, E2) by

Tφ
f x :=

∫
A

φ(ξ)f(ξ)x dµ(ξ), x ∈ E1,

The family T φ
f := {Tφ

f : ‖φ‖1 6 1} is ϕ-bounded and ϕ(T φ
f ) 6 ϕ(T ).

Proof. Since T is ϕ-bounded and therefore uniformly bounded, the integral
defining Tφ

f x is well-defined as a Bochner integral in E2 for every x ∈ E1 and
defines a bounded operator Tφ

f of norm ‖Tφ
f ‖ 6 ‖φ‖1 supT∈T ‖T‖.
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To prove the ϕ-boundedness of the family T φ
f along with the estimate for

its ϕ-bound it suffices to check that the family {Tφ
f : ‖φ‖1 = 1} is contained

in abs conv(T ), where the bar denotes the closure in the strong operator
topology of L (E1, E2).

Fix φ with ‖φ‖1 = 1 and for k = 1, 2, . . . define T (k) ∈ L (Ek
1 , E

k
2 ) by

T (k)(x1, . . . , xk) := (Tφ
f x1, . . . , T

φ
f xk)

and note that this operator is given by the Bochner integral

T (k)(x1, . . . , xk) =
∫

A

φ(ξ)f (k)(ξ)(x1, . . . , xk) dµ(ξ),

where f (k)(ξ)(x1, . . . , xk) := (f(ξ)x1, . . . , f(ξ)xk) is strongly µ-measurable as
an Ek

2 -valued function of the variable ξ.
Let us fix x1, . . . , xk ∈ E1. Let N ∈ A be a µ-null set such that (ii) holds

in A \N . Noting that

(|φ|µ)(B) :=
∫

B

|φ| dµ =
∫

B

1A\N |φ| dµ, B ∈ A ,

defines a probability measure on (A,A ) and writing

φ(ξ)f(ξ) = sgn(φ(ξ))f(ξ) · |φ(ξ)|,

from Proposition 1.17 we deduce that

(Tφ
f x1, . . . , T

φ
f xk) ∈ abs conv{(f(ξ)x1, . . . , f(ξ)xk) : ξ ∈ A \N}.

In particular,

(Tφ
f x1, . . . , T

φ
f xk) ∈ abs conv{(Tx1, . . . , Txk) : T ∈ T }.

This means that for every ε > 0 we can find T ∈ abs conv(T ) such that

‖Tφ
f xj − Txj‖ < ε, j = 1, . . . , k.

Since the choice of x1, . . . , xk ∈ E1 and ε > 0 were arbitrary, we have
shown that every open set (in the strong operator topology) in L (E1, E2)
containing Tφ

f intersects abs conv(T ). This is synonymous to saying that Tφ
f ∈

abs conv(T ). ut

So far we have been concerned with producing new ϕ-bounded families
from old. We continue with two results which produce ϕ-bounded families
‘from scratch’. In view of Proposition 9.3 it suffices to prove that such families
are R-bounded. In both cases, however, the same argument already gives the
ϕ-boundedness, and we prefer this route for the unity of presentation.
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Theorem 9.8 (Integral means II). Let (A,A , µ) be a σ-finite measure
space, E1 and E2 Banach spaces and let f : A → L (E1, E2) be a function
with the property that ξ 7→ f(ξ)x is strongly µ-measurable for all x ∈ E1.
Suppose that g : A→ R is a µ-integrable function such that for all x ∈ E1 we
have

‖f(ξ)x‖ 6 |g(ξ)|‖x‖ µ-almost everywhere.

For φ ∈ L∞(A) define Tφ
f ∈ L (E1, E2) by

Tφ
f x :=

∫
A

φ(ξ)f(ξ)x dµ(ξ), x ∈ E1.

The family T φ
f = {Tφ

f : ‖φ‖∞ 6 1} is ϕ-bounded and ϕ(T φ
f ) 6 ‖g‖1.

Proof. For φ ∈ L∞(A), note that ξ 7→ φ(ξ)f(ξ)x is µ-Bochner integrable in
E2 for all x ∈ E1, so the operators Tφ

f are well-defined and bounded with
‖Tφ

f ‖ 6 ‖φ‖∞‖g‖1.
Fix φ1, . . . , φN ∈ L∞(A) and x1, . . . , xN ∈ E1. Using the Kahane contrac-

tion principle we estimate

∥∥∥ N∑
n=1

ϕnT
φn

f xn

∥∥∥
L2(Ω;E2)

=
∥∥∥∫

A

N∑
n=1

ϕnφn(ξ)f(ξ)xn dµ(ξ)
∥∥∥

L2(Ω;E2)

6
∫

A

∥∥∥ N∑
n=1

ϕnφn(ξ)f(ξ)xn

∥∥∥
L2(Ω;E2)

dµ(ξ)

6
∫

A

∥∥∥ N∑
n=1

ϕnf(ξ)xn

∥∥∥
L2(Ω;E2)

dµ(ξ)

6
∫

A

|g(ξ)|
∥∥∥ N∑

n=1

ϕnxn

∥∥∥
L2(Ω;E1)

dµ(ξ)

= ‖g‖1
∥∥∥ N∑

n=1

ϕnxn

∥∥∥
L2(Ω;E1)

. ut

Note that if E1 is separable, we may apply the theorem to the function
g(ξ) := ‖f(ξ)‖, which is then µ-measurable (choose a dense sequence (xn)∞n=1

in the unit ball of E1 and note that ‖f(ξ)‖ = supn>1 ‖f(ξ)xn‖). A similar
remark applies to the next theorem.

Theorem 9.9 (Functions with integrable derivative). Let f : (a, b) →
L (E1, E2) and g : (a, b) → R be such that the functions t 7→ f(t)x are
continuously differentiable, g is integrable, and for all x ∈ E1 we have

‖f ′(t)x‖ 6 |g(t)|‖x‖ µ-almost everywhere.

Then T := {f(t) : t ∈ (a, b)} is ϕ-bounded and ϕ(T ) 6 ‖f(a+)‖+ ‖g‖1.
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Proof. Let us first prove that f(a+) := limt↓a f(t) exists in the strong op-
erator topology. For fixed x ∈ E1, given ε > 0 choose δ > 0 so small that∫ a+δ

a
|g(t)| dt < ε; then for all a < a1 < a2 < a+ δ we have

‖f(a2)x− f(a1)x‖ =
∥∥∥∫ a2

a1

f ′(t)x dt
∥∥∥ 6

∫ a2

a1

‖f ′(t)x‖ dt < ε‖x‖.

This gives the claim.
For all a < t1 6 · · · 6 tN < b and x1, . . . , xN ∈ E we obtain, using

Theorem 9.8,

(
E

∥∥∥ N∑
n=1

ϕnf(tn)xn

∥∥∥2) 1
2

=
(
E

∥∥∥ N∑
n=1

ϕn

[
f(a+)xn +

∫ tn

a

f ′(t)xn dt
]∥∥∥2) 1

2

6 ‖f(a+)‖
(
E

∥∥∥ N∑
n=1

ϕnxn

∥∥∥2) 1
2

+
(
E

∥∥∥ N∑
n=1

ϕn

∫ b

a

1(a,tn)(t)f ′(t)xn dt
∥∥∥2) 1

2

6 (‖f(a+)‖+ ‖g‖1)
(
E

∥∥∥ N∑
n=1

ϕnxn

∥∥∥2) 1
2
. ut

9.2 Examples

We proceed with some important examples of ϕ-bounded families, where as
before (ϕn)∞n=1 is a sequence of independent symmetric real-valued random
variables satisfying Eϕ2

n = 1, n > 1. One example has already been recorded:
a family of Hilbert space operators is ϕ-bounded if and only if it is uniformly
bounded.

Example 9.10 (The contraction principle and ϕ-boundedness). Let E be a Ba-
nach space. Every real number a defines a bounded operator Ta on E by scalar
multiplication: Tax = ax. The Kahane contraction principle can be reformu-
lated as saying that for every bounded set A ⊆ R, the set TA := {Ta : a ∈ A}
is ϕ-bounded in L (E), with ϕ(TA) = sup{|a| : a ∈ A}.

Example 9.11 (ϕ-Boundedness in Lp). Let (A,A , µ) be a σ-finite measure
space and let 1 6 p < ∞ be fixed. If S is a positive bounded operator on
E := Lp(A), i.e., Sf > 0 whenever f > 0 (we write f1 > f2 to mean that
f1(ξ) > f2(ξ) for µ-almost all ξ ∈ A), the set

T := {T ∈ L (E) : |Tf | 6 S|f | for all f ∈ E}
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is ϕ-bounded and we have ϕ(T ) 6 Kp‖S‖, where Kp is a universal constant
depending only on p.

By Proposition 9.3 it suffices to prove this for Rademacher variables
(rn)∞n=1. Using Fubini’s theorem and the scalar Kahane-Khintchine inequality,
we see that for all T1, . . . , TN ∈ T and f1, . . . , fN ∈ E,

E
∥∥∥ N∑

n=1

rnTnfn

∥∥∥p

E
=

∫
A

E
∣∣∣ N∑

n=1

rnTnfn

∣∣∣p dµ .p

∫
A

(
E

∣∣∣ N∑
n=1

rnTnfn

∣∣∣2) p
2
dµ

=
∫

A

( N∑
n=1

|Tnfn|2
) p

2
dµ 6

∫
A

( N∑
n=1

(S|fn|)2
) p

2
dµ

=
∫

A

(
E

∣∣∣ N∑
n=1

rnS|fn|
∣∣∣2) p

2
dµ .p

∫
A

E
∣∣∣ N∑

n=1

rnS|fn|
∣∣∣p dµ

= E
∥∥∥ N∑

n=1

rnS|fn|
∥∥∥p

E
6 ‖S‖pE

∥∥∥ N∑
n=1

rn|fn|
∥∥∥p

E

= ‖S‖p

∫
A

E
∣∣∣ N∑

n=1

rn|fn|
∣∣∣p dµ = ‖S‖p

∫
A

E
∣∣∣ N∑

n=1

rnfn

∣∣∣p dµ
= ‖S‖pE

∥∥∥ N∑
n=1

rnfn

∥∥∥p

E
.

In this computation we used that E
∣∣ ∑N

n=1 rnan

∣∣p = E
∣∣ ∑N

n=1 rn|an|
∣∣p for

a1, . . . , aN ∈ R; to see this, just replace rn by −rn if an < 0. The result now
follows from the Kahane-Khintchine inequality which permits us to replace
the Lp-moments by L2-moments.

9.3 A multiplier result

Let (A,A , µ) be a σ-finite measure space and let Φ : A → γ(H,E) be uni-
formly bounded and strongly µ-measurable. For f ∈ L2(A;H) the integrals

RΦf =
∫

A

Φ(ξ)f(ξ) dµ(ξ)

exist as Bochner integrals in E, and the resulting linear operator RΦ :
L2(A;H) → E is bounded.

Turning to the situation where Φ : A → γ(H,E1) is uniformly bounded
and strongly µ-measurable, suppose next that E2 is another Banach space
and M : A → L (E1, E2) is a uniformly bounded function with the property
that ξ 7→ M(ξ)x is strongly µ-measurable for all x ∈ E1 (in this situation,
with a slight abuse of terminology we call M strongly µ-measurable). We put
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(MΦ)(ξ) := M(ξ)Φ(ξ).

Let us check that the function MΦ is strongly µ-measurable. By strong µ-
measurability, the range of Φ is µ-separably-valued in γ(H,E1). Therefore by
Proposition 5.10 we may assume H is separable. Choose an orthonormal basis
(hn)∞n=1 for H and let Pn denote the orthogonal projection onto the span of
{h1, . . . , hn}. Then ξ 7→ (MΦPn)(ξ) := M(ξ)Φ(ξ)Pn is strongly µ-measurable,
and the claim follows by noting that limn→∞MΦPn = MΦ pointwise in the
norm of γ(H,E1) by Proposition 5.12.

As a result, the integral operator RMΦ is well-defined as a bounded oper-
ator from L2(A;H) to E2. Thus M induces a mapping

M̃ : RΦ 7→ RMΦ.

We shall be interested in finding conditions that guarantee the boundedness
of this mapping as an operator from γ(L2(A;H), E1) to γ(L2(A;H), E2).

First we check that the operators RΦ, with Φ a finite rank simple function,
are dense in γ(L2(A;H), E1).

Lemma 9.12. Let (A,A , µ) be a σ-finite measure space. The operators RΦ,
with Φ : A→ γ(H,E) a finite rank simple function, form a dense subspace in
γ(L2(A;H), E).

Proof. Let R ∈ γ(L2(A;H), E) be given. By the same argument as in Step 4
of the proof of Theorem 6.17 we may assume that R ∈ γ(L2(A; H̃), E), where
H̃ is a separable closed subspace of H. Then, by Proposition 5.12, we even
may assume that H̃ is finite-dimensional.

Let Ak be a sequence of finite sub-σ-algebras generating A . Let Ik denote
the associated averaging operator on L2(A;H). Then limk→∞R ◦ Ik = R in
γ(L2(0, T ; H̃), E) by Proposition 5.12. Every R ◦ Ik is of the form RΦk

for a
simple function Φk : A → γ(H̃, E), and as function with values in γ(H,E),
the Φk are finite rank simple functions. ut

The following multiplier theorem, due to Kalton and Weis in a slightly
simpler setting, connects the notions of γ-boundedness and γ-radonification.
It states that functions with γ-bounded range act as multipliers on spaces of
γ-radonifying operators.

Theorem 9.13 (γ-Bounded functions as γ-multipliers). Let (A,A , µ)
be a σ-finite measure space. Suppose that M : A → L (E1, E2) is strongly
measurable and has γ-bounded range M := {M(t) : t ∈ A}. Then for every
finite rank simple function φ : A → γ(H,E1) the operator TMφ belongs to
γ∞(L2(A;H), E2) and

‖TMφ‖γ∞p (L2(A;H),E2) 6 γp(M ) ‖Tφ‖γp(L2(A;H),E1), 1 6 p <∞.

As a result, the map M̃ : Tφ 7→ TMφ has a unique extension to a bounded
operator
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M̃ : γp(L2(A;H), E1) → γ∞p (L2(A;H), E2)

of norm ‖M̃‖ 6 γp(M ).

Remark 9.14. If H is any Hilbert space and the Banach space E does not
contain a closed subspace isomorphic to c0, then γ∞(H , E) = γ(H , E) by
the theorem of Hoffmann-Jorgensen and Kwapień (Theorem 5.9). Thus, in the
context of Theorem 9.13, if E2 does not contain a closed subspace isomorphic
to c0, then M̃ extends to a bounded operator acting from γ(L2(A;H), E1)
into γ(L2(A;H), E2).

Proof. The uniqueness part follows from Lemma 9.12.
To prove the boundedness of M̃ we let φ : A → H ⊗ E1 be a finite rank

simple function which is kept fixed throughout the proof. Since we are fixing
φ there is no loss of generality if we assume H to be finite-dimensional, say
with orthonormal basis (hn)N

n=1. Also, by virtue of the strong measurability of
M , we may assume that the σ-algebra A is countably generated. This implies
that L2(A) is separable, say with orthonormal basis (gm)m>1.

We split the proof into two steps. In the second step we shall make use
of conditional expectations (Lecture 11). For reasons of self-containedness
we note that we only condition with respect to finite σ-algebras and that
the conditional expectation operators could easily be replaced by averaging
operators (at the expence of less transparent notations).

Step 1 – In this step we consider the special case of the theorem where
M is a simple function. By passing to a common refinement we may suppose
that

φ =
k∑

j=1

1BjUj , M =
k∑

j=1

1BjMj ,

with disjoint sets Bj ∈ A of finite positive measure; the operators Uj ∈ H⊗E1

are of finite rank and the operators Mj belong to M . Then,

Mφ =
k∑

j=1

1Bj
MjUj .

This is a simple function with values in H ⊗ E2 which defines an operator
TMφ ∈ γ(L2(A;H), E2), and

‖TMφ‖p
γp(L2(A;H),E2)

= E
∥∥∥ k∑

j=1

N∑
n=1

γjn

√
µ(Bj)MjΦjhn

∥∥∥p

6 (γp(M ))pE
∥∥∥ k∑

j=1

N∑
n=1

γjn

√
µ(Bj)Φjhn

∥∥∥p

= (γp(M ))p‖Tφ‖p
γp(L2(A;H),E1)

.
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Step 2 – Let (Aj)j>1 be a generating collection of sets in A and let, for
all k > 1, Ak := σ(A1, . . . , Ak). Define the functions Mk : A→ L (E1, E2) by

Mkx := E(Mx|Ak).

Since Ak is a finite σ-algebra, Mk is a simple function. It is easily checked
that for all f ∈ L2(A;H) we have TMkφf = TMφE(f |Ak), and therefore

lim
k→∞

TMkφf = TMφf

strongly in E2. By the γ-Fatou lemma (Proposition 5.3) it follows that TMφ ∈
γ∞(L2(A;H), E1) and

‖TMφ‖γ∞p (L2(A;H),E2) 6 lim inf
k→∞

‖TMφ‖γp(L2(A;H),E2) 6 γp(M )‖Tφ‖γp(L2(A;H),E1).

ut

9.4 Exercises

1. Let (A,A , µ) be a σ-finite measure space and let 1 6 p < ∞. For a
function φ ∈ L∞(A) define the multiplier Mφ ∈ L (Lp(A;E)) by

(Mφf)(ξ) := φ(ξ)f(ξ), ξ ∈ A.

Show that the set M = {Mφ : ‖φ‖∞ 6 1} is R-bounded and give an
estimate for R(M).

2. On lp with 1 6 p 6 ∞, consider the left shift S : (an)n>1 7→ (an+1)n>1.
For which values of p is the family {Sk : k > 1} R-bounded in L (lp)?

3. In this exercise we prove that analyticity implies γ-boundedness on com-
pact sets. Let D ⊆ C be open and let E be a Banach space. A function
f : D → E is said to be analytic if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

exists in E for all z0 ∈ D.
a) Show that analytic functions are continuous.
b) Use the Hahn-Banach theorem to show that Cauchy’s formulas

f(z0) =
1

2πi

∫
Γ

f(z)
z − z0

dz, f ′(z0) =
1

2πi

∫
Γ

f(z)
(z − z0)2

dz

hold for an analytic function f , where Γ is a simple contour in D
around z0 (by (a), the integrals make sense as Bochner integrals).
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c) Let f : D → L (E1, E2) be a function such that z 7→ f(z)x is analytic
for all x ∈ E1. Show that for every compact set K ⊆ D the family

TK := {f(z) : z ∈ K}

is R-bounded.
Hint: Use Theorem 9.9 and (c) to see that f is γ-bounded on every
circle contained in D. Then use the first formula in (b) together with
Theorem 9.7.

4. (!) Let Φ : (0, T ) → L (H,E1) be stochastically integrable with respect to
an H-cylindrical Brownian motion WH and suppose that M : (0, T ) →
L (E1, E2) is strongly measurable and has γ-bounded range M . Prove
that MΦ : (0, T ) → L (H,E2) is stochastically integrable with respect to
WH and

E
∥∥∥∫ T

0

MΦdWH

∥∥∥p

6 (γp(M ))pE
∥∥∥∫ T

0

ΦdWH

∥∥∥p

,

where γp(M ) is the γ-bound of M relative to the Lp-norm (see the dis-
cussion following Definition 9.2).
Hint: Use the norm of γp(L2(0, T ;H), E1).

5. Let E1 and E2 be Banach spaces. Prove that the following assertions are
equivalent:
(1) E1 has cotype 2 and E2 has type 2;
(2) every uniformly bounded subset of L (E1, E2) is R-bounded;
(3) every uniformly bounded subset of L (E1, E2) is γ-bounded.
Hint: For the proofs that (2) and (3) imply (1), consider suitable uniformly
bounded families of rank one operators from E1 to E2. Recall that the
notions of (co)type and Gaussian (co)type are equivalent (see Exercise
3.5).
Remark: Via Kwapień’s theorem (see the Notes of Lecture 5), from this
exercise we infer that for a Banach space E the following assertions are
equivalent:
(1) E is isomorphic to a Hilbert space;
(2) every uniformly bounded subset of L (E) is R-bounded;
(3) every uniformly bounded subset of L (E) is γ-bounded.

Notes. The notion of R-boundedness has its origin in the work of Bourgain
on vector-valued multiplier theorems and has since then been studied by many
authors. The results presented here are taken from the fundamental papers by
Clément, de Pagter, Sukochev, Witvliet [24] and Weis [108]. We refer
to Denk, Hieber, Prüss [32] and Kunstmann and Weis [61] for more on
the history of this notion and bibliographical references. It is well established
by now that a large class of operators associated with analytic semigroups
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are R-bounded in Lp, a fact which explains the importance of R-boundedness
for the theory of parabolic PDEs. Profound R-boundedness results are also
available in harmonic analysis (e.g., in connection with Fourier multipliers)
and probability theory (in connection with conditional expectation operators).
The examples presented in this lecture only give a glimpse of the rich body
of results nowadays available.

The result of Exercise 3 is due to Weis [108]. The result of Exercise 5 is
due to Le Merdy and Pisier; see Arendt and Bu [4].
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Linear equations with additive noise II

In this lecture we pick up the thread of Lecture 8 and continue our investiga-
tion of the stochastic abstract Cauchy problem with additive noise,{

dU(t) = AU(t) dt+B dWH(t), t ∈ [0, T ],
U(0) = x.

The goal is to prove optimal Hölder regularity results for the solutions in the
parabolic case, that is, for operators A generating an analytic C0-semigroup.
Since the problem is solved by

U(t) = S(t)x+
∫ t

0

S(t− s)B dWH(s)

it suffices to concentrate on the case x = 0. Assuming that x = 0 and
B ∈ γ(H,E), we shall prove that U has a Hölder continuous version for
any exponent α < 1

2 . The main technical tool is the γ-boundedness of the
family {tβ(−A)αS(t) : t ∈ (0, T )} for 0 < α < β < 1

2 (Lemma 10.17). Thus
by the γ-multiplier theorem (Theorem 9.13) this family acts as a multiplier
in γ(L2(0, T ;H), E). This provides a powerful tool for estimating the above
stochastic integral.

10.1 Analytic semigroups

We begin with a discussion of analytic semigroups. In this section, all Banach
spaces are complex. In later sections we shall return to the setting of real
Banach spaces and apply the results to their complexifications.

We begin with a definition (cf. Exercise 9.3).

Definition 10.1. Let D ⊆ C be open. A function f : D → E is analytic if

lim
z→z0

f(z)− f(z0)
z − z0
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exists in E for all z0 ∈ D.

Clearly, if f is analytic, then 〈f, x∗〉 is analytic for all x∗ ∈ E∗. In com-
bination with the Hahn-Banach theorem, this fact may be used to show that
many results on scalar-valued analytic functions extend to the vector-valued
setting.

For η ∈ (0, π] define the open sector

Ση = {z ∈ C \ {0} : | arg(z)| < η},

where the argument is taken in (−π, π].

Definition 10.2. A C0-semigroup S on E is called analytic on Ση if for all
x ∈ E the function t 7→ S(t)x extends analytically to Ση and satisfies

lim
z∈Ση, z→0

S(z)x = x.

We call S an analytic C0-semigroup if S is analytic on Ση for some η ∈ (0, π].

The supremum of all η ∈ (0, π] such that S analytic on Ση is called the
angle of analyticity of S.

If S is analytic on Ση, then for all z1, z2 ∈ Ση we have

S(z1)S(z2) = S(z1 + z2).

Indeed, for each x ∈ E the functions z1 7→ S(z1)S(t)x, S(t)S(z1)x, and S(z1+
t)x are analytic extensions of s 7→ S(s+t)x and are therefore equal. Repeating
this argument, the functions z2 7→ S(z1)S(z2)x, S(z2)S(z1)x, and S(z1 + z2)x
are analytic extensions of t 7→ S(z1 + t)x and are therefore equal.

As in the proof of Proposition 7.3, the uniform boundedness theorem im-
plies that if S is analytic on Ση, then S is uniformly bounded on Ση′ ∩ {z ∈
C : |z| 6 r} for all 0 < η′ < η and r > 0. Thus it makes sense to call S
a uniformly bounded analytic C0-semigroup if S is uniformly bounded on Ση

for some η ∈ (0, π]. Clearly, if A generates an analytic C0-semigroup on Ση,
then for any 0 < η′ < η the operator A − µ generates a uniformly bounded
analytic C0-semigroup on Ση′ if µ (depending on η′) is large enough.

Theorem 10.3. For a closed and densely defined operator A the following
assertions are equivalent:

(1) there exists η ∈ (0, 1
2π] such that A generates a uniformly bounded analytic

C0-semigroup on Ση;
(2) there exists θ ∈ ( 1

2π, π] such that Σθ ⊆ %(A) and sup
λ∈Σθ

‖λR(λ,A)‖ <∞;

(3) S(t)x ∈ D(A) for all x ∈ E and t > 0, and sup
t>0

t‖AS(t)‖ <∞.
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In this situation, the suprema η̃ and θ̃ for which (1) and (2) hold are related
by 1

2π + η̃ = θ̃. Furthermore we have the representation

S(t)x =
1

2πi

∫
Γ

eztR(z,A)x dz, t > 0, x ∈ E,

where Γ is the upwards oriented boundary of Σθ′ \ B for some θ′ ∈ ( 1
2π, θ)

and B is a closed ball centred at the origin.

Proof. (1)⇒(2): By Proposition 7.8, if G is the generator of a uniformly
bounded C0-semigroup, then {Reλ > 0} ⊆ %(G) and λR(λ,G) is uniformly
bounded on every proper sub-sector Σρ, 0 < ρ < 1

2π.
Let S be the C0-semigroup generated by A and let it be uniformly bounded

on the sector Ση. The implication (1)⇒(2) follows by applying the above
observation to the uniformly bounded C0-semigroups (S(eiη′t))t>0 with 0 <
η′ < η, whose generators are eiη′A. This gives the uniform boundedness of
λR(λ,A) on the union of all sectors eiη′Σρ for 0 < η′ < η and 0 < ρ < 1

2π,
which equals Σ 1

2 π+η′ . This argument also proves the inequality θ̃ > 1
2π + η̃.

(2)⇒(3): First we prove that the conditions of (2) imply the integral
representation for S(t)x.

The integral converges absolutely for all t > 0 and x ∈ E, and as a
function of t it extends to a bounded analytic function on the sector Ση′ for
any η′ < θ′ − 1

2π. This proves the inequality θ̃ 6 1
2π + η̃.

Fix t > 0 and x ∈ E. For µ > 0 such that µ 6∈ B define

vµ(t)x =
1

2πi

∫
Γ

ezt(µ− z)−1R(z,A)x dz.

Our aim is to show that vµ(t)x = S(t)R(µ,A)x. Then,

S(t)x = lim
µ→∞

S(t)µR(µ,A)x = lim
µ→∞

µvµ(t)x =
1

2πi

∫
Γ

eztR(z,A)x dz,

where the first equality follows from Lemma 7.9 and the last is obtained by
splitting Γ = Γr,1 ∪ Γr,2 with Γr,1 = {z ∈ Γ : ‖z‖ 6 r} and Γr,2 = {z ∈ Γ :
‖z‖ > r}: for large fixed r, the integral over Γr,2 is less than ε, uniformly with
respect to µ > 2r, while the integral over Γr,1 tends to 1

2πi

∫
Γr,1

eztR(z,A)x dz
by dominated convergence. Now pass to the limit r →∞.

The strategy is to prove that t 7→ vµ(t)x is a weak solution of the Cauchy
problem {

u′(t) = Au(t), t ∈ [0, T ],
u(0) = R(µ,A)x.

Then t 7→ vµ(t)x is a strong solution by Proposition 7.16 and by the uniqueness
part of Theorem 7.17 it follows that vµ(t)x = S(t)R(µ,A)x.
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It is easily checked that t 7→ vµ(t) is integrable on [0, T ] (even continuous),
and for all x∗ ∈ D(A∗) we obtain∫ t

0

〈vµ(s), A∗x∗〉 ds =
∫ t

0

1
2πi

∫
Γ

ezs(µ− z)−1〈R(z,A)x,A∗x∗〉 dz ds

=
∫ t

0

1
2πi

∫
Γ

ezs(µ− z)−1〈zR(z,A)x− x, x∗〉 dz ds

(∗)
=

∫ t

0

1
2πi

∫
Γ

ezs(µ− z)−1〈zR(z,A)x, x∗〉 dz ds

=
1

2πi

∫
Γ

(ezt − 1)(µ− z)−1〈R(z,A)x, x∗〉 dz

(∗∗)
=

1
2πi

∫
Γ

ezt(µ− z)−1〈R(z,A)x, x∗〉 dz − 〈R(µ,A)x, x∗〉.

Here the equality (∗) follows from the observation that by Cauchy’s theorem
we have

1
2πi

∫
Γ

(µ− z)−1ezs dz = 0,

since µ 6∈ B is on the right of Γ . The equality (∗∗) follows from

1
2πi

∫
Γ

(µ− z)−1〈R(z,A)x, x∗〉 dz = 〈R(µ,A)x, x∗〉

by the analyticity of the resolvent (Exercise 7.2) and Cauchy’s theorem.
Now we are ready for the proof that (2) implies (3). Fix t > 0 and x ∈ E.

Since
M := sup

z∈Γ
‖AR(z,A)‖ = sup

z∈Γ
‖zR(z,A)− I‖

is finite, the integral 1
2πi

∫
Γ
etzR(z,A)Axdz converges absolutely. From Hille’s

theorem we deduce that S(t)x ∈ D(A) and

AS(t)x =
1

2πi

∫
Γ

etzR(z,A)Axdz.

By estimating this integral and letting the radius of the ball B in the definition
of Γ tend to 0, it follows moreover that

‖AS(t)x‖ 6
M

π
‖x‖

∫ ∞

0

eρt cos θ′ dρ = t−1 M

π| cos θ′|
‖x‖.

(3)⇒(1): For all x ∈ D(An), t 7→ S(t)x is n times continuously
differentiable and S(n)(t)x = AnS(t)x = (AS(t/n))nx. Since D(An) is
dense, the boundedness of AS(t/n) and closedness of the nth derivative in
C([0, T ];E) together imply that the same conclusion holds for x ∈ E. More-
over, ‖S(n)(t)x‖ 6 Cnnn/tn‖x‖, where C is the supremum in (3). From
n! > nn/en we obtain that for each t > 0 the series
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S(z)x :=
∞∑

n=0

1
n!

(z − t)nS(n)(t)x

converges absolutely on the ball B(t, rt/eC) for all 0 < r < 1 and defines
an analytic function there. The union of these balls is the sector Ση with
sin η = 1/eC. We shall complete the proof by showing that S(z) is uniformly
bounded and satisfies limz→0 S(z)x = x in Ση′ for each 0 < η′ < η. To this
end we fix 0 < r < 1. For z ∈ B(t, rt/eC) we have

‖S(z)x‖ 6
∞∑

n=0

1
n!
rn(t/eC)nCnnn/tn‖x‖ 6

∞∑
n=0

rn‖x‖.

This proves uniform boundedness on the sectors Ση′ . To prove strong continu-
ity it then suffices to consider x ∈ D(A), for which it follows from estimating
the identity

S(z)x− x = eiθ

∫ r

0

S(seiθ)Axds

where z = reiθ. ut

Remark 10.4. We will use analyticity only through condition (3), which gives
a ‘real’ characterisation of analyticity. In the context of semigroups on real
Banach spaces this condition could be taken as the definition for analyticity,
which has the advantage of avoiding the digressions through complexified
spaces. In concrete examples, however, it is often easier to check analyticity
using Definition 10.2 or condition (2) of Theorem 10.3.

By a rescaling argument we obtain:

Corollary 10.5. If A generates an analytic C0-semigroup S on E, then

lim sup
t↓0

t‖AS(t)‖ <∞.

From the fact that S(t)x ∈ D(A) for all t > 0 and x ∈ E we deduce:

Corollary 10.6. If A generates an analytic C0-semigroup S on E, then for
all initial values x ∈ E the problem (ACP) has a unique classical solution,
which is given by u(t) = S(t)x.

10.2 Fractional powers

Throughout this section we assume that A is the generator of a C0-semigroup
S on E which is uniformly exponentially stable in the sense that there exist
constants M > 1 and µ > 0 such that ‖S(t)‖ 6 Me−µt for all t > 0.

The next definition is motivated by the trivial identity
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c−α =
1

Γ (α)

∫ ∞

0

tα−1e−ct dt, c > 0,

where Γ (α) =
∫∞
0
tα−1e−t dt is the Euler gamma function.

Definition 10.7. For 0 < α < 1 we define the fractional power (−A)−α of
−A by the formula

(−A)−αx :=
1

Γ (α)

∫ ∞

0

tα−1S(t)x dt, x ∈ E.

Note that (−A)−α is well-defined and bounded on E and commutes with
S(t) for all t > 0. Sometimes it is useful to extend the definition to the limiting
values α ∈ {0, 1} by putting (−A)0 = I and (−A)−1 = −A−1.

Lemma 10.8. For all 0 < α, β < 1 satisfying 0 < α+ β < 1 we have

(−A)−α(−A)−β = (−A)−β(−A)−α = (−A)−α−β .

Proof. It suffices to prove that (−A)−α(−A)−β = (−A)−α−β ; the other iden-
tity follows upon interchanging α and β.

For all x ∈ E we have

(−A)−α(−A)−βx =
1

Γ (α)Γ (β)

∫ ∞

0

∫ ∞

0

tα−1sβ−1S(s+ t)x ds dt

=
1

Γ (α)Γ (β)

∫ ∞

0

∫ ∞

t

tα−1(s− t)β−1S(s)x ds dt

=
1

Γ (α)Γ (β)

∫ ∞

0

( ∫ s

0

tα−1(s− t)β−1 dt
)
S(s)x ds

(∗)
=

1
Γ (α+ β)

∫ ∞

0

sα+β−1S(s)x ds = (−A)−α−βx,

where the identity (∗) follows from

1
Γ (α)Γ (β)

∫ s

0

tα−1(s−t)β−1dt =
sα+β−1

Γ (α)Γ (β)

∫ 1

0

τα−1(1−τ)β−1dτ =
sα+β−1

Γ (α+ β)
.

Indeed, computing as above,

Γ (α+ β)
∫ 1

0

τα−1(1− τ)β−1 dτ =
∫ ∞

0

∫ 1

0

sα+β−1τα−1(1− τ)β−1e−s dτ ds

=
∫ ∞

0

∫ s

0

tα−1(s− t)β−1e−s dt ds

=
∫ ∞

0

∫ ∞

t

tα−1(s− t)β−1e−s ds dt

=
∫ ∞

0

∫ ∞

0

tα−1sβ−1e−s−t ds dt

= Γ (α)Γ (β). ut
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Lemma 10.9. We have sup0<α<1 ‖(−A)−α‖ <∞.

Proof. We estimate ‖(−A)−αx‖ by

1
Γ (α)

∥∥∥∫ 1

0

tα−1S(t)x dt
∥∥∥ +

1
Γ (α)

∥∥∥∫ ∞

1

tα−1S(t)x dt
∥∥∥ =: (I) + (II).

Now,

(I) 6
M‖x‖
αΓ (α)

=
M‖x‖
Γ (α+ 1)

, (II) 6
M‖x‖
Γ (α)

∫ ∞

1

tα−1e−µt dt 6
M‖x‖
µα

,

and both right hand sides are uniformly bounded for 0 < α < 1. ut

Lemma 10.10. For all x ∈ E, α 7→ (−A)−αx is continuous on [0, 1].

Proof. First let x ∈ D(A) and put Ax = y. An integration by parts gives

(−A)−αx− x =
1

Γ (α)

∫ ∞

0

tα−1S(t)x dt− x

= − 1
αΓ (α)

∫ ∞

0

tαS(t)y dt− x

= −
∫ ∞

0

( tα

Γ (α+ 1)
− 1

)
S(t)y dt,

where we used that x = A−1y = −
∫∞
0
S(t)y dt. Hence, for any r > 1,

‖(−A)−αx− x‖ 6 M‖y‖
∫ r

0

∣∣∣ tα

Γ (α+ 1)
− 1

∣∣∣ dt+ CM‖y‖
∫ ∞

r

tαe−µt dt,

where C = sup
{∣∣ 1

Γ (α+1) −
1
tα

∣∣ : 0 < α < 1, t > 1
}
. Choosing r > 1 so large

that the second term is less than ε and then passing to the limit α ↓ 0 in the
first, we obtain the continuity of α 7→ (−A)−αx at α = 0 for x ∈ D(A). In
view of the previous lemma, continuity at α = 0 for all x ∈ E follows from
this.

The continuity of α 7→ (−A)−αx at α = 1 is proved in the same way, this
time noting that for all x ∈ D(A) we have

(−A)−αx− (−A)−1x =
∫ ∞

0

( tα−1

Γ (α)
− 1

)
S(t)x ds.

Finally the continuity for α ∈ (0, 1) follows from the continuity at α = 0 and
the ‘semigroup’ property of Lemma 10.8. ut

Lemma 10.11. For 0 < α < 1 the operator (−A)−α is injective.

Proof. Suppose (−A)−αx = 0. Then Lemma 10.8 implies (−A)−βx = 0 for
all α < β < 1, and Lemma 10.10 gives A−1x = 0. Hence x = 0. ut
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This lemma suggests the following definition.

Definition 10.12. For 0 < α < 1 define (−A)α := ((−A)−α)−1.

As an unbounded operator with the range of (−A)−α as its natural domain,
(−A)α is a closed and injective operator in E. With respect to the norm

‖x‖D((−A)α) := ‖(−A)αx‖, (10.1)

D((−A)α) is a Banach space and (−A)α : D((−A)α) → E is an isometric
isomorphism. For later reference we note that D(A) is dense in D((−A)α).
Indeed, for any x ∈ D((−A)α) we have limλ→∞ λR(λ,A)(−A)αx = (−A)αx,
and since R(λ,A) and (−A)α commute this means that limλ→∞ λR(λ,A)x =
x in the norm of D((−A)α).

Lemma 10.13. For 0 < α < 1 we have

(−A)α−1(−A)−α = (−A)−α(−A)α−1 = (−A)−1.

Proof. This follows from Lemmas 10.8 and 10.10:

(−A)−1x = lim
β↑1

(−A)−βx = lim
β↑1

(−A)−α(−A)α−βx = (−A)−α(−A)α−1x. ut

In the next two lemmas we assume that the C0-semigroup S, in addition
to being uniformly exponentially stable, is analytic.

Lemma 10.14. For all 0 < α < 1 and t > 0 the operator (−A)αS(t) is
bounded and we have

sup
t>0

tα‖(−A)αS(t)‖ <∞.

Proof. Since S is analytic, S(t) maps E into D(A) and supt>0 t‖AS(t)‖ <∞.
The boundedness of (−A)αS(t) follows from the boundedness of AS(t) by the
identity (−A)αS(t) = −(−A)α−1AS(t).

To prove the estimate, note that for all x ∈ E we have

(−A)αS(t)x =
−1

Γ (1− α)

∫ ∞

0

s−αAS(t+ s)x ds,

so, for t > 0,

‖(−A)αS(t)x‖ 6
C

Γ (1− α)

∫ ∞

0

s−α(t+ s)−1‖x‖ ds

=
Ct−α

Γ (1− α)

∫ ∞

0

τ−α(1 + τ)−1‖x‖ dτ. ut

Lemma 10.15. For all 0 < α < 1 we have

sup
t>0

t−α‖S(t)(−A)−α − (−A)−α‖ <∞.
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Proof. From the identity (−A)−α(−A)x = (−A)1−αx for x ∈ D(A) and
Lemma 10.14 we obtain, for t > 0,

‖S(t)(−A)−αx− (−A)−αx‖ 6
∫ t

0

‖(−A)−αAS(s)x‖ ds 6
Ctα

α
‖x‖,

where C = supt>0 t
1−α‖(−A)1−αS(t)‖. ut

In the next section we shall consider generatorsA of analytic C0-semigroups
which are not necessarily uniformly exponentially stable. In this situation,
fractional powers still can be defined for the shifted operators A − λ with λ
large enough. The next lemma states that the resulting domains D((λ−A)α)
are independent of λ.

To make things more precise, let A be the generator of an arbitrary C0-
semigroup on E and suppose M > 1 and µ ∈ R are such that ‖S(t)‖ 6 Meµt

for all t > 0.

Lemma 10.16. For all 0 < α < 1 and λ1, λ2 > µ we have

D((λ1 −A)α) = D((λ2 −A)α)

with equivalent norms.

Proof. The linear operator (λ2 − A)−α(λ1 − A)α is a bounded and injective
mapping from D((λ1−A)α) onto D((λ2−A)α) with inverse (λ1−A)−α(λ2−
A)α. Thus D((λ1−A)α) and D((λ2−A)α) are isomorphic as Banach spaces. It
remains to prove that D((λ1−A)α) = D((λ2−A)α) as linear subspaces of E.
But this follows from the fact that these spaces are the completions of D(A)
with respect to the equivalent norms ‖ · ‖D((λ1−A)α) and ‖ · ‖D((λ2−A)α). ut

This proposition justifies the notation Eα := D((λ − A)α)); this defines
Eα as a Banach space up to an equivalent norm.

10.3 Hölder regularity

We now turn to the stochastic abstract Cauchy problem{
dU(t) = AU(t) dt+B dWH(t), t ∈ [0, T ],
U(0) = 0.

(SACP0)

We shall assume throughout this section that A generates an analytic C0-
semigroup S on E satisfying ‖S(t)‖ 6 Meµt for certain M > 1, µ ∈ R, and
all t > 0.

The key lemma for proving Hölder regularity of the solutions of (SACP0)
reads as follows.
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Lemma 10.17. For all real numbers α, β, η > 0 satisfying 0 6 α+ η < β < 1
and λ > µ, the set

{tβ(λ−A)ηS(t) : t ∈ (0, T )}

is R-bounded (and hence γ-bounded) in L (E,Eα), with γ-bound O(T β−α−η).

Proof. For all x ∈ E the L (E,Eα)-valued function Ψ(t)x := tβ(λ−A)ηS(t)x
is continuously differentiable on (0, T ) with derivative

Ψ ′(t)x = βtβ−1(λ−A)ηS(t)x+ tβ(λ−A)ηAS(t)x,

where the second expression on the right hand side is well-defined since we
may write AS(t) = S(t/2)AS(t/2). By Lemma 10.14,

‖Ψ ′(t)‖L (E,Eα) 6 Ctβ−α−η−1, t ∈ (0, T ),

where C is a constant depending on T . Here we estimated the second term as

‖(λ−A)ηAS(t)‖L (E,Eα) = ‖(λ−A)ηS(t/2)AS(t/2)‖L (E,Eα)

6 Ct−α−η‖AS(t/2)‖ 6 C ′t−α−η−1.

Since tβ−α−η−1 is integrable, the lemma follows from Theorem 9.9. ut

After these preparations we are ready to state and prove the main results
of this lecture. The first is an existence result.

Theorem 10.18. If B ∈ γ(H,E), then the L (H,E)-valued function t 7→
S(t)B is stochastically integrable on (0, T ) with respect to WH . As a con-
sequence, the stochastic Cauchy problem (SACP0) associated with A and B
admits a unique strong solution.

Proof. By Theorems 8.6 and 8.10 it suffices to check that the function Φ(t) =
S(t)B is stochastically integrable with respect to WH , or equivalently, that
the operator

RΦf :=
∫ T

0

Φ(t)f(t) dt, f ∈ L2(0, T ;H),

is γ-radonifying from L2(0, T ;H) to E.
Pick a number β ∈ (0, 1

2 ) and write

Φ(t) = tβS(t)[t−βB] := tβS(t)Ψ(t),

where Ψ(t) := t−βB. By Lemma 10.17 and the γ-multiplier theorem (Theorem
9.13), the operator RΦ belongs to γ(L2(0, T ;H), E) once we know that RΨ ∈
γ(L2(0, T ;H), E). But this is immediate from the result of Exercise 5.3, since
t 7→ t−β belongs to L2(0, T ) and B belongs to γ(H,E). ut
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Under the assumptions of the theorem we define the E-valued process
(U(t))t∈[0,T ] by

U(t) :=
∫ t

0

S(t− s)B dWH(s).

In order to formulate the second main result, for a Banach space F and
0 6 β < 1 we define Cβ([0, T ];F ) as the space of all continuous functions
u : [0, T ] → F for which

sup
06s<t6T

‖u(t)− u(s)‖
(t− s)β

<∞.

The elements of Cβ([0, T ];F ) are said to be Hölder continuous of exponent β.

Theorem 10.19 (Hölder regularity). Under the assumptions of the previ-
ous theorem, for all α > 0 and β > 0 satisfying α+β < 1

2 and 1 6 p <∞ the
solution U belongs to Lp(Ω;Eα) and there exists a constant C > 0 such that
for all 0 6 s, t 6 T , (

E‖U(t)− U(s)‖p
Eα

) 1
p 6 C|t− s|β .

As a consequence, for all α > 0 and β > 0 satisfying α + β < 1
2 the process

(U(t))t∈[0,T ] has a version with trajectories in Cβ([0, T ];Eα).

Proof. By the Kahane-Khintchine inequality it suffices to prove the Lp-
estimate for p = 2.

Fix α > 0 and β > 0 such that α + β < 1
2 . Let us first prove that for

all t ∈ [0, T ] the random U(t) takes its values in Eα almost surely. We do
so by showing that S(·)B is stochastically integrable as an L (H,Eα)-valued
function. Fix α < θ < 1

2 . Then {tθS(t) : t ∈ (0, T )} is γ-bounded in L (E,Eα)
by Lemma 10.17. As we have seen, the function t 7→ t−θB defines an operator
in γ(L2(0, T ;H), E) of norm ‖t−θ‖L2(0,T )‖B‖γ(H,E). Now Theorem 9.13 and
the identity S(t)B = tθS(t)t−θB imply that

‖RS(·)B‖γ(L2(0,T ;H),Eα) 6 C‖B‖γ(H,E).

Fix 0 6 s 6 t 6 T . By the triangle inequality in L2(Ω;Eα),

(
E‖U(t)− U(s)‖2Eα

) 1
2 6

(
E

∥∥∥∫ s

0

[S(t− r)− S(s− r)]B dW (r)
∥∥∥2

Eα

) 1
2

+
(
E

∥∥∥∫ t

s

S(t− r)B dW (r)
∥∥∥2

Eα

) 1
2
.

Choose λ ∈ R sufficiently large in order that the fractional powers of λ − A
exist. For the first term we have, for any choice of ε > 0 such that α+β+ε < 1

2 ,
and using Lemmas 10.8 and 10.15,
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E
∥∥∥∫ s

0

[S(t− r)− S(s− r)]B dW (r)
∥∥∥2

Eα

' E
∥∥∥∫ s

0

(s− r)α+β+ε(λ−A)α+βS(s− r)

× (s− r)−α−β−ε[S(t− s)− I](λ−A)−βB dW (r)
∥∥∥2

6 C2E
∥∥∥∫ s

0

(s− r)−α−β−ε[S(t− s)− I](λ−A)−βB dW (r)
∥∥∥2

= C2‖[S(t− s)− I](λ−A)−βB‖2γ(H,E)

∫ s

0

(s− r)−2(α+β+ε) dr

6 C2‖[S(t− s)− I](λ−A)−β‖2‖B‖2γ(H,E)s
1−2(α+β+ε)

6 C2
T (t− s)2β‖B‖2γ(H,E).

Similarly,

E
∥∥∥∫ t

s

S(t− r)B dW (r)
∥∥∥2

Eα

h E
∥∥∥∫ t

s

(t− r)
1
2−β(λ−A)αS(t− r)(t− r)−

1
2+βB dW (r)

∥∥∥2

6 C2E
∥∥∥∫ t

s

(t− r)−
1
2+βB dW (r)

∥∥∥2

= C2‖B‖2γ(H,E)

∫ t

s

(t− r)−1+2β dr

6 C2
T ‖B‖2γ(H,E)(t− s)2β .

The first part of the theorem follows by combining these estimates.
For the second part, pick β < β′ < 1

2 − α. Given p > 1, by the above we
find a constant C such that for 0 6 s, t 6 T ,

E‖U(t)− U(s)‖p
Eα

6 Cp|t− s|β
′p.

For p large enough the existence of a version with β-Hölder continuous tra-
jectories now follows from Kolmogorov’s theorem (Theorem 6.9). ut
Example 10.20. For the stochastic heat equation in L2(0, 1) with Dirichlet
boundary conditions, Theorem 10.19 implies the existence of a solution U
with trajectories in ∈ Cη([0, T ];Cθ[0, 1]) for all η, θ > 0 satisfying 2η+ θ < 1

2 .
This will be shown as a special case of a more general space-time regularity
result in the last lecture.

10.4 Exercises

1. a) Show that the heat semigroup S on Lp(Rd) with 1 6 p <∞ (Example
7.20) is analytic on the sector Σ 1

2 π, and uniformly bounded on every
proper subsector of Σ 1

2 π.
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Hint: Put S(z)f = Kz ∗ f , where Kz is the analytic extension of the
heat kernel. Use Young’s inequality together with the estimate

‖Kz‖1 =
( |z|

Re(z)

) 1
2 d

.

b) Show that in L2(Rd), S is contractive on Σ 1
2 π.

Remark: Using interpolation theory, the above results imply the estimate

‖S(t)‖p 6
( |z|

Re(z)

)| 12− 1
p |d
, Re(z) > 0.

2. This exercise gives a two-dimensional example of a bounded analytic C0-
semigroup which is uniformly exponentially stable, contractive on R+, and
fails to be contractive on any open sector containing R+.
On R2 consider the norm ‖ · ‖Q induced by the inner product [x, y]Q :=
[Qx, y], where [·, ·] represents the standard inner product of R2 and

Q =
[
1 2
1 1

]
.

a) Show that the symmetric matrix Q is positive and conclude that [·, ·]Q
does indeed define an inner product on R2.

On (R2, ‖ · ‖Q) we consider the C0-semigroup S,

S(t) = e−t/2

[
1 t
0 1

]
.

b) Show that ‖S(t)‖2Q = 1
2e

−t(t2 + 2 + t
√
t2 + 4) and conclude that S is

contractive on R+.
Hint: Use the fact that ‖S(t)‖2Q equals the largest eigenvalue of S(t)S∗(t)
(the adjoint refers to the inner product [·, ·]Q).
On the complexification C2 of R2 we consider the inner product

〈x, y〉Q := 〈Qx, y〉,

where this time 〈·, ·〉 represents the standard inner product of C2. Prove
that the complexified semigroup S has the following properties:
c) S extends to an entire C0-semigroup which is uniformly bounded on

the sector Ση for all 0 < η < 1
2π.

d) S fails to be contractive on any open sector Ση.

3. This exercise gives necessary and sufficient conditions for a closed densely
defined operator A in E to generate an analytic C0-semigroup which is
contractive on a sector Ση. For x ∈ E we define

∂(x) = {x∗ ∈ E∗ : ‖x‖ = ‖x∗‖, 〈x, x∗〉 = ‖x‖‖x∗‖}.
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By the Hahn-Banach theorem, for all x ∈ E we have ∂(x) 6= ∅. Let A be a
closed densely defined operator in E and assume that %(A)∩ (0,∞) 6= ∅.
Prove that the following assertions are equivalent:
(1) A generates an analytic C0-semigroup on E which is contractive on

an open sector Ση;
(2) There exists a constant C > 0 such that for all non-zero x ∈ D(A)

and all x∗ ∈ ∂(x) we have

|Im〈Ax, x∗〉| 6 −C Re〈Ax, x∗〉;

(3) There exists a constant C > 0 such that for all non-zero x ∈ D(A)
there exists x∗ ∈ ∂(x) such that

|Im〈Ax, x∗〉| 6 −C Re〈Ax, x∗〉.

Hint: For (1)⇒(2) differentiate the function Re〈S(teiη′)x, x∗〉 for |η′| < η
and x∗ ∈ ∂(x). For (3)⇒(1) observe that if cot η = C, then for x and x∗ as
indicated and λ = reiη′ with |η′| < η we have ‖(λ−A)x‖ > r‖x‖ = |λ| ‖x‖.

4. Suppose that A is a closed linear operator with (0,∞) ⊆ %(A) and
supλ>0(λ+ 1)‖R(λ,A)‖ <∞.
a) Show that Ση ∪ B ⊆ %(A) and supλ∈Ση∪B ‖λR(λ,A)‖ < ∞ for some

η > 0 and some ball B centred at the origin.
Define

(−A)−α :=
1

2πi

∫
Γ

(−z)−αR(z,A) dz,

where Γ is the upwards oriented boundary of Ση ∪B, where B is a closed
ball centred at the origin.
b) Show, by using Cauchy’s formula, that

(−A)−α =
sinαπ
π

∫ ∞

0

λ−αR(λ,A) dλ.

c) Now assume that A generates a uniformly exponentially stable C0-
semigroup S and prove that the definition in b) agrees with Definition
10.7.

5. In this exercise we sketch an alternative approach to Theorem 10.19, whose
notations and assumptions we use.
Let U(t) =

∫ t

0
S(t− s)B dWH(t). Being the weak solution of the problem

dU(t) = AU(t) dt+B dWH with initial value U(0) = 0, the process U has
a version with integrable trajectories. Using this version we define

V (t) :=
∫ t

0

U(s) ds.

Let WB be the Brownian motion canonically associated with B and WH

(see Proposition 8.8). Fixing 0 6 α < 1
2 , we note that WB has a version

with trajectories in Cα([0, T ];E) by Kolmogorov’s theorem.



10.4 Exercises 149

a) Show that almost surely, the following identity holds for all t ∈ [0, T ]:

V (t) =
∫ t

0

S(t− s)WB(s) ds.

b) Show that almost surely, U has trajectories in Cα([0, T ];E).
Hint: Show that almost surely, the trajectories of V belong to
C1([0, T ];E) and have derivatives in Cα([0, T ];E).

c) Refine this argument to obtain the result of Theorem 10.19.

Notes. The results of Sections 10.1 and 10.2 are standard.
Theorem 10.3 can be found in most textbooks on semigroups (see the

Notes of Lecture 7). We have tried to shorten the proof as much as pos-
sible. Of course, much more is to be said about the representation of the
operators S(t) in terms of the resolvent R(λ,A). Indeed, this formula is a
special case of the complex inversion formula for the Laplace transform, and
suitable generalisations can be given to arbitrary C0-semigroups. We refer to
Arendt, Batty, Hieber, Neubrander [3] for a thorough discussion of this
topic. A systematic treatment of analytic semigroups and their applications
to parabolic evolution equations is given in the monograph of Lunardi [72].
Exercise 2 is taken from [42].

Fractional powers of unbounded operators are discussed in Arendt,
Batty, Hieber, Neubrander [3], Haase [45], Lunardi [72], and Pazy
[89]. We followed the presentation of [89]. Our approach is rather ad hoc and
was designed to keep the technicalities at a minimum. A more systematic
approach starts from the Dunford integral along the lines of Exercise 4.

The results of Section 10.3 are taken from [34]. The proof of Theorem 10.19
presented here contains a simplification due to Veraar. Our results generalise
the Hilbert space case which is due to Da Prato, Kwapień, Zabczyk [26].
The approach of [26] is based on a factorisation trick which is based on the
identity

1
Γ (α)Γ (1− α)

∫ t

r

(t− s)α−1(s− r)−α ds = 1,

valid for 0 < α < 1 and t > r > 0. This identity allows one to write the
solution process as a repeated integral. Hölder regularity is then obtained
by applying the stochastic Fubini theorem and exploiting the regularising
properties of fractional integrals. This method was extended to Banach spaces
by Millet and Smoleński [77]. The idea of Exercise 5 is taken from Da
Prato, Kwapień, Zabczyk [26].
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Conditional expectations and martingales

Having finished our discussion of the stochastic Cauchy problem with additive
noise, we now turn to the more difficult case of equations with multiplicative
noise, where the fixed operator B ∈ L (H,E) is replaced by an operator-
valued function B : E → L (H,E):{

dU(t) = AU(t) dt+B(U(t)) dt, t ∈ [0, T ],
U(0) = u0.

The solutions are then no longer given in closed form by the explicit formula
(8.1). Instead, they arise as fixed points of the stochastic integral equation

U(t) = S(t)x+
∫ t

0

S(t− s)B(U(s)) dWH(s).

The new difficulty here is that integrand is an L (H,E)-valued process de-
pending on U . This requires an extension of the stochastic integration theory
of Lecture 6 to this more general situation. As it turns out, in the setting of
UMD Banach spaces this can be achieved by a decoupling technique which
reduces the construction of the stochastic integral to the one already covered.

In this lecture we introduce the notion of E-valued martingales. They
will be used to define UMD Banach spaces as the class of Banach spaces
E such that certain a priori estimates hold for E-valued martingales. This
may sound rather technical, but the important fact is that Hilbert spaces,
Lp-spaces (1 < p <∞), and spaces constructed from these, are UMD spaces.
From the point of view of applications, the UMD spaces therefore constitute
an important class of spaces.

11.1 Conditional expectations

Throughout this section we fix a probability space (Ω,F ,P) and a sub-σ-
algebra G of F . For 1 6 p 6 ∞ we denote by Lp(Ω,G ) the subspace of
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all ξ ∈ Lp(Ω) having a G -measurable representative. With this notation,
Lp(Ω) = Lp(Ω,F ).

Lemma 11.1. Lp(Ω,G ) is a closed subspace of Lp(Ω).

Proof. Suppose that (ξn)∞n=1 is a sequence in Lp(Ω,G ) such that limn→∞ ξn =
ξ in Lp(Ω). We may assume that the ξn are pointwise defined and G -
measurable. After passing to a subsequence (when 1 6 p < ∞) we may
furthermore assume that limn→∞ ξn = ξ almost surely. The set C of all
ω ∈ Ω where the sequence (ξn(ω))∞n=1 converges is G -measurable. Put
ξ̃ := limn→∞ 1Cξn, where the limit exists pointwise. The random variable
ξ̃ is G -measurable and agrees almost surely with ξ. This shows that ξ defines
an element of Lp(Ω,G ). ut

Our aim is to show that Lp(Ω,G ) is the range of a contractive projection
in Lp(Ω). For p = 2 this is clear: we have the orthogonal decomposition

L2(Ω) = L2(Ω,G )⊕ L2(Ω,G )⊥

and the projection we have in mind is the orthogonal projection, denoted
by PG , onto L2(Ω,G ) along this decomposition. Following common usage we
write

E(ξ|G ) := PG ξ, ξ ∈ L2(Ω),

and call E(ξ|G ) the conditional expectation of ξ with respect to G . Let us
emphasise that E(ξ|G ) is defined as an element of L2(Ω,G ), that is, as an
equivalence class of random variables.

Lemma 11.2. For all ξ ∈ L2(Ω) and G ∈ G we have∫
G

E(ξ|G ) dP =
∫

G

ξ dP.

As a consequence, if ξ > 0 almost surely, then E(ξ|G ) > 0 almost surely.

Proof. By definition we have ξ − E(ξ|G ) ⊥ L2(Ω,G ). If G ∈ G , then 1G ∈
L2(Ω,G ) and therefore ∫

Ω

1G(ξ − E(ξ|G )) dP = 0.

This gives the desired identity. For the second assertion, choose a G -measurable
representative of g := E(ξ|G ) and apply the identity to the G -measurable set
{g < 0}. ut

Taking G = Ω we obtain the identity E(E(ξ|G )) = Eξ. This will be used
in the lemma, which asserts that the mapping ξ 7→ E(ξ|G ) is L1-bounded.

Lemma 11.3. For all ξ ∈ L2(Ω) we have E|E(ξ|G )| 6 E|ξ|.
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Proof. It suffices to check that |E(ξ|G )| 6 E(|ξ| |G ), since then the lemma
follows from E|E(ξ|G )| 6 EE(|ξ| |G ) = E|ξ|. Splitting ξ into positive and
negative parts, almost surely we have

|E(ξ|G )| = |E(ξ+|G )− E(ξ−|G )|
6 |E(ξ+|G )|+ |E(ξ−|G )| = E(ξ+|G ) + E(ξ−|G ) = E(|ξ| |G ). ut

Since L2(Ω) is dense in L1(Ω) this lemma shows that the conditional
expectation operator has a unique extension to a contractive projection on
L1(Ω), which we also denote by E(·|G ). This projection is again positive in
the sense that it maps positive random variables to positive random variables;
this follows from Lemma 11.2 by approximation.

Lemma 11.4 (Conditional Jensen inequality). If φ : R → R is convex,
then for all ξ ∈ L1(Ω) such that φ ◦ ξ ∈ L1(Ω) we have, almost surely,

φ ◦ E(ξ|G ) 6 E(φ ◦ ξ|G ).

Proof. If a, b ∈ R are such that at+ b 6 φ(t) for all t ∈ R, then the positivity
of the conditional expectation operator gives

aE(ξ|G ) + b = E(aξ + b|G ) 6 E(φ ◦ ξ|G )

almost surely. Since φ is convex we can find real sequences (an)∞n=1 and (bn)∞n=1

such that φ(t) = supn>1(ant+ bn) for all t ∈ R; we leave the proof of this fact
as an exercise. Hence almost surely,

φ ◦ E(ξ|G ) = sup
n>1

anE(ξ|G ) + bn 6 E(φ ◦ ξ|G ). ut

Theorem 11.5 (Lp-contractivity). For all 1 6 p 6 ∞ the conditional ex-
pectation operator extends to a contractive positive projection on Lp(Ω) with
range Lp(Ω,G ). For ξ ∈ Lp(Ω), the random variable E(ξ|G ) is the unique
element of Lp(Ω,G ) with the property that for all G ∈ G ,∫

G

E(ξ|G ) dP =
∫

G

ξ dP. (11.1)

Proof. For 1 6 p <∞ the Lp-contractivity follows from Lemma 11.4 applied
to the convex function φ(t) = |t|p. For p = ∞ we argue as follows. If ξ ∈
L∞(Ω), then 0 6 |ξ| 6 ‖ξ‖∞1Ω and therefore 0 6 E(|ξ| |G ) 6 ‖ξ‖∞1Ω almost
surely. Hence, E(|ξ| |G ) ∈ L∞(Ω) and ‖E(|ξ| |G )‖∞ 6 ‖ξ‖∞.

For 2 6 p 6 ∞, (11.1) follows from Lemma 11.2. For ξ ∈ Lp(Ω) with
1 6 p < 2 we choose a sequence (ξn)∞n=1 in L2(Ω) such that limn→∞ ξn = ξ
in Lp(Ω). Then limn→∞ E(ξn|G ) = E(ξ|G ) in Lp(Ω) and therefore, for any
G ∈ G ,
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G

E(ξ|G ) dP = lim
n→∞

∫
G

E(ξn|G ) dP = lim
n→∞

∫
G

ξn dP =
∫

G

ξ dP.

If η ∈ Lp(Ω,G ) satisfies
∫

G
η dP =

∫
G
ξ dP for all G ∈ G , then

∫
G
η dP =∫

G
E(ξ|G ) dP for all G ∈ G . Since both η and E(ξ|G ) are G -measurable, as

in the proof of the second part of Lemma 11.2 this implies that η = E(ξ|G )
almost surely.

In particular, E(E(ξ|G )|G ) = E(ξ|G ) for all ξ ∈ Lp(Ω) and E(ξ|G ) = ξ for
all ξ ∈ Lp(Ω,G ). This shows that E(·|G ) is a projection onto Lp(Ω,G ). ut

The next two results develop some properties of conditional expectations.

Proposition 11.6.

(1) If ξ ∈ L1(Ω) and H is a sub-σ-algebra of G , then almost surely

E(E(ξ|G )|H ) = E(ξ|H ).

(2) If ξ ∈ L1(Ω) is independent of G (that is, ξ is independent of 1G for all
G ∈ G ), then almost surely

E(ξ|G ) = Eξ.

(3) If ξ ∈ Lp(Ω) and η ∈ Lq(Ω,G ) with 1 6 p, q 6 ∞, 1
p + 1

q = 1, then almost
surely

E(ηξ|G ) = ηE(ξ|G ).

Proof. (1): For all H ∈ H we have
∫

H
E(E(ξ|G )|H ) dP =

∫
H

E(ξ|G ) dP =∫
H
ξ dP by Theorem 11.5, first applied to H and then to G (observe that

H ∈ G ). Now the result follows from the uniqueness part of the theorem.
(2): For all G ∈ G we have

∫
G

Eξ dP = E1GEξ = E1Gξ =
∫

G
ξ dP, and the

result follows from the uniqueness part of Theorem 11.5.
(3): For all G,G′ ∈ G we have

∫
G

1G′E(ξ|G ) dP =
∫

G∩G′
E(ξ|G ) dP =∫

G∩G′
ξ dP =

∫
G
ξ1G′ dP. Hence E(ξ1G′ |G ) = 1G′E(ξ|G ) by the uniqueness

part of Theorem 11.5. By linearity, this gives the result for simple functions
η, and the general case follows by approximation. ut

If C is a collection of subsets of Ω, then σ(C ) denotes the σ-algebra
generated by C , that is, the smallest σ-algebra in Ω which contains all
sets of C . In this context we shall use self-explanatory notations such as
E(ξ|C ) := E(ξ|σ(C )) and E(ξ|C1,C2) := E(ξ|σ(C1 ∪ C2)).

If η : Ω → E is a random variable, then σ(η) denotes the σ-algebra
{η−1(B) : B ∈ B(E)}. This is the smallest σ-algebra in Ω with respect to
which η is Borel measurable. Again, notations such as E(ξ|η) := E(ξ|σ(η))
and E(ξ|η1, η2) := E(ξ|σ(η1, η2)) are self-explanatory.

Proposition 11.7. Let G and H be sub-σ-algebras of F , let ξ ∈ L1(Ω), and
suppose that H is independent of σ(ξ,G ). Then, almost surely,

E(ξ|G ,H ) = E(ξ|G ).
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Proof. First we claim that σ(G ,H ) is generated by the collection C of all
sets of the form G∩H with G ∈ G and H ∈ H . Indeed, from G = G∩Ω ∈ C
and H = Ω ∩H ∈ C we see that C contains both G and H .

Next, from (G1∩H1)∩(G2∩H2) = (G1∩G2)∩(H1∩H2) it follows that C
is closed under taking finite intersections. This being said, the strategy is to
apply Dynkin’s lemma. By considering positive and negative parts separately
we may assume that ξ > 0 almost surely. Also we may assume that Eξ > 0,
since otherwise there is nothing to prove.

For G ∩H ∈ C we have∫
G∩H

E(ξ|G ,H ) dP =
∫

G∩H

ξ dP = E(1G1Hξ)

(i)
= E1HE(1Gξ) = E1HE(1GE(ξ|G ))
(ii)
= E(1G1HE(ξ|G )) =

∫
G∩H

E(ξ|G ) dP.

In (i) and(ii) we used the independence of H and σ(ξ,G ). By Dynkin’s lemma,
applied to the probability measures µ(C) := 1

Eξ

∫
C

E(ξ|G ,H ) dP and ν(C) :=
1

Eξ

∫
C

E(ξ|G ) dP it follows that µ = ν on σ(C ) = σ(G ,H ). This means that∫
C

E(ξ|G ,H ) dP =
∫

C

E(ξ|G ) dP ∀C ∈ σ(G ,H )

and the result follows. ut

11.2 Vector-valued conditional expectations

Our next aim is to extend the conditional expectation operators from Lp(Ω)
to Lp(Ω;E), where E is an arbitrary Banach space.

Let us fix 1 6 p < ∞ for the moment and let (A,A , µ) be an arbitrary
σ-finite measure space. For a Banach space E we denote by Lp(A) ⊗ E the
linear span of all functions of the form f ⊗ x with f ∈ Lp(A) and x ∈ E.

Lemma 11.8. Lp(A)⊗ E is dense in Lp(A;E).

Proof. It has been observed in Lecture 1 that the µ-simple functions are dense
in Lp(A;E). Clearly these belong to Lp(A)⊗ E. ut

Suppose next that a bounded linear operator T on Lp(A) is given. We may
define a linear operator T ⊗ I on Lp(A)⊗ E by the formula

(T ⊗ I)(f ⊗ x) := Tf ⊗ x.

We leave it to the reader to check that the resulting linear operator on Lp(A)⊗
E is well-defined. In view of Lemma 11.8 one may now ask whether T ⊗ I
extends to a bounded operator on Lp(A;E). Unfortunately, without additional
assumptions this is generally not the case. For positive operators T on Lp(A)
we have the following result.
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Proposition 11.9. If T is a positive operator on Lp(A), then T ⊗ I extends
uniquely to a bounded operator on Lp(A;E) and we have

‖T ⊗ I‖ = ‖T‖.

Proof. Let g ∈ Lp(A) ⊗ E be a µ-simple function, say g =
∑N

n=1 1An ⊗ xn

with the sets An ∈ A mutually disjoint. Then from the positivity of T we
have |T1A| = T1An and we obtain the estimates

∥∥∥(T ⊗ I)
N∑

n=1

1An
⊗ xn

∥∥∥p

Lp(A;E)
=

∫
A

∥∥∥ N∑
n=1

T1An ⊗ xn

∥∥∥p

dµ

6
∫

A

∣∣∣ N∑
n=1

|T1An |‖xn‖
∣∣∣p dµ

=
∫

A

∣∣∣T N∑
n=1

1An‖xn‖
∣∣∣p dµ

6 ‖T‖p

∫
A

∣∣∣ N∑
n=1

1An‖xn‖
∣∣∣p dµ

= ‖T‖p
∥∥∥ N∑

n=1

1An ⊗ xn

∥∥∥p

Lp(A;E)
.

Since the µ-simple functions are dense in Lp(A;E), this proves that T ⊗ I has
a unique extension to a bounded operator on Lp(A;E) of norm ‖T⊗I‖ 6 ‖T‖.
Equality ‖T ⊗I‖ = ‖T‖ is obtained by considering functions of the form f⊗x
with f ∈ Lp(A) and x ∈ E of norm one. ut

Returning to conditional expectations we obtain the following result:

Theorem 11.10. For 1 6 p 6 ∞ the operator E(·|G ) ⊗ I extends uniquely
to a contractive projection on Lp(Ω;E) with range Lp(Ω,G ;E). For all X ∈
Lp(Ω;E), the random variable

E(X|G ) := (E(·|G )⊗ I)X

is the unique element of Lp(Ω,G ;E) with the property that for all G ∈ G ,∫
G

E(X|G ) dP =
∫

G

X dP.

Proof. For 1 6 p <∞ the Lp-contractivity follows from Proposition 11.9.
Before continuing with the case p = ∞, let us note that for a simple

random variable of the form X =
∑N

n=1 1An ⊗ xn with disjoint sets An ∈ F
we have



11.3 Martingales 157

‖E(X|G )‖ =
∥∥∥ N∑

n=1

E(1An |G )⊗ xn

∥∥∥ 6
N∑

n=1

E(1An |G )‖xn‖ = E(‖X‖ |G ).

By a density argument, this inequality extends to arbitrary random variables
X ∈ L1(Ω;E). By inclusion, this implies the corresponding inequality for
random variables X ∈ Lp(Ω;E), 1 6 p 6 ∞.

Next let X ∈ L∞(Ω;E). Then ‖X‖ ∈ L∞(Ω), and by the inequality
which has just been proved together with the contractivity of the conditional
expectation in L∞(Ω) we obtain

‖E(X|G )‖L∞(Ω;E) 6 ‖E(‖X‖ |G )‖L∞(Ω) 6
∥∥‖X‖∥∥

L∞(Ω)
= ‖X‖L∞(Ω;E).

This proves that the conditional expectation is a contraction in L∞(Ω;E).
For simple random variables X, the identity

∫
G

E(X|G ) dP =
∫

G
X dP fol-

lows from the corresponding assertion in the scalar case. By density, the iden-
tity extends to random variables X ∈ L1(Ω;E), and hence for X ∈ Lp(Ω;E),
1 6 p 6 ∞. The uniqueness assertion follows from the scalar case via Corol-
lary 1.14. ut

We leave it to the reader to check that Propostions 11.6 and 11.7 extend to
the vector-valued setting and finish this section with two important examples.
We have already encountered the first example in the proof of Theorem 6.17.

Example 11.11 (Averaging). Consider a decomposition (0, 1) =
⋃N

n=1 In,
where the In are disjoint intervals with Lebesgue measure |In| > 0. Let F
be the Borel σ-algebra of (0, 1) and let G be the σ-algebra generated by the
intervals In. Let E be a Banach space. Then for all f ∈ L1(0, 1;E) we have

E(f |G ) =
N∑

n=1

cn1In with cn =
1
|In|

∫
In

f(t) dt.

This is verified by checking the condition of Theorem 11.5.

Example 11.12 (Sums of independent random variables). Let (ξn)∞n=1 be a
sequence of independent integrable E-valued random variables. For each n > 1
let Fn := σ(ξ1, . . . , ξn) and put Sn = ξ1 + · · · + ξn. Then for all N > n > 1
we have

E(SN |Fn) = Sn + E(ξn+1) + · · ·+ E(ξN ).

This follows from Proposition 11.6 (1), (2). In particular, if the ξn are centred,

E(SN |Fn) = Sn.

11.3 Martingales

Let (Ω,F ,P) be a probability space and (I,6) a partially ordered set, that
is, a set I with a relation 6 which satisfies the following properties:
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(1) i 6 i for all i ∈ I;
(2) i 6 j and j 6 i imply i = j;
(3) i 6 j and j 6 k imply i 6 k.

Definition 11.13. Let I be a partially ordered set. A filtration with index set
I is a family (Fi)i∈I of sub-σ-algebras of F such that Fi ⊆ Fj whenever
i 6 j in I. A family (Xi)i∈I of E-valued random variables is adapted to the
filtration (Fi)i∈I if each Xi is strongly Fi-measurable.

In this definition the random variables are defined pointwise. The defini-
tions carry over to equivalence classes modulo null sets, provided one replaces
‘is strongly Fi-measurable’ with ‘has a strongly Fi-measurable representative’
in the definition of adaptedness.

Every family X = (Xi)i∈I is adapted to the filtration (FX
i )i∈I , where

FX
i := σ(Xj : j 6 i). We call this filtration the filtration generated by X.

Definition 11.14. A family (Mi)i∈I of integrable E-valued random variables
is an E-valued martingale with respect to a filtration (Fi)i∈I if it is adapted
with respect to (Fi)i∈I and

E(Mj |Fi) = Mi

almost surely whenever i 6 j in I. If in addition E‖Mi‖p < ∞ for all i ∈ I,
then we call (Mi)i∈I an E-valued Lp-martingale.

Example 11.15. Let X ∈ L1(Ω;E) be given. For any filtration (Fi)i∈I , the
family (Xi)i∈I defined by

Xi := E(X|Fi)

is a martingale with respect to (Fi)i∈I ; this follows from Proposition 11.6 (1).

In most examples, I is a finite or infinite interval in Z or R. In these cases
one speaks of discrete time martingales and continuous time martingales. Here
are two examples.

Example 11.16 (Sums of independent random variables). If X = (Xn)∞n=1 is
a sequence of independent integrable E-valued random variables satisfying
EXn = 0 for all n > 1, then the partial sum sequence (Sn)∞n=1 is a martingale
with respect to the filtration (FX

n )∞n=1, where

FX
n := σ(X1, . . . , Xn).

This is immediate from Example 11.12.

Example 11.17 (Brownian motion). Every Brownian motion (W (t))t∈[0,T ] is a
martingale with respect to the filtration (FW

t )t∈[0,T ] defined by

FW
t := σ(W (s) : 0 6 s 6 t).
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Adaptedness and integrability being clear, it remains to show that

E(W (t)|FW
s ) = W (s)

almost surely for all 0 6 s 6 t 6 T . Writing W (t) = W (s) + (W (t)−W (s)),
and noting that W (s) is FW

s -measurable and W (t)−W (s) is independent of
FW

s (this will be proved in a moment), with Proposition 11.6 (2), we obtain

E(W (t)|FW
s ) = W (s) + E(W (t)−W (s)) = W (s)

almost surely.

That W (t)−W (s) is independent of FW
s is a consequence of the following

general observation:

Lemma 11.18. A random variable X is independent of the family (Yj)j∈J if
and only if X is independent of the σ-algebra generated by (Yj)j∈J .

Proof. Let X take its values in E and each Yj in Ej .
We begin with the ‘only if’ part. Suppose that X is independent of

(Yj)j∈J . By definition this means that X is independent of (Yj1 , . . . , YjN
)

for all j1, . . . , jN ∈ J . In particular,

P({X ∈ B} ∩ C) = P{X ∈ B}P(C) (11.2)

for all sets C = {Yj1 ∈ B1, . . . , YjN
∈ BN}. The collection of all such sets C,

which we shall denote by C , is closed under taking finite intersections and
generates σ((Yj)j∈J). We must show that (11.2) holds for all C ∈ σ((Yj)j∈J).
Fix B ∈ B(E) and assume without loss of generality that P{X ∈ B} > 0.
Consider the probability measure PB on (Ω,F ) defined by

PB(F ) :=
P({X ∈ B} ∩ F )

P{X ∈ B}
.

The measures PB and P coincide on C , and therefore they coincide on σ(C ) =
σ((Yj)j∈J) by Dynkin’s lemma.

To prove the ‘if’ part it suffices to observe that the sets {(Yj1 , . . . , YjN
) ∈

B}) with B ∈ B(Ej1 × · · · × EjN
) belong to σ((Yj)j∈J). ut

More generally, this argument can be used to show that two families
(Xi)i∈I and (Yj)j∈J are independent of each other if and only if σ((Xi)i∈I)
and σ((Yj)j∈J) are independent.

Our final example will be used in the next lecture.

Example 11.19 (Martingale transforms). A real-valued sequence v = (vn)N
n=1

is said to be predictable with respect to a filtration (Fn)N
n=1 if vn is Fn−1-

measurable for n = 1, . . . , N (with the understanding that F0 = {∅, Ω}, so
v1 is constant almost surely). If M = (Mn)N

n=1 is an E-valued martingale with
respect to (Fn)N

n=1, the sequence v ∗M = ((v ∗M)n)N
n=1 defined by
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(v ∗M)n :=
n∑

j=1

vj(Mj −Mj−1), n = 1, . . . , N

(with the understanding that M0 = 0) is called the martingale transform of
M by v.

The intuitive meaning is as follows. Suppose the increment Mj −Mj−1

represents the outcome of the j-th gambling game. The assumption that M
is a martingale means that the game is fair. Let vj be the stake a player
puts on this game. The requirement that vj be Fj−1-measurable means that
the stake has to be decided knowing the outcomes of the first j − 1 games
only. The random variable (v ∗M)n then represents the total winnings after
game n. An obvious question is whether the player can devise a favourable
strategy. Under a mild additional assumption the answer is ‘no’: if the vn

are bounded, then v ∗ M is a martingale with respect to (Fn)N
n=1. Let us

prove this. Clearly, v ∗M is adapted with respect to (Fn)N
n=1 and the random

variables vn(Mn − Mn−1) are integrable. By Proposition 11.6 (3) and the
Fn−1-measurability of (v ∗M)n−1 and vn,

E((v ∗M)n)|Fn−1) = (v ∗M)n−1 + vnE(Mn −Mn−1|Fn−1) = (v ∗M)n−1.

11.4 Lp-martingales

An important inequality for Lp-martingales, due to Doob, states that for
1 < p <∞ the maximum of an Lp-martingale is in Lp again.

LetM = (Mn)N
n=1 be an E-valued martingale with respect to F = (Fn)N

n=1

and define M∗
N : Ω → R+ by

M∗
N := max

16n6N
‖Mn‖.

Theorem 11.20 (Doob). For all r > 0 we have

P{M∗
N > r} 6

1
r

E‖MN‖.

If 1 < p <∞ and MN ∈ Lp(Ω;E), then M∗
N ∈ Lp(Ω) and

‖M∗
N‖p 6

p

p− 1
‖MN‖p.

Proof. The proof proceeds in two steps.
Step 1 – We claim that for all r > 0,

rP{M∗
N > r} 6 E(1{M∗

N >r}‖MN‖). (11.3)

This implies the first inequality.
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Let us fix r > 0 and define τ : Ω → {1, . . . , N + 1} by τ := min{1 6
n 6 N : ‖Mn‖ > r} with the convention that min ∅ := N + 1. Then
{M∗

N > r} = {τ 6 N}. On the set {τ = n} we have ‖Mn‖ > r and therefore

rP{M∗
N > r} = r

N∑
n=1

P{τ = n} 6
N∑

n=1

E(1{τ=n}‖Mn‖)

(∗)
6

N∑
n=1

E(1{τ=n}‖MN‖) = E(1{τ6N}‖MN‖)

= E(1{M∗
N >r}‖MN‖)

which gives (11.3). The inequality (∗) follows from the martingale property,
since almost surely we have

‖Mn‖ = ‖E(MN |Fn)‖ 6 E(‖MN‖|Fn).

Step 2 – Next let 1 < p < ∞ and assume that ‖MN‖p < ∞. We may
assume that ‖M∗

N‖p > 0, since otherwise there is nothing to prove. Integrating
by parts and using (11.3) and Hölder’s inequality,

‖M∗
N‖p

p =
∫ ∞

0

prp−1P{M∗
N > r} dr 6

∫ ∞

0

prp−2E(1{M∗
N >r}‖MN‖) dr

= E
(
‖MN‖

∫ M∗
N

0

prp−2 dr
)

=
p

p− 1
E(‖MN‖(M∗

N )p−1)

6
p

p− 1
‖MN‖p‖M∗

N‖p−1
p .

The result follows upon dividing both sides by ‖M∗
N‖p−1

p . ut

We shall apply the first part of Doob’s inequality to prove the following
result on convergence of certain Lp-martingales.

Suppose a filtration (Fn)∞n=1 is given on (Ω,F ,P). We denote by F∞
the σ-algebra generated by (Fn)∞n=1, that is, F∞ is the smallest σ-algebra
containing each of the Fn.

Theorem 11.21. Let 1 6 p <∞ and assume that X ∈ Lp(Ω;E). Then,

lim
n→∞

E(X|Fn) = E(X|F∞)

both in Lp(Ω;E) and almost surely.

Proof. We claim that
⋃∞

n=1 L
p(Ω,Fn;E) is dense in Lp(Ω,F∞;E). Assuming

this for the moment we first show how the Lp-convergence is obtained from
this.
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For all Y ∈ Lp(Ω,Fm;E) and n > m we have E(Y |Fn) = E(Y |F∞) = Y ,
and therefore we trivially have limn→∞ E(Y |Fn) = Y in Lp(Ω,F∞;E). Since
the conditional operators are contractive, it follows that limn→∞ E(Y |Fn) =
Y in Lp(Ω,F∞;E) for all Y ∈ Lp(Ω,F∞;E). In particular this is true for
Y = E(X|F∞).

Let us next prove that
⋃∞

n=1 L
p(Ω,Fn;E) is dense in Lp(Ω,F∞;E). Let

G be the collection of all sets G ∈ F∞ with the property that for all ε > 0
there exists an n > 1 and a set F ∈ Fn such that P(F∆G) < ε. Here,
F∆G = (F \G)∪ (G \F ) is the symmetric difference of F and G. It is easily
checked that the collection of all approximable sets is a sub-σ-algebra of F∞.
Clearly, this σ-algebra contains each Fn, and therefore it contains F∞.

By what we have shown so far, G ∈ F∞ implies that 1G = limk→∞ 1Gk

in Lp(Ω;E), where Gk ∈ Fnk
for some nk > 1. It follows that every simple

function of Lp(Ω,F∞;E) is contained in the closure of
⋃∞

n=1 L
p(Ω,Fn;E)

in Lp(Ω,F∞;E). As a consequence, all of Lp(Ω,F∞;E) is contained in the
closure of

⋃∞
n=1 L

p(Ω,Fn;E).
So far we have proved the Lp-convergence. To prove the almost sure conver-

gence, note that by the first part of Theorem 11.20 and monotone convergence
we have

P
{

sup
n>1

‖Mn‖ > r
}

6
1
r

sup
n>1

E‖Mn‖,

where we put Mn := E(X|Fn) for brevity. Applying this with X replaced by
X −MN , for all n > N we obtain

P
{

sup
n>N

‖Mn −MN‖ > r
}

6
1
r

sup
n>N

E‖Mn −MN‖.

By what we have proved already we find indices N1 < N2 < . . . such that

sup
n>Nk

E‖Mn −MNk
‖ < 1

22k
.

With r = 1/2k this gives

P
{

sup
n>Nk

‖Mn −MNk
‖ > 1

2k

}
6

1
2k
.

The Borel-Cantelli lemma now implies that limn→∞Mn = M∞ = E(X|F∞)
almost surely. ut

11.5 Exercises

1. Let f, g be random variables on Ω. Prove that if f is σ(g)-measurable,
then f = φ ◦ g for some Borel function φ.
Hint: First suppose that f = 1A with A ∈ σ(g).
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2. a) Let X1, . . . , XN be independent and identically distributed integrable
E-valued random variables and put SN = X1 + · · ·+XN . Show that
E(X1|SN ) = · · · = E(XN |SN ) and deduce that E(Xn|SN ) = SN/N
for all n = 1, . . . , N.

b) (!) Let X and Y be independent and identically distributed integrable
E-valued random variables on Ω. Prove that E(X − Y |X + Y ) = 0.

3. Let (Mi)i∈I be a martingale with respect to the filtration (Fi)i∈I , and
let (Gi)i∈I be a filtration which is independent of (Fi)i∈I . Define the
filtration (Hi)i∈I by Hi := σ(Fi,Gi). Show that (Mi)i∈I is a martingale
with respect to (Hi)i∈I .

4. LetWH be anH-cylindrical Brownian motion. The filtration (FWH
t )t∈[0,T ]

generated by WH is defined by FWH
t := σ(WH(s)h : s ∈ [0, t], h ∈ H).

a) Show that for all h ∈ H and 0 6 s 6 t 6 T the increment WH(t)h−
WH(s)h is independent of FWH

s .
b) Show that for all h ∈ H the Brownian motion (W (t)h)t∈[0,T ] is a

martingale with respect to (FWH
t )t∈[0,T ].

5. This exercise is a continuation of Exercise 6.3 on averaging operators.
Using the notations introduced there, show that for all f ∈ Lp(0, T ;E)
we have limn→∞Anf = f almost everywhere.

Notes. An elementary introduction to the theory of martingales is the book by
Williams [109]; for more comprehensive treatments we refer to Kallenberg
[55] and Rogers and Williams [95]. A systematic account of the vector-
valued theory can be found in Diestel and Uhl [36].

The results of Sections 11.1 and 11.2 are standard. The approach taken
in Section 11.1 by first defining conditional expectations in L2(Ω) by an or-
thogonal projection is the most elementary one and, in our opinion, the most
intuitive. A shorter, but less elementary approach is to define conditional ex-
pectations in L1(Ω) by the identity (11.1) and then to use the Radon-Nikodým
theorem to prove their existence and uniqueness.

For further results on vector-valued extensions of positive operators we
refer to the nice paper by Haase [46].

The proof of Doob’s inequality (Theorem 11.20) is standard and can be
found in many textbooks. It only requires the fact that (‖Mn‖)N

n=1 is a non-
negative submartingale, that is, it satisfies ‖Mn‖ 6 E(‖Mn‖|Fm) almost
surely for all m 6 n.

The proof of the martingale convergence theorem (Theorem 11.21) is taken
from [36]. In the scalar theory it is true that any L1-bounded martingale
converges almost surely, with convergence in L1 if the martingale is uniformly
integrable (which is the case, e.g., if the martingale is Lp-bounded for some
1 < p <∞). For Banach space-valued martingales E, the same result holds if
E has the so-called Radon-Nikodým property. Examples of spaces with this
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property are reflexive spaces and separable dual spaces. We refer to [36] for
the full story.

It is worth mentioning the following result of Davis, Ghoussoub, John-
son, Kwapień, Maurey [30], which generalises the Itô-Nisio theorem to E-
valued martingales:

Theorem 11.22. Let E be an arbitrary Banach space and suppose that
(Mn)∞n=1 is an L1-bounded E-valued martingale. For an E-valued random
variable M the following assertions are equivalent:

(1) For all x∗ ∈ E∗ we have limn→∞〈Mn, x
∗〉 = 〈M,x∗〉 almost surely;

(2) For all x∗ ∈ E∗ we have limn→∞〈Mn, x
∗〉 = 〈M,x∗〉 in probability;

(3) limn→∞Mn = M almost surely;
(4) limn→∞Mn = M in probability.

If M ∈ Lp(Ω;E) for some 1 6 p <∞, then Mn ∈ Lp(Ω;E) for all n > 1 and
we have limn→∞Mn = M in Lp(Ω;E).

Note that the Itô-Nisio theorem holds without any integrability conditions.
It is clear that in the above theorem we need to impose integrability of the
random variables Mn in order to define the their conditional expectations.
In [30] a simple example is given which shows that even the L1-boundedness
condition on the Mn cannot be omitted.
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UMD-spaces

This lecture is devoted to the study of a class of Banach spaces, the so-called
UMD-spaces, which share many of the good properties of Hilbert spaces and
is sufficiently broad to include Lp-spaces for 1 < p <∞.

Experience has shown that the class of UMD-spaces is precisely the ‘right’
one for pursuing vector-valued stochastic analysis as well as vector-valued
harmonic analysis. Indeed, many classical Hilbert space-valued results from
both areas can be extended to the UMD-valued case, and often this fact
characterises the UMD-property.

The relevant fact for our purposes is that the UMD-spaces are those Ba-
nach spaces E in which the Wiener integral of Lecture 6 can be extended
from L (H,E)-valued functions to L (H,E)-valued stochastic processes. This
is the subject matter of the next lecture. In the present lecture, we define
UMD-spaces in terms of Lp-bounds for signed E-valued martingale difference
sequences and study some of their elementary properties. At first sight, the
definition of the UMD-property depends on the parameter 1 < p < ∞. It is
a deep result of Maurey and Pisier that the UMD-property is independent
of 1 < p < ∞. This theorem, which is proved in detail, enables us to prove
that Lp-spaces are UMD-spaces for 1 < p <∞.

12.1 UMDp-spaces

We begin with a definition.

Definition 12.1. Let (Mn)N
n=1 be an E-valued martingale. The sequence

(dn)N
n=1 defined by dn := Mn −Mn−1 (with the understanding that M0 = 0)

is called the martingale difference sequence associated with (Mn)N
n=1.

We call (dn)N
n=1 an Lp-martingale difference sequence if it is the difference

sequence of an Lp-martingale.
If (Mn)N

n=1 is a martingale with respect to the filtration (Fn)N
n=1, then

(dn)N
n=1 is adapted to (Fn)N

n=1 and E(dn|Fm) = 0 for 1 6 m < n 6 N .
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It is easy to see that these two properties characterise martingale difference
sequences.

Proposition 12.2. Every L2-martingale difference sequence with values in a
Hilbert space H is orthogonal in L2(Ω;H).

Proof. We use the notations introduced above. For 1 6 m < n 6 N , from
Edn = E(E(dn|Fn−1)) = 0 we deduce that

E[dm, dn] = E(E([dm, dn]|Fn−1)) = E([dm,E(dn|Fn−1)]) = 0.

The second identity follows from Proposition 11.6 (3) if dm is replaced by a
random variable in g ∈ L2(Ω,Fm)⊗H, and the general case follows from this
since L2(Ω,Fm)⊗H is dense in L2(Ω,Fm;H). ut

This suggests that in the context of stochastic analysis in Banach spaces,
martingale difference sequences provide a substitute for orthogonal sequences.
To formalise this idea we note that in the situation of Proposition 12.2, for
any choice of signs εn = ±1 we have

E
∥∥∥ N∑

n=1

εndn

∥∥∥2

= E
∥∥∥ N∑

n=1

dn

∥∥∥2

. (12.1)

It is this property that is generalised in the next definition. The exponent 2
has no special significance in the context of Banach spaces, and therefore we
replace it by an exponent 1 < p <∞.

Definition 12.3. Let 1 < p < ∞. A Banach space E is said to be a UMDp-
space if there exists a constant β such that for all E-valued Lp-martingale
difference sequences (dn)N

n=1 we have

E
∥∥∥ N∑

n=1

εndn

∥∥∥p

6 βpE
∥∥∥ N∑

n=1

dn

∥∥∥p

.

If (dn)N
n=1 is an E-valued martingale difference sequence, then the same is

true for (εndn)N
n=1. This gives the reverse inequality

E
∥∥∥ N∑

n=1

dn

∥∥∥p

6 βpE
∥∥∥ N∑

n=1

εndn

∥∥∥p

.

The term ‘UMD’ is an abbreviation for ‘unconditional martingale differ-
ences’. The least possible constant β in the above inequalities is called the
UMDp-constant of E, notation βp(E).

Every Hilbert space H is a UMD2-space, with β2(H) = 1; this is the
content of (12.1). It is a trivial consequence of the definition that every closed
subspace F of a UMDp-space is a UMDp-space, with βp(F ) 6 βp(E).
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As we shall see in the next section, if a Banach space is UMDp for some
1 < p <∞, then it is UMDp for all 1 < p <∞. In particular, Hilbert spaces
are UMDp for all 1 < p < ∞. Taking this for granted for the moment, the
next result implies that for 1 < p <∞ the spaces Lp(A), and more generally
Lp(A;H) for Hilbert spaces H, are UMDp-spaces.

Theorem 12.4. Let (A,A , µ) be a σ-finite measure space and let 1 < p <∞.
If E is a UMDp-space, then Lp(A;E) is a UMDp-space, with βp(Lp(A;E)) =
βp(E).

Proof. Let (dn)N
n=1 be an Lp-martingale difference sequence with values in

Lp(A;E). With Fubini’s theorem, for all choices of signs εn = ±1 we obtain

E
∥∥∥ N∑

n=1

εndn

∥∥∥p

Lp(A)
=

∫
A

E
∥∥∥ N∑

n=1

εndn

∥∥∥p

dµ

6 βp(E)p

∫
A

E
∥∥∥ N∑

n=1

dn

∥∥∥p

dµ = βp(E)pE
∥∥∥ N∑

n=1

dn

∥∥∥p

Lp(A)
.

In this computation we used that for µ-almost all ξ ∈ A the sequences
(dn(ξ))N

n=1 is an E-valued martingale difference sequence; this follows from the
observation that under the identification Lp(Ω;Lp(A;E)) ' Lp(A;Lp(Ω;E))
we have ELp(A;E)(·|Fn) = I ⊗ ELp(A)(·|Fn). This proves that Lp(A;E) is a
UMDp-space, with βp(Lp(A;E)) 6 βp(E).

If f ∈ Lp(A) has norm 1, then x 7→ f⊗x defines an isometric embedding of
E into Lp(A;E); this gives the opposite inequality βp(E) 6 βp(Lp(A;E)). ut

Duality provides another way to produce new UMD-spaces from old:

Proposition 12.5. Let 1 < p, q <∞ satisfy 1
p + 1

q = 1. Then E is a UMDp-
space if and only if E∗ is a UMDq-space, and in this situation we have βp(E) =
βq(E∗).

Proof. Suppose E is a UMDp-space and let (d∗n)N
n=1 be an E∗-valued Lq-

martingale difference sequence with respect to (Fn)N
n=1. Fix an arbitrary Y ∈

Lp(Ω,FN ;E) of norm 1, and define the E-valued Lp-martingale (Mn)N
n=1 by

Mn := E(Y |Fn). Let (dn)N
n=1 be its difference sequence. Then Y =

∑N
m=1 dm.

If 1 6 m < n 6 N , then

E〈dm, d
∗
n〉 = EE(〈dm, d

∗
n〉|Fn−1) = E〈dm,E(d∗n|Fn−1)〉 = 0.

The second identity is justified as in the proof of Proposition 12.2. A similar
computation shows that E〈dm, d

∗
n〉 = 0 if 1 6 n < m 6 N . Hence,
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∣∣∣E〈
Y,

N∑
n=1

εnd
∗
n

〉∣∣∣ =
∣∣∣E〈 N∑

m=1

dm,

N∑
n=1

εnd
∗
n

〉∣∣∣
=

∣∣∣E〈 N∑
m=1

εmdm,

N∑
n=1

d∗n

〉∣∣∣
6 βp(E)

(
E

∥∥∥ N∑
m=1

dm

∥∥∥p) 1
p
(
E

∥∥∥ N∑
n=1

d∗n

∥∥∥q) 1
q

= βp(E)
(
E

∥∥∥ N∑
n=1

d∗n

∥∥∥q) 1
q

.

In the last identity we used the assumption that ‖Y ‖p = 1. Since Lp(Ω,FN ;E)
is norming for Lq(Ω,FN ;E∗) (see Exercise 1.5), by taking the supremum over
all Y of norm 1 we obtain the estimate(

E
∥∥∥ N∑

n=1

εnd
∗
n

∥∥∥q) 1
q

6 βp(E)
(
E

∥∥∥ N∑
n=1

d∗n

∥∥∥q) 1
q

.

This proves that E∗ is a UMDq-space, with βq(E∗) 6 βp(E).
If E∗ is a UMDq-space, the result just proved implies that E∗∗ is a UMDp-

space, with βp(E∗∗) 6 βq(E∗). Hence also E, being isometrically contained as
a closed subspace in E∗∗ (by the Hahn-Banach theorem each x ∈ E defines a
functional φx in E∗∗ of norm ‖φx‖ = ‖x‖ by the formula 〈x∗, φx〉 := 〈x, x∗〉),
is a UMDp-space, with βp(E) 6 βp(E∗∗) 6 βq(E∗).

Combining both parts, we obtain the equality βp(E) = βq(E∗). ut

Remark 12.6. It can be shown that every UMDp-space E is reflexive, that is,
the canonical mapping x 7→ φx from E to E∗∗ is surjective. This fact will not
be needed in what follows.

12.2 p-Independence of the UMDp-property

This section is devoted to the proof of the highly non-trivial fact, already
mentioned above, that the UMDp-property is independent of the parameter
1 < p < ∞. The work consists of two parts: a reduction of the problem
to difference sequences of so-called Haar martingales, and then proving the
p-independence for this class of martingales.

12.2.1 Reduction to Haar martingales

A probability space (Ω,F ,P) is said to be divisible if for all F ∈ F and
0 < r < 1 we have F = F1 ∪ F2 with F1, F2 ∈ F and

P(F1) = rP(F ), P(F2) = (1− r)P(F ).
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For 1 < p < ∞, let us say that E has the UMDdiv
p -property if there exists a

constant βdiv
p (E) such that

E
∥∥∥ N∑

n=1

εndn

∥∥∥p

6 (βdiv
p (E))pE

∥∥∥ N∑
n=1

dn

∥∥∥p

for all E-valued Lp-martingale difference sequences (dn)N
n=1 defined on a di-

visible probability space. Trivially, if E has the UMDp-property, then it has
the UMDdiv

p -property and βdiv
p (E) 6 βp(E). The next lemma establishes the

converse.

Lemma 12.7. Let 1 < p <∞. If E has the UMDdiv
p -property, then it has the

UMDp-property and βp(E) = βdiv
p (E).

Proof. Suppose that (dn)N
n=1 is an E-valued Lp-martingale difference se-

quence with respect to a filtration (Fn)N
n=1 on an arbitrary probability space

(Ω,F ,P). The idea is to enlarge the probability space in such a way that
it becomes divisible, without affecting the Lp-estimates for the martingale
differences.

Consider Ω̃ := Ω × [0, 1], F̃ := F × B([0, 1]), and P̃ := P × m, where
m is the Lebesgue measure on the Borel σ-algebra B([0, 1]). The probability
space (Ω̃, F̃ , P̃) is divisible: this follows from the intermediate value theorem
applied to the continuous function t 7→ P̃(F̃ ∩ (Ω × [0, t])), where F̃ ∈ F̃ .

Let (Mn)N
n=1 be the martingale associated with (dn)N

n=1. Define M̃n(ω, t) :=
Mn(ω) and F̃n := Fn×B([0, 1]). It is easily checked that (M̃n)N

n=1 is a mar-
tingale with respect to (F̃n)N

n=1 and, for every sequence of signs (εn)N
n=1, its

difference sequence (d̃n)N
n=1 satisfies

E
∥∥∥ N∑

n=1

εndn

∥∥∥p

= Ẽ
∥∥∥ N∑

n=1

εnd̃n

∥∥∥p

6 (βdiv
p (E))pẼ

∥∥∥ N∑
n=1

d̃n

∥∥∥p

= (βdiv
p (E))pE

∥∥∥ N∑
n=1

dn

∥∥∥p

using the UMDdiv
p -property of E. ut

In the next step we restrict the class of probability spaces even further. If
(Ω,F ,P) is a probability space, we call a sub-σ-algebra G of F dyadic if it
is generated by 2m sets of measure 2−m for some integer m > 0. We call a
filtration in (Ω,F ,P) dyadic if each of its constituting σ-algebras is dyadic.
For 1 < p <∞, let us say that E has the UMDdyad

p -property if there exists a
constant βdyad

p (E) such that

E
∥∥∥ N∑

n=1

εndn

∥∥∥p

6 (βdyad
p (E))pE

∥∥∥ N∑
n=1

dn

∥∥∥p
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holds for all E-valued Lp-martingale difference sequences (dn)N
n=1 with re-

spect to a dyadic filtration (Fn)N
n=1 on a divisible probability space (Ω,F ,P).

Trivially, if E has the UMDp-property, then it has the UMDdyad
p -property and

βdyad
p (E) 6 βp(E). In order to establish the converse we need a simple ap-

proximation result. The proof appears somewhat technical, but by drawing a
picture one sees that it is nearly trivial.

Lemma 12.8. Let 1 6 p < ∞ and ε > 0 be given. If f is a simple random
variable on a divisible probability space (Ω,F ,P) and G is a dyadic sub-σ-
algebra of F , there exists a dyadic sub-σ-algebra G ⊆ H ⊆ F and an H -
measurable simple random variable h such that ‖f − h‖p < ε.

Proof. Suppose G is generated by 2m sets of measure 2−m.
It suffices to prove the lemma for indicator functions f = 1F with F ∈ F .

Considering F ∈ F as fixed, we write 1F =
∑

G 1F∩G where the sum extends
over the 2m generating sets G of G .

Take one such G and let (bGj )∞j=1 denote the digits in the binary expansion
of the real number P(F ∩ G). Informally, we use the digits to write F ∩ G
inductively as a union, up to a null set, of disjoint ‘dyadic’ subsets of maximal
measure.

To be more precise, inductively define sets AG
j and BG

j by AG
0 = F ∩ G

and BG
0 = ∅, and requiring, for j > 1, that BG

j ⊆ AG
j−1 satisfies BG

j ∈ F and
P(BG

j ) = bGj 2−j (we may take BG
j := ∅ if bGj = 0). Then put AG

j := AG
j−1\BG

j

and continue.
The sets BG

j ∈ F thus constructed are disjoint, contained in G, and satisfy
P
(
(F ∩G) \

⋃∞
j=1B

G
j

)
= 0. Let n > 1 be the first integer such that

P
(
(F ∩G) \

n⋃
j=1

BG
j

)
<

εp

2m
.

For each 1 6 j 6 n such that bGj = 1 we have P(BG
j ) = 2−j . If follows that

we can split G into disjoint subsets of measure 2−n in such a way that each
BG

j , 1 6 j 6 n, is a finite union of these subsets.
We subdivide each of the 2m generating sets G in this way. The number

n varies over G, but by considering further subdivisions we may assume it
to be independent of G. Let H be the σ-algebra generated by the 2n sets of
measure 2−n thus obtained. This σ-algebra is dyadic, it contains G , and the
simple function

h :=
∑
G

∑
16j6n

bG
j =1

1BG
j

is H -measurable and satisfies ‖f − h‖p < ε. ut

Lemma 12.9. Let 1 < p < ∞. If E has the UMDdyad
p -property, then it has

the UMDp-property and βp(E) = βdyad
p (E).
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Proof. Suppose that (dn)N
n=1 is an E-valued Lp-martingale difference sequence

with respect to a filtration (Fn)N
n=1 on a divisible probability space (Ω,F ,P).

The idea is approximate the dn with simple functions as in the previous lemma.
Fixing ε > 0, we can find Fn-measurable simple functions sn : Ω → E

such that ‖dn − sn‖p <
ε
N . By repeated application of Lemma 12.8 we find a

sequence of dyadic σ-algebras (F̃n)N
n=1 such that F̃n−1 ⊆ F̃n ⊆ Fn (with the

understanding that F̃0 = {∅, Ω}) and a sequence of step functions (s̃n)N
n=1

such that each s̃n is F̃n-measurable and satisfies ‖sn − s̃n‖p <
ε
N .

Consider the sequence (d̃n)N
n=1 defined by d̃n := E(dn|F̃n). To see that this

is a martingale difference sequence with respect to the filtration (F̃n)N
n=1, note

that for 1 < n 6 N ,

E(d̃n|F̃n−1) = E(E(dn|F̃n)|F̃n−1)

= E(dn|F̃n−1) = E(E(dn|Fn−1)|F̃n−1) = 0.

Then, by the Lp-contractivity of conditional expectations,

‖dn − d̃n‖p 6
2ε
N

+ ‖s̃n − d̃n‖p

=
2ε
N

+ ‖E(s̃n − d̃n|F̃n)‖p

=
2ε
N

+ ‖E(s̃n − dn|F̃n)‖p 6
2ε
N

+ ‖s̃n − dn‖p =
4ε
N
.

Hence,∥∥∥ N∑
n=1

εndn

∥∥∥
p

6 4ε+
∥∥∥ N∑

n=1

εnd̃n

∥∥∥
p

6 4ε+ βdyad
p (E)

∥∥∥ N∑
n=1

d̃n

∥∥∥
p

6 4ε(1 + βdyad
p (E))

∥∥∥ N∑
n=1

dn

∥∥∥
p
.

Since ε > 0 was arbitrary, this shows that E has the UMDdiv
p -property with

βdiv
p (E) 6 βdyad

p (E). Together with Lemma 12.7 this proves the result. ut

The final reduction consists of shrinking the class of difference sequences
to Haar martingale difference sequences, which are defined as difference se-
quences of martingales with respect to a Haar filtration. This is a filtration
(Fn)N

n=1, where F1 = {∅, Ω} and each Fn (with n > 1) is obtained from
Fn−1 by dividing precisely one atom of Fn−1 of maximal measure into two
sets of equal measure (an atom of a σ-algebra G is a set G ∈ G such that
H ⊆ G with H ∈ G implies H ∈ {∅, G}). By construction, each Fn is gener-
ated by n atoms, whose measures equal 2−k−1 or 2−k, where k is the unique
integer such that 2k−1 < n 6 2k.

For 1 < p <∞, let us say that E has the UMDHaar
p -property if there exists

a constant βHaar
p (E) such that
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E
∥∥∥ N∑

n=1

εndn

∥∥∥p

6 (βHaar
p (E))pE

∥∥∥ N∑
n=1

dn

∥∥∥p

holds for all E-valued Haar martingale difference sequences (dn)N
n=1 defined on

a divisible probability space (Ω,F ,P). Trivially, if E has the UMDp-property,
then it has the UMDHaar

p -property and βHaar
p (E) 6 βp(E).

Lemma 12.10. Let 1 < p <∞. If E has the UMDHaar
p -property, then it has

the UMDp-property and βHaar
p (E) = βp(E).

Proof. Suppose that (dn)N
n=1 is an E-valued Lp-martingale difference sequence

with respect to a dyadic filtration (Fn)N
n=1 on a divisible probability space

(Ω,F ,P). The idea is to ‘embed’ (dn)N
n=1 into a Haar martingale difference

sequence. To be more precise, we shall construct an Lp-martingale difference
sequence (d̃k)K

k=1 with respect to a Haar filtration (F̃k)K
k=1 such that Mn =

M̃kn
and Fn = F̃kn for some subsequence k1 < · · · < kN . Once this has been

done, we note that dn =
∑kn

j=kn−1+1 d̃j and

∥∥∥ N∑
n=1

εndn

∥∥∥
p

=
∥∥∥ N∑

n=1

kn∑
j=kn−1+1

εnd̃j

∥∥∥
p

=
∥∥∥ K∑

k=1

ε̃kd̃k

∥∥∥
p

6 βHaar
p (E)

∥∥∥ K∑
k=1

d̃k

∥∥∥
p

= βHaar
p (E)

∥∥∥ N∑
n=1

dn

∥∥∥
p
,

where ε̃k = εkn for k = kn−1 + 1, . . . , kn.
Each Fn is dyadic and therefore it is generated by kn := 2ln atoms of

measure 2−ln . Since each atom of Fn−1 is a finite union of atoms in Fn

we have k1 < · · · < kN . The σ-algebras F̃k, with kn−1 < k < kn can now
be constructed by splitting the atoms of F̃kn−1 one by one into two disjoint
subsets of equal measure, so as to arrive at the atoms of F̃kn by repeating
this procedure kn − kn−1 times.

Now take M̃kn
:= Mn and M̃k := E(M̃kn

|F̃k) if kn−1 < k 6 kn. ut

12.2.2 p-Independence for Haar martingales

By the reductions of the previous subsection, in order to prove the p-
independence of the UMDp-property it suffices to consider Haar martingale
difference sequences. Such sequences have a special property which is captured
in the next lemma.

Lemma 12.11. If (dn)N
n=1 is an E-valued Haar martingale difference se-

quence, then ‖dn+1‖ is Fn-measurable for all n = 1, . . . , N − 1.
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Proof. Suppose that Fn+1 is obtained by splitting one of the n+1 generating
atoms of Fn, say A, into subsets A1 and A2 of equal measure. Then Mn+1

and Mn only differ on A, so dn+1 = 0 on {A. Also, dn+1 is constant on A1

and A2, say with values x1 and x2. Then,

P(A1)x1 + P(A2)x2 =
∫

A

dn+1 dP =
∫

A

E(dn+1|Fn) dP = 0,

and from P(A1) = P(A2) we deduce that x1 + x2 = 0. Hence, ‖dn+1‖ =
1A1‖x1‖+ 1A2‖x2‖ = 1A‖x1‖ is Fn-measurable. ut

In what follows we let f = (fn)N
n=1 be an E-valued Haar martingale with

difference sequence (dn)N
n=1. By the lemma, the non-negative random variables

‖dn+1‖ are Fn-measurable for n = 1, . . . , N − 1.
For a fixed sequence of signs ε = (εn)N

n=1 we denote by g = (gn)N
n=1 the

martingale transform gn =
∑n

j=1 εjdj . Further we let

f∗(ω) := max
16n6N

‖fn(ω)‖, g∗(ω) := max
16n6N

‖gn(ω)‖.

In the proof of the next lemma we use the following notation: if (Xn)N
n=1

is a sequence of E-valued random variables and τ : Ω → {1, . . . , N} is another
random variable, we define the random variable Xτ : Ω → E by

Xτ (ω) := Xτ(ω)(ω).

Lemma 12.12. Suppose that E is a UMDq-space for some 1 < q < ∞. For
all δ > 0 and β > 2δ + 1 and all λ > 0 we have

P{g∗ > βλ, f∗ 6 δλ} 6 αqP{g∗ > λ},

where α = 4δβq(E)/(β − 2δ − 1).

Proof. Since F1 = {∅, Ω}, the random variable f1 = d1 is constant almost
surely. If the constant value is greater than δλ, then the left hand side in the
above inequality vanishes and there is nothing to prove. We may therefore
assume that f1 6 δλ almost surely.

Let

µ(ω) := min{1 6 n 6 N : ‖gn(ω)‖ > λ},
ν(ω) := min{1 6 n 6 N : ‖gn(ω)‖ > βλ},
σ(ω) := min{1 6 n 6 N : ‖fn(ω)‖ > δλ or ‖dn+1‖ > 2δλ}

with the convention that min ∅ := N + 1. In the third definition we further
use the convention that dN+1 := 0.

Let vn be the indicator function of the set {µ < n 6 min{ν, σ}}. Since d =
(dn)N

n=1 is a Haar martingale difference sequence, the sequence v = (vn)N
n=1

is predictable by Lemma 12.11 and therefore
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Fn :=
n∑

j=1

vjdj

defines a martingale F = (Fn)N
n=1 by the result of Example 11.19. On the set

{σ 6 µ} we have vj ≡ 0 for all j and therefore FN ≡ 0 there. In particular
this is the case on the set {µ = N + 1} = {g∗ 6 λ}. On the set {σ > µ} we
have

‖FN‖ =
∥∥∥ ∑

µ<j6min{ν,σ}

dj

∥∥∥ = ‖fmin{ν,σ} − fµ‖ 6 4δλ.

To see this, first note that µ(ω) < σ(ω) implies ‖fµ(ω)‖ 6 δλ. Also,
if min{ν(ω), σ(ω)} = 1, then by the assumption above ‖fmin{ν,σ}(ω)‖ =
‖f1(ω)‖ 6 δλ; if min{ν(ω), σ(ω)} > 1, then from ‖fmin{ν,σ}−1(ω)‖ 6 δλ
and ‖dmin{ν,σ}(ω)‖ 6 2δλ it follows that ‖fmin{ν,σ}(ω)‖ 6 ‖fmin{ν,σ}−1(ω)‖+
‖dmin{ν,σ}(ω)‖ 6 3δλ. This proves the claim.

We infer that
E‖Fn‖q 6 (4δλ)qP{g∗ > λ}.

Now consider the martingale transform G of F by ε,

Gn :=
n∑

j=1

εjvjdj .

On the set {ν 6 N, σ = N + 1} we have min{ν, σ} = ν and

‖GN‖ =
∥∥∥ ∑

µ<j6ν

εjdj

∥∥∥ = ‖gν − gµ‖ > βλ− 2δλ− λ,

where the last inequality uses that on the set {ν 6 N, σ = N + 1} we have
‖gν(ω)‖ > βλ and ‖gµ(ω)‖ 6 ‖gµ−1(ω)‖+ ‖dµ(ω)‖ 6 λ+ 2δλ.

By Chebyshev’s inequality and the UMDq-property,

P{g∗ > βλ, f∗ 6 δλ} 6 P{ν 6 N, σ = N + 1}
6 P{‖GN‖ > βλ− 2δλ− λ}

6
1

(βλ− 2δλ− λ)q
E‖GN‖q

6
(βq(E))q

(βλ− 2δλ− λ)q
E‖FN‖q

6
(4δ)q(βq(E))q

(β − 2δ − 1)q
P{g∗ > λ}.

In the first inequality we used that f∗(ω) 6 δλ implies that ‖dj(ω)‖ 6 2δλ
for all j. This proves the lemma. ut

Theorem 12.13. If E is a UMDq-space for some 1 < q < ∞, then it is a
UMDp-space for all 1 < p <∞.
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Proof. By the results of the previous subsection it suffices to show that E
has the UMDHaar

p -property for all 1 < p < ∞. Thus we find ourselves in the
situation of the previous lemma and need to prove the estimate

E‖gN‖p 6 bpE‖fN‖p

with a constant b > 0 depending only on p, q, and E, but not on f , g and N .
Fix an arbitrary number β > 1. For δ > 0 so small that β > 2δ + 1, let

α = αβ,δ,q,E be as in the lemma. Then, by an integration by parts and Doob’s
maximal inequality,

E‖gN‖p 6 E‖g∗‖p = βp

∫ ∞

0

pλp−1P{g∗ > βλ} dλ

6 αqβp

∫ ∞

0

pλp−1P{g∗ > λ} dλ

+ βp

∫ ∞

0

pλp−1P{f∗ > δλ} dλ

6 αqβpE‖g∗‖p +
βp

δp
E‖f∗‖p

6 Cp
pα

qβpE‖gN‖p +
Cp

pβ
p

δp
E‖fN‖p,

where Cp = p/(p− 1). Since limδ↓0 αβ,δ,q,E = 0, by taking δ > 0 small enough
we may arrange that Cp

pα
qβp < 1. Noting that E‖gN‖p < ∞ since gN is

simple (recall that FN is a finite σ-algebra) it follows that

E‖gN‖p 6
Cp

pβ
p

(1− Cp
pαqβp)δp

E‖fN‖p.

This concludes the proof. ut

This theorem justifies the following definition.

Definition 12.14. A Banach space is called a UMD-space if it is a UMDp-
space for some (and hence, for all) 1 < p <∞.

By combining Theorem 12.13 with the results of the previous section we
see that all Hilbert spaces and all spaces Lp(A) with 1 < p < ∞ are UMD-
spaces.

12.3 The vector-valued Stein inequality

In this final section we prove an extension, due to Bourgain, of a beautiful
result of Stein which asserts that conditional expectation operators corre-
sponding to the σ-algebras of a filtration form an R-bounded family.
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Theorem 12.15 (Vector-valued Stein inequality). Let E be a UMD-
space and fix 1 < p < ∞. If (Ft)t∈[0,T ] is a filtration on a probability space
(Ω,F ,P), then the family of conditional expectation operators {E(·|Ft) : t ∈
[0, T ]} is R-bounded (and hence γ-bounded) on Lp(Ω;E).

Proof. Let (r̃n)N
n=1 be a Rademacher sequence on a second probability space

(Ω̃, F̃ , P̃) and define F̃n = σ(r̃1, . . . , r̃n), n = 1, . . . , N . Fix t1 < · · · < tN in
[0, T ]. On the product space Ω × Ω̃ define the filtration (Gm)2N

m=1 by

G2n−1 := Ftn
× F̃n−1, n = 1, . . . , N,

G2n := Ftn × F̃n, n = 1, . . . , N.

For a random variable X ∈ Lp(Ω × Ω̃;E) define the martingale (Mm)2M
m=1 by

Mm := E(X|Gm), m = 1, . . . , 2N.

Let (dm)2M
m=1 be the associated martingale difference sequence. Then by the

UMDp-property of E,

∥∥∥ N∑
n=1

d2n

∥∥∥
Lp(Ω;E)

6 βp(E)
∥∥∥ 2N∑

m=1

dm

∥∥∥
Lp(Ω;E)

. (12.2)

Indeed, the sum on the left hand side equals 1
2

( ∑2N
m=1 dm +

∑2N
m=1(−1)mdm

)
.

Now fix f1, . . . , fN ∈ Lp(Ω;E) and put X :=
∑N

n=1 r̃nfn. For this choice
of X we have

M2n−1 =
N∑

j=1

E(r̃jfj |Ftn
× F̃n−1) =

n−1∑
j=1

r̃jE(fj |Ftn),

M2n =
N∑

j=1

E(r̃jfj |Ftn × F̃n) =
n∑

j=1

r̃jE(fj |Ftn).

Therefore d2n−1 = 0 and d2n = r̃nE(fj |Ftn
). It then follows from (12.2) that

Ẽ
∥∥∥ N∑

n=1

r̃nE(fn|Ftn)
∥∥∥p

Lp(Ω;E)
= Ẽ

∥∥∥ N∑
n=1

d2n

∥∥∥p

Lp(Ω;E)

6 (βp(E))pẼ
∥∥∥ 2N∑

m=1

dm

∥∥∥p

Lp(Ω;E)

= (βp(E))pẼ
∥∥∥ N∑

n=1

r̃nfn

∥∥∥p

Lp(Ω;E)
. ut
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12.4 Exercises

1. Prove that a Banach space E is a UMDp-space E if and only if for
some (and hence, for all) 1 < p < ∞ there exist constants β±p (E) such
that for all E-valued Lp-martingale difference sequences (dn)N

n=1 and all
Rademacher sequences (r̃n)N

n=1 independent of (dn)N
n=1 we have

1
(β−p (E))p

E
∥∥∥ N∑

n=1

dn

∥∥∥p

6 E
∥∥∥ N∑

n=1

r̃ndn

∥∥∥p

6 (β+
p (E))pE

∥∥∥ N∑
n=1

dn

∥∥∥p

.

2. Let 1 < p < ∞. Prove that if H is a Hilbert space and (dn)N
n=1 is an

H-valued Lp-martingale difference sequence, then

1
cpp

E
∥∥∥ N∑

n=1

dn

∥∥∥p

6 E
( N∑

n=1

‖dn‖2
) p

2
6 Cp

pE
∥∥∥ N∑

n=1

dn

∥∥∥p

,

with constant depending only on p.
Hint: Combine Exercise 1 with the Kahane-Khintchine inequalities.

3. Prove that if X is a UMD-space and Y is a closed subspace, then X/Y is
a UMD-space and give an estimate for its UMD constant.

4. A sequence (xn)∞n=1 in a Banach space E is called a Schauder basis if every
x ∈ E admits a unique representation x =

∑∞
n=1 anxn with convergence

in E. Using a closed graph argument one can show that the projections

DN

∞∑
n=1

anxn :=
N∑

n=1

anxn,

are bounded. In fact, by the uniform boundedness theorem we even have
supN>1 ‖DN‖ <∞.
A Schauder basis is called unconditional if there exists a constant 0 <
C < ∞ such that for all N > 1, all scalars a1, . . . , aN , and all signs
ε1, . . . , εN ∈ {−1,+1} we have

1
C

∥∥∥ N∑
n=1

anxn

∥∥∥ 6
∥∥∥ N∑

n=1

εnanxn

∥∥∥ 6 C
∥∥∥ N∑

n=1

anxn

∥∥∥.
The least admissible constant C is called the unconditionality constant of
(xn)∞n=1.
Let (xn)∞n=1 be an unconditional Schauder basis of E with unconditional-
ity constant C.
a) Show that if (rn)∞n=1 is a Rademacher sequence, then for all N > 1

and all scalars a1, . . . , aN we have

1
C2

∥∥∥ N∑
n=1

anxn

∥∥∥2

6 E
∥∥∥ N∑

n=1

rnanxn

∥∥∥2

6 C2
∥∥∥ N∑

n=1

anxn

∥∥∥2

.
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b) Show that supN>1 ‖DN‖ 6 C.

Assume next that E is a UMD-space.
c) Show that the sequence (DN )∞N=1 is R-bounded.

Hint: Use a) and the vector-valued Stein inequality.

5. In this exercise we prove a vector-valued version of a multiplier theorem
due to Marcinkiewicz. Let (xn)∞n=1 be a Schauder basis of the UMD
Banach space E which has an unconditional blocking, meaning that there
is a sequence 0 = N0 < N1 < . . . and a constant 0 < C < ∞ such that
the corresponding block projections ∆j := DNj −DNj−1 (where D0 = 0)
satisfy

1
C

∥∥∥ k∑
j=1

∆jx
∥∥∥ 6

∥∥∥ k∑
j=1

εj∆jx
∥∥∥ 6 C

∥∥∥ k∑
j=1

∆jx
∥∥∥

for all choices εn ∈ {−1, 1}. Suppose that (λn)N
n=1 is a scalar sequence

such that:

(i) sup
n>1

|λn| <∞;

(ii) sup
j>1

Nj−1∑
n=Nj−1+1

|λn+1 − λn| <∞.

where λ0 = 0. Prove that the multiplier

M

∞∑
n=1

anxn :=
∞∑

n=1

λnanxn

is bounded.
Hint: Write

Mx =
∞∑

j=1

λNj∆jx+
∞∑

j=1

Nj−1∑
n=Nj−1+1

(λn − λn+1)Dn∆jx.

Now use a randomisation argument, the result of the previous exercise,
and Proposition 9.6.
Remark. It can be shown that the trigonometric system (en)n∈Z, where
en(θ) = einθ, is a Schauder basis in Lp(T) for all 1 < p < ∞, but this
basis is unconditional only for p = 2. However, it is a classical result of
Littlewood and Paley that the dyadic blocking of (en)n∈Z is uncondi-
tional in Lp(T) for all 1 < p < ∞ (in this blocking, the j-th block runs
over the indices 2j−1 6 |n| < 2j). In combination with the exercise, this
gives the classical formulation of the Marcinkiewicz multiplier theorem.

Notes. The importance of UMD-spaces extends far beyond the domain of
stochastic analysis. In fact, the subject was created in an effort to extend
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classical Fourier multiplier theorems to Banach-space valued functions. On
the unit circle T, an important Fourier multiplier is the Riesz projection∑

n∈Z
cne

inθ 7→
∞∑

n=0

cne
inθ.

This projection, which corresponds to the multiplier 1{n>0}, is bounded in
Lp(T) for all 1 < p < ∞. On the real line, the Hilbert transform defined by
the principle value integral

Hf(x) :=
1
π

PV
∫ ∞

−∞

f(y)
x− y

dy

is bounded on Lp(R) for all 1 < p < ∞; it can be shown that this operator
corresponds to the multiplier 1

i (1R+−1R−). Both results are classical theorems
of M. Riesz. In the Banach space-valued situation the validity of these results
characterise the UMD-property:

Theorem 12.16. Let 1 < p <∞. For a Banach space E the following asser-
tions are equivalent:

(1) E is a UMDp-space;
(2) The Riesz projection is bounded on Lp(T;E);
(3) The Hilbert transform is bounded on Lp(R;E).

The implications (1)⇒(2) and (1)⇒(3) are due to Burkholder [18] and
McConnell [74], and their converses to Bourgain [10]. We refer to the
review papers [20, 97] for more details. Recently, far-reaching generalisations of
Theorem 12.16 to the boundedness of Fourier multipliers and singular integral
operators in vector-valued Lp-spaces have been proved by several authors.
We refer to the excellent lecture notes by Kunstmann and Weis [61] for an
overview and references to the literature.

The independence of the UMDp-property of the parameter 1 < p < ∞
(Theorem 12.13) was first proved by Maurey [73], who gives credit to Pisier.
The proof via Lemma 12.12 presented here is adapted from Burkholder [19].
The reductions of Section 12.2.1 are a variation of those proposed in [73] and
carried out in detail in the lecture notes of De Pagter [87] and the M.Sc.
thesis of Hytönen [50].

Several alternative proofs of the p-independence exist; some of them char-
acterise the UMDp-property in terms of some other property not involving the
parameter p. In order to state two such characterisations, due to Burkholder
[17, 20], we need to introduce the following terminology.

A Banach space is called a weak UMD-space if there exists a constant β
such that for all L1-martingale difference sequences (dn)N

n=1, all sequences of
signs (εn)N

n=1, and all r > 0 we have

r P
{∥∥∥ N∑

n=1

εndn

∥∥∥ > r
}

6 βE
∥∥∥ N∑

n=1

dn

∥∥∥.
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A Banach space E is called ζ-convex if there exists a function ζ on E×E,
convex in both variables separately, satisfying ζ(0, 0) > 0 and ζ(x, y) 6 ‖x+y‖
if ‖x‖ = ‖y‖ = 1.

Theorem 12.17. For a Banach space E the following assertions are equiva-
lent:

(1) E is a UMD-space;
(2) E is a weak UMD-space;
(3) E is ζ-convex.

For Hilbert spaces one may take ζ(x, y) := 1 + [x, y]. For Lp-spaces an
explicit expression for a function ζ appears to be unknown.

The scalar version of Theorem 12.15 is due to Stein [100]. Its extension
to UMD-spaces is due to Bourgain, who stated the result without proof in
[12]. The proof presented here is taken from [24].

The result of Exercise 4 is due to Clément, De Pagter, Sukochev,
Witvliet [24] and Berkson and Gillespie [6]. Exercise 5 is an abstract
version of Bourgain’s version of the Marcinkiewicz multiplier theorem [12].
Other classical multiplier theorems, such as the Mihlin multiplier theorem,
can be extended to UMD-spaces as well. As was first shown by Weis [108]
it is even possible to consider operator-valued multipliers; typically one has
to replace boundedness assumptions by suitable R-boundedness assumptions.
We refer to Kunstmann and Weis [61] for an overview and further references.
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Stochastic integration II: the Itô integral

We have seen in Lecture 6 how to integrate functions Φ : (0, T ) → L (H,E)
with respect to an H-cylindrical Brownian motion WH . In this lecture we
address the problem of extending the theory of stochastic integration to pro-
cesses Φ : (0, T )×Ω → L (H,E). As it turns out, very satisfactory results can
be obtained in the setting of UMD Banach spaces E. The reason for this is
that in these spaces we can prove a decoupling theorem for certain martingale
difference sequence which, in the context of stochastic integrals, enables us to
replace WH by an independent copy W̃H . The stochastic integral of Φ with
respect to W̃H can be defined path by path using the results of Lecture 6, and
the decoupling inequality allows us to translate integrability criteria for this
integral to the integral with respect to WH .

13.1 Decoupling

We begin with an abstract decoupling result for a suitable class of martingale
difference sequences.

Let 1 < p <∞ be fixed and suppose that (ξn)N
n=1 is a sequence of centred

integrable random variables in Lp(Ω). We assume that a filtration (Fn)N
n=1

is given such that the following conditions are satisfied for n = 1, . . . , N :

(1) ξn is Fn-measurable for all 1 6 n 6 N ;
(2) ξn is independent of Fm for all 1 6 m < n 6 N .

Note that E(ξn|Fm) = Eξn = 0 for 1 6 m < n 6 N , so (ξn)N
n=1 is a martingale

difference sequence with respect to (Fn)N
n=1.

On the product space (Ω×Ω,F ×F ,P×P) we define, with a slight abuse
of notation,

ξn(ω, ω̃) := ξn(ω), ξ̃n(ω, ω̃) := ξn(ω̃). (13.1)

The sequences (ξn)N
n=1 and (ξ̃n)N

n=1 are independent and identically dis-
tributed. The point here is that we identify each ξn with a random variable on
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Ω ×Ω which depends only on the first coordinate and introduce an indepen-
dent copy ξ̃n which depends only on the second coordinate. Clearly, (ξn)N

n=1

and (ξ̃n)N
n=1 are martingale difference sequences on Ω×Ω with respect to the

filtrations (Fn)N
n=1 and (F̃n)N

n=1 defined by

Fn := Fn × {∅, Ω}, F̃n := {∅, Ω} ×Fn, (13.2)

where again there is a slight abuse of notation in the first definition.
Let (vn)N

n=1 be a predictable sequence of E-valued random variables on Ω.
Recall that this means that vn is Fn−1-measurable for n = 1, . . . , N , with the
understanding that F0 = {∅, Ω} (so that v1 is constant almost surely). We
identify (vn)N

n=1 with a predictable sequence (vn)N
n=1 on Ω × Ω in the same

way as above by putting vn(ω, ω̃) := vn(ω).

Theorem 13.1 (Decoupling). If, in addition to the above assumptions, E
is a UMD-space, then

E
∥∥∥ N∑

n=1

ξnvn

∥∥∥p

hp,E E
∥∥∥ N∑

n=1

ξ̃nvn

∥∥∥p

with constants depending on p and E only.

Proof. The proof uses a trick similar to that of Theorem 12.15.
For n = 1, . . . , N define

d2n−1 := 1
2 (ξn + ξ̃n)vn and d2n := 1

2 (ξn − ξ̃n)vn.

We claim that (dj)2N
j=1 is a martingale difference sequence with respect to the

filtration (Dj)2N
j=1, where

D2n−1 = σ(Fn−1, F̃n−1, ξn + ξ̃n), D2n = σ(Fn, F̃n).

In view of

N∑
n=1

ξnvn =
2N∑
j=1

dj and
N∑

n=1

ξ̃nvn =
2N∑
j=1

(−1)j+1dj ,

the result then follows from the definition of the UMDp-property.
It remains to prove the claim. We begin by observing that (dn)2N

n=1 is
(Dn)2N

n=1-adapted. Moreover,

E(d2n|D2n−1)
(i)
= 1

2vnE(ξn − ξ̃n|Fn−1, F̃n−1, ξn + ξ̃n)
(ii)
= 1

2vnE(ξn − ξ̃n|ξn + ξ̃n)
(iii)
= 0.

Here (i) follows from the Fn−1-measurability of vn, (ii) from Proposition 11.7
and the independence of σ(ξn, ξ̃n) and σ(Fn−1, F̃n−1) (which follows from the
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independence of ξn and Fn−1), and (iii) uses that ξn and ξ̃n are independent
and identically distributed (Exercise 11.2). Similarly,

E(d2n−1|D2n−2) = 1
2vnE(ξn + ξ̃n|Fn−1, F̃n−1) = 1

2vnE(ξn + ξ̃n) = 0

since ξn + ξ̃n is independent of σ(Fn−1, F̃n−1) and ξn, ξ̃n are centred. ut

13.2 Stochastic integration

Let (Ω,F ,P) be a probability space. A function Φ : (0, T )×Ω → L (H,E) is
said to be a finite rank adapted step process with respect to a given filtration
F = (Ft)t∈[0,T ] if it is of the form

Φ(t, ω) =
M∑

m=1

N∑
n=1

1(tn−1,tn)(t)1Amn(ω)
k∑

j=1

hj ⊗ xjmn, (13.3)

where 0 6 t0 < · · · < tN 6 T , for each n = 1, . . . , N the sets A1n, . . . , AMn

are disjoint and belong to Ftn−1 , the vectors h1, . . . , hk ∈ H are orthonormal,
and the vectors xjmn belong to E.

In what follows we assume that WH is an H-cylindrical Brownian motion
on (Ω,F ,P), adapted to F in the sense that the random variables WH(t)h
are Ft-measurable and the increments WH(t)h−WH(s)h are independent of
Fs for t > s. It follows from Exercise 11.4 that the filtration FWH generated
by WH has these properties.

The stochastic integral with respect to WH of a finite rank adapted step
process Φ of the form (13.3) is defined as∫ T

0

Φ(t) dWH(t) :=
M∑

m=1

N∑
n=1

1Amn

k∑
j=1

(WH(tn)hj −WH(tn−1)hj)xjmn.

We leave it to the reader to check that this definition does not depend on the
particular representation of Φ in (13.3). Note that

∫ T

0
Φ(t) dWH(t) belongs to

Lp(Ω,FT ;E) for all 1 6 p <∞, and satisfies

E
∫ T

0

Φ(t) dWH(t) = 0.

The latter follows by linearity from

E
(
1Amn(WH(tn)hj −WH(tn−1)hj)

)
= E

(
E(1Amn

(WH(tn)hj −WH(tn−1)hj)|Ftn−1)
)

= E(1AmnE(WH(tn)hj −WH(tn−1)hj)|Ftn−1) = 0.
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For each ω ∈ Ω the trajectory t 7→ Φω(t) := Φ(t, ω) is a finite rank step
function and therewith defines an element RΦω of γ(L2(0, T ;H), E). This
results in a simple random variable

RΦ : Ω → γ(L2(0, T ;H), E).

In order to extend the above stochastic integral to a more general class of
L (H,E)-valued processes we shall proceed as in Lecture 6 by estimating the
Lp(Ω;E)-norm of the stochastic integral in terms of RΦ. Due to the presence
of the random variables 1Amn , however, the Gaussian computation of Theorem
6.14 breaks down. In the proof of the next theorem we circumvent this problem
by replacing WH by an independent copy W̃H and use the decoupling estimate
of Theorem 13.1.

Theorem 13.2 (Itô isomorphism). Let E be a UMD space and fix 1 < p <
∞. For all finite rank adapted step processes Φ : (0, T ) × Ω → L (H,E) we
have

E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p

hp,E E‖RΦ‖p
γ(L2(0,T ;H),E),

with constants depending only on p and E.

Proof. As in (13.1) we identify WH with an H-cylindrical Brownian motion
on the product Ω × Ω and define an independent copy on W̃H on Ω × Ω by
putting

WH(t)h(ω, ω̃) := WH(t)h(ω), W̃H(t)h(ω, ω̃) := WH(t)h(ω̃).

If Φ : (0, T )×Ω → L (H,E) is a finite rank adapted step process of the form
(13.3), we define the decoupled stochastic integral∫ T

0

Φ(t) dW̃H(t) :=
N∑

n=1

M∑
m=1

1Amn

k∑
j=1

(
W̃H(tn)hj − W̃H(tn−1)hj

)
xjmn.

The plan of the proof is to apply Theorem 13.1 to the real-valued sequence
(ξjn) 16j6k

16n6N
and the E-valued sequence (vjn) 16j6k

16n6N
,

ξjn := WH(tn)hj −WH(tn−1)hj , vjn :=
M∑

m=1

1Amn ⊗ xjmn.

With these notations,∫ T

0

Φ(t) dWH(t) =
N∑

n=1

k∑
j=1

ξjnvjn,

∫ T

0

Φ(t) dW̃H(t) =
N∑

n=1

k∑
j=1

ξ̃jnvjn.
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We consider the filtration (Fjn) 16j6k
16n6N

, where Fjn is the σ-algebra gener-

ated by all ξj′n′ with (j′, n′) 6 (j, n); the pairs are ordered lexicographically
according to the rule (j′, n′) 6 (j, n) ⇐⇒ n′ < n or [n′ = n & j′ 6 j].

With respect to this filtration, the sequence (ξjn) 16j6k
16n6N

is centred and

has the properties (1) and (2) stated at the beginning of Section 13.1 and
(vjn)N

16j6k
16n6N

is predictable.

Let us denote by E1 and E2 the expectations with respect to the first and
second coordinate of Ω×Ω. Applying successively Theorem 13.1, the Kahane-
Khintchine inequality, and Theorem 6.14 (pointwise with respect to Ω1), we
obtain

E1E2

∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p

hp,E E1E2

∥∥∥∫ T

0

Φ(t) dW̃H(t)
∥∥∥p

hp,E E1

(
E2

∥∥∥∫ T

0

Φ(t) dW̃H(t)
∥∥∥2) p

2

hp,E E1‖RΦ‖p
γ(L2(0,T ;H),E). ut

Definition 13.3. A random variable R ∈ Lp(Ω; γ(L2(0, T ;H), E)) is called
adapted if it belongs to the closure in Lp(Ω; γ(L2(0, T ;H), E)) of the finite
rank adapted step processes.

The closed subspace in Lp(Ω; γ(L2(0, T ;H), E)) of all adapted elements
with be denoted by Lp

F(Ω; γ(L2(0, T ;H), E)). Theorem 13.2 shows that the
stochastic integral extends uniquely to an isomorphic embedding

JWH

T : Lp
F(Ω; γ(L2(0, T ;H), E)) → Lp(Ω;E).

Definition 13.4. Let E be a Banach space and fix 1 < p < ∞. A process
Φ : (0, T ) × Ω → L (H,E) is said to be Lp-stochastically integrable with
respect to the H-cylindrical Brownian motion WH if there exists a sequence
of finite rank adapted step processes Φn : (0, T )×Ω → L (H,E) such that:

(1) for all h ∈ H we have limn→∞ Φnh = Φh in measure;

(2) there exists a random variable X ∈ Lp(Ω;E) such that lim
n→∞

∫ T

0

Φn dWH =

X in Lp(Ω;E).

The Lp-stochastic integral of Φ is then defined as∫ T

0

ΦdWH := lim
n→∞

∫ T

0

Φn dWH .
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The remarks (a) and (b) following Definition 6.15 extend to the present
situation, but (c) is no longer automatic since stochastic integrals of step
processes are no longer Gaussian. This is the reason why the adjective ‘Lp-’
has been built into the definition.

Theorem 13.5. Let 1 < p < ∞. If Φ : (0, T ) × Ω → L (H,E) is Lp-
stochastically integrable with respect to WH , then the stochastic integral pro-
cess

( ∫ t

0
ΦdWH

)
t∈[0,T ]

is an E-valued Lp-martingale which has a continuous
version satisfying the maximal inequality

E
(

sup
t∈[0,T ]

∥∥∥∫ t

0

ΦdWH

∥∥∥p)
6

( p

p− 1
)p E

∥∥∥∫ T

0

ΦdWH

∥∥∥p

.

Proof. Choose a sequence (Φn)n>1 of finite rank adapted step processes
such that the conditions of Definition 13.4 are satisfied and put Xn(t) :=∫ t

0
Φn dWH . Clearly, there exists a continuous version X̃n of each Xn, and

by the Pettis measurability theorem we have X̃n ∈ Lp(Ω;C([0, T ];E)). To
see that this theorem can be applied in the present situation, first note
that there exists a separable closed subspace E0 of E such that each Xn

has trajectories in C([0, T ];E0). The space C([0, T ];E0) is separable, and
the linear span of the functionals δt ⊗ x∗ is norming in its dual; moreover,
〈Xn, δt ⊗ x∗〉 =

∫ t

0
Φ∗nx

∗ dWH almost surely and the right hand side is mea-
surable as a function on Ω.

By Doob’s maximal inequality (we use that the stochastic integral process
is a martingale; see Exercise 3), for every choice of 0 6 t1 < · · · < tN 6 T we
have

E
(

sup
j=1,...,N

‖X̃n(tj)− X̃m(tj)‖p
)

6
( p

p− 1
)p E‖Xn(T )−Xm(T )‖p.

Hence, by path continuity and Fatou’s lemma,

E
(

sup
t∈[0,T ]

‖X̃n(t)− X̃m(t)‖p
)

6
( p

p− 1
)p E‖Xn(T )−Xm(T )‖p.

This inequality shows that the sequence (X̃n)n>1 is a Cauchy sequence in
Lp(Ω;C([0, T ];E)). Since for all t ∈ [0, T ] we have limn→∞Xn(t) = X(t) in
Lp(Ω;E), the limit X̃ = limn→∞ X̃n defines a continuous version of X.

The final inequality follows from Doob’s maximal inequality in the same
way as above (replace X̃n − X̃m by X̃). ut

As in Lecture 6, in the special case E = R we may identify L (H,R) with
H and Theorem 13.2 reduces to the statement that the Lp-stochastic integral
of an adapted step process φ : (0, T )×Ω → H satisfies

E
∥∥∥∫ T

0

φdWH

∥∥∥p

hp E‖φ‖p
L2(0,T ;H) (13.4)
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The constants depend only on p since the UMDp-constant of Hilbert spaces
only depend on p. From this it is not hard to see (Exercise 2) that a strongly
adapted measurable process φ : (0, T )×Ω → H is Lp-stochastically integrable
with respect toWH if and only if φ ∈ Lp(Ω;L2(0, T ;H)), and the isomorphism
(13.4) extends to this situation.

Definition 13.6. A process Φ : (0, T ) × Ω → L (H,E) is called H-strongly
measurable if for each h ∈ H the process Φh : (0, T ) × Ω → E is strongly
measurable. Such a process Φ is called adapted if for each h ∈ H the process
Φh is adapted.

We are now in a position to state the main result of this section, which
extends Theorem 6.17 to L (H,E)-valued processes.

Theorem 13.7. Let E be a UMD space and fix 1 < p <∞. For an H-strongly
measurable adapted process Φ : (0, T )×Ω → L (H,E) the following assertions
are equivalent:

(1) Φ is Lp-stochastically integrable with respect to WH ;
(2) Φ∗x∗ ∈ Lp(Ω;L2(0, T ;H)) for all x∗ ∈ E∗, and there exists a random

variable X ∈ Lp(Ω;E) such that for all x∗ ∈ E∗,

〈X,x∗〉 =
∫ T

0

Φ∗x∗ dWH(t) in Lp(Ω).

(3) Φ∗x∗ ∈ Lp(Ω;L2(0, T ;H)) for all x∗ ∈ E∗, and there exists a random
variable R ∈ Lp(Ω; γ(L2(0, T ;H), E)) such that for all f ∈ L2(0, T ;H)
and x∗ ∈ E∗,

〈Rf, x∗〉 =
∫ T

0

〈Φ(t)f(t), x∗〉 dt in Lp(Ω).

If these equivalent conditions are satisfied, the random variables X and R are
uniquely determined, we have X =

∫ T

0
ΦdWH in Lp(Ω;E), and

E
∥∥∥∫ T

0

ΦdWH

∥∥∥p

hp,E E‖R‖p
γ(L2(0,T ;H),E).

Moreover, R ∈ Lp
F(Ω; γ(L2(0, T ;H), E)), that is, R is adapted.

Proof. We sketch the main steps and refer to the Notes for more information.
(1)⇒(2): This is proved in the same way as in Theorem 6.17. Note that

the stochastic integrals
∫ T

0
Φ∗x∗ dWH are well-defined by the above remarks.

(2)⇒(3): For the special case where F is the filtration generated by WH ,
a proof will be outlined below.

(1)⇒(3): This is an immediate consequence of Theorem 13.2: if (Φn)∞n=1 is
an approximating sequence for Φ, then the operators (RΦn)∞n=1 form a Cauchy
sequence in Lp

F(Ω; γ(L2(0, T ;H), E)) and its limit has the desired properties.
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(3)⇒(1): First one shows that R is adapted (see Exercise 1). Knowing this,
the proof can be finished in the same way as the corresponding implication of
Theorem 6.17. ut

Unfortunately we are not able to give a fully self-contained proof of the
implication (2)⇒(3). In the sequel we shall not need this implication; we only
use the equivalence (1)⇔(3) which is the most useful part of the theorem.
In spite of this we want to sketch a proof of (2)⇒(3) under the simplifying
assumption that the filtration is the one generated by WH . In this situation we
can apply a version of the so-called martingale representation theorem for H-
cylindrical Brownian motions WH . In most textbook proofs, the integrator is a
Brownian motion (or a more general martingale); the extension to cylindrical
Brownian motions is obtained from it by an approximation argument as in
the proof of the martingale convergence theorem (Theorem 11.21).

Recall that the filtration FWH has been defined in Exercise 11.4.

Lemma 13.8. Let 1 < p < ∞ and ξ ∈ Lp(Ω,FWH

T ). There exists unique
φ ∈ Lp

FWH
(Ω;L2(0, T ;H)) such that

ξ = Eξ +
∫ T

0

φdWH .

The proof of this lemma is beyond the scope of these lectures. Roughly
speaking it proceeds like this. First, we may assume that Eξ = 0. By approx-
imation we may further assume that H is finite-dimensional. From

WH(t)h =
∫ T

0

1(0,t) ⊗ h dWH(t)

we see that every X in the linear span of the random variables WH(t)h can
be represented by a stochastic integral. Since the stochastic integral defines
an isomorphic embedding, it remains to show that this span is dense in the
closed subspace of Lp(Ω,FWH

T ;H) consisting of all mean 0 elements.
The next result extends the lemma to UMD spaces. Recall that

JWH

T : Lp
F(Ω; γ(L2(0, T ;H), E)) → Lp(Ω;E)

is the isomorphic embedding of Theorem 13.2.

Theorem 13.9. Let E be a UMD space, let 1 < p < ∞, and let X ∈
Lp(Ω,FWH

T ;E). There exists a unique R ∈ Lp

FWH
(Ω; γ(L2(0, T ;H), E)) such

that
X = EX + JWH

T (R).

Proof. Choose a sequence of simple FWH

T -measurable random variables Xn

such that limn→∞Xn = X in Lp(Ω;E). Let us writeXn =
∑Mn

m=1 1Amn
⊗xmn.
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By Lemma 13.8, there exist unique processes φmn ∈ Lp

FWH
(Ω;L2(0, T ;H))

such that

1Amn = E1Amn +
∫ T

0

φmn dWH .

Put Φn(t)h :=
∑M

m=1[φmn, h]xmn. The process Φn : (0, T )×Ω → L (H,E) is
Lp-stochastically integrable with respect to WH and

Xn = EXn +
∫ T

0

Φn dWH .

Let Rn ∈ Lp
F(Ω; γ(L2(0, T ;H), E) be defined by

Rn(ω)f :=
Mn∑

m=1

φmn(ω)⊗ xmn, f ∈ L2(0, T ;H).

Since limn→∞Xn = X in Lp(Ω;E), the isomorphism of Theorem 13.2 implies
that the sequence (Rn)∞n=1 is Cauchy in Lp(Ω; γ(L2(0, T ;H), E)). The limit
R has the desired properties.

Uniqueness follows from the injectivity of JWH

T . ut

As a corollary we observe that the stochastic integral defines an isomor-
phism of Banach spaces

JWH

T : Lp

FWH
(Ω; γ(L2(0, T ;H), E)) ' Lp

0(Ω,F
WH

T ;E),

where Lp
0(Ω,F

WH

T ;E) is the closed subspace of Lp(Ω,FWH

T ;E) consisting of
all elements with mean 0.

Proof (Proof of Theorem 13.7 (2)⇒(3) for the filtration FWH ). By the Pettis
measurability theorem, the random variable X belongs to Lp

0(Ω,F
WH

T ;E).
The element R provided by Theorem 13.9 has the desired properties. ut

13.3 Stochastic integrability of Lp-martingales

We return to the setting where WH is an H-cylindrical Brownian motion,
adapted to a filtration F. The main result of this section states that if E is a
UMD space and M is a γ(H,E)-valued Lp-martingale with respect to F, then
M is Lp-stochastically integrable with respect to WH . The proof has three
ingredients: the characterisation of Lp-stochastic integrability (the equivalence
(1)⇔(3) of Theorem 13.7)), the γ-multiplier theorem (Theorem 9.13), and the
vector-valued Stein inequality (Theorem 12.15).

Theorem 13.10. Let E be a UMD space and fix 1 < p < ∞. Let WH be
an H-cylindrical Brownian motion, adapted to a filtration F, and let M :
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[0, T ] × Ω → γ(H,E) be an Lp-martingale with respect to F. Then M is Lp-
stochastically integrable with respect to WH and we have(

E
∥∥∥∫ T

0

M(t) dWH(t)
∥∥∥p) 1

p

.p,E

√
T

(
E‖M(T )‖p

γ(H,E)

) 1
p ,

with a constant depending only on p and E.

Proof. First we prove the result under the additional assumption thatM(T ) ∈
L∞(Ω; γ(H,E)). By the L∞-contractivity of the conditional expectation we
then have M ∈ L∞((0, T ) × Ω; γ(H,E)). In particular, for all x∗ ∈ E∗ we
have M∗x∗ ∈ Lp(Ω;L2(0, T ;H)), and even M∗x∗ ∈ Lp

F(Ω;L2(0, T ;H)) since
M is adapted.

Let us write B := Lp(Ω;E) for brevity. Define the bounded function N :
[0, T ] → L (B) by

N(t)ξ := E(ξ|Ft), ξ ∈ B, t ∈ [0, T ].

Since E is a UMD space, by Theorem 12.15 the family {N(t) : t ∈ [0, T ]}
is R-bounded on B, and therefore γ-bounded, with γ-bound depending only
on p and E. By Theorem 11.21, for every ξ ∈ B the function t 7→ N(t)ξ
has left limits at every point [0, T ]. In particular, these functions are strongly
measurable.

By the γ-Fubini isomorphism (Theorem 5.22), for each t ∈ [0, T ] we may
identify the random variable M(t) ∈ Lp(Ω; γ(H,E)) with a unique operator
M̃(t) ∈ γ(H,B) by the formula (M̃(t)h)(ω) = M(t, ω)h. Define a constant
function G : [0, T ] → γ(H,B) by

G(t) := M̃(T ), t ∈ [0, T ].

This function represents the element RG ∈ γ(L2(0, T ;H), B) satisfying

‖RG‖γ(L2(0,T ;H),B) =
√
T ‖M̃(T )‖γ(H,B) hp

√
T

(
E‖M(T )‖p

γ(H,E)

) 1
p ,

where we used the result of Exercise 5.3.
By the martingale property, for all t ∈ [0, T ] we have M̃(t) = N(t)M̃(T )

in B. Now we apply Theorem 9.13 to conclude that M̃ represents an element
R ∈ γ(L2(0, T ;H), B) satisfying

‖R‖γ(L2(0,T ;H),B) .p,E ‖RG‖γ(L2(0,T ;H),B).

Using Theorem 5.22 once more, we can identify R with an element X ∈
Lp(Ω; γ(L2(0, T ;H), E)) by the formula X(ω)f = (Rf)(ω). Below we check
that X∗x∗ = M∗x∗ in Lp(Ω;L2(0, T ;H)) for all x∗ ∈ E∗. Assuming this for
the moment, it follows from Theorem 13.7(3)⇒(1) that M is Lp-stochastically
integrable and satisfies
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E

∥∥∥∫ T

0

M(t) dWH(t)
∥∥∥p) 1

p hp,E

(
E‖X‖p

γ(L2(0,T ;H),E)

) 1
p

hp ‖R‖γ(L2(0,T ;H),B) .p,E

√
T (E‖M(T )‖p

γ(H,E))
1
p .

To prove that X∗x∗ = M∗x∗ for all x∗ ∈ E∗, let f ∈ L2(0, T ;H) and
x∗ ∈ E∗ be arbitrary and note that for all A ∈ F ,

E(〈Mf, x∗〉1A) =
∫

Ω

∫ T

0

〈M(t, ω)f(t), x∗〉1A(ω) dt dP (ω)

=
∫ T

0

∫
Ω

〈M(t, ω)f(t), x∗〉1A(ω) dP (ω) dt

= E
∫ T

0

〈M̃(t)f(t), 1A ⊗ x∗〉 dt

= E〈Rf, 1A ⊗ x∗〉 = E(〈Xf, x∗〉1A).

To conclude the proof we remove the assumption M(T ) ∈ L∞(Ω;E).
Choose a sequence of FT -measurable simple random variables Mn(T ) con-
verging to M(T ) in Lp(Ω;E), and define Mn(t) := E(Mn(T )|Ft). Since
Mn(T ) ∈ L∞(Ω;E), we may apply what we proved above to the martingales
Mn. We obtain that each Mn is Lp-stochastically integrable with respect to
WH and (

E
∥∥∥∫ T

0

Mn(t) dWH(t)
∥∥∥p) 1

p

6 C
√
T

(
E‖Mn(T )‖p

γ(H,E)

) 1
p ,

with a constant C independent of n. Similarly, by the above applied to the
martingales Mn−Mm, we find that the stochastic integrals

∫ T

0
Mn(t) dWH(t)

are Cauchy in Lp(Ω;E). By the Itô isomorphism, this means that the cor-
responding elements Rn ∈ Lp

F(Ω; γ(L2(0, T ;H), E)) are Cauchy and there-
fore converge to a limit R ∈ Lp

F(Ω; γ(L2(0, T ;H), E)). Clearly, R∗x∗ =
limn→∞R∗nx

∗ = limn→∞M∗
nx

∗ = M∗x∗ in Lp(Ω;L2(0, T ;H)), and the con-
clusion of the theorem now follows via Theorem 13.7. ut

13.4 Exercises

In the exercises 1-3 we fix 1 < p <∞.

1. In this exercise we compare the two notions of adaptedness given in Def-
initions 13.3 and 13.6.
a) Show that R ∈ Lp(Ω; γ(L2(0, T ;H), E)) is adapted if and only if the

random variables R(1(0,t)f) : Ω → E have strongly Ft-measurable
versions for all t ∈ (0, T ) and f ∈ L2(0, T ;H).
Hint: For the ‘if’ part, approximate with simple random variables and
use that the finite rank step functions are dense in γ(L2(0, T ;H), E).
To secure adaptedness, build in a small shift before approximating.
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Now suppose that Φ : (0, T ) → L (H,E) is H-strongly measurable and
assume that the conditions of Theorem 13.7 (3) be satisfied; let R ∈
Lp(Ω; γ(L2(0, T ;H), E)) be as in (3).
b) Show that if Φ is adapted, then R is adapted.

2. In the discussion after Definition 13.4 it was observed that a strongly mea-
surable adapted process φ : (0, T )×Ω → H is Lp-stochastically integrable
with respect to WH if and only if φ ∈ Lp(Ω;L2(0, T ;H)). Prove this.
Hint: If φ ∈ Lp(Ω;L2(0, T ;H)), then by the previous exercise φ is adapted
as an element of Lp(Ω;L2(0, T ;H)).

3. Let Φ : (0, T )×Ω → L (H,E) be Lp-stochastically integrable with respect
to WH . Show that the stochastic integral process

( ∫ t

0
ΦdWH

)
t∈[0,T ]

is a
martingale.
Hint: Approximate with finite rank adapted step processes.

If E is a UMD space with type 2 and Φ : (0, T )×Ω → γ(H,E) is an adapted
and strongly measurable process such that

E
∫ T

0

‖Φ(t)‖2γ(H,E) dt <∞,

then Φ is stochastically integrable with respect to H-cylindrical Brownian
motions WH ; this follows from Theorem 13.7 and Exercise 5.4. In the next
two exercises we show that the UMD assumption can essentially be dropped
from this statement.

4. A Banach space E has martingale type p ∈ [1, 2] if there exists a constant
Mp(E) such that for any Lp-martingale sequence (dn)N

n=1 with values in
E we have

E
∥∥∥ N∑

n=1

dn

∥∥∥p

6 (Mp(E))p
N∑

n=1

E‖dn‖p.

a) Show that every martingale type p space has type p.
b) Show that every UMD space with type p has martingale type p.
In both cases, give relations between the constants.

c) Deduce that Lp-spaces, 1 < p <∞, have martingale type min{p, p′},
where 1

p + 1
p′ = 1.

5. Let E be a martingale type 2 space.
a) Show that if WH is an H-cylindrical Brownian motion and Φ : (0, T )×

Ω → L (H,E) is an adapted finite rank step process, then

E
∥∥∥∫ T

0

ΦdWH

∥∥∥2

6 (M2(E))2 E
∫ T

0

‖Φ(t)‖2γ(H,E) dt.
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b) Conclude that if Φ : (0, T ) × Ω → γ(H,E) is an adapted strongly
measurable process satisfying

E
∫ T

0

‖Φ(t)‖2 dt <∞,

then Φ is stochastically integrable with respect to WH , with the same
estimate as before.

Notes. A systematic treatment of decoupling inequalities is presented in the
monograph of Gine and de la Peña [31]. The proof of the decoupling in-
equality (Theorem 13.1) is based on an idea of Montgomery-Smith [78].

The idea to use decoupling inequalities for obtaining bounds on stochastic
integrals in UMD spaces was first used by Garling [40], who only consid-
ered step processes and used the resulting estimates to investigate certain
geometric properties of UMD spaces. Using a more delicate decoupling re-
sult together with Burkholder’s characterisation of UMD spaces through
ζ-convexity (Theorem 12.17), McConnell [75] proved that a UMD-valued
process is stochastically integrable if almost surely its trajectories are stochas-
tically integrable with respect to an independent copy of the Brownian motion.
In view of Theorem 6.17 this result can be viewed as an ‘almost sure’ version
of the implication (3)⇒(1) of Theorem 13.7.

Our approach to vector-valued stochastic integration in UMD spaces via
γ-radonifying norms is taken from [82], where Theorem 13.7 was proved. In
that paper, McConnell’s result is recovered using a stopping time argument.

The equivalence of norms in (13.4) is a special case of an inequality of
Burkholder, Davis, Gundy which, in the more general situation where the
integrator is a continuous-time martingale M , relates the norms of stochastic
integrals to the norms of the quadratic variation process of M . For more
details we refer to Karatzas and Shreve [59], Revuz and Yor [94], or
Kallenberg [55].

An alternative proof of the implication (2)⇒(3) of Theorem 13.7, which is
based on finite-dimensional approximations, covariance domination, and the
theorem of Hoffmann-Jorgensen and Kwapień (Theorem 5.9) is given in
[82]. A detailed proof of the implication (3)⇒(1) is contained in [81].

A systematic theory of stochastic integration in martingale type 2 space
has been developed by Neidhardt [85], Dettweiler [33], and Brzeźniak
[13]. The first two authors assumed that E be 2-uniformly smooth, a property
which was subsequently shown to be equivalent to the martingale type 2
property by Pisier [91]. For an overview, see Brzeźniak [15].
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Linear equations with multiplicative noise

In this lecture we study stochastic evolution equations with multiplicative
noise of the form{

dU(t) = AU(t) dt+B(U(t)) dWH(t), t ∈ [0, T ],
U(0) = u0.

(SCP)

Under suitable assumptions on E, the semigroup S generated by A on E,
and the function B : E → γ(H,E), we shall prove existence, uniqueness, and
Hölder regularity of mild solutions. Such a solution is defined as an adapted
process U such that for all t ∈ [0, T ] we have

U(t) = S(t)u0 +
∫ t

0

S(t− s)B(U(s)) dWH(s) (14.1)

almost surely. Its existence and uniqueness is proved by a fixed point argument
in the completion V p

θ (Ω; γ(L2(0, T ), E)) of the space of all adapted finite rank
step processes φ : (0, T )×Ω → E such that

s 7→ (t− s)−θφ(s) belongs to Lp(Ω; γ(L2(0, t), E)),

uniformly with respect to 0 < t 6 T . The reason for working in this compli-
cated space is the fact that in many applications (e.g. when S is an analytic
semigroup) the set {tθS(t) : t ∈ (0, T )} is γ-bounded.

The strategy for the fixed point argument is as follows. First, we find
conditions on B which guarantee that it acts as a Lipschitz map from
V p

θ (Ω; γ(L2(0, T ), E)) to V p
θ (Ω; γ(L2(0, T ;H), E)). Note that under these con-

ditions, the stochastic integrals in (14.1) are well defined by the results of the
previous lecture. Then, we prove that the process on the right hand side of
(14.1) is in V p

θ (Ω; γ(L2(0, T ), E)) again.
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14.1 γ-Lipschitz functions

Let H be a non-zero Hilbert space, let E and F be Banach spaces, and let
(γmn)∞m,n=1 and (γn)∞n=1 be Gaussian sequences.

Proposition 14.1. Let B : E → γ(H,F ) be a function such that Bh : E → F
is strongly measurable for all h ∈ H, and let C > 0 be a constant. The
following assertions are equivalent:

(1) for all orthonormal sequences (hm)M
m=1 in H and all sequences (xn)N

n=1

and (yn)N
n=1 in E,

E
∥∥∥ M∑

m=1

N∑
n=1

γmn(B(xn)−B(yn))hm

∥∥∥2

6 C2E
∥∥∥ N∑

n=1

γn(xn − yn)
∥∥∥2

;

(2) for all simple functions φ1, φ2 : (0, T ) → E we have B(φ1), B(φ2) ∈
γ(L2(0, T ;H), F ) and

‖B(φ1)−B(φ2)‖γ(L2(0,T ;H),F ) 6 C‖φ1 − φ2‖γ(L2(0,T ),E);

(3) for all σ-finite measure spaces (A,A , µ) and all µ-simple functions φ1, φ2 :
A→ E we have B(φ1), B(φ2) ∈ γ(L2(A;H), F ) and

‖B(φ1)−B(φ2)‖γ(L2(A;H),F ) 6 C‖φ1 − φ2‖γ(L2(A),E).

Note that if H is separable, then Bh : E → F is strongly measurable for
all h ∈ H if and only if B : E → γ(H,F ) is strongly measurable; this is
proved in Proposition 5.14 (with strong µ-measurability replaced by strong
measurability).

Proof. Let us first prove that (1) is equivalent to

(1′) for all orthonormal sequences (hm)M
m=1 in H, all sequences (an)N

n=1 of
positive real numbers and all sequences (xn)N

n=1 and (yn)N
n=1 in E,

E
∥∥∥ M∑

m=1

N∑
n=1

anγmn(B(xn)−B(yn))hm

∥∥∥2

6 C2E
∥∥∥ N∑

n=1

anγn(xn − yn)
∥∥∥2

.

For integers an, the equivalence follows by applying (1) with the xn and yn

repeated an times and noting that the sum of an independent standard Gaus-
sians γ(1)

n + · · ·+γ
(an)
n has the same distribution as anγn. The case of rational

an is readily reduced to this, and the general case follows by approximation.
The equivalence of (1′), (2), (3) follows from the following general observa-

tion. Let (A,A , µ) be any σ-finite measure space. If (hm)M
m=1 is orthonormal

in H and φ1 =
∑N

n=1 1An⊗xn and φ2 =
∑N

n=1 1An⊗yn are µ-simple functions
with values in E, with the sets An disjoint, then by Lemma 5.7 (noting that
the sequence ( 1√

µ(An)
1An)N

n=1 is orthonormal in L2(A)),
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‖B(φ1)−B(φ2)‖2γ(L2(A;H),F ) = E
∥∥∥ M∑

m=1

N∑
n=1

√
µ(An)γnm(B(xn)−B(yn))hm

∥∥∥2

and

‖φ1 − φ2‖2γ(L2(A),E) = E
∥∥∥ N∑

n=1

√
µ(An)γn(xn − yn)

∥∥∥2

. ut

Note that if (A,A , µ) is a σ-finite measure space with µ(A) 6= 0 and
B : E → L (H,F ) is a function such that B(φ) ∈ γ(L2(A;H), F ) for every
µ-simple function φ : A → E, then B(x) ∈ γ(H,F ) for all x ∈ E. Indeed,
consider any set A0 ∈ A with 0 < µ(A0) <∞. Then B(1A0⊗x) = 1A0⊗B(x)
belongs to γ(L2(A;H), F ), which is only possible if B(x) ∈ γ(H,F ). This
explains why we restrict ourselves to functions B : E → γ(H,F ).

Definition 14.2. A strongly measurable function B : E → γ(H,F ) is called
γ-Lipschitz continuous if the equivalent conditions of Proposition 14.1 hold.
The least possible constant in these conditions is denoted by Lipγ(B).

By takingH = R we obtain the notion of a γ-Lipschitz continuous function
from E to F . Clearly, every γ-Lipschitz continuous function B : E → F is
Lipschitz continuous and we have Lip(B) 6 Lipγ(B).

It is a natural question whether conversely Lipschitz functions are au-
tomatically γ-Lipschitz. In this direction we have the following result (cf.
Exercise 3), which gives a first example of γ-Lipschitz continuous mappings.

Example 14.3. If F has type 2, then every Lipschitz function B : E → γ(H,F )
is γ-Lipschitz continuous and we have Lip(B) 6 Lipγ(B) 6 T γ

2 Lip(B), where
T γ

2 is the Gaussian type 2 constant of F .

This result actually characterises the type 2 property; see the Notes at
the end of the lecture. Further examples of γ-Lipschitz continuous mappings,
relevant for applications to stochastic PDEs, will be given in the next lecture.

14.2 Pisier’s property

Our next aim is to prove certain weighted bounds for stochastic convolutions.
In order to keep the technicalities at a reasonable level we shall assume an
additional geometric property on the underlying Banach space E, first studied
by Pisier.

Let (r′j)
∞
j=1 and (r′′k)∞k=1 be Rademacher sequences on probability spaces

(Ω′,F ′,P′) and (Ω′′,F ′′,P′′), and let (rjk)∞j,k=1 be a doubly indexed Rade-
macher sequence on a probability space (Ω,F ,P). In the next result, recall
that (r′jr

′′
k)∞j,k=1 is not a Rademacher sequence (see Exercise 3.2).

Proposition 14.4. For a Banach space E the following assertions are equiv-
alent:
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(1) there exists a constant 0 < C < ∞ such that for all finite sequences
(ajk)n

j,k=1 in R and (xjk)n
j,k=1 in E we have

E′E′′
∥∥∥ n∑

j,k=1

ajkr
′
jr
′′
kxjk

∥∥∥2

6 C2
(

max
16j,k6n

|ajk|
)
E′E′′

∥∥∥ n∑
j,k=1

r′jr
′′
kxjk

∥∥∥2

;

(2) there exists a constant 0 < C < ∞ such that for all finite sequences
(xjk)n

j,k=1 in E we have

1
C2

E
∥∥∥ n∑

j,k=1

rjkxjk

∥∥∥2

6 E′E′′
∥∥∥ n∑

j,k=1

r′jr
′′
kxjk

∥∥∥2

6 C2E
∥∥∥ n∑

j,k=1

rjkxjk

∥∥∥2

.

Condition (1) means that the analogue of the Kahane contraction principle
holds for double Rademacher sums in E.

Proof. (1)⇒(2): By randomisation and Fubini’s theorem, from (1) we obtain

E
∥∥∥ M∑

m=1

N∑
n=1

rmnxmn

∥∥∥2

= E′E′′E
∥∥∥ M∑

m=1

N∑
n=1

rmnr
′
mr

′′
nxmn

∥∥∥2

= EE′E′′
∥∥∥ M∑

m=1

N∑
n=1

rmnr
′
mr

′′
nxmn

∥∥∥2

6 C2EE′E′′
∥∥∥ M∑

m=1

N∑
n=1

r′mr
′′
nxmn

∥∥∥2

= C2E′E′′
∥∥∥ M∑

m=1

N∑
n=1

r′mr
′′
nxmn

∥∥∥2

.

This gives the left hand side inequality in (2).
To prove the right hand side inequality in (2) we fix numbers εmn ∈ {−1, 1}

and use (1) to obtain

E′E′′
∥∥∥ M∑

m=1

N∑
n=1

r′mr
′′
nxmn

∥∥∥2

= E′E′′
∥∥∥ M∑

m=1

N∑
n=1

ε2mnr
′
mr

′′
nxmn

∥∥∥2

6 C2E′E′′
∥∥∥ M∑

m=1

N∑
n=1

εmnr
′
mr

′′
nxmn

∥∥∥2

.

Taking εmn = rmn(ω) and taking expectations,

E′E′′
∥∥∥ M∑

m=1

N∑
n=1

r′mr
′′
nxmn

∥∥∥2

6 C2EE′E′′
∥∥∥ M∑

m=1

N∑
n=1

rmnr
′
mr

′′
nxmn

∥∥∥2

= C2E′E′′E
∥∥∥ M∑

m=1

N∑
n=1

rmnr
′
mr

′′
nxmn

∥∥∥2

= C2E
∥∥∥ M∑

m=1

N∑
n=1

rmnxmn

∥∥∥2

.

(2)⇒(1): This implication follows from the Kahane contraction principle,
which may be applied to the outer terms in (2). ut
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It can be shown that in (1) and (2), the role of Rademacher variables
may be replaced by Gaussian variables without changing the class of spaces
under consideration; this only affects the numerical value of the constants in
the inequalities (a proof of the easy implication is contained in the proof of
Proposition 14.7 below). Furthermore, in both formulations the exponent 2
may be replaced by an arbitrary p ∈ [1,∞). For Rademacher variables this
was shown in the solution to Exercise 3.3; the proof for Gaussian variables is
the same.

Definition 14.5. A Banach space is said to have Pisier’s property if it sat-
isfies the equivalent conditions of the proposition.

Example 14.6. If (A,A , µ) is a σ-finite measure space, then for all 1 6 p <
∞ the space Lp(A) has Pisier’s property. More generally, if E has Pisier’s
property, then Lp(A;E) has Pisier’s property.

In view of the remarks preceding the definition, the second assertion follows
by switching to power p and using Fubini’s theorem. For the first assertion
it then remains to be verified that R has Pisier’s property. But this is the
content of Exercise 3.3; the same argument shows that every Hilbert space
has Pisier’s property.

The next proposition connects Pisier’s property with the theory of γ-
radonifying operators.

Proposition 14.7. Let H be a Hilbert space. If E has Pisier’s property, then
one has a canonical isomorphism of Banach spaces

γ(L2(0, T ), γ(L2(0, T ;H), E)) ' γ(L2((0, T )2;H), E).

Proof. As in the proof of Theorem 3.12, from the central limit theorem we
deduce that condition (2) of Proposition 14.4 implies its Gaussian counterpart

1
C2

E
∥∥∥ n∑

j,k=1

γjkxjk

∥∥∥2

6 E′E′′
∥∥∥ n∑

j,k=1

γ′jγ
′′
kxjk

∥∥∥2

6 C2E
∥∥∥ n∑

j,k=1

γjkxjk

∥∥∥2

.

Let the sets Aj be measurable and disjoint and also let the sets Bj be
measurable and disjoint, and let h1, . . . , hn be orthonormal in H. Consider
the step function

f =
n∑

j,k,l=1

1Aj
⊗ ((1Bk

⊗ hl)⊗ xjkl) =
n∑

j,k,l=1

((1Aj
⊗ 1Bk

)⊗ hl)⊗ xjkl.

The first sum is interpreted as an element of γ(L2(0, T ), γ(L2(0, T ;H), E)) and
the second as an element of γ(L2((0, T )2;H), E). For such f , the estimate

1
C
‖f‖γ(L2((0,T )2;H),E) 6 ‖f‖γ(L2(0,T ),γ(L2(0,T ;H),E)) 6 C‖f‖γ(L2((0,T )2;H),E)

is a reformulation of the above Gaussian estimate. The result follows from
this by an approximation argument. ut
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14.3 Stochastic convolutions

We shall now apply Proposition 14.7 to estimate stochastic convolutions.
Let S : (0, T ) → L (E,F ) be strongly measurable in the sense that Sx

is strongly measurable for all x ∈ E. Let WH be an H-cylindrical Brownian
motion, adapted to a filtration (Ft)t∈[0,T ]. Given an adapted operator-valued
process Φ : (0, T )×Ω → L (H,E), we introduce the notation

(S � Φ)(t) :=
∫ t

0

S(t− s)Φ(s) dWH(s), t ∈ [0, T ],

provided these stochastic integrals exist.

Lemma 14.8. Let E and F be Banach spaces, where F is UMD and has
Pisier’s property, and let S : (0, T ) → L (E,F ) be as above. Let Φ : (0, T ) ×
Ω → L (H,E) be H-strongly measurable and adapted. Let 1 < p <∞ and fix
0 6 θ < 1

2 . Suppose that:

(1) the set {tθS(t) : t ∈ [0, T ]} is γ-bounded in L (E,F );
(2) the process t 7→ (T − t)−θΦ(t) belongs to Lp(Ω; γ(L2(0, T ;H), E)).

Then the process t 7→ (T−t)−θ(S�Φ)(t) is well defined, H-strongly measurable
and adapted, and defines an element of Lp(Ω; γ(L2(0, T ), F )). Moreover,

‖t 7→ (T − t)−θ(S � Φ)(t)‖Lp(Ω;γ(L2(0,T ),F ))

6 CT
1
2−θ‖t 7→ (T − t)−θΦ(t)‖Lp(Ω;γ(L2(0,T ;H),E)),

where C is independent of T and Φ.

Proof. Let us first note that s 7→ S(t − s)Φ(s) is H-strongly measurable and
adapted on (0, t). Moreover, by Theorem 9.13 and the assumptions (1) and
(2), this function defines an element of Lp(Ω; γ(L2(0, t;H), F )). Theorem 13.7
therefore shows that it is Lp-stochastically integrable on (0, t) with respect to
WH . This shows that the process S � Φ is well-defined. The proof that it is
H-strongly measurable and adapted is a bit tedious and is left to the reader.

Let ∆ := {(t, s) ∈ (0, T )2 : 0 < s < t < T}. We estimate

‖t 7→ (T − t)−θ(S � Φ)(t)‖Lp(Ω;γ(L2(0,T ),F ))

(i)
h

∥∥∥t 7→ (T − t)−θ

∫ t

0

S(t− s)Φ(s) dWH(s)
∥∥∥

γ(L2(0,T ),Lp(Ω;F ))

(ii)
h

∥∥t 7→ (T − t)−θ[s 7→ 1(0,t)(s)S(t− s)Φ(s)]
∥∥

γ(L2(0,T ),Lp(Ω;γ(L2(0,T ;H),F )))

(iii)
h

∥∥t 7→ (T − t)−θ[s 7→ 1(0,t)(s)S(t− s)Φ(s)]
∥∥

γ(L2(0,T ),γ(L2(0,T ;H),Lp(Ω;F )))

(iv)
h

∥∥(t, s) 7→ 1∆(t, s)(T − t)−θS(t− s)Φ(s)
∥∥

γ(L2((0,T )2;H),Lp(Ω;F )))

(v)

.
∥∥(t, s) 7→ 1∆(t, s)(T − t)−θ(t− s)−θΦ(s)

∥∥
γ(L2((0,T )2;H),Lp(Ω;E)))

.
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The justification of these steps is as follows: (i) follows from the γ-Fubini iso-
morphism of Theorem 5.22, (ii) combines Theorem 13.7 with the observation
that each bounded operator S from E1 to F1 canonically induces a bounded
operator from γ(L2(0, T ), E1) to γ(L2(0, T );F1), (iii) follows again from the γ-
Fubini isomorphism, (iv) uses Pisier’s property of the space Lp(Ω;F ) (cf. Ex-
ample 14.6) through Proposition 14.7, and (v) follows from the γ-boundedness
assumption.

Consider the operator P : L2(0, T ;H) → L2((0, T )2;H) defined by

(Pf)(t, s) := 1∆(t, s)(T − t)−θ(t− s)−θ(T − s)θf(s).

This operator is bounded of norm ‖P‖ 6 CT
1
2−θ, since∫ T

0

∫ t

0

(T − t)−2θ(t− s)−2θ(T − s)2θ‖f(s)‖2 ds dt

=
∫ T

0

(T − s)2θ‖f(s)‖2
( ∫ T

s

(T − t)−2θ(t− s)−2θ dt
)
ds

=
∫ T

0

(T − s)1−2θ‖f(s)‖2
( ∫ 1

0

(1− r)−2θr−2θ dr
)
ds

6 C2T 1−2θ

∫ T

0

‖f(s)‖2 ds,

where C2 :=
∫ 1

0
(1 − r)−2θr−2θ dr depends only on θ. Using the right ideal

property of Proposition 5.11 it follows that∥∥(t, s) 7→ 1∆(t, s)(T − t)−θ(t− s)−θΦ(s)
∥∥

γ(L2((0,T )2;H),Lp(Ω;E))

6 CT
1
2−θ

∥∥s 7→ (T − s)−θΦ(s)
∥∥

γ(L2(0,T ;H),Lp(Ω;E))

h CT
1
2−θ

∥∥s 7→ (T − s)−θΦ(s)
∥∥

Lp(Ω;γ(L2(0,T ;H),E))
. ut

For θ > 0 and 1 6 p <∞ we define the Banach space

V p
θ (Ω; γ(L2(0, T ;H), E))

as the completion of the space of all adapted finite rank step processes Φ :
(0, T )×Ω → L (H,E) with respect to the norm

‖Φ‖V p
θ (Ω;γ(L2(0,T ;H),E)) := sup

t∈(0,T ]

‖s 7→ (t− s)−θΦ(s)‖Lp(Ω;γ(L2(0,t;H),E)).

We write V p
θ (Ω; γ(L2(0, T ), E)) instead of V p

θ (Ω; γ(L2(0, T ; R), E)).
By applying Lemma 14.8 to the subintervals (0, t) we obtain:

Proposition 14.9. Let E, F , S, θ be as in Lemma 14.8. Then for all 1 <
p <∞ the stochastic convolution Φ 7→ S �Φ acts as a bounded linear operator
from V p

θ (Ω; γ(L2(0, T ), E)) to V p
θ (Ω; γ(L2(0, T ;H), F )) of norm 6 CT

1
2−θ.
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For γ-Lipschitz continuous mappings B : E → L (H,F ) we have the
following mapping property:

Proposition 14.10. If B : E → L (H,F ) is γ-Lipschitz continuous, then for
all θ > 0 and 1 6 p < ∞ the map B acts as a Lipschitz continuous map-
ping from V p

θ (Ω; γ(L2(0, T ;H), E)) to V p
θ (Ω; γ(L2(0, T ), F )) with Lipschitz

constant 6 Lipγ(B).

Proof. For t ∈ (0, T ) let µt,θ be the finite Borel measure on (0, t) defined by

µt,θ(A) =
∫

A

(t− s)−2θ ds, A ∈ B(0, t).

The result follows from Proposition 14.1 and the observation that for an H-
strongly measurable function Ψ : (0, T ) → L (H,E) the following assertions
are equivalent:

(1) s 7→ (t− s)−θΨ(s) defines an element of γ(L2(0, t;H), E);
(2) s 7→ Ψ(s) defines an element of γ(L2((0, t), µt,θ;H), E).

This equivalence is a consequence of the fact that the functions h1, . . . , hn

are orthonormal in L2((0, t), µt,θ;H) if and only if the functions s 7→ (t −
s)−θh1(s), . . . , s 7→ (t− s)−θhn(s) are orthonormal in L2(0, t;H). ut

14.4 Existence and uniqueness

After these preparations we are ready to prove existence and uniqueness of
solutions for the problem (SCP).

We fix an initial value u0 ∈ Lp(Ω,F0;E) and consider the fixed point map
LT , initially defined for step functions φ : (0, T ) → E by

LT (φ) := Su0 + S �B(φ),

where for brevity we write (Su0)(t) := S(t)u0.
The next result formulates a set of conditions ensuring that LT be well-

defined on V p
θ (Ω; γ(L2(0, T ), E)).

Proposition 14.11. Let E be a UMD space with Pisier’s property and let
1 < p < ∞. Let A be the generator of a C0-semigroup S on E such that
{tθS(t) : t ∈ (0, T )} is γ-bounded for some 0 6 θ < 1

2 , and let B : E →
γ(H,E) be γ-Lipschitz continuous. Then the mapping LT is well-defined and
Lipschitz continuous on V p

θ (Ω; γ(L2(0, T ), E)) and there exists a constant C >
0, independent of T and u0, such that:

(1) for all φ ∈ V p
θ (Ω; γ(L2(0, T ), E)),

‖LT (φ)‖V p
θ (Ω;γ(L2(0,T ),E)) 6 CT

1
2−θ

(
T 1−2θ+‖u0‖p+‖φ‖V p

θ (Ω;γ(L2(0,T ),E))

)
;
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(2) for all φ1, φ2 ∈ V p
θ (Ω; γ(L2(0, T ), E)),

‖LT (φ1)− LT (φ2)‖V p
θ (Ω;γ(L2(0,T ),E)) 6 CT

1
2−θ‖φ1 − φ2‖V p

θ (Ω;γ(L2(0,T ),E)).

Proof. We begin by estimating the initial value part. By Lemma 10.17 and
Theorem 9.13, for all t ∈ (0, T ] the following estimate holds for almost all
ω ∈ Ω:

‖s 7→ (t− s)−θS(s)u0(ω)‖γ(L2(0,t),E)

. tθ‖s 7→ s−θ(t− s)−θu0(ω)‖γ(L2(0,t),E)

= t
1
2−θ‖s 7→ s−θ(t− s)−θ‖L2(0,t)‖u0(ω)‖

h t
1
2−θ‖u0(ω)‖,

with a constant independent of u0 and t ∈ (0, T ). In the third line, the equality
follows Exercise 5.3. Hence,

‖Su0‖V p
θ (Ω;γ(L2(0,T ),E))

= sup
t∈(0,T ]

‖s 7→ (t− s)−θS(s)u0‖Lp(Ω;γ(L2(0,t;H),E)) . T
1
2−θ‖u0‖p.

(14.2)

Fix adapted step processes φ1, φ2 : (0, T ) × Ω → E. If B is γ-Lipschitz,
Propositions 14.9 and 14.10 show that B(φk) ∈ V p

θ (Ω; γ(L2(0, T ;H), E)),
S �B(φk) ∈ V p

θ (Ω; γ(L2(0, T ), E)), k = 1, 2, and

‖S �B(φ1)− S �B(φ2))‖V p
θ (Ω;γ(L2(0,T ),E))

6 CT
1
2−θ‖B(φ1)−B(φ2)‖V p

θ (Ω;γ(L2(0,T ;H),E))

6 CT
1
2−θLipγ(B)‖φ1 − φ2‖V p

θ (Ω;γ(L2(0,T ),E)).

It follows from these estimates that LT has a unique extension to a Lipschitz
continuous mapping on V p

θ (Ω; γ(L2(0, T ), E)) which satisfies the estimate of
(2). The estimate (1) follows from the identity LT (φ) = LT (0) + (LT (φ) −
LT (0)) and (2), using that from (14.2) and Proposition 14.9 we obtain

‖LT (0)‖V p
θ (Ω;γ(L2(0,T ),E))

. T
1
2−θ

(
‖u0‖p + ‖1(0,T ) ⊗B(0)‖V p

θ (Ω;γ(L2(0,T ),E))

)
6 T

1
2−θ

(
‖u0‖p + T 1−2θ‖B(0)‖γ(H,E)

)
. ut

After these preparations we are ready to formulate our main result for ex-
istence and uniqueness of mild solutions for the stochastic evolution equation
(SCP). We denote by S the C0-semigroup generated by A.

Definition 14.12. Let θ > 0 and 1 6 p < ∞. A strongly measurable and
adapted process U : [0, T ]×Ω → E is called a mild V p

θ -solution of the problem
(SCP) if it belongs to V p

θ (Ω; γ(L2(0, T ), E)) and for all t ∈ [0, T ] the following
identity holds almost surely:
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U(t) = S(t)u0 + (S �B(U))(t).

A mild V p
0 -solution is called a mild Lp-solution.

This definition is motivated by the formula U(t) = S(t)u0 + (S �B)(t) for
the unique weak solution of the problem dU(t) = AU(t) dt+B dWH(t) which
was studied in Lectures 8–10 (and corresponds to the special case B(x) ≡ B).

Theorem 14.13 (Existence and uniqueness). Let E be a UMD space with
Pisier’s property and let 1 < p < ∞. Suppose that A is the generator of
a C0-semigroup S on E such that {tθS(t) : t ∈ [0, T ]} is γ-bounded for
some 0 6 θ < 1

2 , let B : E → γ(H,E) be γ-Lipschitz continuous, and let
u0 ∈ Lp(Ω,F0;E). Then there exists a unique mild V p

θ -solution U of (SCP).
Moreover, there exists a constant CT > 0, independent of u0, such that

‖U‖V p
θ (Ω;γ(L2(0,T ;H),E)) 6 CT (1 + ‖u0‖p).

Here, uniqueness is understood in the sense of V p
θ (Ω; γ(L2(0, T ), E)). By

strong measurability, any two solutions representing the same element in this
space are versions of each other.

Proof. By Proposition 14.11 we can find 0 < T0 6 T , independent of u0, such
that

‖LT0(φ1)−LT0(φ2)‖V p
θ (Ω;γ(L2(0,T0),E)) 6

1
2
‖φ1−φ2‖V p

θ (Ω;γ(L2(0,T0),E)) (14.3)

for all φ1, φ2 ∈ V p
θ (Ω; γ(L2(0, T0), E)) and

‖LT0(φ)‖V p
θ (Ω;γ(L2(0,T0),E)) 6

1
2
(
1 + ‖u0‖p + ‖φ‖V p

θ (Ω;γ(L2(0,T0),E))

)
(14.4)

for φ ∈ V p
θ (Ω; γ(L2(0, T0), E)). By (14.3) and the Banach fixed point theorem,

LT0 has a unique fixed point Ũ ∈ V p
θ (Ω; γ(L2(0, T0), E)). Define the strongly

measurable adapted process U : [0, T0]×Ω → E by

U(t) := S(t)u0 + (S �B(Ũ))(t).

Then U is a mild V p
θ -solution, and clearly we have U = Ũ as elements of

V p
θ (Ω; γ(L2(0, T0), E)). Uniqueness in V p

θ (Ω; γ(L2(0, T0), E)) follows from the
uniqueness of the fixed point in that space. Noting that Ũ = LT0(Ũ), the
estimate (14.4) implies the final estimate on the interval [0, T0].

Via a standard induction argument we now construct a mild solution on
each of the intervals [T0, 2T0], . . . , [(n− 1)T0, nT0], [nT0, T ], where n is an ap-
propriate integer. This results in a mild solution U on [0, T ] of (SCP) with
the properties as stated in the theorem. Uniqueness on [0, T ] follows by induc-
tion from the uniqueness on each of the subintervals. We leave the somewhat
tedious details as an exercise (see Exercise 5). ut
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Let us have a closer look at this theorem for the special case where E is
a Hilbert space. Then E is a UMD space with Pisier’s property, the family
{S(t) : t ∈ [0, T ]} is γ-bounded (since in Hilbert spaces, uniformly bounded
families are γ-bounded), and every Lipschitz continuous function B : E →
γ(H,E) = L2(H,E) is γ-Lipschitz continuous (since Hilbert spaces have type
2, cf. Example 14.3); recall that L2(H,E) denotes the space of all Hilbert-
Schmidt operators from H to E.

Corollary 14.14 (Hilbert space case). Let E be a Hilbert space and let
1 < p < ∞. Suppose that A is the generator of a C0-semigroup on E, let
B : E → L2(H,E) be Lipschitz continuous, and let u0 ∈ Lp(Ω,F0;E). Then
there exists a unique mild Lp-solution of (SCP). Moreover, there exists a
constant CT > 0, independent of u0, such that

‖U‖Lp(Ω;γ(L2(0,T ),E)) 6 CT (1 + ‖u0‖p).

14.5 Space-time regularity

To motivate our approach we return to the proof Theorem 10.19, where space-
time Hölder regularity of solutions was proved under the assumption that the
semigroup S generated by A is analytic. The crucial ingredient was the γ-
boundedness of the family {tθS(t) : t ∈ (0, T )} in L (E,Eα) for 0 6 α < θ <
1
2 . Recall that the spaces Eα have been defined in Lecture 10 as the fractional
domain spaces D((w −A)α).

As the next proposition shows, for processes in V p
θ (Ω; γ(L2(0, T ), E)) the

proof of Theorem 10.19 can be repeated.

Proposition 14.15. Let A be the generator of an analytic C0-semigroup S
on a UMD space E. Suppose that 2 < p < ∞ and 1

p < θ < 1
2 and let α > 0

and β > 0 satisfy 0 6 α + β < θ − 1
p . If Φ ∈ V p

θ (Ω; γ(L2(0, t;H), E)), then
S � Φ has a version with trajectories in Cβ([0, T ];Eα) and

‖S � Φ‖Lp(Ω;Cβ([0,T ];Eα)) 6 CT ‖Φ‖V p
θ (Ω;γ(L2(0,t;H),E)),

where the constant CT > 0 is independent of Φ.

Proof. First note that the γ-boundedness of {tθS(t) : t ∈ (0, T )} in L (E,Eα)
implies that (S � Φ)(t) ∈ Lp(Ω;Eα) for all t ∈ [0, T ]. Fix 0 < s < t 6 T and
write

(E‖S � Φ(t)− S � Φ(s)‖p
Eα

)
1
p 6 R1 +R2,

where

R1 =
(
E

∥∥∥∫ s

0

S(t− r)− S(s− r)Φ(r) dWH(r)
∥∥∥p

Eα

) 1
p

,

R2 =
(
E

∥∥∥∫ t

s

S(t− r)Φ(r) dWH(r)
∥∥∥p

Eα

) 1
p

.
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Let β′ > β satisfy α + β′ < θ − 1
p and put δ := β′ + 1

p . Then α + δ < θ and
β < δ− 1

p . By Lemma 10.17, and Theorems 9.13 and 13.7, for large w we have

Rp
1 . E‖r 7→ S(s− r)(S(t− s)− I)Φ(r)‖p

γ(L2(0,s;H),Eα)

h E‖r 7→ S(s− r)(S(t− s)− I)(w −A)−δΦ(r)‖p
γ(L2(0,s;H),Eα+δ)

. T (θ−α−δ)pE‖r 7→ (s−r)−θ(S(t−s)− I)(w −A)−δΦ(r)‖p
γ(L2(0,s;H),E)

. T (θ−α−δ)p(t− s)δpE‖r 7→ (s− r)−θΦ(r)‖p
γ(L2(0,s;H),E)

. T (θ−α−δ)p(t− s)δp‖Φ‖p
V p

θ (Ω;γ(L2(0,T ;H),E))
.

In the second last estimate we used that ‖(S(t− s)− I)(w−A)−δ‖ . |t− s|δ
by the analyticity of S (see Lemma 10.15). Similarly,

Rp
2 . E‖r 7→ S(t− r)Φ(r)‖p

γ(L2(s,t;H),Eα)

. T (θ−δ−α)pE‖r 7→ (t− r)−θ+δΦ(r)‖p
γ(L2(s,t;H),E)

. T (θ−δ−α)p(t− s)δpE‖r 7→ (t− r)−θΦ(r)‖p
γ(L2(s,t;H),E)

. T (θ−δ−α)p(t− s)δp‖Φ‖p
V p

θ (Ω;γ(L2(0,T ;H),E))
,

where the second last inequality follows by covariance domination. Combining
these estimates with Kolmogorov’s theorem (Theorem 6.9) and using that
β < (δp − 1)/p = δ − 1

p , we obtain a version of S � Φ which is β-Hölder
continuous in Eα. ut

We are now ready to formulate our main regularity result for the mild
solutions of problem (SCP).

Theorem 14.16 (Hölder Regularity). Let A be the generator of an ana-
lytic C0-semigroup S on a UMD space E with Pisier’s property. Suppose that
B : E → L (H,E) is γ-Lipschitz continuous and let u0 ∈ Lp(Ω,F0;E). For
all α, β, θ > 0 satisfying α + β < θ < 1

2 and all 1 < p < ∞, the unique mild
V p

θ -solution U of the problem (SCP) has a version for which U − Su0 has
trajectories in Cβ([0, T ];Eα).

Note that if u0 is sufficiently regular, this result implies that U itself has
a version with trajectories in Cβ([0, T ];Eα).

Proof. The existence of a unique mild V p
θ -solution follows from Theorem

14.13; the γ-boundedness assumption holds by the analyticity of S.
If U is a mild V p

θ -solution and Ũ is mild V q
θ -solution, where 1 < p 6 q <∞,

then Ũ is also a mild V p
θ -solution. Hence by uniqueness, U and Ũ are equal

as elements of V p
θ (Ω; γ(L2(0, T ), E)), and by strong measurability U and Ũ

are versions of each other. Therefore it suffices to consider the case where
2 < p <∞ satisfies α+ β < θ − 1

p <
1
2 −

1
p .
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By Proposition 14.9, S �B(U) belongs to V p
θ (Ω; γ(L2(0, t;H), Eα)), where

U is the mild V p
θ -solution U of (SCP). Hence, by Proposition 14.15, U−Su0 =

S �B(U) has a version with trajectories in Cβ([0, T ];Eα) and

E‖S �B(U)‖p
Cβ([0,T ];Eα)

6 Cp‖B(U)‖p
V p

θ (Ω;γ(L2(0,T ;H),E))

6 Cp(1 + ‖U‖V p
θ (Ω;γ(L2(0,T ),E)))

p 6 Cp(1 + ‖u0‖p)p,

where the last of these estimates follows from Theorem 14.13. ut

14.6 Exercises

1. Provide the details of the central limit argument in Proposition 14.7.

2. Show that if E is a Banach space with the property that the mapping

n∑
j,k=1

1Aj
(1Bk

⊗ xjk) 7→
n∑

j,k=1

(1Aj
1Bk

)⊗ xjk

(with notations as in Proposition 14.7) induces an isomorphism

γ(L2(0, T ), γ(L2(0, T ), E)) ' γ(L2((0, T )2), E),

then E has Pisier’s property (in the formulation using Gaussian random
variables; as has been noted without proof, this formulation is equivalent
to the one with Rademachers given in the text). This gives a converse to
Proposition 14.7.

3. Let H be a Hilbert space, E and F Banach spaces, and assume that E has
cotype 2 and F has type 2. Show that every Lipschitz continuous function
B : E → γ(H,F ) is γ-Lipschitz continuous with

Lip(B) 6 Lipγ(B) 6 C2(E)T2(F )Lip(B),

where C2(E) and T2(F ) denote the Gaussian cotype 2 constant of E and
the type 2 constant of F , respectively.
Hint: Use the results of Exercise 5.4.

4. Frequently, uniqueness proofs are based on Gronwall’s inequality. The
purpose of this exercise is to show that the ‘γ-Gronwall inequality’ fails
in spaces without type 2.
a) Show that if E is a Banach space without type 2, then there exist step

functions φn : ( 1
n+1 ,

1
n ) → E such that

‖φn‖L∞( 1
n+1 , 1

n ;E) 6 1, inf
n>1

‖φn‖γ(L2( 1
n+1 , 1

n ),E) > 0.

b) Prove that the following assertions are equivalent:
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(i) the space E has type 2;
(ii) whenever φ : (0, 1) → E is a strongly measurable function rep-

resenting an element of γ(L2(0, 1), E) and there exists a constant
C = Cφ > 0 such that

‖φ(t)‖ 6 C‖φ‖γ(L2(0,t),E) for almost all t ∈ (0, 1),

we have φ = 0 almost everywhere on (0, 1).
Hint: In one direction, consider the function φ(t) := 1

n2φn(t) for
t ∈ (tn+1, tn], where φn is as in a). In the other direction, use
Gronwall’s inequality.

5. Provide the details of the induction argument that was used at the end of
the proof of Theorem 14.13.

Notes. The material of Section 14.1 and 14.3 is based on the paper [83].
Exercise 3 is a variation on a result of that paper. In [80], the following converse
is proved: if every Lipschitz function B : E → F is γ-Lipschitz, then E has
cotype 2 and F has type 2.

Pisier’s property was introduced, under the name ‘property (α)’, by Pisier
[92] who proved that a Banach lattice has this property if and only if it has
finite cotype. Proposition 14.4 and the equivalence with its Gaussian formu-
lation belong to mathematical folklore. It should be noted that the UMD
property and Pisier’s property are unrelated: the Schatten classes Cp have
the UMD property for 1 < p < ∞ but fail Pisier’s property unless p = 2,
whereas L1-spaces have Pisier’s property but fail the UMD property unless
they are finite-dimensional.

Proposition 14.7 is a special case of the more general statement that if H1

and H2 are Hilbert spaces and E is a Banach space with Pisier’s property,
then

γ(H1, γ(H2, E)) ' γ(H1⊗̂H2, E)

isomorphically, where H1⊗̂H2 is the Hilbert space tensor product of H1 and
H2. Exercise 2 can be formulated similarly. Both results are due to Kalton
and Weis [58].

The use of Pisier’s property can be avoided in Lemma 14.8 and all results
depending on it, but it would take a full lecture to explain all the details.
The interested reader is referred to [83]. Previous results along these lines
for Hilbert spaces can be found in Da Prato and Zabczyk [27]; they were
extended to martingale type 2 spaces by Brzeźniak [14]. In this context it
should be noted that if S is a C0-contraction semigroup on a Hilbert space
E, then by a result of Kotelenez [60] and Tubaro [104] the convolution
process

t 7→
∫ t

0

S(t− s)Φ(s) dWH(s)

has a continuous version for all adapted and H-strongly measurable Φ :
(0, T ) × Ω → L2(H,E); see also Da Prato and Zabczyk [27, Theorem
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6.10]. As a result, in this situation the solution of Theorem 14.14 has a con-
tinuous version.

The results of Sections 14.4 and 14.5 are based on the paper [83]. The
main results, Theorem 14.13 and 14.16, are variations of results in that paper
and can be extended to semilinear parabolic equations with time-dependent
coefficients of the form{

dU(t) = (AU(t) + F (t, U(t))) dt+B(t, U(t)) dWH(t),
U(0) = u0.

Sufficient conditions for a mild solution to be a weak solution (which is
defined in analogy to Lecture 8) and vice versa are given by Da Prato and
Zabczyk [27] and Veraar [106].





15

Applications to stochastic PDE

In this final lecture we present some applications of the theory developed in
this course to stochastic partial differential equations. We concentrate on two
specific examples: the wave equation and the heat equation.

15.1 Space-time white noise

It has been mentioned already in Lecture 6 that for H = L2(D), where D
is a domain in Rd, H-cylindrical Brownian motions can be used to model
space-time white noise on D. We begin by making this idea more precise.

Definition 15.1. Let (A,A , µ) be a σ-finite measure space and denote by A0

the collection of all B ∈ A such that µ(B) <∞. Let (Ω,F ,P) be a probability
space. A white noise on (A,A , µ) is a mapping w : A0 → L2(Ω) such that:

(i) each w(B) is centred Gaussian with

E(w(B))2 = µ(B);

(ii) if B1 ∩ · ∩BN = ∅, then w(B1), . . . , w(BN ) are independent and

w
( N⋃

n=1

Bn

)
=

N∑
n=1

w(Bn).

It follows from the general theory of Gaussian processes that such mappings
always exist. We shall not go into the details of this, since in all applications
the white noise is assumed to be given.

Definition 15.2. A white noise w on [0, T ]×D, where D is a domain in Rd,
will be called a space-time white noise on D.
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Canonically associated with such w is an L2(D)-cylindrical Brownian motion
W , defined by

W (t)1B := w([0, t]×B), B ∈ B0(D);

this definition is extended to simple functions by linearity. To see that
W is indeed an L2(D)-cylindrical Brownian motion note that for disjoint
B1, . . . , BN ∈ B0(D) and real numbers c1, . . . , cN we have, by (i) and (ii),

E
(
W (t)

N∑
n=1

cn1Bn

)2

=
N∑

n=1

c2nE(w([0, t]×Bn))2

=
N∑

n=1

c2nt|Bn| = t
∥∥∥ N∑

n=1

cn1Bn

∥∥∥2

L2(D)
.

15.2 The stochastic wave equation

In this section we study the stochastic wave equation with Dirichlet boundary
conditions, driven by multiplicative space-time white noise:

∂2u

∂t2
(t, ξ) = ∆u(t, ξ) +B

(
u(t, ξ),

∂u

∂t
(t, ξ)

)∂w
∂t

(t, ξ), ξ ∈ D, t ∈ [0, T ],

u(t, ξ) = 0, ξ ∈ ∂D, t ∈ [0, T ],
u(0, ξ) = u0(ξ), ξ ∈ D,

∂u

∂t
(0, ξ) = v0(ξ), ξ ∈ D.

(WE)
Here w is a space-time white noise on a bounded domain D in Rd with smooth
boundary ∂D.

In order to keep the technicalities at a minimum we discuss two special
cases in detail: the case where the operator-valued function B is of rank one,
which is equivalent to the formulation (WE1) below, and the case where D is
the unit interval in R and B = I.

15.2.1 Rank one multiplicative noise

We begin with the following special case of (WE):

∂2u

∂t2
(t, ξ) = ∆u(t, ξ) + b

(
u(t, ξ),

∂u

∂t
(t, ξ)

)∂W
∂t

(t, ξ), ξ ∈ D, t ∈ [0, T ],

u(t, ξ) = 0, ξ ∈ ∂D, t ∈ [0, T ],
u(0, ξ) = u0(ξ), ξ ∈ D,

∂u

∂t
(0, ξ) = v0(ξ), ξ ∈ D,

(WE1)
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where W is a standard Brownian motion. We assume that the diffusion term
b : R× R → R satisfies the growth condition

|b(ξ1, ξ2)|2 6 C2
1 (|ξ1|2 + |ξ2|2)

and the Lipschitz condition

|b(ξ1, ξ2)− b(η1, η2)|2 6 C2
2 (|ξ1 − η1|2 + |ξ2 − η2|2).

The initial values u0 and v0 are taken in W 1,2(D) and L2(D), respectively.
Writing the first equation as a system of two first order equations,

∂u

∂t
(t, ξ) = v(t, ξ),

∂v

∂t
(t, ξ) = ∆u(t, ξ) + b(u(t, ξ), v(t, ξ))

∂W

∂t
(t, ξ),

ξ ∈ D, t ∈ [0, T ],

(15.1)
we reformulate the problem (WE) as a first order stochastic evolution equa-
tion as follows. Let ∆ denote the Dirichlet Laplacian on L2(D) with domain
D(∆) = W 2,2(D) ∩W 1,2

0 (D); see Examples 7.21. On the Hilbert space

H := D((−∆)1/2)× L2(D) = W 1,2(D)× L2(D)

we define the operator

A :=
[

0 I
∆ 0

]
with domain D(A) := D(∆)×D((−∆)1/2) = (W 2,2(D)∩W 1,2

0 (D))×W 1,2(D).
As in Example 7.22, this operator is the generator of a bounded C0-group on
H , and we may reformulate the problem (15.1) as an abstract stochastic
evolution equation of the form{

dU(t) = AU(t) dt+B(U(t)) dW (t),
U(0) = U0,

(15.2)

whereW is a Brownian motion and the function B : H → H is the Nemytskii
map associated with b,

B

[
f
g

]
:=

[
0

b(f, g)

]
,

[
f
g

]
∈ H ,

and U0 :=
[
u0

v0

]
∈ H .

Proposition 15.3. Under the above assumptions on b, the Nemytskii map
B : H → H is well defined, Lipschitz continuous with Lip(B) 6 Lip(b), and
of linear growth.
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Proof. For all (f, g) ∈ H we have

‖B(f, g)‖2H =
∫

D

|b(f(ξ), g(ξ))|2 dξ

.
∫

D

|f(ξ)|2 + |g(ξ)|2 dξ . ‖f‖22 + ‖g‖22 6 ‖(f, g)‖2H .

A similar estimate gives that B is Lipschitz continuous from H to H with
Lip(B) 6 Lip(b). ut

We say that a measurable adapted process u : [0, T ] × Ω × D → R is a

mild Lp-solution of (WE) if U(t, ω) :=
[
u(t, ω, ·)

∂u
∂t u(t, ω, ·)

]
belongs to H for all

(t, ω) ∈ [0, T ] × Ω and the resulting process U : [0, T ] × Ω → H is a mild
Lp-solution of the problem (15.2).

Theorem 15.4. Under the above assumptions, for all 1 < p <∞ the problem
(WE) admits a unique mild Lp-solution.

Here, uniqueness is understood in the sense of Lp(Ω; γ(L2(0, T ),H )).

Proof. By Proposition 15.3, the Nemytskii operator B associated with b is
Lipschitz continuous. Moreover, as we have seen in Example 7.22, the operator
A is the generator of a C0-group on H . We have thus checked all assumptions
of Corollary 14.14 (with H = R and E = H ) and conclude that for all
1 < p <∞ the problem (WE) admits a unique mild Lp-solution. ut

15.2.2 Additive space-time white noise

Our next example concerns the stochastic wave equation with additive space-
time white noise on the unit interval (0, 1) in R:

∂2u

∂t2
(t, ξ) = ∆u(t, ξ) +

∂w

∂t
(t, ξ), ξ ∈ (0, 1), t ∈ [0, T ],

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],
u(0, ξ) = u0(ξ), ξ ∈ (0, 1),

∂u

∂t
(0, ξ) = v0(ξ), ξ ∈ (0, 1).

(WE2)

Here w is a space-time white noise on (0, 1). We model this problem as an
abstract stochastic evolution equation on the Hilbert space H = W 1,2(0, 1)×
L2(0, 1) as  dU(t) = AU(t) dt+ d

[
0

WL2(t)

]
,

U(0) = U0,

(15.3)
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where as before A =
[

0 I
∆ 0

]
, with ∆ the Dirichlet Laplacian on L2(0, 1), and

WL2 is the L2(0, 1)-cylindrical Brownian motion canonically associated with
w; see Section 15.1.

To analyse the problem (15.3) we use the functional calculus for self-adjoint
operators. Using this calculus it can be checked that the C0-group S generated
by A is of the form

S(t) =
[

cos(t(−∆)1/2) (−∆)−1/2 sin(t(−∆)1/2)
−(−∆)1/2 sin(t(−∆)1/2) cos(t(−∆)1/2)

]
.

By Theorem (8.6), the unique weak solution U of (15.3) is given by

U(t) =
∫ t

0

S(t− s) d
[

0
W (s)

]
=

∫ t

0

[
(−∆)−1/2 sin((t− s)(−∆)1/2)

cos((t− s)(−∆)1/2)

]
dWL2(s),

(15.4)
provided both integrands are stochastically integrable with respect to WL2 .
Noting that the trigonometric functions hn(ξ) :=

√
2 sin(nπξ), n > 1, form an

orthonormal basis of eigenfunctions for ∆, by using Theorems 5.19 and 6.17
this is the case if and only if the following two conditions are satisfied:∫ T

0

∞∑
n=1

[sin2(t(−∆)1/2)hn, hn] dt <∞,

∫ T

0

∞∑
n=1

[cos2(t(−∆)1/2)hn, hn] dt <∞.

(15.5)

But if these conditions hold, then by adding we obtain
∫ T

0

∑∞
n=1[hn, hn] dt <

∞, which is obviously false. We conclude that the problem (15.3) fails to have
a weak solution in H .

Instead of looking for a solution in H , we could try to look for a solution
in the larger space

G := L2(0, 1)×W−1,2(0, 1),

where W−1,2(0, 1) denotes the completion of L2(0, 1) with respect to the norm
‖f‖W−1,2(0,1) := ‖(−∆)−1/2f‖. This definition of W−1,2(0, 1) is motivated by
the fact that W 1,2(0, 1) can be characterised as the domain of (−∆)1/2. The
space G is the so-called extrapolation space of H with respect to (−∆)1/2; we
refer to Exercise 5 for a more systematic discussion.

As is easy to check, the semigroup S extends to a C0-semigroup on G , and
the stochastic convolution (15.4) is well defined in G if and only if∫ T

0

∞∑
n=1

[(−∆)−1 sin2(t(−∆)1/2)hn, hn] dt <∞,

∫ T

0

∞∑
n=1

[(−∆)−1 cos2(t(−∆)1/2)hn, hn] dt <∞.

(15.6)



216 15 Applications to stochastic PDE

These conditions are indeed satified, as is clear from the identity (−∆)−1hn =
(nπ)−2hn.

Let us call a measurable adapted process u : [0, T ] × Ω × (0, 1) → R an

extrapolated weak solution of (WE2) if U(t, ω) :=
[
u(t, ω, ·)

∂u
∂t u(t, ω, ·)

]
belongs to G

for all (t, ω) ∈ [0, T ] × Ω and the resulting process U : [0, T ] × Ω → G is a
weak solution of the problem (WE2). Summarising the above discussion, we
have proved:

Theorem 15.5. The stochastic wave equation (WE2) admits a unique ex-
trapolated weak solution.

Here, uniqueness is understood in the sense of γ(L2(0, T ;L2(0, 1)),G ).

15.3 The stochastic heat equation

Next we consider two stochastic heat equations with Dirichlet boundary val-
ues, driven by multiplicative space-time white noise on a domain D in Rd:

∂u

∂t
(t, ξ) = ∆u(t, ξ) +B(u(t, ξ))

∂w

∂t
(t, ξ), ξ ∈ D, t ∈ [0, T ],

u(t, ξ) = 0, ξ ∈ ∂D, t ∈ [0, T ],
u(0, ξ) = u0(ξ), ξ ∈ D,

Again we discuss two particular cases of this problem: multiplicative rank
one noise and additive space-time white noise. In both cases, the proofs of
the main results can only be sketched, as they depend on a fair amount of
interpolation theory and results from the theory of PDE. We refer to the Notes
for references on this material.

15.3.1 Rank one multiplicative noise

Let D be a bounded domain in Rd with smooth boundary ∂D. Our first
example concerns the following stochastic heat equation driven by a rank one
multiplicative noise:

∂u

∂t
(t, ξ) = ∆u(t, ξ) + b(u(t, ξ))

∂W

∂t
(t), ξ ∈ D, t ∈ [0, T ],

u(t, ξ) = 0, ξ ∈ ∂D, t ∈ [0, T ],
u(0, ξ) = u0(ξ), ξ ∈ D.

(HE1)

Here W is standard real-valued Brownian motion. We assume that the func-
tion b : R → R is Lipschitz continuous.

We fix 1 < p <∞ and assume that the initial value u0 belongs to Lp(D).
We say that a measurable adapted process u : [0, T ]×Ω×D → R is a mild V p

θ -
solution of (HE1) if ξ 7→ u(t, ω, ξ) belongs to Lp(D) for all (t, ω) ∈ [0, T ]×Ω
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and the resulting process U : [0, T ]×Ω → Lp(D) is a mild V p
θ -solution of the

stochastic evolution equation{
dU(t) = AU(t) dt+B(U(t)) dW (t),
U(0) = u0.

(15.7)

Here A is the Dirichlet Laplacian on Lp(D) and B : Lp(D) → Lp(D) is the
Nemytskii map associated with b,

(B(u))(ξ) := b(u(ξ)).

Proposition 15.6. Under the above assumptions on b, the Nemytskii map B :
Lp(D) → Lp(D) is well defined and γ-Lipschitz continuous with Lipγ(B) 6
CpLip(b), where Cp is a constant depending only on p.

Proof. Let us first note that B(f) ∈ Lp(D) for all f ∈ Lp(D), so B is well
defined.

It follows from the Kahane-Khintchine inequality that for all f1, . . . , fN

and g1, . . . , gN in Lp(D),

(
E

∥∥∥ N∑
n=1

γn(B(fn)−B(gn))
∥∥∥2

Lp(D)

) 1
2

hp

(
E

∥∥∥ N∑
n=1

γn(B(fn)−B(gn))
∥∥∥p

Lp(D)

) 1
p

=
( ∫

D

E
∣∣∣ N∑

n=1

γn(b(fn(ξ))− b(gn(ξ)))
∣∣∣p dξ) 1

p

hp

( ∫
D

(
E

∣∣∣ N∑
n=1

γn(b(fn(ξ))− b(gn(ξ)))
∣∣∣2) p

2
dξ

) 1
p

=
( ∫

D

( N∑
n=1

|b(fn(ξ))− b(gn(ξ))|2
) p

2
dξ

) 1
p

6 Lip(b)
( ∫

D

( N∑
n=1

|fn(ξ)− gn(ξ)|2
) p

2
dξ

) 1
p

hp Lip(b)
(
E

∥∥∥ N∑
n=1

γn(fn − gn)
∥∥∥2

Lp(D)

) 1
2
,

where the last equivalence is obtained by doing the same computation back-
wards. Now we apply Proposition 14.1 (with H = R). ut

Note that this result can be extended to Nemytskii maps on spaces Lp(A),
where (A,A , µ) is any σ-finite measure space.
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Let us say that an adapted process u : [0, T ] × Ω × D → R is a mild
V p

θ -solution of the problem (HE1) if if ξ 7→ u(t, ω, ξ) belongs to V p
θ for all

(t, ω) ∈ [0, T ] × Ω and the resulting process U : [0, T ] × Ω → V p
θ is a mild

V p
θ -solution of the problem (15.7).

Theorem 15.7. Let 1 < p < ∞, α > 0, β > 0, θ > 0 be such that α + 2β +
d/p < 2θ < 1. Then the problem (HE1) has a unique mild V p

θ -solution u.
This solution has a version with the property that u− Su0 has trajectories in
Cβ([0, T ];Cα(D)), where S denotes the semigroup generated by the Dirichlet
Laplacian on Lp(D).

Proof (Sketch). We check the conditions of Theorem 14.16.
The space E = Lp(D) is UMD and has Pisier’s property and by Proposi-

tion 15.6, B is γ-Lipschitz continuous from E to E.
The Dirichlet Laplacian A generates an analytic C0-semigroup S on E (see

Exercise 3). Choose numbers 0 6 η < η′ < 1
2 such that α + d/p < 2η and

η′ + β < θ. The fractional domain space Eη′ associated with A equals, up to
an equivalent norm, the complex interpolation space [E,D(A)]η′ .

LetW 2η,p(D) be the Sobolev-Slobodetskii space of all functions f : D → R
such that

‖f‖d
W 2η,p(D) := ‖f‖p

Lp(D) +
∫

D

∫
D

|f(ξ)− f(η)|p

|ξ − η|d+2ηp
dξ dη <∞.

This space equals, up to an equivalent norm, the real interpolation space
(E,D(A))η,p.

By general results in interpolation theory, we have a continuous embedding
[E,D(A)]η′ ↪→ (E,D(A))η′,p. By the above identifications, this results in a
continuous embedding Eη′ ↪→W 2η,p(D).

Now we apply Theorem 14.16, which tells us that U − Su0 has a ver-
sion in with trajectories in Cβ([0, T ];Eη′). By the above, this space embeds
into Cβ([0, T ];W 2η,p(D)). The proof is finished by an appeal to the Sobolev
embedding theorem, which asserts that for 0 6 α < 2η − d/p we have a con-
tinuous embedding W 2η,p(D) ↪→ Cα(D). ut

15.3.2 Additive space-time white noise

Our final example is the stochastic heat equation driven by an additive space-
time white noise:

∂u

∂t
(t, ξ) = ∆u(t, ξ) +

∂w

∂t
(t, ξ), ξ ∈ (0, 1), t ∈ [0, T ],

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],
u(0, ξ) = u0(ξ), ξ ∈ (0, 1).

(HE2)

Here w is a space-time white noise on the unit interval (0, 1).
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We formulate the problem (HE2) as an abstract stochastic evolution equa-
tion in L2(0, 1) of the form{

dU(t) = AU(t) dt+ dWL2(t), t > 0,
U(0) = u0,

(15.8)

where A is the Dirichlet Laplacian on L2 := L2(0, 1) and WL2 is the L2-
cylindrical Brownian motion canonically associated with W . By a computa-
tion similar to (15.9) below (see Exercise 3) it is easy to check that the as-
sumptions of Theorem 8.6 are satisfied, and therefore for initial values u0 ∈ L2

we obtain the existence of a unique weak solution U of (15.8) in L2. Note that
in contrast to the situation for the wave equation, here it is not necessary to
pass to an extrapolation space. The reason behind this is that the regularising
effect of the heat semigroup takes us back into L2; the wave semigroup does
not have any such effect. It is nevertheless useful to consider the equation
in a suitable extrapolation scale, as this enables us to obtain precise Hölder
regularity results.

To this end we shall apply Theorem 10.19 in a suitable extrapolation space
of Lp := Lp(0, 1). Fix δ > 1

4 and let Lp
−δ denote the extrapolation space of

order δ associated with the Dirichlet Laplacian Ap on Lp, that is, Lp
−δ is the

completion of Lp with respect to the norm ‖x‖−δ := ‖(−Ap)−δx‖. Since Ap

is invertible on Lp (see Exercise 4), (−Ap)δ acts as an isomorphism from Lp

onto Lp
−δ. We will show next that the identity operator I on L2 extends to a

bounded embedding from L2 into Lp
−δ which is γ-radonifying. Then, we will

exploit the regularising effect of the semigroup S to get back into a suitable
Sobolev space contained in Lp and use this to deduce regularity properties of
the solution.

As is well known,

H1 := D(A) = W 2,2(0, 1) ∩W 1,2
0 (0, 1)

and
E1 := D(Ap) = W 2,p(0, 1) ∩W 1,p

0 (0, 1)

with equivalent norms.
The functions hn(ξ) :=

√
2 sin(nπξ), n > 1, form an orthonormal basis

in L2 of eigenfunctions for A with eigenvalues −λn, where λn = (nπ)2. If we
endow H1 with the equivalent Hilbert norm ‖f‖H1 := ‖Af‖2, the functions
λ−1

n hn form an orthonormal basis for H1 and we have

E
∥∥∥ N∑

n=M

γnλ
−1
n hn

∥∥∥2

Lp
1−δ

= E
∥∥∥ N∑

n=M

γnλ
−1
n (−Ap)1−δhn

∥∥∥2

p

= E
∥∥∥ N∑

n=M

γn(nπ)−2δhn

∥∥∥2

p

(∗)
.

N∑
n=M

(nπ)−4δ,

(15.9)
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where (∗) follows from a square function estimate as in the proof of Proposition
15.6 together with the fact that ‖hn‖p 6

√
2. The right hand side of (15.9)

tends to 0 as M,N → ∞ since we took δ > 1
4 . It follows that the identity

operator on H1 extends to a continuous embedding from H1 into Lp
1−δ which

is γ-radonifying. Denoting this embedding by i−δ, we obtain a commutative
diagram

H
I−δ−−−−→ Lp

−δ

A−1

y xAp

H1
i−δ−−−−→ Lp

1−δ

where the top mapping I−δ : H → Lp
−δ is injective and γ-radonifying by the

ideal property.
We are now in a position to apply Theorem 10.19. As before we assume that

u0 ∈ L2. We say that a measurable adapted process u : [0, T ]×Ω×(0, 1) → R is
a weak solution of (HE2) if ξ 7→ u(t, ω, ξ) belongs to L2 for all (t, ω) ∈ [0, T ]×Ω
and the resulting process U : [0, T ]×Ω → L2 is a weak solution of the problem
(15.8).

Theorem 15.8. The problem (HE2) admits a unique weak solution u. For all
α > 0 and β > 0 satisfying α+2β < 1

2 , the process u−Su0 has a version with
trajectories in Cβ([0, T ];Cα

0 [0, 1]), where S denotes the semigroup generated
by the Dirichlet Laplacian on L2(0, 1).

Proof (Sketch). Fix arbitrary real numbers α > 0 and β > 0 satisfying α +
2β < 1

2 . Replacing δ by a smaller number if necessary, we can find θ > 0 such
that 1

4 < δ < θ, β+θ < 1
2 , and α+2δ < 2θ. Put η := θ−δ. As is easy to check,

(the extrapolation of) Ap generates an analytic C0-semigroup in Lp
−δ. Hence

we may apply Theorem 10.19 in the space Lp
−δ to obtain a weak solution U

of the problem {
dU(t) = AU(t) dt+ I−δ dWH(t), t ∈ [0, T ],
U(0) = 0,

with paths in the space Cβ
(
[0, T ]; (Lp

−δ)θ

)
= Cβ

(
[0, T ];Lp

η

)
; the identity

(Lp
−δ)θ = Lp

η is a generalisation of Lemma 10.8. Along the embedding
L2 ↪→ Lp

−δ, this solution is consistent with the weak solution U of this problem
in L2.

Noting that α < 2η we choose p so large that α+ 1
p < 2η. We have

Lp
η = W 2η,p

0 (0, 1)

with equivalent norms, and by the Sobolev embedding theorem,

W 2η,p(0, 1) ↪→ Cα[0, 1]
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with continuous inclusion. We denote Cα
0 [0, 1] = {f ∈ Cα[0, 1] : f(0) = f(1) =

0}. Putting things together we obtain a continuous inclusion

Lp
η ↪→ Cα

0 [0, 1].

In particular it follows that U takes values in Lp. Almost surely, the trajec-
tories of U belong to Cβ([0, T ];Cα

0 [0, 1]).

If we compare Theorems 15.7 and 15.8 (for d = 1 and D = (0, 1)), we
notice that we get better Hölder regularity for the former (α+ 2β < 1 in the
limit p → ∞) than for the latter (α + 2β < 1

2 ). The explanation for this is
the additional δ > 1

4 needed in Theorem 15.8 to get the γ-radonification of
B := I−δ. In Theorem 15.7, γ-radonification came for free.

15.4 Exercises

1. Let (A,A , µ) be a σ-finite measure space and put H := L2(A). Let
(WH(t))t∈[0,T ] be an H-cylindrical Brownian motion. Show that

w([0, t]×B) := WH(t)1B , t ∈ [0, T ], B ∈ A ,

uniquely defines a space-time white noise w on A.

2. Check the computations leading to the conditions (15.5) and (15.6).
Hint: A bounded operator R : H1 → H2, where H1 and H2 are separable
Hilbert spaces, is Hilbert-Schmidt if and only if RR∗ : H2 → H2 has finite
trace.

3. In this exercise we take a look at the following stochastic heat equation
with additive space-time white noise on the domain D = (0, 1)d in Rd.

∂u

∂t
(t, ξ) = ∆u(t, ξ) +

∂W

∂t
(t, ξ), ξ ∈ D, t ∈ [0, T ],

u(t, ξ) = 0, ξ ∈ ∂D, t ∈ [0, T ],
u(0, ξ) = u0(ξ), ξ ∈ D.

We model this problem as a stochastic evolution equation of the form
(15.8).
a) Prove that the Dirichlet Laplacian generates an analytic C0-semigroup

on L2(D).
b) Show that the problem (15.8) has a weak solution in L2(D) if and

only if d = 1.
Hint for a) and b): Find an orthonormal basis of eigenvectors.

4. Show that the heat semigroup generated by the Dirichlet Laplacian on
L2(0, 1) extends to an analytic C0-semigroup on Lp(0, 1), 1 < p <∞, and
show that its generator is invertible.
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5. In this exercise we take a closer look at extrapolation spaces. Let A be a
densely defined closed operator on a Banach space E and denote by G (A)
its graph,

G (A) = {(x,Ax) ∈ E × E : x ∈ D(A)}.

Define the extrapolation space of E with respect to A as the quotient space

E−1 := (E × E)/G (A).

a) Show that the mapping x 7→ (0, x) defines a bounded dense embedding
E ↪→ E−1.

b) Show that A−1 : x 7→ (−x, 0) defined a bounded operator from E to
E−1 which extends A.

c) Show that if λ ∈ %(A), then the identity map on E extends to an iso-
morphism of Banach spaces E−1 ' Eλ

−1, where the latter is defined as
the completion of E with respect to the norm ‖x‖Eλ

−1
:= ‖R(λ,A)x‖.

Notes. The literature on stochastic partial differential equations is enormous
and various approaches are possible. The functional analytic approach taken
here, where the equation is reformulated as a stochastic evolution equation on
some infinite-dimensional state space, goes back to Hille and Phillips in the
deterministic case and give rise to the theory of C0-semigroups. In the setting
of Hilbert spaces, the theory of stochastic evolution equations was pioneered
by Da Prato and Zabczyk and their schools. We refer to their monograph
[27] for further references. See also Curtain and Pritchard [25] for some
earlier references.

Our definition of a space-time white noise in Section 15.2 follows the lecture
notes of Walsh [107], where also Theorem 15.5 can be found.

The presentation of Section 15.2.2 follows Da Prato and Zabczyk [27,
Example 5.8].

Concerning problem (HE2), the existence of a solution in Cα([0, T ]× [0, 1])
for 0 6 α < 1

4 was proved by Da Prato and Zabczyk by very different
methods; see [27, Theorem 5.20]. Theorem 15.8 was obtained by Brzeźniak
[14] under more general assumptions. The approach taken here is from [34].

The results on interpolation theory needed in the proofs of Theorems 15.8
and 15.7 can be found in the book of Triebel [103].
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15. Z. Brzeźniak, Some remarks on Itô and Stratonovich integration in 2-smooth
Banach spaces, Probabilistic methods in fluids, World Sci. Publ., River Edge,
NJ, 2003, pp. 48–69.



224 References
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