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Abstract. We investigate the transition semigroup of the solution to a sto-
chastic evolution equation

dX(t) = AX(t) dt + dWH(t), t ≥ 0,

where A is the generator of a C0-semigroup S on a separable real Banach space
E and {WH(t)}t≥0 is cylindrical white noise with values in a real Hilbert
space H which is continuously embedded in E. Various properties of these
semigroups, such as the strong Feller property, the spectral gap property, and
analyticity, are characterized in terms of the behaviour of S in H. In particular
we investigate the interplay between analyticity of the transition semigroup,
S-invariance of H, and analyticity of the restricted semigroup SH .
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1. Introduction

In this paper we study transition semigroups associated with stochastic linear
Cauchy problems

(1.1)
dX(t) = AX(t) + dWH(t), t ≥ 0,

X(0) = x.

We assume that A is the generator of a C0-semigroup S = {S(t)}t≥0 of bounded
linear operators on a separable real Banach space E and WH = {WH(t)}t≥0 is a
cylindrical Wiener process with the Cameron-Martin space H which is continuously
imbedded into E.

If E is a Hilbert space, an explicit condition is known (see for example [15])
which ensures the existence of a unique solution to (1.1) of the form

(1.2) X(t, x) = S(t)x+
∫ t

0

S(t− s) dWH(s).

The solution {X(t, x)}t≥0 is called the Ornstein-Uhlenbeck process associated with
S and WH . It is a Markov process on E whose transition semigroup is given by

(1.3) P (t)φ(x) = Eφ(X(t, x)) =
∫

E

φ (S(t)x+ y) dµt(y),

where {µt : t ≥ 0} is a family of centred Gaussian measures on E associated with
S and H; see Section 6 for details. This semigroup is also called the Ornstein-
Uhlenbeck semigroup associated with S and H.

If E is a Banach space, there seems to be no general satisfactory theory of
stochastic integration to give a rigorous meaning to the integral appearing in (1.2).
However, in many important cases it can be shown that formula (1.2) is meaningful
(at least in a weak sense) and defines again a Markov process on E with transition
semigroup P = {P (t)}t≥0 given by (1.3); see for example [4], [5], [6]. The aim of
this paper is to study the transition semigroup P and its generator under the sole
assumption that the process {X(t, x)}t≥0 is well defined and admits an invariant
measure µ∞.

Apart from the case where E is itself a Hilbert space andH = E, many aspects of
Ornstein-Uhlenbeck semigroups are not well understood. For example, the existing
criteria for the strong Feller property are difficult to check in general. Similarly, it is
very difficult to check whether P is analytic in L2(E,µ∞) or whether its generator
has the spectral gap property.

The main idea of this paper, already exploited in [9, 10], is to study the transition
semigroup under the assumption that S restricts to a C0-semigroup SH on H. In
this setting we obtain explicit conditions for some properties of P in terms of the
behaviour of the semigroup SH . In particular we provide necessary and sufficient
conditions for the strong Feller property of P and for the existence of a spectral
gap. We also obtain conditions for analyticity of P in terms of analyticity of the
restricted semigroup SH which seem to be close to optimal.

Our results extend and complement various results from [9, 10, 12, 13, 15, 20,
22, 23, 29].
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Let us now describe the contents of the paper in more detail. Since many prop-
erties of P are determined by the behaviour of the semigroup S on the spaces H
and the reproducing kernel Hilbert spaces Ht associated with the measures µt, Sec-
tions 2 and 3 are devoted to a study of interactions between the semigroup S, the
space H and the spaces Ht. We also investigate in deatil the situation when H is
invariant under the semigroup S. In Section 4 the Liapunov equation is considered
and conditions are given for the symmetry of S acting in H.

In Section 5 we give several characterizations of the spectral gap property of
the generator A of S when considered in H and reproducing kernel Hilbert space
H∞ associated with the invariant measure µ∞. In the case when E is a Hilbert
space, it was shown in [9] that this property is equivalent to the logarithmic Sobolev
inequality for the generator of the associated Ornstein-Uhlenbeck semigroup. We
also show that more accurate information can be obtained if H is S-invariant.

In Section 6 we introduce the Ornstein-Uhlenbeck semigroup P. It is studied
in the space Cb(E) endowed with the mixed topology τmixed under the minimal
assumption that (1.3) is meaningful. We extend the results from [24] by showing
that P is C0-semigroup in (Cb(E), τmixed) and by giving an explicit formula for its
generator L on a suitable core. Let us note that P is not strongly continuous, if
fact not even strongly measurable, in Cb(E) endowed with the supremum norm.
We also provide a new explicit condition for the strong Feller property of P in the
case when H is S-invariant.

Under the assumption of the existence of an invariant measure µ∞, in Section
7 we study the semigroup P in L2 (E,µ∞). In particular we extend the existing
criteria for the symmetry of P and the existence of spectral gap for L.

In Sections 8 and 9 we are concerned with analyticity of the Ornstein-Uhlenbeck
semigroup in L2(E,µ∞). We obtain necessary and sufficient conditions for analyt-
icity in terms of H. We establish connections between the analyticity of P, the
invariance of H under S, and the analyticity of the restricted semigroup SH . We
apply our criteria to prove analyticity of Ornstein-Uhlenbeck semigroups associated
with some stochastic partial differential equations of parabolic type.

2. Preliminaries

2.1. Reproducing kernel Hilbert spaces. Stochastic evolution equations in Ba-
nach spaces are studied conveniently by using the language of reproducing kernel
Hilbert spaces. We start by recalling some elementary properties of these spaces.

Throughout this paper E denotes a real Banach space. The dual of E is denoted
by E∗. A bounded linear operator Q ∈ L (E∗, E∗) is called positive if

〈Qx∗, x∗〉 ≥ 0, x∗ ∈ E∗,

and symmetric if
〈Qx∗, y∗〉 = 〈Qy∗, x∗〉, x∗, y∗ ∈ E∗.

More generally these definitions make sense for operators Q ∈ L (E∗, E∗∗).
If Q ∈ L (E∗, E) is positive and symmetric, then the bilinear map on the range

of Q defined by
(Qx∗, Qy∗) 7→ 〈Qx∗, y∗〉, x∗, y∗ ∈ E∗,
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is easily checked to be a well defined inner product on the range of Q. The Hilbert
space completion of rangeQ with respect to this inner product is called the reproduc-
ing kernel Hilbert space (RKHS) associated with Q and is denoted by (HQ, [·, ·]HQ

).
It is well known that the inclusion mapping from rangeQ into E extends to a
continuous injection from HQ into E. Denoting this extension by iQ, we have

Q = iQ ◦ i∗Q.

This factorization immediately implies that Q is weak∗-to-weakly continuous, and
that HQ is separable whenever E is separable.

Conversely, if i : H ↪→ E is a continuous embedding of a real Hilbert space H
into E, then Q := i◦i∗ is positive and symmetric. As subsets of E we have H = HQ

and the map i∗x∗ 7→ i∗Qx
∗ defines an isometrical isomorphism of H onto HQ.

Example 2.1.
(1) If B is a bounded operator from a real Hilbert space H into E, then

Q := B ◦ B∗ ∈ L (E∗, E) is positive and symmetric. As subsets of E we
have HQ = rangeB, and the inner product of HQ is given by

[Bg,Bh]HQ
= [Pg, Ph]H , g, h ∈H .

Here P denotes the orthogonal projection in H onto the orthogonal com-
plement of kerB.

(2) As a special case of (1) let E be a real Hilbert space and let Q ∈ L (E) be
a positive and selfadjoint operator. Identifying the dual space E∗ with E

in the natural way, we have HQ = range Q
1
2 , with inner product

[Q
1
2x,Q

1
2 y]HQ

= [Px, Py]E , x, y ∈ E.

Here P denotes the orthogonal projection in E onto the orthogonal com-
plement of kerQ

1
2 .

It will be useful to compare the RKHS’s associated with different positive sym-
metric operators in L (E∗, E). In this direction we have the following easy fact; cf.
[15, Appendix B]. If Q and R are positive and symmetric operators in L (E∗, E),
the following assertions are equivalent:

(1) iQ(HQ) ⊆ iR(HR);
(2) There exists a constant M ≥ 0 such that

(2.1) 〈Qx∗, x∗〉 ≤M〈Rx∗, x∗〉, x∗ ∈ E∗.

Whenever it is convenient, we shall identify an embedded Hilbert space with its
image in E. Thus, instead of iQ(HQ) ⊆ iR(HR) we shall simply write HQ ⊆ HR.

Another simple observation about RKHS’s will be useful. Suppose E and F are
real Banach spaces, j : E ↪→ F a continuous inclusion, and QE ∈ L (E∗, E) and
QF ∈ L (F ∗, F ) are positive symmetric operators such that the following diagram
commutes:

E −−−−→
j

FxQE

xQF

E∗ ←−−−−
j∗

F ∗
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Thus, QF = j ◦QE ◦ j∗. Let iE : HE ↪→ E and iF : HF ↪→ F denote the RKHS’s
associated with QE and QF , respectively. Then the mapping

IE,F : i∗Ej
∗y∗ 7→ i∗F y

∗, y∗ ∈ F ∗,

extends uniquely to an isometry from HE onto HF . Moreover, as subsets of F , the
spaces HE and HF are identical.

Indeed, we compute:

‖i∗Ej∗y∗‖2HE
= 〈QEj

∗y∗, j∗y∗〉 = 〈QF y
∗, y∗〉 = ‖i∗F y∗‖2HR

, y∗ ∈ F ∗.

Since iE and j are injective, i∗E ◦ j∗ has dense range in E∗, and since iF is injective,
i∗F has dense range in F ∗. This shows that IE,F uniquely extends to an isometry of
HE onto HF . From IE,F ◦ i∗E ◦ j∗ = i∗F it follows, moreover, that j ◦ iE ◦ I∗E,F = iF
and therefore,

j(iE(HE)) = (j ◦ iE ◦ I∗E,F ◦ I∗E,F )(HE) = (iF ◦ IE,F )(HE) = iF (HF ).

This shows that HE and HF are identical as subsets of F and we obtain the
commuting diagram

E −−−−→
j

FxiE

xiF

HE −−−−→' HF

The following observation will be useful:

Proposition 2.2. Let R ∈ L (E∗, E∗∗) be a positive symmetric operator. Suppose
there exists a positive symmetric operator Q ∈ L (E∗, E) and a constant C ≥ 0
such that

〈x∗, Rx∗〉 ≤ C 〈Qx∗, x∗〉, x∗ ∈ E∗.
Then R ∈ L (E∗, E).

Proof. Fix x∗ ∈ E∗. On the range of i∗Q we define a linear form φx∗ by

φx∗(i∗Qy
∗) := 〈y∗, Rx∗〉, y∗ ∈ E∗.

By the Cauchy-Schwarz inequality applied to the symmetric bilinear form (x∗, y∗) 7→
〈y∗, Rx∗〉,

|φx∗(i∗Qy
∗)| = |〈y∗, Rx∗〉| ≤ 〈x∗, Rx∗〉 12 〈y∗, Ry∗〉 12

≤ C〈Qx∗, x∗〉 12 〈Qy∗, y∗〉 12 = ‖iQx∗‖HQ
‖i∗Qy∗‖HQ

.

It follows that φx∗ is well defined and extends to a bounded linear form on HQ of
norm ≤ C‖i∗Qx∗‖HQ

. By the Riesz representation theorem, we may identify φx∗

with an element of HQ. For all y∗ ∈ E∗ we then have

〈iQφx∗ , y
∗〉 = [φx∗ , i

∗
Qy

∗]HQ
= φx∗(i∗Qy

∗) = 〈y∗, Rx∗〉.

This shows that Rx∗ = iQφx∗ ∈ E.
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2.2. The general setting. We consider a C0-semigroup S = {S(t)}t≥0 of bounded
linear operators on E and a real Hilbert space H which is continuously embedded
into E. The embedding will be denoted by i : H ↪→ E. The inner product of H
will be denoted by [·, ·]H . The operator Q := i ◦ i∗ ∈ L (E∗, E) is positive and
symmetric, and H is its RKHS.

By [29, Proposition 1.2], the E-valued function s 7→ S(s)QS∗(s)x∗ is strongly
measurable and we may define, for each t > 0, the positive symmetric operator
Qt ∈ L (E∗, E) by

(2.2) Qtx
∗ :=

∫ t

0

S(s)QS∗(s)x∗ ds, x∗ ∈ E∗.

The RKHS associated with Qt will be denoted by Ht and the embedding Ht ↪→ E

by it. From (2.1) it is immediate that Hs ⊆ Ht whenever s ≤ t and the inclusion
mapping is contractive [29, Corollary 1.5]. Whenever it is convenient we further
put Q0 := 0 and H0 = {0}.

We will frequently consider the following hypothesis:

• (HQ∞): For all x∗ ∈ E∗, weak - limt→∞Qtx
∗ exists in E.

Here, ‘weak - lim’ denotes the limit in the weak topology of E. This hypothesis
is slightly more general than the one in [29, Section 6] where strong limits are
taken, but the results proved there remain true under (HQ∞) without change in
the proofs.

Assuming (HQ∞), we may define a bounded operator Q∞ : E∗ → E by

Q∞x
∗ := weak- lim

t→∞
Qtx

∗, x∗ ∈ E∗.

Clearly, Q∞ is positive and symmetric. The RKHS associated with Q∞ will be
denoted by H∞ and the embedding H∞ ↪→ E by i∞. From (2.1) it is immediate
that Ht ⊆ H∞ for all t > 0; by an obvious modification of [29, Corollary 1.5] the
inclusion mapping is contractive.

Necessary and sufficient conditions for (HQ∞) to be satisfied will be given in
Section 4. Hypothesis (HQ∞) is trivially satisfied if S is uniformly exponentially
stable, i.e. if there exist constants M ≥ 0 and ω > 0 such that ‖S(t)‖ ≤Me−ωt for
all t ≥ 0. In this case we have

(2.3) Q∞x
∗ =

∫ ∞

0

S(s)QS∗(s)x∗ ds, x∗ ∈ E∗,

the integral being convergent as a Bochner integral in E.
Even in the case when E is separable, we do not know whether the integral in

(2.3) always exists as a Bochner integral. We shall prove next that the integral
always does exist as a Pettis integral. For more information on Pettis integrals we
refer the reader to [16].

Proposition 2.3 (HQ∞). For all x∗ ∈ E∗ we have

Q∞x
∗ =

∫ ∞

0

S(s)QS∗(s)x∗ ds,

the integral being convergent as a Pettis integral in E.
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Proof. Let x∗ ∈ E∗ be fixed. First we prove the following claim: for all y∗ ∈ E∗
the real-valued function s 7→ 〈S(s)QS∗(s)x∗, y∗〉 is Lebesgue integrable on [0,∞)
and

(2.4) 〈Q∞x∗, y∗〉 =
∫ ∞

0

〈S(s)QS∗(s)x∗, y∗〉 ds.

First we take y∗ = x∗. We have

〈S(s)QS∗(s)x∗, x∗〉 = 〈QS∗(s)x∗, S∗(s)x∗〉 ≥ 0, s ≥ 0.

Hence by monotone convergence,∫ ∞

0

|〈S(s)QS∗(s)x∗, x∗〉| ds =
∫ ∞

0

〈S(s)QS∗(s)x∗, x∗〉 ds

= lim
t→∞

∫ t

0

〈S(s)QS∗(s)x∗, x∗〉 ds = lim
t→∞
〈Qtx

∗, x∗〉 = 〈Q∞x∗, x∗〉.

This proves the claim for y∗ = x∗.
Next let y∗ ∈ E∗ be arbitrary. For all t > 0 we have∫ t

0

|〈S(s)QS∗(s)x∗, y∗〉| ds =
∫ t

0

|[i∗S∗(s)x∗, i∗S∗(s)y∗]H | ds

≤
(∫ t

0

‖i∗S∗(s)x∗‖2H ds

) 1
2

·
(∫ t

0

‖i∗S∗(s)y∗‖2H ds

) 1
2

=
(∫ t

0

〈QS∗(s)x∗, S∗(s)x∗〉 ds
) 1

2

·
(∫ t

0

〈QS∗(s)y∗, S∗(s)y∗〉 ds
) 1

2

≤
(∫ ∞

0

〈QS∗(s)x∗, S∗(s)x∗〉 ds
) 1

2

·
(∫ ∞

0

〈QS∗(s)y∗, S∗(s)y∗〉 ds
) 1

2

= 〈Q∞x∗, x∗〉
1
2 · 〈Q∞y∗, y∗〉

1
2 .

Passing to the limit t→∞, we obtain∫ ∞

0

|〈S(s)QS∗(s)x∗, y∗〉| ds ≤ 〈Q∞x∗, x∗〉
1
2 · 〈Q∞y∗, y∗〉

1
2 .

It follows that s 7→ 〈S(s)QS∗(s)x∗, y∗〉 is Lebesgue integrable in [0,∞). The iden-
tity (2.4) now follows from the dominated convergence theorem. This concludes
the proof of the claim.

In order to prove that t 7→ S(t)QS∗(t)x∗ is Pettis integrable, we have to show
next that for all measurable subsets B ⊆ [0,∞) there exists an element xB,x∗ ∈ E
such that

〈xB,x∗ , y
∗〉 =

∫
B

〈S(t)QS∗(t)x∗, y∗〉 dt, y∗ ∈ E∗.

To this end, define the positive symmetric operator QB ∈ L (E∗, E∗∗) by

〈y∗, QBx
∗〉 :=

∫
B

〈S(t)QS∗(t)x∗, y∗〉 dt. x∗, y∗ ∈ E∗.

Clearly, for all x∗ ∈ E∗ we have 〈QBx
∗, x∗〉 ≤ 〈Q∞x∗, x∗〉, and therefore QB ∈

L (E∗, E) by Proposition 2.2. Then xB,x∗ := QBx
∗ does the job.
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The space H∞ displays some remarkable properties, some of which we shall
discuss next.

Proposition 2.4 (HQ∞). The space H∞ is invariant under the action of S, and
the restriction S∞ of S to H∞ defines a strongly continuous contraction semigroup
on H∞. Its adjoint S∗∞ is strongly stable, i.e. for all h∞ ∈ H∞ we have

lim
t→∞

‖S∗∞(t)h∞‖H∞ = 0.

Proof. The first assertion is proved in [8] (for Hilbert spaces E) and [29].
Noting that S(t) ◦ i∞ = i∞ ◦ S∞(t), for all x∗ ∈ E∗ we have

lim
t→∞

‖S∗∞(t)i∗∞x
∗‖2H∞ = lim

t→∞
‖i∗∞S∗(t)x∗‖2H∞ = lim

t→∞
〈Q∞S∗(t)x∗, S∗(t)x∗〉

= lim
t→∞

∫ ∞

0

〈S(s)QS∗(s)S∗(t)x∗, S∗(t)x∗〉 ds

= lim
t→∞

∫ ∞

t

〈S(σ)QS∗(σ)x∗, x∗〉 dσ = 0.

Since the range of i∗∞ is dense in H∞ and S∞ is a contraction semigroup on H∞,
the strong stability of S∗∞ follows from this.

For later reference we recall from [8] and [29]:

Proposition 2.5 (HQ∞). For t > 0 fixed, the following assertions are equivalent:

(1) Ht = H∞ with equivalent norms;
(2) ‖S∞(t)‖H∞ < 1.

The following result gives a relation between H∞ and H:

Proposition 2.6 (HQ∞). We have H ⊆ H∞, the closures being taken in E.

Proof. Suppose y∗ ∈ E∗ is such that 〈h∞, y∗〉 = 0 for all h∞ ∈ H∞; we have to
prove that 〈h, y∗〉 = 0 for all h ∈ H.

First note that from Ht ⊆ H∞ it follows that 〈Qtx
∗, y∗〉 = 0 for all t > 0 and

x∗ ∈ E∗. Now fix x� ∈ E�, where E� denotes the closed linear subspace of E∗

of all elements whose orbit under the adjoint semigroup S∗ is strongly continuous.
Then for all t > 0 we have∫ t

0

〈S(s)QS∗(s)x�, y∗〉 ds = 〈Qtx
�, y∗〉 = 0,

and since the integrand is a continuous function, this implies that

〈S(s)QS∗(s)x�, y∗〉 = 0, s ≥ 0.

In particular, 〈Qx�, y∗〉 = 0.
Since Q is symmetric, it follows that 〈Qy∗, x�〉 = 0 for all x� ∈ E�, and E�

being weak∗-dense in E∗ this implies thatQy∗ = 0. Then 〈Qx∗, y∗〉 = 〈Qy∗, x∗〉 = 0
for all x∗ ∈ E∗, and since the range of Q is dense in H it follows that 〈h, y∗〉 = 0
for all h ∈ H.

It need not be the case that H ⊆ H∞. In fact, as we will show in Section 5 it
often happens that H∞ ⊆ H (in which case of course H = H∞).
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3. Invariance of the reproducing kernel Hilbert space H

In many important examples, H is invariant under the action of S and S restricts
to a C0-semigroup on H. For example, we will show that this happens if the
Ornstein-Uhlenbeck semigroup P in L2(E,µ∞) is selfadjoint (Section 4) or analytic
with a spectral gap (Section 9). A further example is when E is a Hilbert space
and S(t)Q = QS(t) holds for all t ≥ 0; see [9].

In this section we will investigate the situation where S restricts to a C0−semi-
group on H in some detail. It will turn out that the restricted semigroup enjoys
some interesting regularizing properties. These will be used to study the strong
Feller property of Ornstein-Uhlenbeck semigroups.

We begin with a simple criterion for invariance. If T ∈ L (E) is a bounded
operator satisfying T (H) ⊆ H, then we denote the restriction of T to H by TH ; by
the closed graph theorem, TH is a bounded operator on H. Note that T ◦ i = i◦TH .

Proposition 3.1. For a bounded operator T ∈ L (E) the following assertions are
equivalent:

(1) T (H) ⊆ H;
(2) There exists a constant M ≥ 0 such that for all x∗ ∈ E∗ we have

‖i∗T ∗x∗‖H ≤M‖i∗x∗‖H .

(3) There exists a constant M ≥ 0 such that for all x∗, y∗ ∈ E∗ we have

|〈TQx∗, y∗〉| ≤M‖i∗x∗‖H‖i∗y∗‖H .

In this situation the restriction TH is bounded on H and satisfies ‖TH‖H ≤ M ,
where M is either one of the constants in (2) or (3).

Proof. (1)⇒ (2): From T ◦ i = i ◦ TH we have, for all x∗ ∈ E∗,

‖i∗T ∗x∗‖H = ‖T ∗H(i∗x∗)‖H ≤ ‖TH‖H‖i∗x∗‖H .

This gives (2), with M = ‖TH‖H .
(2)⇒ (3): From Q = i ◦ i∗ we then have, for all x∗, y∗ ∈ E∗,

|〈TQx∗, y∗〉| = |〈i(i∗x∗), T ∗y∗〉| = |[i∗x∗, i∗T ∗y∗]H | ≤ ‖TH‖H‖i∗x∗‖H‖i∗y∗‖H .

This gives (3), with the same constant M .
(3)⇒ (1): By assumption, the mapping φ : i∗y∗ 7→ 〈TQx∗, y∗〉 is well defined

and uniquely extends to a bounded linear functional φ on H of norm ≤M‖i∗x∗‖H .
By the Riesz representation theorem we identify φ with an element h ∈ H of norm
≤M‖i∗x∗‖H . Then for all y∗ ∈ E∗ we have

〈ih, y∗〉 = [i∗y∗, h]H = φ(i∗y∗) = 〈TQx∗, y∗〉,

and therefore TQx∗ = ih. Defining TH(i∗x∗) := h, we have ‖TH(i∗x∗)‖ = ‖h‖H ≤
M‖i∗x∗‖H . Hence we obtain a well defined bounded operator TH on H of norm
≤M . Finally, for all x∗, y∗ ∈ E∗ we have

〈(i ◦ TH)(i∗x∗), y∗〉 = 〈ih, y∗〉 = 〈TQx∗, y∗〉 = 〈(T ◦ i)(i∗x∗), y∗〉,

which shows that i ◦ TH = T ◦ i.
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The implication (2)⇒ (1) admits the following, even shorter, direct proof. By
assumption of (2), the mapping SH : i∗x∗ 7→ i∗T ∗x∗ is well defined and extends
uniquely to a bounded operator SH on H of norm ≤M . From SH ◦ i∗ = i∗ ◦T ∗ we
obtain, by dualizing, i ◦S∗H = T ◦ i. Hence T maps H into itself and the restriction
of T to H equals S∗H . Next we address the question of strong continuity of SH .

Proposition 3.2. Assume that S(t)H ⊆ H for all t ≥ 0. Then the semigroup SH

is strongly continuous on [0,∞) if and only if

lim sup
t↓0

‖SH(t)‖H <∞.

Proof. For all x∗, y∗ ∈ E∗ we have

lim
t↓0

[SH(t)i∗x∗ − i∗x∗, i∗y∗]H = lim
t↓0

[i∗x∗, i∗S∗(t)y∗ − i∗y∗]H = 0

= lim
t↓0
〈Qx∗, S∗(t)y∗ − y∗〉 = 0.

By assumption, SH is locally bounded near 0, and it follows that SH is weakly
continuous. By a standard result from semigroup theory, this implies that that SH

is strongly continuous.

It may happen that SH fails to be strongly continuous at 0, even if E is a Hilbert
space:

Example 3.3. For n = 1, 2, . . . we define the Hilbert space Hn to be L2[0, 1] with
the norm

‖f‖2Hn
:=

∫ 1− 1
n

0

|f(t)|2 dt+ n2

∫ 1− 1
2n

1− 1
n

|f(t)|2 dt+
∫ 1

1− 1
2n

|f(t)|2 dt.

The nilpotent left shift semigroup SHn
on Hn,

SHn(t)f(s) =
{
f(s+ t), 0 ≤ s+ t ≤ 1

0, else

is strongly continuous and we have

‖SHn
(t)f(s)‖Hn

=

 n, t ∈ [0, 1
n )

1, t ∈ [ 1
n , 1)

0, else.

Let En = L2[0, 1] with the usual norm and let SEn
denote the nilpotent left shift

semigroup on En. Now consider the Hilbert space direct sums

H :=
∞⊕

n=1

Hn, E :=
∞⊕

n=1

En.

Note that H ⊆ E with a continuous inclusion map, which we denote by i.
The semigroups SH :=

⊕∞
n=1 SHn and SE :=

⊕∞
n=1 SEn act in H and E, re-

spectively, and SH is the restriction to H of SE . We have

‖SH(t)f(s)‖H =


1, t = 0
n, t ∈ [ 1

n+1 ,
1
n ), n = 1, 2, . . .

0, else.
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Thus, lim supt↓0 ‖SH(t)‖H = ∞ and SH fails to be strongly continuous in H at 0.
On the other hand SE is strongly continuous at 0.

The infinitesimal generator of S will be denoted by A. The next result gives
necessary and sufficient conditions for SH to be contractive:

Theorem 3.4. The following assertions are equivalent:
(1) For all t ≥ 0 we have S(t)H ⊆ H, and SH is a C0-semigroup of contractions

on H;
(2) For all x∗ ∈ E∗, the function t 7→ ‖i∗S∗(t)x∗‖H is nonincreasing on [0,∞);
(3) For all x∗ ∈ D(A∗), the domain of A∗, we have −〈Qx∗, A∗x∗〉 ≥ 0.

Proof. (1)⇒ (3): Fix x∗ ∈ D(A∗). Then for all h ∈ H,

lim
t↓0

1
t
[SH(t)i∗x∗− i∗x∗, h]H = lim

t↓0

1
t
〈ih, S∗(t)x∗−x∗〉 = 〈ih,A∗x∗〉 = [i∗A∗x∗, h]H .

Let AH denote the infinitesimal generator of SH . By a standard result from semi-
group theory [32, Theorem 2.1.3], the above identities imply that i∗x∗ ∈ D(A∗H)
and A∗H(i∗x∗) = i∗A∗x∗. The fact that AH generates a contraction semigroup on
H then gives, using [32, Theorem 1.4.3],

−〈Qx∗, A∗x∗〉 = −[i∗x∗, i∗A∗x∗]H = −[i∗x∗, A∗H(i∗x∗)]H ≥ 0.

(3)⇒ (2): First consider a fixed x∗ ∈ D(A∗). It is easy to see that the function
u 7→ ‖i∗S∗(u)x∗‖2H = 〈QS∗(u)x∗, S∗(s)x∗〉 is differentiable and

d

du
‖i∗S∗(u)x∗‖2H = 〈QS∗(u)A∗x∗, S∗(u)x∗〉+ 〈QS∗(u)x∗, S∗(u)A∗x∗〉

= 2〈QS∗(u)x∗, A∗S∗(u)x∗〉,
where we used the symmetry of Q. Hence for all t ≥ s ≥ 0 we have

‖i∗S∗(s)x∗‖2H − ‖i∗S∗(t)x∗‖2H = −
∫ t

s

d

du
‖i∗S∗(u)x∗‖2H du

= −2
∫ t

s

〈QS∗(u)x∗, A∗S∗(u)x∗〉 du ≥ 0.

For general x∗ ∈ E∗, the result follows by approximation: noting that

‖i∗S∗(τ)y∗‖H = lim
λ→∞

λ‖(λ−A∗H)−1i∗S∗(τ)y∗‖H = lim
λ→∞

λ‖i∗S∗(τ)(λ−A∗)−1y∗‖H ,

we can apply the above to x∗ = (λ−A∗)−1y∗ ∈ D(A∗).
(2)⇒ (1): Since t 7→ ‖i∗S∗(t)x∗‖H is nonincreasing on [0,∞), for all t ∈ [0,∞)

and all x∗ ∈ E∗ we have ‖i∗S∗(t)x∗‖H ≤ ‖i∗x∗‖H . Then from Proposition 3.1 it
follows that the operators S(t) restrict to contractions on H. The strong continuity
of SH follows from Proposition 3.2.

Recalling that i : H ↪→ E denotes the inclusion map, we define the positive
symmetric operator Q ∈ L (E∗, E) by

Q := i ◦ i∗.

Using this operator, we define the positive symmetric operators Qt ∈ L (E,E∗) by
(2.2). As before we let Ht be the RKHS associated with Qt, and it : Ht ↪→ E is
the natural inclusion mapping.
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Theorem 3.5. Assume that S restricts to a C0-semigroup SH on H.

(1) For all t, s > 0 we have Ht = Hs with equivalent norms;
(2) For all t > 0 we have Ht ⊆ H with dense inclusion;
(3) For all t > 0 we have S(t)H ⊆ Ht and

lim sup
t↓0

√
t ‖S(t)‖L (H,Ht) ≤ lim sup

t↓0
‖SH(·)‖H .

Proof. We start with some general observations. For t > 0 define the positive
selfadjoint operator Rt ∈ L (H) by

Rt h :=
∫ t

0

SH(s)S∗H(s)h ds, h ∈ H.

Let Gt denote the RKHS associated with Rt and let jt : Gt ↪→ H denote the
inclusion mapping. By [29, Theorem 1.11], as subsets of E we have Ht = Gt. It
follows that Ht ⊆ H.

Denoting by it : Ht ↪→ E the inclusion mapping, the map

i∗tx
∗ 7→ j∗t (i∗x∗), x∗ ∈ E∗,

establishes an isometrical isomorphism of Ht and Gt. Thanks to this observation,
in the rest of the proof we may identify Ht with Gt.

For each h ∈ H, the function fh(s) := SH(s)h belongs to L2([0, t];H), and hence

(3.1) t · S(t)h =
∫ t

0

S(t)h ds =
∫ t

0

S(t− s)fh(s) ds.

Hence by [15, Appendix B], S(t)h ∈ Gt. This shows that S(t)H ⊆ Gt = Ht.
Let

Yt = {SH(s)h : 0 < s ≤ t, h ∈ H}.
By the strong continuity of SH , the set Y is dense in H. On the other hand, for all
0 < s ≤ t we have Hs ⊆ Ht and therefore

SH(s)h ∈ Hs ⊆ Ht.

It follows that Y ⊆ Ht ⊆ H, and Ht is dense in H. This proves (2).
Fix t0 > 0. From (2) we have

S(t0)Ht0 ⊆ S(t0)H ⊆ Ht0 .

Therefore by [29, Theorem 1.9], for all t ≥ t0 we have Ht = Ht0 with equivalent
norms. Since t0 > 0 is arbitrary, this gives (1).

Fix h ∈ H and t0 > 0. Using the language of control theory of [15, Appendix
B], (3.1) shows that the function u(s) := t−1

0 SH(s)h is a control for reaching S(t0)h
at time t0. The the minimum energy for a control to reach S(t0)h being equal
‖S(t0)h‖Ht0

, it follows that

‖S(t0)h‖2Ht0
≤ ‖u‖2L2([0,t0];H) =

1
t20

∫ t0

0

‖SH(s)h‖2H ds.

Therefore,
lim sup

t↓0

√
t ‖S(t)‖L (H,Ht) ≤ lim sup

t↓0
‖SH(·)‖H .
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This gives (3).

In case E is a Hilbert space and Q = I, these estimates are well known; cf. [15].

Assertion (3) admits a control theoretic interpretation. In order to explain this,
we need to introduce some terminology.

Let H be a real Hilbert space, let B : H → E a bounded linear operator, and
let t0 > 0 be given. We say that the pair (S, B) is null controllable in time t0 if for
every x ∈ E there exists a function f ∈ L2((0, t0);H ) such that the unique mild
solution u of the equation

u′(t) = Au(t) +Bf(t), t ≥ 0,

u(0) = x

satisfies
u(t0) = 0.

It is well known that the pair (S, B) is null controllable in time t0 if and only if
S(t0) maps E intoHRt0

, the RKHS associated with the positive symmetric operator
Rt0 ∈ L (E∗, E) defined by

(3.2) Rt0x
∗ :=

∫ t0

0

S(s)BB∗S∗(s)x∗ ds, x∗ ∈ E∗,

cf. [15, 30].

Theorem 3.6. In the above situation, let there exist δ > 0 and a constant M ≥ 0
such that for all t ∈ [0, δ] and all x∗ ∈ E∗ we have

(3.3) ‖B∗S∗(t)x∗‖H ≤M‖B∗x∗‖H .

Then the following assertions are equivalent:

(1) The pair (S, B) is null controllable for all t > 0;
(2) S(t)E ⊆ rangeB for all t > 0.

Proof. Let R := B ◦ B∗ and let iR : HR ↪→ E denote the RKHS associated with
R. As outlined in Example 2.1 (1), we may identify HR with the range of B. By
Proposition 3.1, the estimate (3.3) implies that HR is S(t)-invariant for all t ∈ [0, δ],
and that the restricted operators are uniformly bounded on HR. Then Proposition
3.2 implies that S restricts to a C0-semigroup on HR, and we are in a position to
apply Theorem 3.5.

(1)⇒ (2): If (S, B) is null controllable at time t, then S(t)(E) ⊆ HRt
⊆ HR,

where the second inclusion follows from Theorem 3.5 (2).
(2)⇒ (1): For all t > 0 we have S(t)x = S( t

2 )(S( t
2 )x) ∈ S( t

2 )HR ⊆ HR t
2

= HRt
,

where we used Theorem 3.5 (1), (3).

In the previous section we showed that Hypothesis (HQ∞) implies the inclusion
H ⊆ H∞. If H is S-invariant we can prove more:

Proposition 3.7 (HQ∞). If S restricts to a C0-semigroup on H, then H ∩H∞ is
dense in both H and H∞. In particular we have H = H∞.
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Proof. By Theorem 3.5, for all h ∈ H we have SH(t)h ∈ Ht ⊆ H ∩ H∞. Hence
from limt↓0 SH(t)h = h strongly in H it follows that H ∩H∞ is dense in H.

For all t > 0 and x∗ ∈ E∗ we have i∗tx
∗ ∈ Ht ⊆ H ∩ H∞. We claim that

limt→∞ i∗tx
∗ = i∞x

∗ weakly in H∞. Since the range of i∗∞ is dense in H∞, this will
show that H ∩H∞ is weakly dense in H∞, and therefore dense in H∞.

To prove the claim we first recall from Section 2 that the inclusion mapping
Ht ↪→ H∞ is contractive. Therefore,

(3.4) ‖i∗tx∗‖2H∞ ≤ ‖i
∗
tx
∗‖2Ht

= 〈Qtx
∗, x∗〉 ≤ 〈Q∞x∗, x∗〉 = ‖i∗∞x∗‖2H∞ .

Moreover, for all y∗ ∈ E∗ we have
lim

t→∞
[i∗tx

∗, i∗∞y
∗]H∞ = lim

t→∞
〈i∞i∗tx∗, y∗〉 = lim

t→∞
〈iti∗tx∗, y∗〉

= lim
t→∞
〈Qtx

∗, y∗〉 = 〈Q∞x∗, y∗〉 = [i∗∞x
∗, i∗∞y

∗]H∞ .

Using once more the density of the range of i∗∞, together with the uniform bound
(3.4) this proves the claim.

If SH is a C0-semigroup of normal operators, then for individual orbits we have
the following version of the estimate in Theorem 3.5 (3):

Theorem 3.8. If SH is a C0-semigroup of normal operators on H, then for all
t > 0 and h ∈ H we have ∫ t

0

‖SH(s)h‖2Ht
ds = ‖h‖2H .

Note that the right hand side is independent of the semigroup S.

Proof. For t > 0 define the positive selfadjoint operators Rt, R∗t ∈ L (H) by

Rt h :=
∫ t

0

SH(s)S∗H(s)h ds, R∗t h :=
∫ t

0

S∗H(s)SH(s)h ds, h ∈ H.

Let Gt and G∗t denote the RKHS’s associated with Rt and R∗t, respectively, and
let jt : Gt ↪→ H and j∗t : G∗t ↪→ H denote the inclusion mappings. From

‖j∗t h‖2Gt
=

∫ t

0

[SH(s)S∗H(s)h, h]H ds =
∫ t

0

[S∗H(s)SH(s)h, h]H ds = ‖(j∗t)∗h‖2G∗t

it follows thatGt andG∗t are canonically isometrically isomorphic as Hilbert spaces,
and identical as subsets of H. Moreover, as we saw in the proof of Theorem 3.5,
Ht and Gt are canonically isometrically isomorphic as Hilbert spaces and we have
Ht = Gt as subsets of E. It follows that it suffices to prove that∫ t

0

‖SH(s)h‖2G∗t
ds = ‖h‖2H .

From the normality of each operator SH(t) it is not difficult to see that

(3.5) SH(t)S∗H(s) = S∗H(s)SH(t), t, s ≥ 0.

Indeed, by the semigroup property this is true whenever both t and s are integer
multiples of a common fixed real number. The set of all pairs (t, s) with this
property being dense in [0,∞)×[0,∞), the general case follows by strong continuity
of SH and its adjoint S∗H .
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Using (3.5) we see that

R∗tSH(τ) = SH(τ)R∗t, R∗tS
∗
H(τ) = S∗H(τ)R∗t, τ ≥ 0,

and hence,

(3.6) R
1
2
∗tSH(τ) = SH(τ)R

1
2
∗t, R

1
2
∗tS

∗
H(τ) = S∗H(τ)R

1
2
∗t, τ ≥ 0.

Define the convolution operator At from L2([0, t];H) into H by

Atψ :=
∫ t

0

S∗H(t− s)ψ(s) ds.

By (3.6),

R
1
2
∗tAt = AtR

1
2
∗t.

It is trivially checked that

A∗th = SH(t− ·)h, h ∈ H.

Hence, the kernel of At is equal to the orthonormal complement in L2([0, t];H) of
the closed linear subspace Vt spanned by all functions of the form s 7→ SH(t− s)h,
h ∈ H. Let πt denote the orthonormal projection in L2([0, t];H) onto Vt.

Now fix h ∈ H. Then by Example 2.1(2), R
1
2
∗th ∈ G∗t, the RKHS associated

with R∗t. Therefore by [15, Appendix B] there exists a function φ ∈ L2([0, t];H)
such that

R
1
2
∗th = Atφ.

Noting that Atφ = At(πtφ), it follows that

(3.7) R∗th = R
1
2
∗tAtφ = R

1
2
∗tAt(πtφ) = At(R

1
2
∗t(πtφ)).

On the other hand,

(3.8) R∗th =
∫ t

0

S∗H(t− s)SH(t− s)h ds = At(SH(t− ·)f).

Observing that SH(t− ·)h ∈ Vt, and noting that from πtφ ∈ Vt it follows that also

R
1
2
∗t(πtφ) ∈ Vt, from (3.7) and (3.8) we now deduce that

SH(t− ·)h = R
1
2
∗t(πtφ).

But clearly, R
1
2
∗t(πtφ) ∈ L2([0, t];G∗t). It follows that SH(·)h ∈ L2([0, t];G∗t).

Finally, because R
1
2
∗t is an isometry from H onto G∗t and At is an isometry from

Vt onto G∗t,∫ t

0

‖SH(s)h‖2G∗t
ds =

∫ t

0

‖S(t− s)h‖2G∗t
ds

=
∫ t

0

‖R
1
2
∗t(πtφ(s))‖2G∗t

ds =
∫ t

0

‖πtφ(s)‖2H ds

= ‖πtφ‖2L2([0,t];H) = ‖At(πtφ)‖2G∗t
= ‖R

1
2
∗th‖2G∗t

= ‖h‖2H .
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Remark 3.9. By [26, Theorem 22.4.1], for normal semigroups we always have an
estimate

(3.9) ‖SH(t)‖H ≤ eat, t ≥ 0,

for some a ∈ R .
Let us now assume that SH is an analytic semigroup which satisfies (3.9) for

some a < 0. These assumptions imply that DAH
( 1
2 , 2) = D((−AH)

1
2 ); we use

standard notations as can be found, e.g., in [15]. From this, in turn, it follows that
there exists a constant C ≥ 0 such that

(3.10)
∫ t

0

‖SH(s)h‖2DAH
( 1
2 ,2) ds ≤ C‖h‖H , h ∈ H, t > 0;

see [15, Appendix A]. On the other hand, for all t > 0 we have Ht = DAH
( 1
2 , 2)

with equivalent norms see [15, Appendix B]. Therefore (3.10) implies

(3.11)
∫ t

0

‖SH(s)h‖2Ht
ds ≤ Ct‖h‖H , h ∈ H, t > 0,

with a constant Ct depending on t. Theorem 3.8 shows that in the normal case one
has equality in (3.11) with Ct = 1.

4. The Liapunov equation AX +XA∗ = −Q and Q-symmetry

In this section we study the Liapunov equation

(4.1) AX +XA∗ = −Q

and apply the results to the case where we have S(t) ◦Q = Q ◦ S∗(t) for all t ≥ 0.
The following result shows that the operator Q∞, if exists, ‘solves’ this equation:

Proposition 4.1 (HQ∞). For all x∗ ∈ D(A∗) we have Q∞x∗ ∈ D(A) and

AQ∞x
∗ +Q∞A

∗x∗ = −Qx∗.

Proof. Take x∗, y∗ ∈ D(A∗). Differentiating the identity

〈Q∞S∗(t)x∗, S∗(t)y∗〉 = 〈Q∞x∗, y∗〉 − 〈Qtx
∗, y∗〉

on both sides with respect to t. Evaluating at t = 0 gives

(4.2) 〈Q∞x∗, A∗y∗〉+ 〈Q∞A∗x∗, y∗〉 = −〈Qx∗, y∗〉.

It follows that Q∞x∗ ∈ D(A) and that AQ∞x∗ +QA∗x∗ = −Q.

This result motivates the following definition.

Definition 4.2. A solution of equation (4.1) is a bounded operator X ∈ L (E∗, E)
such that for all x∗ ∈ D(A∗) we have Xx∗ ∈ D(A) and AXx∗ +XA∗x∗ = −Qx∗.

We recall the following observation from [37]; since our setting is slightly different
we include a proof.

Proposition 4.3. If X is a positive symmetric solution of the equation (4.1), then
for all t > 0 we have

(4.3) X − S(t)XS∗(t) = Qt.
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Proof. From (4.1) we have, for x∗, y∗ ∈ D(A∗),

〈Qtx
∗, y∗〉 = −

∫ t

0

〈S(s)(AX +XA∗)S∗(s)x∗, y∗〉 ds

= −
∫ t

0

d

ds
〈S(s)XS∗(s)x∗, y∗〉 ds = 〈Xx∗, y∗〉 − 〈S(t)XS∗(t)x∗, y∗〉.

Since D(A∗) is weak∗-dense in E∗, it follows thatQtx
∗ = Xx∗−S(t)XS∗(t)x∗ for all

x∗ ∈ D(A∗). Finally, since bothQt andX are positive and symmetric, and therefore
weak∗-to-weakly continuous, it follows from this that Qtx

∗ = Xx∗−S(t)XS∗(t)x∗

for all x∗ ∈ E∗.

After these preparations we can state and prove our main result about the Li-
apunov equation. Under somewhat more restrictive conditions, this result was
proved in [41] for the case when E is a Hilbert space; see also [15, Theorem 11.7].

Theorem 4.4. The following assertions are equivalent:
(1) Equation (4.1) has a positive symmetric solution;
(2) Hypothesis (HQ∞) holds.

If these equivalent conditions are satisfied, the operator Q∞ is a positive symmet-
ric solution of (4.1), which is minimal in the sense that if R is another positive
symmetric solution of (4.1), then for all x∗ ∈ E∗ we have

〈Q∞x∗, x∗〉 ≤ 〈Rx∗, x∗〉.

Proof. (1)⇒ (2): Suppose R is a positive symmetric solution of (4.1). By (4.3), for
all x∗ ∈ E∗ we have

〈Qtx
∗, x∗〉 = 〈Rx∗, x∗〉 − 〈RS∗(t)x∗, S∗(t)x∗〉.

Since by assumption R is positive, this implies

〈Qtx
∗, x∗〉 ≤ 〈Rx∗, x∗〉

for all x∗ ∈ E∗. Hence, t 7→ 〈Qtx
∗, x∗〉 is a bounded function. Since this function is

also non-decreasing, it follows that the limit limt→∞〈Qtx
∗, x∗〉 exists for all x∗ ∈ E∗

and we have
lim

t→∞
〈Qtx

∗, x∗〉 ≤ 〈Rx∗, x∗〉.

By polarization, the limit limt→∞〈Qtx
∗, y∗〉 exists for all x∗, y∗ ∈ E∗. We now

define a linear operator Q∞ ∈ L (E∗, E∗∗) by

〈y∗, Q∞x∗〉 := lim
t→∞
〈Qtx

∗, y∗〉.

By the uniform boundedness theorem, Q∞ is bounded. We claim that Q∞ actually
takes values in E. Indeed, for all x∗ ∈ E∗ we have

〈x∗, Q∞x∗〉 = lim
t→∞
〈Qtx

∗, x∗〉 ≤ 〈Rx∗, x∗〉, x∗ ∈ E∗,

and the claim follows from Proposition 2.2.
(2)⇒ (1): This is the content of Proposition 4.1.

The semigroup S is said to be Q-symmetric if for all t ≥ 0 we have

S(t)Q = QS∗(t).
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It is easy to check that the following assertions are equivalent:
(1) S is Q-symmetric;
(2) For all x∗ ∈ D(A∗) we have Qx∗ ∈ D(A) and AQx∗ = QA∗x∗.

If Hypothesis (HQ∞) holds, then these assertions are equivalent to:
(3) For all t ≥ 0 we have S(t)Q∞ = Q∞S

∗(t);
(4) For all x∗ ∈ D(A∗) we have Q∞x∗ ∈ D(A) and AQ∞x∗ = Q∞A

∗x∗.
It follows from (4) and Liapunov equation that

AQ∞ = Q∞A
∗ = − 1

2Q.

Theorem 4.5 (HQ∞). If S is Q-symmetric, then S restrict to a selfadjoint and
strongly stable C0-semigroup of contractions on H.

Proof. For all x∗ ∈ D(A∗) we have

−〈Qx∗, A∗x∗〉 = 2〈AQ∞x∗, A∗x∗〉 = 2〈Q∞A∗x∗, A∗x∗〉 ≥ 0

since Q∞ is a positive operator. Therefore by Theorem 3.4, S maps H into itself
and the restricted semigroup SH is a C0-semigroup of contractions on H.

Selfadjointness of SH follows from
[i∗x∗, S∗H(t)i∗y∗]H = [SH(t)i∗x∗, i∗y∗]H = [i∗S∗(t)x∗, i∗y∗]H

= 〈Qy∗, S∗(t)x∗〉 = 〈S(t)Qy∗, x∗〉
= 〈iSH(t)i∗y∗, x∗〉 = [i∗x∗, SH(t)i∗y∗]H .

It remains to prove strong stability of SH . Fix x∗ ∈ E∗. From∫ ∞

0

‖S∗H(t)i∗x∗‖2H dt = 〈Q∞x∗, x∗〉 <∞

and a standard argument it follows that

lim
t→∞

‖SH(t)i∗x∗‖H = lim
t→∞

‖S∗H(t)i∗x∗‖H = 0.

By a density argument, this gives the strong stability of SH .

In the following result, which extends a result from [10], we do not assume
Hypothesis (HQ∞):

Proposition 4.6. The following assertions are equivalent:
(1) S is Q-symmetric;
(2) H is S-invariant and SH is a selfadjoint semigroup on H;
(3) H is S-invariant and SH is a selfadjoint C0-semigroup on H.

Proof. (1)⇒ (3): By rescaling S we may assume that S is uniformly exponentially
stable. Then Hypothesis (HQ∞) holds, and the assertion follows from Theorem
4.5.

(3)⇒ (2): Trivial.
(2)⇒ (1): For all x∗, y∗ ∈ E∗,

〈S(t)Qx∗, y∗〉 = 〈i SH(t) i∗x∗, y∗〉 = 〈i S∗H(t) i∗x∗, y∗〉
= 〈i i∗S∗(t)x∗, y∗〉 = 〈QS∗(t)x∗, y∗〉.
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5. Spectral gap conditions

In this section we shall prove some results for the semigroup S∞, which will be
applied in Section 7 to obtain a necessary and sufficient condition for the existence
of a spectral gap for the generator of the Ornstein-Uhlenbeck semigroup associated
with S and Q.

We start with a simple but useful lemma.

Lemma 5.1 (HQ∞). The set i∗∞(D(A∗)) is a core for A∗∞.

Proof. Since D(A∗) is weak∗-dense in E∗ and i∗∞ is weak∗-to-weakly continuous,
the set i∗∞(D(A∗)) is weakly dense, and hence dense, in H∞.

From S∗∞(t)i∗∞ = i∗∞ ◦ S∗(t) it follows that i∗∞(D(A∗)) is S∗∞-invariant, and by
another standard result from from the theory of C0-semigroups [18, Proposition
II.1.7] this implies that i∗∞(D(A∗)) is a core for A∗∞.

The next result extends a result from [9] to the Banach space setting.

Lemma 5.2 (HQ∞). Let M > 0 be given. The following statements are equivalent:

(1) 〈Q∞x∗, x∗〉 ≤M〈Qx∗, x∗〉 for all x∗ ∈ E∗;
(2) ‖S∞(t)‖H∞ ≤ exp

(
− t

2M

)
for all t ≥ 0;

Proof. Before we start the proof we note that for all x∗ ∈ D(A∗) we have the
identity

(5.1)
〈Qx∗, x∗〉 = −2〈x∗, AQ∞x∗〉.

= −2[i∗∞A
∗x∗, i∗∞x

∗]H∞ = −2[A∗∞i
∗
∞x

∗, i∗∞x
∗]H∞ .

(1)⇒ (2): By (5.1),

(5.2) ‖i∗∞x∗‖2H∞ = 〈Q∞x∗, x∗〉 ≤M〈Qx∗, x∗〉 = −2M [A∗∞i
∗
∞x

∗, i∗∞x
∗]H∞ .

Hence by Lemma 5.1, for all h ∈ D(A∗∞) we obtain

(5.3) [A∗∞h, h]H∞ ≤ − 1
2M ‖h‖

2
H∞ .

By standard results on contraction semigroups in Hilbert spaces, this is equivalent
to (2).

(2)⇒ (1): If (2) holds, then (5.3) holds for all h ∈ D(A∗∞). Taking h = i∞x
∗

with x∗ ∈ D(A∗), it follows that (5.2) holds for all x∗ ∈ D(A∗). It remains to prove
that (5.2) holds for all x∗ ∈ E∗.

Let x∗ ∈ E∗ be arbitrary and fixed, and let (x∗n) be a sequence in D(A∗) converg-
ing to x∗ weak∗ in E∗. Then i∗x∗n → i∗x∗ weakly in H and i∗∞x

∗
n → i∗∞x

∗ weakly
in H∞. Choose a sequence (y∗n) consisting of convex combinations of elements from
(x∗n) for which i∗y∗n → i∗x∗ strongly in H and i∞y∗n → i∗∞x

∗ strongly in H∞.
Applying (5.2) to y∗n and passing to the limit for n→∞ gives

〈Q∞x∗, x∗〉 = ‖i∗∞x∗‖2H∞ ≤M‖i
∗x∗‖2H = M〈Qx∗, x∗〉

for all x∗ ∈ E∗, and we obtain (1).

Combined with Proposition 2.5 this implies:
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Corollary 5.3 (HQ∞). If H∞ ⊆ H, then for all t > 0 we have Ht = H∞ with
equivalent norms.

In case H is invariant, we can say more. For the Q-symmetric case in Hilbert
spaces, the following result was obtained in [10]. Let AH denote the generator of
the semigroup SH .

Theorem 5.4 (HQ∞). If S restricts to a C0-semigroup on H, the following as-
sertions are equivalent:

(1) SH is uniformly exponentially stable;
(2) S∞ is uniformly exponentially stable;
(3) For some t > 0 we have Ht = H∞ with equivalent norms;
(4) For all t > 0 we have Ht = H∞ with equivalent norms;
(5) H∞ ⊆ H.

In this situation, the inclusion H∞ ⊆ H is dense.

Proof. (2)⇔ (3): Recall that S∞ is uniformly exponentially stable if and only if
there exists t0 > 0 such that ‖S∞(t0)‖H∞ < 1. Therefore the equivalence follows
from Proposition 2.5.

(3)⇒ (4): This follows from Theorem 3.5.
(4)⇒ (5): Fix t0 > 0. Then by Proposition 3.2, H∞ = Ht0 ⊆ H.
(5)⇒ (2): This follows from Lemma 5.2.
(5)⇒ (1) : By assumptions there is a constant K such that for all x∗ ∈ E∗ we

have ∫ ∞

0

‖SH(t)i∗x∗‖2H dt = 〈Q∞x∗, x∗〉 ≤ K〈Qx∗, x∗〉 = K‖i∗x∗‖2H .

Hence the map i∗x∗ 7→ SH(·)i∗x∗ has a bounded extension, of norm ≤
√
K, to a

bounded operator from H into L2([0,∞);H). But then the Datko-Pazy theorem
[32] implies (1).

(1)⇒ (5): For all x∗ ∈ E∗ we may estimate

〈Q∞x∗, x∗〉 =
∫ ∞

0

‖SH(t)i∗x∗‖2H dt

≤
∫ ∞

0

Me−at dt · ‖i∗x∗‖2H = Ma−1〈Qx∗, x∗〉.

This gives (5).
The final assertion follows from Proposition 3.7. Alternatively, one could observe

that by Proposition 3.2, the inclusions Ht ⊆ H are dense. Therefore the result
follows from the fact that Ht = H∞ with equivalent norms.

In view of Lemma 5.2, it seems natural to ask whether assertions (2) and (5) in
Theorem 5.4 are always equivalent (i.e., even when H fails to be invariant). The
following example shows that this is not the case.

Example 5.5. Let E = R 2, let

Q =
(

0 0
0 1

)
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and let the semigroup S on E be given by

S(t) = e−t

(
1 t
0 1

)
.

An easy computation gives

Q∞ =
1
4

(
1 1
1 2

)
,

cf. [20, Example 4.3]. This matrix is invertible, so H∞ = E = R 2 (with equivalent
norms). On the other hand, H is the one-dimensional subspace of E spanned by

the vector
(

0
1

)
. It follows that

H∞ 6⊆ H.

On the other hand it is clear that S∞ is strongly stable, hence uniformly exponen-
tially stable since H∞ is finite-dimensional.

There is no contradiction with Theorem 5.2: the point is that there exists no
ω > 0 such that ‖S∞(t)‖H∞ ≤ e−ωt for all t ≥ 0. This can be checked by the
following direct computation that will be useful in the next section as well.

We use the simple fact that ‖S∞(t)‖2 is the largest eigenvalue of S∞(t)S∗∞(t).
Noting that i∗∞ is a surjection from E onto H∞, the number λ(t) is an eigenvalue
of S∞(t)S∗∞(t) if and only if there exists a vector x∗ ∈ E such that for all y ∈ E∗
we have

[S∞(t)S∗∞(t)i∗∞x
∗, i∗∞y

∗]H∞ = λ(t)[i∗∞x
∗, i∗∞y

∗]H∞ ,

or equivalently,

〈S(t)Q∞S∗(t)∗x∗, y∗〉 = λ(t)〈Q∞x∗, y∗〉.

Thus we have to solve the equation

det
[
S(t)Q∞S∗(t)− λ(t)Q∞

]
= 0.

An elementary computation gives

S(t)Q∞S∗(t)− λ(t)Q∞ =
1
4

(
e−2t

(
2t2 + 2t+ 1

)
− λ(t) e−2t

(
2t+ 1

)
− λ(t)

e−2t
(
2t+ 1

)
− λ(t) 2e−2t − 2λ(t)

)
from which we deduce that

λ±(t) = e−2t
(
t±

√
t2 + 1

)2

.

We finally obtain

‖S∞(t)‖ = e−t
(
t+

√
t2 + 1

)
.

Denoting the right hand side by f(t), we have f(0) = 1, limt→∞ f(t) = 0 mono-
tonously, and f ′(0) = 0. Clearly, a function f(t) with these properties cannot be
dominated by a negative exponential e−ωt.
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6. The Ornstein-Uhlenbeck semigroup in Cb(E)

Positive symmetric operators from E∗ into E arise naturally as the covariance
operators of Gaussian Borel measures on E. However, not every positive symmetric
operator is a Gaussian covariance operator, and for this reason we will frequently
consider the following hypothesis:

• (Hµt): E is separable, and for all t > 0 the operator Qt is the covariance
of a centred Gaussian Borel measure µt on E.

Whenever it is convenient we further put µ0 := δ0, the Dirac measure concen-
trated at the origin.

The separability in Hypothesis (Hµt) is added in order avoid certain measure
theoretic complications.

If E is a separable real Hilbert space, then Qt is a Gaussian covariance if and
only Qt is a trace class operator, and this happens if and only if the inclusion
it : Ht ↪→ E is a Hilbert-Schmidt operator.

The relevance of Hypothesis (Hµt) is explained by the following result from [6]:

Proposition 6.1 (Hµt). Let A denote the generator of the semigroup S. The
stochastic evolution equation

(6.1)
dX(t) = AX(t) dt+ dWH(t), t ≥ 0,

X(0) = x,

has a unique weak solution {X(t, x)}t≥0 if and only Hypothesis (Hµt) holds. In
this situation the process {X(t, x)}t≥0 is Gaussian. For all t > 0 we have X(t, x) =
S(t)x+X(t, 0) almost surely, and the distribution of X(t, 0) equals µt.

Assuming Hypothesis (Hµt), we define the transition semigroup P = {P (t)}t≥0

of {X(t, ·)}t≥0 on the space Bb(E) of all bounded Borel functions on E by

P (t)f(x) = E
(
f(X(t, x))

)
=

∫
E

f(S(t)x+ y) dµt(y), t ≥ 0, x ∈ E.

The semigroup P is contractive on Bb(E) and it maps Cb(E), the space of all
bounded continuous functions on E, into itself.

In general, the semigroup P is not strongly continuous on Cb(E), and not even
on its closed subspace BUC(E) of all bounded and uniformly continuous functions
on E.

We will show next that P is strongly continuous on Cb(E) endowed with the
mixed topology which is defined as the finest locally convex topology on Cb(E) that
agrees on every norm-bounded set with the topology of uniform convergence on
compact sets. For Hilbert spaces E, this fact was proved in [24]. By the results in
[35], this definition agrees with the one in [24]. Clearly,

τuniform−on−compacts ⊂ τmixed ⊂ τuniform.

We have the following characterization of sequential convergence in the mixed topol-
ogy: a sequence (fn) in Cb(E) converges to f ∈ Cb(E) if and only if

(1) supn ‖fn‖∞ <∞;
(2) limn→∞ fn = f uniformly on compact subsets of E.
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We will also need the fact that the dual space (Cb(E), τmixed)∗ can be identified in
the natural way with the space of finite Borel measures on E [19].

For more information about the mixed topology we refer the interested reader
to the papers [35, 38, 39] and the references therein.

Theorem 6.2 (Hµt). The semigroup P is strongly continuous on Cb(E) in its
mixed topology.

Proof. Following the arguments of [24], we see that it suffices to prove that for all
f ∈ Cb(E) and all compact subsets K ⊆ E we have

lim
t↓0

(
sup
x∈K
|P (t)f(x)− f(x)|

)
= 0.

For Hilbert spaces E, this can be proved easily by probabilistic arguments. Here
we give a direct, analytical proof.

Fix f ∈ Cb(E) and K ⊆ E compact. We may assume that K is convex. As
was observed in [29], we have weak convergence µt → µ0 = δ0, the Dirac measure
concentrated at 0. Fixing an arbitrary ε > 0, by tightness we may choose a compact
set L in E such that µt(L) ≥ 1 − ε for all t ∈ [0, 1]. We may assume that L is
convex. Keeping in mind that µ0 = δ0, we necessarily have 0 ∈ L.

For all t ≥ 0 and x ∈ E we have

(6.2)
|P (t)f(x)− f(x)|

≤
∫

E

|f(S(t)x+ y)− f(x+ y)| dµt(y) +
∫

E

|f(x+ y)− f(x)| dµt(y).

We will estimate the two integrals on the right hand side separately. For all x ∈ K
and t ∈ [0, 1] we have∫

E

|f(S(t)x+ y)− f(x+ y)| dµt(y) ≤ 2ε ‖f‖∞+
∫

L

|f(S(t)x+ y)− f(x+ y)| dµt(y).

By the strong continuity of S, which is uniform on compact sets, and the uniform
continuity of f on the compact set {S(t)x+ y : (t, x, y) ∈ [0, 1]×K × L} we may
choose 0 < t0 ≤ 1 so small that

sup
x∈K, y∈L

|f(S(t)x+ y)− f(x+ y)| < ε, t ∈ [0, t0].

Thus, for all t ∈ [0, t0] we obtain

(6.3) sup
x∈K

∫
E

|f(S(t)x+ y)− f(x+ y)| dµt(y) ≤ 2ε ‖f‖∞ + ε.

Next we estimate the second integral on the right hand side of (6.2). As above, for
all x ∈ K and t ∈ [0, 1] we have

(6.4)
∫

E

|f(x+ y)− f(x)| dµt(y) ≤ 2ε ‖f‖∞ +
∫

L

|f(x+ y)− f(x)| dµt(y).

Hence it remains to show that

(6.5) lim
t↓0

(
sup
x∈K

∫
L

|f(x+ y)− f(x)| dµt(y)
)

= 0.
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The restriction of f to K+L being uniformly continuous, we introduce its modulus
of continuity,

η(δ) := sup{|f(z)− f(z′)| : z, z′ ∈ K + L, ‖z − z′‖ ≤ δ}.

Then, recalling that 0 ∈ L,

sup
x∈K

∫
L

|f(x+ y)− f(x)| dµt(y) ≤
∫

L

η(‖y‖) dµt(y).

The function ζ(y) := η(‖y‖) is bounded, nonnegative, and continuous on L. By
the Tietze-Urysohn extension theorem [17, Theorem 2.1.8], it can be extended to a
bounded, nonnegative, and continuous function ζ on all of E. The weak convergence
µt → δ0 then implies

lim sup
t↓0

∫
L

η(‖y‖) dµt(y) ≤ lim
t↓0

∫
E

ζ(y) dµt(y) = ζ(0) = 0.

This proves (6.5).

In the remainder of this section we will always consider P as a strongly continuous
semigroup on Cb(E) in its mixed topology. The infinitesimal generator (L,D(L))
of P is defined by

D(L) =
{
f ∈ Cb(E) : lim

t↓0

P (t)f − f
t

exists
}
,

Lf = lim
t↓0

P (t)f − f
t

(f ∈ D(L)),

where the limits are taken with respect to the mixed topology. In a similar way
we define the weak generator: we say that φ ∈ D (Lw) if there exists a (necessarily
unique) function f ∈ Cb(E) such that

(6.6) lim
t↓0

∫
E

P (t)φ(x)− φ(x)
t

dν(x) =
∫

E

f(x) dν(x)

for each finite Borel measure ν on E; then we define Lwφ := f .

Proposition 6.3 (Hµt). We have L = Lw.

Proof. The proof is a simple modification of the proof of [32, Corollary 1.2]. Obvi-
ously L ⊆ Lw. Let, conversely, φ ∈ D (Lw). Then, as in [32], for each finite Borel
measure ν on E we find∫

E

P (t)φ(x)− φ(x) dν(x) =
∫

E

(∫ t

0

P (s)Lwφ(x) ds
)
dν(x).

Since this holds for all finite Borel measures ν and the functions x 7→ φ(x), x 7→
P (t)φ(x) and x 7→

∫ t

0
P (s)Lwφ(x) ds are continuous we obtain, for all x ∈ E,

P (t)φ(x)− φ(x) =
∫ t

0

P (s)Lwφ(x) ds.
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Hence if K ⊆ E is compact, then

lim
t↓0

(
sup
x∈K

[
P (t)φ(x)− φ(x)

t
− Lwφ(x)

])
= lim

t↓0

(
sup
x∈K

[
1
t

∫ t

0

P (s)Lwφ(x)− Lwφ(x) ds
])

= 0

where in the last step we used that limt↓0 P (t)Lwφ(x) = Lwφ(x) uniformly on K.
By the definition of L and the afore-mentioned criterium for sequential convergence
in the mixed topolgy, this shows that φ ∈ D(L). This concludes the proof.

As an immediate corollary we have the following result, which shows that our
definition of (L,D(L)) agrees with the one in [33].

Corollary 6.4. We have φ ∈ D(L) if and only if the following two conditions hold:

(1) lim sup
t↓0

‖P (t)φ− φ‖
t

<∞;

(2) There exists a function f ∈ Cb(E) such that for all x ∈ E,

lim
t↓0

P (t)φ(x)− φ(x)
t

= f(x).

In this situation we have Lφ = f .

Our next aim is to obtain an explicit representation of L on a suitable core.

Lemma 6.5 (Hµt). Let {X(t, x0)}t≥0 be the unique weak solution of (6.1). Let
φ ∈ C2(R d), x∗1, . . . , x

∗
d ∈ D(A∗), and x0 ∈ E. Then for all t ≥ 0 the following

identity holds almost surely:
φ(〈X(t, x0), x∗1〉, . . . , 〈X(t, x0), x∗d〉)

= φ(〈x0, x
∗
1〉, . . . , 〈x0, x

∗
d〉)

+
d∑

j=1

∫ t

0

∂φ

∂xj
(〈X(s, x0), x∗1〉, . . . , 〈X(s, x0), x∗d〉) dWH(s)i∗x∗j

+
d∑

j=1

∫ t

0

∂φ

∂xj
(〈X(s, x0), x∗1〉, . . . , 〈X(s, x0), x∗d〉)〈X(s, x0), A∗x∗j 〉 ds

+
1
2

d∑
j=1

d∑
k=1

[i∗x∗j , i
∗x∗k]H

∫ t

0

∂2φ

∂xj∂xk
(〈X(s, x0), x∗1〉, . . . , 〈X(s, x0), x∗d〉) ds.

Proof. For j = 1, . . . , d and t ≥ 0 we define

ξj(t) := 〈x0, x
∗
j 〉+

∫ t

0

〈X(s, x0), A∗x∗j 〉 ds+WH(t)i∗x∗j .

By the definition of a weak solution, for all t ≥ 0 we have ξj(t) = 〈X(t, x0), x∗j 〉
almost surely, so {ξj(t)}t≥0 is a modification of the process {〈X(t, x0), x∗j 〉}t≥0.
Since almost surely, the trajectories of {〈X(t, x0), A∗x∗j 〉}t≥0 are locally integrable,
we see that almost surely the trajectories of the process {Vj(t)}t≥0 defined by

(6.7) Vj(t) :=
∫ t

0

〈X(s, x0), A∗x∗j 〉 ds.
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are continuous and locally of bounded variation. By redefining the random variables
Vj(t) to be 0 on a common null set we obtain a modification of {〈X(t, x0), x∗j 〉}t≥0,
still denoted by {ξj(t)}t≥0, From the representation

ξj(t) = 〈x0, x
∗
j 〉+ Vj(t) +Mj(t)

where Mj(t) := WH(t)i∗x∗j , we see that {ξj(t)}t≥0 is a continuous semimartingale.
Define F : R d × R d → R by

F (u, v) := φ
(
(〈x0, x

∗
1〉, . . . , 〈x0, x

∗
d〉) + u+ v

)
.

Put

ξ(t) := (ξ1(t), . . . , ξd(t)), M(t) := (M1(t), . . . ,Md(t)), V (t) := (V1(t), . . . , Vd(t)).

By the Itô formula [11, Theorem 5.10] almost surely we have, for all t ≥ 0,

φ(ξ(t))− φ(ξ(0)) = F (M(t), V (t))− F (M(0), V (0))

=
d∑

j=1

∫ t

0

∂F

∂uj
(M(s), V (s)) dMj(s)

+
d∑

j=1

∫ t

0

∂F

∂vj
(M(s), V (s)) dVj(s)

+
1
2

d∑
j=1

d∑
k=1

[i∗x∗j , i
∗x∗k]H

∫ t

0

∂2F

∂uj∂vk
(M(s), V (s)) ds

(6.8)

=
d∑

j=1

∫ t

0

∂φ

∂xj
(ξ(s)) dWH(s)i∗x∗j

+
d∑

j=1

∫ t

0

∂φ

∂xj
(ξ(s))〈X(s, x0), A∗x∗j 〉 ds

+
1
2

d∑
j=1

d∑
k=1

[i∗x∗j , i
∗x∗k]H

∫ t

0

∂2φ

∂xj∂xk
(ξ(s)) ds,

where we used (6.7) and the fact that the mutual quadratic variation of Mj(s) and
Mk(s) equals s · [i∗x∗j , i∗x∗k]H .

We claim that almost surely,

(6.9) ξj(s) = 〈X(s, x0), x∗j 〉 for almost all s ≥ 0.

To see this, note that {ξ(t)}t≥0 is progressively measurable, being a process with
continuous trajectories. Also, {〈X(t, x0), x∗〉}t≥0 is progressively measurable, being
predictable. The claim follows from Fubini’s theorem.

The proposition now follows by combining (6.8) and (6.9).

We will now identify a suitable core for L consisting of cylindrical functions sat-
isfying the assumptions of Lemma 6.5. To this end let us define F = FC2

b (D(A∗))
as the space of all functions f : E → R of the form

(6.10) f(x) = φ(〈x, x∗1〉, . . . , 〈x, x∗d〉)
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for some d ≥ 1, with x∗j ∈ D(A∗) for all j = 1, . . . , d and φ ∈ C2
b (R d). Let

F0 = {f ∈ F : 〈 · , A∗Df(·)〉 ∈ Cb(E)}.

For f ∈ F0 we define L0f ∈ Cb(E) by

(6.11) L0f(x) := 1
2 traceD2

Hf(x) + 〈x,A∗Df(x)〉, x ∈ E.

Here Df : E → E∗ is the Fréchet derivative of f ,

Df(x) =
d∑

j=1

∂φ

∂xj
(〈x, x∗1〉, . . . , 〈x, x∗d〉)⊗ x∗j

and DHf : E → H is defined by

(6.12) DHf(x) =
d∑

j=1

∂φ

∂xj
(〈x, x∗1〉, . . . , 〈x, x∗d〉)⊗ i∗x∗j .

In a slightly different setting, the space F0 was introduced first by Cerrai and
Gozzi [7]; see also [24]. Extending the results from these papers to the Banach
space setting, we will show in a moment that F0 is a core for the generator L and
that Lf = L0f for f ∈ F0.

Theorem 6.6 (Hµt). F0 is a core for L, and for all f ∈ F0 we have Lf = L0f .

Proof. We will show first that L0 ⊆ L. Clearly, L0f ∈ Cb(E) for any f ∈ F0. Let
f(x) = φ(〈x, x∗1〉, . . . , 〈x, x∗d〉) with x∗j ∈ D(A∗) for all j = 1, . . . , d and φ ∈ C2

b (R d).
First we note that

D2
Hφ(〈x, x∗1〉, . . . , 〈x, x∗d〉) =

d∑
j=1

d∑
k=1

∂2φ

∂xj∂xk
(〈x, x∗1〉, . . . , 〈x, x∗d〉)⊗ (i∗x∗j ⊗B∗x∗k).

Now we apply Lemma 6.5 and take on both sides the expectation. This gives
1
t

(
P (t)f(x)− f(x)

)
= E

1
t

(
f(X(t, x))− f(x)

)
= E

1
t

∫ t

0

d∑
j=1

∂φ

∂xj
(〈X(s, x), x∗1〉, . . . , 〈X(s, x), x∗d〉)〈X(s, x), A∗x∗j 〉 ds

+ E
1
2t

d∑
j=1

d∑
k=1

[i∗x∗j , i
∗x∗k]H

∫ t

0

∂2φ

∂xj∂xk
(〈X(s, x), x∗1〉, . . . , 〈X(s, x), x∗d〉) ds

=
1
t

∫ t

0

P (s)
(〈
· , A∗Df(·)

〉)
(x) ds+

1
2t

∫ t

0

P (s)
(
traceD2

Hf
)
(x) ds.

The assumption f ∈ F0 implies that the functions

x 7→ 〈x,A∗Df(x)〉 and x 7→ 1
2 traceD2

Hf(x)

belong to Cb(E). Therefore by Theorem 6.2 we can pass to the limit t ↓ 0 and by
using Corollary 6.4 we obtain L0 ⊆ L . By [24, Lemma 4.6] F0 is dense in Cb(E),
and since F0 is also P−invariant, F0 is a core for L by [24, Lemma 4.7]; mutatis
mutandis, the proofs of these results extend to the Banach space case.
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6.1. The strong Feller property. We say that P has the strong Feller property if
for every t > 0, P (t) mapsBb(E) into Cb(E). We start with a characterization of the
strong Feller property in terms of the mixed topology on Cb(E). Although a more
general version of the following result below appears to be known to specialists, it is
not easily available and for the convenience of reader we include a straightforward
proof for the case of Ornstein-Uhlenbeck semigroups.

Proposition 6.7. The following conditions are equivalent:
(1) The semigroup P has the strong Feller property.
(2) For each t > 0, the mapping

x 7→ µt(x, ·)

is continuous from E into (Cb(E), τmixed)∗ with the variation norm.
(3) For each t > 0, the operator

P (t) : (Cb(E), τuniform)→ (Cb(E), τmixed)

is compact.

Proof. (1)⇒ (2): Assume that (1) holds. As we have already mentioned, the dual
space (Cb(E), τmixed)∗ may be identified as the space of finite Borel measures on E.
By [15, Theorem 9.19], for each t > 0 there eixsts ct ≥ 0 such that

‖µt(x, ·)− µt(y, ·)‖var ≤ ct‖x− y‖, x, y ∈ E,

and (2) follows.
(2)⇒ (1): If (2) holds, then by definition of the variation norm,

|P (t)φ(x)− P (t)φ(y)| ≤ ‖µt(x, ·)− µt(y, ·)‖var ‖φ‖,

which implies (1).
(2)⇔ (3): Assume that (2) holds and let

B = {φ ∈ Cb(E) : ‖φ‖ ≤ 1} .

The set P (t)B is bounded and by (6.1) uniformly equicontinuous on compacts.
Therefore P (t)B is relatively compact by [24, Theorem 2.4] and (3) follows.

(3)⇔ (2): Assume now that (3) holds. Then there exists a sequence (φn) in B

such that

‖µt(x, ·)− µt(y, ·)‖var = lim
n→∞

|P (t)φn(x)− P (t)φn(y)| .

and since the set P (t)B is relatively compact we may assume that limn→∞ P (t)φn =
ψ in the mixed topology. Hence, ψ is continuous and (b) follows.

It is well known that P has the strong Feller property if and only if the pair
(S, i) is null controllable [15, 29]. Under the assumption that H is S-invariant,
from Theorem 3.6 we thus obtain the following explicit necessary and sufficient
condition for the strong Feller property. It extends a previous result from [10].

Theorem 6.8 (Hµt). If S restricts to a C0-semigroup on H, then the following
assertions are equivalent:

(1) P has the strong Feller property;
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(2) S(t)E ⊆ H for all t > 0.

7. The Ornstein-Uhlenbeck semigroup in L2(E,µ∞)

In order to be able to study the semigroup P in an L2-context, we consider the
following hypothesis:

• (Hµ∞): E is separable, Hypothesis (HQ∞) holds, and the operator Q∞ is
the covariance of a centred Gaussian Borel measure µ∞ on E.

By (2.1) and a standard tightness argument, (Hµ∞) implies (Hµt). If E is a Hilbert
space, then (Hµ∞) holds if and only if (Hµt) holds and

sup
t>0

(
traceQt

)
< ∞,

in particular, if S is uniformly exponentially stable [15, Theorem 11.11]. Extensions
of these results to Banach spaces not containing a closed subspace isomorphic to c0
have been obtained in [31].

In general it is not true that (Hµt) and (HQ∞) imply (Hµ∞), as is shown by
the following example.

Example 7.1. Let E = `2; we identify E and its dual in a natural way. The standard
unit basis of E will be denoted by (xn)∞n=1.

Let (qn)∞n=1 be a bounded sequence of strictly positive real numbers and define
Q ∈ L (E) by

Qxn := qnxn.

Let (an)∞n=1 be a sequence of strictly positive real numbers and define the operator
(A,D(A)) by

Axn := −anxn

with maximal domain. Then A generates a strongly stable C0-semigroup S on E,
given by S(t)xn = e−antxn.

It is easy to check that

H =

{
(bn)∞n=1 ∈ E :

∞∑
n=1

1
qn
b2n <∞

}
.

For all t > 0 we have Qtxn =
qn
2an

(
1− e−2ant

)
xn, hence

Ht =

{
(bn)∞n=1 ∈ E :

∞∑
n=1

2an

qn

(
1− e−2ant

)−1
b2n <∞

}
.

Hypothesis (HQ∞) holds if and only if sup
n≥1

qn
an

< ∞. In this case we have Q∞xn =

qn
2an

xn and

H∞ =

{
(bn)∞n=1 ∈ E :

∞∑
n=1

an

qn
b2n <∞

}
.

Therefore, Hypothesis (Hµ∞) is satisfied if and only if
∞∑

n=1

qn
an

<∞.
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Let us now assume that the sequence (an)∞n=1 is bounded. Then there exists, for
every t > 0, a constant Mt ≥ 1 such that

1 ≤ 1− e−2ant

2an
≤Mt

for all n ≥ 1. From this it follows that

Ht =

{
(bn)∞n=1 ∈ E :

∞∑
n=1

1
qn
b2n <∞

}
.

Thus, for all t > 0 we have Ht = H up to an equivalent norm. By computing the

trace of Qt we see that Hypothesis (Hµt) is satisfied if and only if
∞∑

n=1

qn <∞. For

qn = 1/n2 and an = 1/n we obtain an example where (HQ∞) and (Hµt) hold, but
not (Hµ∞).

This example is interesting for another reason. It is shown in [30] that (HQ∞)
implies that A∗ has no point spectrum in the closed right half plane {z ∈ C :
Re z ≥ 0}, and that A has no point spectrum on the imaginary axis if in addition
we assume that S is uniformly bounded. It may happen that σ(A) ∩ iR is non-
empty, however, even in the presence of Hypothesis (Hµ∞). For example, take
qn = 1/n3 and an = 1/n; then 0 ∈ σ(A) and Hypothesis (Hµ∞) holds.

Let us note that Example 7.1 can easily be extended to E = `p (1 ≤ p < ∞)
by using the fact [36, Theorem V.5.6] that a positive diagonal operator (xn)∞n=1 7→
(cnxn)∞n=1 from E∗ to E is a Gaussian covariance operator if and only if

∑∞
n=1 c

p/2
n <

∞.

If Hypothesis (Hµ∞) holds, the measure µ∞ is invariant under the semigroup
P, that is, for all f ∈ Bb(E) we have∫

E

(P (t)f)(x) dµ∞(x) =
∫

E

f(x) dµ∞(x), t ≥ 0.

By standard arguments, cf. [40, Theorem XIII.1], it follows that P extends to a
C0-contraction semigroup, also denoted by P, on Lp(E,µ∞) for all p ∈ [1,∞). The
space F0, being norm-dense and P-invariant, is a core for the generator (L,D(L)).
We have the following integration by parts formula:

Lemma 7.2 (Hµ∞). For all f, g ∈ F0 we have

(7.1)
∫

E

f Lg + g Lf dµ∞ = −
∫

E

[DHf,DHg]H dµ∞.

Proof. Observe that F0 is closed under multiplication. Hence if f, g ∈ F0, then
fg ∈ F0 ⊆ D(L0) ⊆ D(L) and a simple caluculation based on (6.11) gives

(7.2)
L(fg) = L0(fg) = f L0g + g L0f + [DHf,DHg]H

= f Lg + g Lf + [DHf,DHg]H .

Since µ∞ is an invariant measure, we have∫
E

P (t)(fg) dµ∞ =
∫

E

fg dµ∞
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from which it is immediate that∫
E

L(fg) dµ∞ = 0.

Therefore, for f, g ∈ F0 the desired result follows by integrating (7.2) over E.

Remark 7.3. The identity (7.1) extends to arbitrary elements f, g ∈ D(L) if DH is
closable. Necessary and sufficient conditions for closability of DH , as well as simple
examples where DH fails to be closable, were obtained in [23]. In Proposition 8.7
below we show that DH is closable if P is analytic on L2(E,µ∞).

On L2(E,µ∞) we have the representation

P (t) = Γ(S∗∞(t)), t ≥ 0,

where Γ denotes the second quantization functor; cf. [8], [29]. This result permits
one to study the semigroup P through the semigroup S∗∞. We give to simple
illustrations. The first is a characterization of selfadjointness.

Theorem 7.4 (Hµ∞). The following assertions are equivalent:
(1) The semigroup P is selfadjoint on L2(E,µ∞);
(2) The semigroup S is Q-symmetric.

Proof. We will show that S is Q-symmetric if and only if S∞ is selfadjoint. The
proposition is then a consequence of the identities P (t) = Γ(S∗∞) and P ∗(t) =
Γ(S∞), where Γ denotes the second quantization functor.

If S is Q-symmetric, then for all t ≥ 0 and x∗, y∗ ∈ E∗ we have
[S∞(t)i∗∞x

∗, i∗∞y
∗]H∞ = [i∗∞x

∗, S∗∞(t)i∗∞y
∗]H∞ = [i∗∞x

∗, i∗∞S
∗(t)y∗]H∞

= 〈Q∞x∗, S∗(t)y∗〉 = 〈Q∞S∗(t)y∗, x∗〉
= 〈S(t)Q∞y∗, x∗〉 = [i∗∞y

∗, i∗∞S
∗(t)x∗]H∞

= [i∗∞y
∗, S∗∞(t)i∗∞x

∗]H∞ = [S∗∞(t)i∗∞x
∗, i∗∞y

∗]H∞ .

It follows that S∞ is selfadjoint. Conversely if S∞ is selfadjoint, then a similar
argument shows that S is Q-symmetric.

The second illustration concerns the spectral gap of the generator of P. If
(B,D(B)) is a negative operator in a Hilbert space K, i.e., if [Bk, k]K ≤ 0 for
all k ∈ D(B), then its spectrum σ(B) is contained in the interval (−∞, 0]. We say
that B has a spectral gap if 0 ∈ σ(B) and there exists ω > 0 such that σ(B)\{0} ⊆
(−∞,−ω]. The largest such ω > 0 is called the spectral gap of B.

As an application of the results of Section 5 we shall give a necessary and suf-
ficient condition for the existence of a spectral gap for the generator L of the
Ornstein-Uhlenbeck semigroup P in L2(E,µ∞).

Let H1 = L2(E,µ∞) 	 R denote the orthogonal complement in L2(E,µ∞) of
the constant functions. By second quantization and the properties of the Wiener-
Itô decomposition, we obtain immediately that P restricts to a C0-semigroup of
contractions on H1 satisfying ‖P (t)‖H1 = ‖S∞(t)‖ for all t ≥ 0. Let us denote the
generator of P1 by L1. The following result may now be deduced from Lemma 5.2,
Theorem 5.4, and the spectral theory of C0−semigroups.
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Theorem 7.5 (Hµ∞). The following assertions are equivalent:

(1) L1 has a spectral gap;
(2) H∞ ⊆ H.

If H∞ ⊆ H, the spectral gap of L1 equals the exponential growth bound of the
semigroup generated by A∞.
If S restricts to a C0-semigroup on H, then (1) and (2) are equivalent to:

(3) SH is uniformly exponentially stable.

8. Analyticity of the Ornstein-Uhlenbeck semigroup

In this section we investigate conditions under which the complexified semigroup
PC = {PC (t)}t≥0 is analytic on LC

2 (E,µ∞), the complexification of L2(E,µ∞).
Here P denote the Ornstein-Uhlenbeck semigroup on L2(E,µ∞) associated with S
and H; cf. Section 2.

Recall that a semigroup T = {T (t)}t≥0 on a complex Banach space is called
an analytic contraction semigroup if T is analytic and ‖T (z)‖ ≤ 1 for all z ∈ C
belonging to some sector containing the positive real axis.

Our first result generalizes to Banach spaces a result from [22]; cf. also [20,
Theorem 3.6].

Theorem 8.1 (Hµ∞). The following assertions are equivalent:

(1) PC extends to an analytic semigroup on LC
2 (E,µ∞);

(2) PC extends to an analytic contraction semigroup on LC
2 (E,µ∞);

(3) SC
∞ extends to an analytic contraction semigroup on HC

∞ ;
(4) There exists a constant M ≥ 0 such that∣∣[A∗∞h∞, h′∞]H∞

∣∣ ≤M ∣∣[A∗∞h∞, h∞]H∞
∣∣ 1
2 ·

∣∣[A∗∞h′∞, h′∞]H∞
∣∣ 1
2

for all h∞, h′∞ ∈ i∗∞D(A∗).

In this situation, PC and SC
∞ are contractive on the same sectors.

Proof. The proof is analogous to the corresponding result for Hilbert spaces E given
in [22], so we only sketch the main steps.

The equivalences (1) ⇔ (2) ⇔ (3) as well as the final statement follow from
the fact that PC(t) = ΓC (

(SC
∞ (t))∗

)
, where ΓC denotes the complex second quan-

tization functor.
(3) ⇔ (4): Since i∗∞(D(A∗)) is a core for D(A∗∞), the estimate in condition (4)

holds for all h∞, h′∞ ∈ D(A∗∞). Hence by [28, Proposition I.2.17], condition (4)
holds if and only if there exists b > 0 such that

[(AC
∞ )∗hC , hC ]HC

∞
∈ {z ∈ C : |Imz| ≤ bRez}

for all hC ∈ D((AC
∞ )∗). Since 1 ∈ %(AC

∞ ) (recall that S∞, hence also SC
∞ , is a

contraction semigroup), by [21, Theorem 1.5.9] this condition is in turn equivalent
to condition (3).

Remark 8.2. Using the terminology of [28], condition (4) says that A∞ satisfies a
strong sector condition.
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We will develop Theorem 8.1 a little further.

Theorem 8.3 (Hµ∞). The following assertions are equivalent:

(1) PC extends to a analytic semigroup on LC
2 (E,µ∞);

(2) For all x∗ ∈ D(A∗) we have AQ∞x∗ ∈ H, and there is a constant C ≥ 0
such that

‖AQ∞x∗‖H ≤ C‖i∗x∗‖H , x∗ ∈ D(A∗).

(3) For all x∗ ∈ D(A∗) we have Q∞(A∗x∗) ∈ H, and there exists a constant
C > 0 such that

‖Q∞A∗x∗‖H ≤ C‖i∗x∗‖H , x∗ ∈ D(A∗).

Proof. We start by noting that for all x∗ ∈ D(A∗) and y∗ ∈ D(A∗) we have
i∗∞x

∗ ∈ D(A∗∞), i∗∞y
∗ ∈ D(A∗∞),

〈AQ∞x∗, y∗〉 = 〈Q∞A∗y∗, x∗〉 = [i∗∞A
∗y∗, i∗∞x

∗]H∞ = [A∗∞i
∗
∞y

∗, i∗∞x
∗]H∞ ,

and
〈Qx∗, x∗〉 = −2〈Q∞A∗x∗, x∗〉 = −2[A∗∞i

∗
∞x

∗, i∗∞x
∗]H∞ .

Hence by Theorem 8.1, PC is analytic if and only if there exists a constant M ≥ 0
such that

(8.1) |〈AQ∞x∗, y∗〉| ≤M〈Qx∗, x∗〉
1
2 〈Qy∗, y∗〉 12 , x∗, y∗ ∈ D(A∗).

(1)⇒ (2): By Theorem 8.1, for all x∗, y∗ ∈ D(A∗) we have

(8.2) |〈AQ∞x∗, y∗〉| ≤M‖i∗x∗‖H ‖i∗y∗‖H .

It follows that the map i∗y∗ 7→ 〈AQ∞x∗, y∗〉 is well defined and can be extended to
a bounded linear form on H of norm ≤ ‖i∗x∗‖H . Therefore by the Riesz represen-
tation theorem we can identify AQ∞x∗ with an element of H of norm ≤ ‖i∗x∗‖H .
This gives (2), with C = M .

(2)⇒ (1): For all x∗, y∗ ∈ D(A∗) we have

|〈AQ∞x∗, y∗〉| = |[AQ∞x∗, i∗y∗]H |

≤ C‖i∗x∗‖H‖i∗y∗‖H = C〈Qx∗, x∗〉 12 〈Qy∗, y∗〉 12

and PC has an analytic extension.
(1)⇒ (3): By the proof of (1)⇒ (2), for all x∗ ∈ D(A∗) we have Q∞A∗x∗ =

−Qx∗ −AQ∗∞x∗ ∈ H, and there is a constant c such that

‖Q∞A∗x∗‖H ≤ ‖Qx∗‖H + ‖AQ∞x∗‖H ≤ (1 + c)‖i∗x∗‖H
for all x∗ ∈ D(A∗).

(3)⇒ (1): For all x∗, y∗ ∈ D(A∗) we have

|〈AQ∞x∗, y∗〉| = |〈Q∞A∗y∗, x∗〉| = |[Q∞A∗y∗, i∗x∗]H |

≤ C‖i∗x∗‖H‖i∗y∗‖H = C〈Qx∗, x∗〉 12 〈Qy∗, y∗〉 12 .

This leads to the following concise necessary condition for analyticity of the
Ornstein-Uhlenbeck semigroup:
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Corollary 8.4 (Hµ∞). If PC extends to an analytic semigroup on LC
2 (E,µ∞),

then for all x∗ ∈ D(A∗) with Qx∗ = 0 we have QA∗x∗ = 0.

Proof. If Qx∗ = 0, then i∗x∗ = 0 and hence Q∞A∗x∗ = 0. This we combine with
the simple observation that kerQ∞ ⊆ kerQ, cf. [23, Lemma 5.2].

Example 8.5. Let E = R 2 and let Q and S be as in Example 5.5. Since Hypoth-
esis (HQ∞) holds and E is finite-dimensional, Hypothesis (Hµ∞) trivially holds
as well. Denote the centred Gaussian measure associated with Q∞ by µ∞. By
direct computations, Fuhrman [20] showed that the associated Ornstein-Uhlenbeck
semigroup PC fails to be analytic on LC

2 (E,µ∞). We derive this from Corollary
8.4, by noting that

Q

(
1
0

)
=

(
0
0

)
, QA∗

(
1
0

)
= Q

(
−1

1

)
=

(
0
1

)
.

Notice that S∞ is both contractive and analytic (its generator being bounded).
Hence the same is true for its complexification SC

∞ . This does not contradict
Theorem 8.1; the point is that SC

∞ fails to be an analytic contraction semigroup
in the sense of the definition given at the beginning of this section. This can be
verified explicitly by extending the computation in Example 5.5 to complex time.
By doing so we obtain

‖SC
∞ (z)‖ = e−Rez

(
|z|+

√
|z|2 + 1

)
.

Let z = reiθ for a certain θ ∈
(
−π

2 ,
π
2

)
\ {0}. Then

‖SC
∞ (z)‖ = e−r cos θ

(
r +

√
r2 + 1

)
.

We claim that for any θ ∈
(
0, π

2

)
we have

e−r cos θ
(
r +

√
r2 + 1

)
> 1 (4.1)

for all sufficiently small r > 0. Indeed, (4.1) holds if and only if

f(r) = r +
√
r2 + 1 > er cos θ =: gθ(r)

for some r > 0. This is clearly true for small r > 0 because f(0) = gθ(0) = 1 and
f ′(0) = 1 > g′θ(0) = cos θ.

In the next corollary, which is a minor extension of [22, Corollary 2.5], we spe-
cialise Theorem 8.3 to Hilbert spaces E. We identify E and its dual in the usual
way.

Corollary 8.6 (Hµ∞). Suppose E is a Hilbert space and Q ∈ L (E) has a bounded
inverse. Then the following assertions are equivalent:

(1) The semigroup PC extends to a analytic semigroup on LC
2 (E,µ∞);

(2) The operator AQ∞ extends to a bounded operator on H;
(3) The operator Q∞A∗ extends to a bounded operator on H.

The final result of this section is closely related to [28, Proposition 3.3].
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Proposition 8.7 (Hµ∞). If the transition semigroup PC is analytic, then DH is
closable.

Proof. We introduce a densely defined operator (V,D(V )) from H∞ to H,
D(V ) := {i∗∞x∗ : x∗ ∈ E∗},

V (i∗∞x
∗) := i∗x∗, x∗ ∈ E∗.

It was shown in [23] DH is closable in L2(E,µ∞) if and only V is closable.
We will show that V is closable if PC is analytic. The proof uses the trick from

[28, Theorem 2.15]. Let i∗∞x
∗
n → 0 in H∞ and V (i∗∞x

∗
n) = i∗x∗n → g in H; we have

to prove that g = 0. Fix ε > 0 arbitrary and choose an index N large enough such
that ‖V (i∗∞x

∗
n − i∗∞x∗N )‖H ≤ ε and ‖i∗∞x∗n‖ ≤ ε for all n ≥ N . Then for all n ≥ N

we have
1
2‖V (i∗∞x

∗
n)‖2H = 1

2 〈Qx
∗
n, x

∗
n〉 = |〈Q∞A∗x∗n, x∗n〉|

≤ |〈Q∞A∗(x∗n − x∗N ), (x∗n − x∗N )〉|
+ |〈Q∞A∗(x∗n − x∗N ), x∗N 〉|+ |〈Q∞A∗x∗N , x∗n〉|

= 1
2‖V (i∗∞x

∗
n − i∗∞x∗N )‖2

+ |[Q∞A∗(x∗n − x∗N ), i∗x∗N ]H |+ |[i∗∞A∗x∗N , i∗∞x∗n]H∞ |
≤ 1

2‖V (i∗∞x
∗
n − i∗∞x∗N )‖2

+ C‖i∗(x∗n − x∗N )‖H‖i∗x∗N‖H + ‖i∗∞A∗x∗N‖H∞‖i∗∞x∗n‖H∞
= 1

2‖V (i∗∞x
∗
n − i∗∞x∗N )‖2

+ C‖V (i∗∞x
∗
n − i∗∞x∗N )‖H‖i∗x∗N‖H + ‖i∗∞A∗x∗N‖H∞‖i∗∞x∗n‖H∞

≤ 1
2ε

2 + CεM + ‖i∗∞A∗x∗N‖H∞‖i∗∞x∗n‖H∞ ,
where C is the constant from Theorem 8.3(3) and M := supn ‖i∗x∗n‖H is finite since
limn→∞ i∗x∗n = g. Upon letting n→∞, it follows that

lim sup
n→∞

1
2‖V (i∗∞x

∗
n)‖2H ≤ 1

2ε
2 + CMε.

Since ε > 0 was arbitrary, we conclude that g = limn→∞ V (i∗∞x
∗
n) = 0.

9. Analyticity and invariance of H

It turns out that there is a close relationship between analyticity of the Ornstein-
Uhlenbeck semigroup and invariance of H. This will be the topic of the present
section.

We start with a necessary condition for analyticity:

Theorem 9.1 (Hµ∞). If H∞ ⊆ H and PC is analytic, then SC restricts to a
bounded analytic C0-semigroup on HC .

Proof. 2 By Proposition 3.1 it suffices to check that there exists a constant M such
that for all t ≥ 0 and x∗ ∈ E∗ we have

‖i∗S∗(t)x∗‖H ≤M‖i∗x∗‖H .

2 The proof in the published version of this paper contains a mistake which has been corrected
here.
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Since A∗∞ generates an analytic C0-contraction semigroup on H∞, the form

E (g, h) := −[A∗∞g, h]H∞ , g, h ∈ D(A∗∞),

is sectorial.
By Proposition 8.7 the operator V is closable as a densely defined operator from

H∞ to H. Let V be its closure. Its domain, D(V ), is a Banach space with respect
to the graph norm ‖h‖2

D(V )
:= ‖h‖2H∞ + ‖V h‖2H . Taking h = i∗∞x

∗ and using (2.1)
we have two-sided estimate

‖V i∗∞x∗‖2H ≤ ‖i∗∞x∗‖2D(V )
= ‖i∗∞x∗‖2H∞ + ‖V i∗∞x∗‖2H
≤ K2‖i∗x∗‖2H + ‖V i∗∞x∗‖2H = (K2 + 1)‖V i∗∞x∗‖2H ,

where K is the norm of the embedding H∞ ↪→ H. This shows that

|||h|||D(V ) := ‖V h‖H , h ∈ D(V ),

defines an equivalent norm on D(V ).
We claim that D(V ) can be identified with the form domain of E . By Theorem

8.3 the mapping B : i∗x∗ 7→ Q∞A
∗x∗, defined on the dense subspace i∗D(A∗) of

H, takes values in H and extends to a bounded operator B on H. Moreover, for
all x∗, y∗ ∈ D(A∗) we have i∗∞x

∗ ∈ D(A∗∞) and

E (i∗∞x
∗, i∗∞y

∗) = −[A∗∞i
∗
∞x

∗, i∗∞y
∗]H∞ = −[BV i∗∞x

∗, V i∗∞y
∗]H .

Therefore, for all h ∈ D(V ),

E (g, h) = −[BV g, V h]H , g, h ∈ D(V ).

This proves the claim.
It follows from the general theory of sectorial operators that D(V ) is invariant un-

der S∗∞ and that the restriction of S∗∞ to D(V ) is a bounded analytic C0-semigroup.
Therefore, for some constant m and all t ≥ 0 and x∗ ∈ E∗,

‖i∗S∗(t)x∗‖H = ‖V i∗∞S∗(t)x∗‖H = ‖V S∗∞(t)i∗∞x
∗‖H

= |||S∗∞(t)i∗∞x
∗|||D(V ) ≤ c|||i

∗
∞x

∗|||D(V ) = c‖V i∗∞x∗‖H = c‖i∗x∗‖H .

This proves that H is S-invariant and that the restricted semigroup SH is bounded.
By Proposition 3.2, SH is strongly continuous. It remains to prove that SH is
bounded analytic on H. Since S∗∞ restricts to a bounded analytic C0-semigroup on
D(V ) there is a constant C such that for all t > 0 and h ∈ D(V ),

‖V A∗∞S∗∞(t)h‖H ≤
C

t
‖V h‖H .

As above, taking h = i∗x∗ this implies

‖i∗A∗S∗(t)x∗‖H ≤
C

t
‖i∗x∗‖H .

Therefore, ‖A∗HS∗H(t)‖H ≤ C
t , which implies the result.

We proceed with a partial converse.
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Theorem 9.2 (Hµ∞). 3 Suppose that S restricts to an analytic C0-semigroup SH

on H which is contractive in some equivalent Hilbertian norm on HC . Then PC

is analytic.

Proof. We will show that SC
∞ is an analytic contraction semigroup on HC

∞ . Once
this is proved, the theorem follows by an appeal to Theorem 8.1.

Identifying H and its dual in the usual way, we define R∞ ∈ L (H) by

R∞h :=
∫ ∞

0

SH(t)S∗Hh dt (h ∈ H).

Let i : H ↪→ E denote the embedding; then we have Q∞ = i ◦ R∞ ◦ i∗. By
an observation in Section 2, the RKHS’s H∞ = HQ∞ and HR∞ are canonically
isometrically isomorphic as Hilbert spaces and identical as subsets of E. By com-
plexifying, the same is true for their complexifications HC

∞ and HC
R∞

. It follows
that, in order to prove that SC

∞ extends to an analytic contraction semigroup on
HC
∞, we may assume without loss of generality that E = H and Q = I. We also

note that H∞ = HR∞ ⊆ H.
Let ||| · ||| be an equivalent Hilbertian norm on HC such that |||SC

H(z)||| ≤ 1 for all
z in some sector containing the positive real axis, and let [[·, ·]] be the corresponding
inner product. For all x, y ∈ H we have

|||x+ iy|||2 = [[x+ iy, x+ iy]] = [[x, x]] + [[y, y]] = |||x|||2 + |||y|||2.

Hence (HC , ||| · |||) is the complexification of its real part, and we may apply the
observation from Section 2 once more, this time to the isomorphism j : (H, ‖ · ‖) '
(H, ||| · |||). It follows that the RKHS’s associated with R∞ and j ◦ R∞ ◦ j∗ are
canonically isometrically isomorphic, and identical as subsets of H, and again the
same is true for their complexifications. Thus, in order to prove that SC

∞ extends
to an analytic contraction semigroup on HC

∞, it even suffices to prove this for the
case where SC

H extends to an analytic contraction semigroup on HC .
It is well known that

H∞ =
{∫ ∞

0

SH(t)f(t) dt : f ∈ L2(R+;H)
}

with norm given by

‖h∞‖H∞ = inf
{
‖f‖L2(R+;H) : h∞ =

∫ ∞

0

SH(t)f(t) dt
}
,

cf. [15, Appendix B]. Upon complexifying we see that

HC
∞ =

{∫ ∞

0

SC
H(t)f(t) dt : f ∈ L2(R+;HC )

}
with norm given by

(9.1) ‖h∞‖HC
∞

= inf
{
‖f‖L2(R+;HC ) : h∞ =

∫ ∞

0

SC
H(t)f(t) dt

}
.

3 In the published version of the paper, the word ‘analytic’ was missing in the first line of the
statement of the result.
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Indeed, the representation of HC
∞ follows immediately by considering real and imag-

inary parts of elements in HC
∞ separately, and the expression (9.1) for the complex-

ified norm is proved as follows. Denote the infimum on the right hand side of (9.1)
by IC . Fix h∞ ∈ HC

∞ and write h∞ = a∞ + ib∞ with a∞, b∞ ∈ H∞. Fix ε > 0
arbitrary and choose f, g ∈ L2(R+,H) representing a∞, b∞ such that

‖f‖2L2(R+,H) ≤ ‖a∞‖
2
H∞ + ε, ‖g‖2L2(R+,H) ≤ ‖b∞‖

2
H∞ + ε.

Then,

‖f + ig‖2L2(R+,HC ) = ‖f‖2L2(R+,H) + ‖g‖2L2(R+,H)

≤ (‖a∞‖2H∞ + ε) + (‖b∞‖2H∞ + ε) = ‖h∞‖2HC
∞

+ 2ε,

which shows that IC ≤ ‖h∞‖HC
∞
. On the other hand, if f, g ∈ L2(R+,H) are

arbitrary functions representing a∞, b∞, then

‖h∞‖2HC
∞

= ‖a∞‖2H∞ + ‖b∞‖2H∞ ≤ ‖f‖
2
L2(R+,H) + ‖g‖2L2(R+,H) = ‖f + ig‖2L2(R+,HC ),

which gives the converse inequality ‖h∞‖HC
∞
≤ IC . This proves (9.1).

Now it is easy to finish the proof. Given h∞ ∈ HC
∞, choose an arbitrary f ∈

L2(R+;HC ) representing h∞:

h∞ =
∫ ∞

0

SC
H (t)f(t) dt.

Then, for any z in the sector where SC
H is contractive, we have

SC
H (z)h∞ = SC

H (z)
∫ ∞

0

SC
H (t)f(t) dt =

∫ ∞

0

SC
H (t)[SC

H(z)f(t)] dt.

It follows that SC
H (z)h∞ ∈ HC

∞, with norm

‖SC
H (z)h∞‖HC

∞
≤ ‖SC

H(z)f(·)‖L2(R+;HC ) ≤ ‖f(·)‖L2(R+;HC ).

Taking the infimum over all representing functions f , we obtain

‖SC
H (z)h∞‖HC

∞
≤ ‖h∞‖HC

∞
.

It follows that the operators SC
H (z) restrict to a contractions on HC

∞ . The restric-
tion of SC

H to HC
∞ agrees with SC

∞ for real time, and it is routine to check that it
is strongly continuous and analytic.

Notice that there is only a small gap between Theorems 9.1 and 9.2. The assump-
tion H∞ ⊆ H in Theorem 9.1 implies that SH is uniformly exponentially stable,
and conversely the assumption in Theorem 9.2 that SH is uniformly exponentially
stable implies that H∞ ⊆ H.

The assumptions of Theorem 9.2 are fulfilled when E is a Hilbert space, H = E,
and S satisfies an estimate of the type ‖S(t)‖ ≤ e−ωt for some ω > 0 and all t ≥ 0.
In this special setting, the theorem is due to Da Prato [12], who proved it by using
interpolation theory and maximal regularity.
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Remark 9.3. The existence of an equivalent Hilbertian norm on HC in Theorem
9.2 is equivalent to the existence of an isomorphism T : HC → HC such that

(9.2) ‖T−1SC
H (z)T‖ ≤ 1

for al z in some sector containing the positive real line. The question when such
an isomorphism exists is related to a famous question posed by Halmos in [25]. For
bounded analytic semigroups, this question was answered recently by Le Merdy
[27]. To quote his answer let us recall first that if kerA = {0} and A generates a
bounded analytic semigroup on HC , then for any s ∈ R one can define a closed
operator (−A)is. We say that A has bounded imaginary powers (briefly, A ∈ BIP) if
(−A)is is bounded for all s ∈ R and the function s 7→ ‖(−A)is‖ is locally bounded
on R .

It is known that A ∈ BIP in the following important cases:
(a) A is m-dissipative on H;
(b) A is normal and sectorial on H;
(c) A generates a bounded C0-group on H.

By an example of Baillon and Clément [3], there exist analytic semigroups on
Hilbert spaces which are uniformly bounded on a sector, but whose generator does
not belong to BIP.

Le Merdy [27] proved that for a bounded analytic semigroup whose generator A
satisfies kerA = {0}, (9.2) holds if and only if A ∈ BIP.

In the situation of Theorem 9.2, SH is uniformly exponentially stable and there-
fore 0 6∈ σ(AH). Hence the condition kerAH = {0} is trivially fulfilled.

In the example below we consider a stochastic linear heat equation with corre-
lated cylindrical noise in Lp(Ω) with p ∈ [2,∞). Similar equations were considered
in [14], where it is a starting point for the analysis of nonlinear stochastic differential
equations with dissipative drifts.

Example 9.4. Let Ω be a bounded open domain in Rd with C2-boundary, let 2 ≤ p <
∞, and let A be the Lp(Ω)-realization of a uniformly elliptic differential operator
of the form

A0 =
d∑

i,j=1

aij ∂ij +
d∑

i=1

bi ∂i

with domain D(A) = W 2,p(Ω)∩W 1,p
0 (Ω). We assume that the coefficients aij = aji

belong to Cθ(Ω) for a certain θ ∈ (0, 1) and that the functions bi are bounded and
measurable on Ω. Under these assumptions it is known that A generates a uniformly
exponentially stable and analytic C0-semigroup S in Lp(Ω); cf. [1].

In E = Lp(Ω) we consider a stochastic evolution equation

dX(t) = AX(t) dt+ dWH(t).

Here H is a separable Hilbert space which is continuously embedded into E and
{WH(t)}t≥0 is a (possibly cylindrical) Wiener process with Cameron-Martin space
H.

We will consider two cases. To simplify notations, we will not distinguish between
real spaces and their complexifications.
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(a) We take p = 2, E = L2(Ω), and H = Hβ
0 (Ω) with β ≥ 0 and β > d

4 −
1
2 . By

a result in [34] A ∈ BIP. In case β = 0 we can apply Le Merdy’s result to find an
equivalent Hilbertian norm in which SH = S is an analytic contraction semigroup.
In case β > 0, the fact that A ∈ BIP implies that H equals the interpolation space
DA

(
β
2 , 2

)
up to an equivalent norm. Then by interpolation theory, SH is an analytic

C0-semigroup on H which is contractive with respect to the DA

(
β
2 , 2

)
norm. From

[1] we have∫ ∞

0

‖S(t) ◦ iβ‖2L2(H
β
0 (Ω),L2(Ω)) dt =

∫ ∞

0

∥∥∥A− β
2 S(t)

∥∥∥2

L2(L2(Ω))
dt <∞,

where ‖ · ‖L2 denotes the Hilbert-Schmidt norm and iβ : Hβ
0 (Ω) ↪→ L2(Ω) is the

inclusion mapping. This implies that Hypothesis (Hµ∞) is satisfied.
By Theorem 9.2, the associated Ornstein-Uhlenbeck semigroup P is analytic in

L2(E,µ∞).

(b) Let p ∈ (2,∞), E = Lp(Ω), and H = Hα
0 (Ω) with α > 1

2 −
1
p (in dimension

d = 1) or α > d( 3
4 −

1
p ) − 1

2 (in dimensions d ≥ 2). In both cases we may choose
β ≥ 0 with β > d

4 −
1
2 and γ > d( 1

2 −
1
p ) such that α > β + γ. By the Sobolev

embedding theorem we have a continuous inclusions H ↪→ Hγ
0 (Ω) ↪→ E. Then H

equals the interpolation space DA

(
α
2 , 2

)
up to an equivalent norm. Again H is

invariant for S, and SH is an analytic C0-semigroup on H which is contractive with
respect to the DA

(
α
2 , 2

)
norm.

We will show next that Hypothesis (Hµt) is satisfied in E. The argument will
be somewhat informal but can easily be rewritten in a rigorous way. First recall
that the realization of A in L2(Ω) belongs to BIP, from which it follows that H =
D((−A)

α
2 ) with equivalent norms. Hence, (−A)

1
2 (α−β) is an isomorphism from H

onto Hβ
0 (Ω), and

WA(t) := (−A)
1
2 (α−β)WH(t)

defines a cylindrical Wiener process whose Cameron-Martin space equals Hβ
0 (Ω)

up to an equivalent norm. Then by case (b), the L2(Ω)-valued process

Y (t) :=
∫ t

0

S(t− s) dWA(s), t ≥ 0

solves the equation
dY (t) = AY (t) dt+ dWA(t)

with initial condition Y (0) = 0 in L2(Ω). Then the process {X(t)}t≥0 defined by

X(t) := (−A)−
1
2 (α−β)Y (t)

takes values in H, hence in E, and solves the original equation in E,

dX(t) = AX(t) dt+ dWH(t)

with initial condition X(0) = 0. It follows from Proposition 6.1 that Hypothesis
(Hµt) is satisfied in E. This proves the claim. By [31], the uniform exponential
stability of S in E now implies that also (Hµ∞) is satisfied in E.

In conclusion, Theorem 9.2 applies and we find that the Ornstein-Uhlenbeck
semigroup P is analytic in L2(E,µ∞).
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[15] G. Da Prato and J. Zabczyk, “Stochastic Equations in Infinite Dimensions”, Encyclopedia
of Mathematics and its Applications, Cambridge University Press, Cambridge, 1992.

[16] J. Diestel and J.J. Uhl, “Vector Measures”, Math. Surveys, Vol. 15, Amer. Math. Soc.,
Providence, R.I. (1977).

[17] R. Engelking, “General Topology”, Revised edition, Heldermann Verlag, Berlin, 1989.

[18] K.-J. Engel and R. Nagel, “One-Parameter Semigroups for Linear Evolution Equations”,
Graduate Texts Math., Vol. 194, Springer-Verlag, 2000.

[19] D. Fremlin, D. Garling and R. Haydon, Bounded measures on topological spaces, Proc.
London Math. Soc. 25 (1972), 115–136

[20] M. Fuhrman, Analyticity of transition semigroups and closability of bilinear forms in Hilbert
spaces, Studia Math. 115 (1995), 53–71.

[21] J.A. Goldstein, “Semigroups of Linear Operators and Applications”, Oxford University
Press, Oxford, 1985.

[22] B. Goldys, On analyticity of Ornstein-Uhlenbeck semigroups, Atti Accad. Naz. Lincei Cl.
Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10 (1999), 131–140.

[23] B. Goldys, F. Gozzi, and J.M.A.M. van Neerven, On closability of directional gradients,
Potential Anal. 18 (2003), 289–310.

[24] B. Goldys and M. Kocan, Diffusion semigroups in spaces of continuous functions with
mixed topology, J. Differential Equations 173 (2001), 17–39.

[25] P. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 176 (1970), 887–933.

4The references have been updated.



42 B. GOLDYS AND J.M.A.M. VAN NEERVEN

[26] E. Hille and R.S. Phillips, “Functional Analysis and Semi-Groups”, Amer. Math. Soc.
Colloq. Publ., Vol. XXXI, Rev. Ed., Providence, R.I., 1957

[27] C. Le Merdy, The similarity problem for bounded analytic semigroups on Hilbert spaces,
Semigroup Forum 56 (1998), 205–224.
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