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Abstract. It is known from the Sz.-Nagy–Foias theory of operators that if T is a Hilbert

space contraction of class C1• and if the unitary spectrum σ(T )∩∂D is of Lebesgue measure

zero, then T is a singular unitary operator. We extend this statement to polynomially

bounded operators acting on arbitrary Banach spaces, presenting also its local version.

It is shown how the method applied provides Katznelson–Tzafriri type theorems. One-

parameter semigroups of Hilbert space contractions are also considered.

0. Introduction

It is known from the Sz.-Nagy–Foias theory of operators [23] that if T is a Hilbert space

contraction of class C1• (cf. the definition below) and if the unitary spectrum σ(T ) ∩ ∂D

is of Lebesgue measure zero, then T is a singular unitary operator. In the present paper

we extend this statement to polynomially bounded operators acting on arbitrary Banach

spaces. Recall that a bounded linear operator T ∈ L(X ) acting on the (complex) Banach

space X is polynomially bounded if there exists a constant M > 0 such that ‖p(T )‖ ≤M‖p‖
for all polynomials p. Here, and in the sequel, ‖f‖ := sup{|f(z)| : |z| = 1} is the supremum

norm for an element f ∈ C(∂D), the space of continuous functions defined on the unit

circle ∂D = ∂{z ∈ C : |z| < 1}. We prove that if T is a polynomially bounded operator

of class C1• whose unitary spectrum σ(T ) ∩ ∂D has Lebesgue measure zero, then T is

similar to an invertible isometry. We also prove a local version of this result. By the same

method we further extend the Esterle–Strouse–Zouakia version of the Katznelson–Tzafriri
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theorem to polynomially bounded operators. One-parameter semigroups of Hilbert space

contractions are considered as well.

1. Polynomially bounded operators

Let us consider a polynomially bounded linear operator T ∈ L(X ) acting on a Banach

space X . Denoting by A(D) the disc algebra, i.e. the closure of the set of polynomials

in C(∂D), it is clear that T admits an A(D)-functional calculus. To be specific, this

means that there exists an algebra-homomorphism Φ : A(D) → L(X ) such that 1 7→ I

and χ 7→ T , where χ(z) := z; moreover ‖Φ‖ ≤ M . We use the notation u(T ) := Φ(u),

u ∈ A(D).

Let L : `∞(N) → C be a generalized Banach limit, i.e. a positive, bounded, linear

functional on `∞(N) such that L(1) = 1 and L({xn}n∈N) = α whenever limn→∞ xn = α.

We define a new semi-norm ψ on X by

ψ(x) := L({‖Tnx‖}n∈N)

and consider the linear subspace

X0(T ) := {x ∈ X : ψ(x) = 0}.

Then ψ induces a norm on the quotient space X /X0(T ); let Y be the completion of X /X0(T )

with respect to this norm. Since T is power bounded, that is supn∈N ‖Tn‖(≤M) <∞, it

follows that infn∈N ‖Tnx‖ = 0 if and only if limn→∞ ‖Tnx‖ = 0. Hence X0(T ) coincides

with the set of vectors x ∈ X satisfying the condition infn∈N ‖Tnx‖ = 0. It is immediate

that X : X → Y, x 7→ x + X0(T ) is a bounded, linear mapping having the properties

kerX = X0(T ), ran X = Y and ‖X‖ ≤ M . Exploiting the fact that L is a generalized

Banach limit we can easily infer that there exists a unique isometry V ∈ L(Y) such that

V X = XT . Furthermore, given any operator C in the commutant

{T}′ := {C ∈ L(X ) : CT = TC}

of T there exists a unique operator D ∈ {V }′ such that XC = DX. The mapping

γ : {T}′ → {V }′, C 7→ D is a contractive algebra-homomorphism, and σ(C) ⊃ σ(D)

holds, for every C ∈ {T}′. As a consequence, we obtain that the isometry V is also

polynomially bounded, having the same bound M as T has. For more details see [22], [23,

Section II.5.2], [14], [15], [16] and [24].
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Let us now suppose that V is an invertible polynomially bounded isometry. Since

V − zI is bounded from below and so z 6= ∂σ(V ) for all z ∈ D, it follows that the

spectrum σ(V ) is located on the circle ∂D. Since V is polynomially bounded, we can

extend the A(D)-functional calculus of V to a C(∂D)-functional calculus. Indeed, for any

trigonometric function q =
∑N
n=−N anχ

n ∈ C(∂D) let us define q(V ) :=
∑N
n=−N anV

n.

It is clear that ‖q(V )‖ = ‖V Nq(V )‖ ≤ M‖χNq‖ = M‖q‖. Thus there exists an algebra-

homomorphism Ψ : C(∂D)→ L(Y) such that 1 7→ I and χ 7→ V , and we have ‖Ψ‖ ≤ M .

We will use the notation f(V ) := Ψ(f), f ∈ C(∂D).

The first lemma states that the C(∂D)-functional calculus of V has the spectral map-

ping property and that the operator f(V ) is completely determined by the values of the

function f ∈ C(∂D) taken on the spectrum σ(V ).

Lemma 1.1. Let V ∈ L(Y) be an invertible, polynomially bounded isometry. Then:

(i) σ(f(V )) = f(σ(V )) holds for every f ∈ C(∂D);

(ii) f1(V ) = f2(V ) if f1|σ(V ) = f2|σ(V ) (f1, f2 ∈ C(∂D)).

Proof. For the sake of reader’s convenience we sketch the proof, which is standard ap-

plication of Banach algebra techniques, and is patterned after the proof of [11, Theorem

2.5].

Let A be a maximal abelian subalgebra of L(Y) containing V and the identity I, and

let Σ be the set of all non-zero complex homomorpisms of A. The first statement is an

immediate consequence of the relation σ(f(V )) = {ϕ(f(V )) : ϕ ∈ Σ} and the fact that the

trigonometric polynomials are dense in C(∂D).

If the function f ∈ C(∂D) is zero in a neighbourhood of σ(V ) then we can choose a

function g ∈ C(∂D) such that g|σ(V ) = 1 and fg = 0. Since σ(g(V )) = g(σ(V )) = {1} it

follows that g(V ) is invertible, and so the relation f(V )g(V ) = (fg)(V ) = 0 implies that

f(V ) = 0. If f ∈ C(∂D) vanishes only on the spectrum σ(V ), then there exists a sequence

{fn}n∈N in C(∂D) such that ‖fn − f‖ → 0 and each fn vanishes in a neighbourhood of

σ(V ). Q.E.D.

We say that the polynomially bounded operator T ∈ L(X ) is of class C1• if for all non-zero

x ∈ X we have

inf
n∈N
‖Tnx‖ > 0;

cf. [23, Section II.4], [6, Chapter XII] and [14]. It is clear that in that case the transfor-

mation X ∈ L(X ,Y) is injective. Since ran X = Y also holds, X is a quasiaffinity in the
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terminology of [23].

The following statement is a Banach space version of [1, Theorem 1] (see [17, Proposi-

tion 1] for its predecessor), and extends the Sz.-Nagy–Foias theorem mentioned earlier (see

[23, Proposition II.6.7] and [23, Theorem I.3.2]). See also [2, Section 4] and [6, Proposition

XII.2.1] for related results.

Theorem 1.2. Let T ∈ L(X ) be a polynomially bounded operator, with bound M , of class

C1•, and assume that the Lebesgue measure of σ(T ) ∩ ∂D is zero. Then for the operators

V ∈ L(Y), X ∈ L(X ,Y) introduced before we have ran V = Y and

M−1‖x‖ ≤ ‖Xx‖ ≤M‖x‖ for every x ∈ X .

Thus, X is a topological isomorphism from X onto Y and T is similar to the invertible

isometry V . If M = 1, then X is a surjective isometry from X onto Y and T is an

invertible isometry.

Proof. We know that σ(V ) is contained in σ(T ). Since σ(V ) does not coincide with the

closed disc, it follows that σ(V ) is located on ∂D.

By the Fatou–Rudin Theorem (see e.g. [13, Chapter 6]), for each n ∈ N there exists a

function fn ∈ A(D) such that fn|σ(V ) = χ−n|σ(V ) and ‖fn‖ = 1. The relation XT = V X

implies that Xfn(T ) = fn(V )X. On the other hand, on account of Lemma 1.1 we infer

that fn(V ) = χ−n(V ) = V −n. Hence X = V nXfn(T ) = XTnfn(T ), and since X is

injective we obtain that T is invertible and fn(T ) = T−n. Therefore ‖T−n‖ = ‖fn(T )‖ ≤
M for every n ∈ N. Let us recall that ‖Xx‖ is a Banach limit of the sequence {‖T nx‖}∞n=1.

Since ‖x‖ ≤ ‖T−n‖‖Tnx‖ ≤M‖Tnx‖, it follows that ‖Xx‖ ≥M−1‖x‖. Q.E.D.

Remarks. 1. The preceding proof works also if we only assume that σ(V ) ∩ ∂D is of

measure zero.

2. If T is a Hilbert space contraction, then T is polynomially bounded with bound M = 1

by the von Neumann inequality. Consequently the result above includes the Sz.-Nagy–Foias

theorem.

3. If T is any Banach space contraction of class C1• such that the unitary spectrum

σ(T ) ∩ ∂D is countable, then T is an invertible isometry. This result was proved recently

by Batty, Brzeźniak and Greenfield [3].

We proceed with a local version of Theorem 1.2. Recall that the local spectrum σ(T, x)

of the operator T ∈ L(X ) at the vector x ∈ X is the complement of the union of all
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open subsets Ω of C for which there exists an analytic function F : Ω → X such that

(zI − T )F (z) = x for all z ∈ Ω. This object is most tractable if T has the single-valued

extension property (SVEP), i.e. if (zI − T )G(z) = 0 (z ∈ Ω) implies G(z) = 0 (z ∈ Ω),

for every open set Ω ⊂ C and analytic function G : Ω → X . In that case, σ(T, x) is a

non-empty compact set if x 6= 0 and there exists a global resolvent function defined on

C\σ(T, x). For more details see [8], [9] or [10].

It is immediate that the isometry V possesses the (SVEP). Furthermore, the relation

X(zI−T )F (z) = (zI−V )XF (z) readily implies that every polynomially bounded operator

T of class C1• has the (SVEP), and σ(T, x) ⊃ σ(V,Xx) (x ∈ X ) holds for the associated

isometry V ∈ L(Y) and the intertwining transformation X ∈ L(X ,Y).

We shall need the following lemma, part of which is a modification of [4, Theorem

2.2] and [18, Lemma 5.1.7], and whose proof contains a boundedness argument originated

in [21]. Given an isometry V ∈ L(Y) and a vector y0 ∈ Y, we consider the closed invariant

subspaces Y0 = {V ny0 : n = 0, 1, 2, ...} and Y1 = {Dy0 : D ∈ {V }′}.

Lemma 1.3. Let V ∈ L(Y) be an isometry on Y and let y0 ∈ Y be fixed. Let Y ′ be a

closed invariant subspace of V such that Y0 ⊂ Y ′ ⊂ Y1. The following assertions are valid

for the local spectra of y0:

(i) σ(Vj , y0) = σ(Vj), where Vj = V |Yj (j = 0, 1);

(ii) σ(V0, y0) ⊃ σ(V1, y0) ⊃ σ(V, y0);

(iii) The unbounded components of C\σ(V ′) and C\σ(V, y0) coincide, where V ′ = V |Y ′;
(iv) If σ(V, y0) does not cover the unit circle ∂D then σ(V ′) = σ(V, y0) ⊂ ∂D.

Proof. Since σ(V1) = ∪y∈Y1
σ(V1, y), we have to show that σ(V1, y) ⊂ σ(V1, y0) =: σ

holds, for every y ∈ Y1.

Let F0 : C\σ → Y1 be the analytic function satisfying the condition (zI −V1)F0(z) =

y0 (z ∈ C\σ). The equations (zI − V1)DF0(z) = D(zI − V1)F0(z) = Dy0 (z ∈ C\σ,D ∈
{V }′) show that σ(V1, y) ⊂ σ is valid, for any vector y in the dense subset Y ′1 = {Dy0 :

D ∈ {V }′} of Y1.

Let us consider now an arbitrary vector y ∈ Y1, and let {yn}n∈N be a sequence in

Y ′1 such that ‖yn − y‖ → 0. For every n ∈ N, let Fn : C\σ → Y1 be the analytic

function having the property (zI − V1)Fn(z) = yn (z ∈ C\σ). It is sufficient to show that

the sequence {Fn}n∈N converges uniformly on compact subsets of C\σ to a function F .

Indeed, then F is necessarily analytic and the relation (zI − V1)F (z) = y (z ∈ C\σ) is

evidently true.
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Given any z ∈ C\(σ ∪ ∂D) we have

‖ym − yn‖ = ‖(zI − V1)(Fm(z)− Fn(z))‖ ≥ (|1− |z|∗)‖Fm(z)− Fn(z)‖,

and so

‖Fm(z)− Fn(z)‖ ≤ (1− |z|∗)−1‖ym − yn‖

for every m,n ∈ N; here |z|∗ stands for |z| if |z| < 1 and for 1/|z| if |z| > 1. We conclude

that {Fn}n∈N converges uniformly on compact subsets of C\(σ ∪ ∂D).

Let us assume now that z0 ∈ (C\σ)∩ ∂D, and let n ∈ N be arbitrary. There exists a

number 0 < s < 1 such that z0τ(sD) ⊂ C\σ, where τ(z) = (1−z)/(1+z). If z = seiϑ 6= iR

then z0τ(z) ∈ C\(σ∪∂D) and so ‖Fn(z0τ(z))‖ ≤ (1−|τ(z)|∗)−1‖yn‖ ≤ 2‖yn‖(s·| cosϑ|)−1,

whence |1 + z2/s2| · ‖Fn(z0τ(z))‖ ≤ 4‖yn‖/s. We infer that the last inequality holds for

every |z| ≤ s, which immediately implies that

‖Fn(z0τ(z))‖ ≤ 8‖yn‖
s

whenever |z| ≤ s

2
.

Since Fn(z0τ(z)) = (z0τ(z)I − V1)−1yn → (z0τ(z)I − V1)−1y holds if |z| ≤ s/2 and

Re z < 0, an application of Vitali’s theorem (see [12, Theorem 3.14.1]) shows that the

sequence {Fn}n∈N converges uniformly on compact subsets of z0τ((s/2)D).

We have proved that σ(V1, y0) = σ(V1). The equation σ(V0, y0) = σ(V0) can be

verified by obvious modifications of the previous proof. The inclusions in (ii) are immediate

consequences of the relations Y0 ⊂ Y1 ⊂ Y.

Let ω0, ω1 and ω stand for the unbounded components of the open sets C\σ(V0, y0),

C\σ(V1, y0), and C\σ(V, y0), respectively. In view of (ii) we know that ω ⊃ ω1 ⊃ ω0 ⊃
C\D. Let F : ω → Y be the analytic function with the property (zI − V )F (z) = y0 (z ∈
ω). Let π0 : Y → Y/Y0, y 7→ y + Y0 be the quotient mapping and let us consider the

analytic function π0F : ω → Y/Y0. For every |z| > 1 the vector F (z) = (zI − V )−1y0 =

z−1
∑∞
n=0 z

−nV ny0 belongs to the subspace Y0, whence π0F (z) = 0. Taking into account

that π0F is analytic and ω is connected, it follows that π0F (z) = 0 and so F (z) ∈ Y0, for

every z ∈ ω. Therefore, we obtain that ω0 = ω1 = ω.

Let ω′ and ω′0 be the unbounded components of C\σ(V ′) and C\σ(V ′, y0), respec-

tively; clearly ω′ ⊂ ω′0. Since σ(V0, y0) ⊃ σ(V ′, y0) ⊃ σ(V1, y0) and ω0 = ω1 = ω, we infer

that ω′0 = ω, whence ω′ ⊂ ω follows. For any y ∈ Y ′ let us consider the analytic function

Fy : ω → Y satisfying the condition (zI−V )Fy(z) = y (z ∈ ω). By the use of the quotient
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mapping π′ : Y → Y/Y ′ we can show as before that Fy(ω) ⊂ Y ′, and so ω ⊂ C\σ(V ′, y).

Since y ∈ Y ′ was arbitrary, we obtain that ω ⊂ C\σ(V ′), whence ω′ = ω follows.

If σ(V, y0) does not cover the whole unit circle ∂D then ω′ = ω contains a point in D.

Thus σ(V ′) is a proper subset of ∂D, and so ω′ = C\σ(V ′) and ω = C\σ(V, y0), whence

the relations σ(V ′) = σ(V, y0) ⊂ ∂D readily follow. Q.E.D.

Remark. We remind the reader that if V is the bilateral shift on `2(Z) and y0(n) =

δ0n (n ∈ Z), then σ(V0) = D and σ(V1) = ∂D.

Now we are ready to state our second theorem.

Theorem 1.4. Let T ∈ L(X ) be a polynomially bounded operator (with bound M) of class

C1•. Suppose that the unitary local spectrum σ(T, x0) ∩ ∂D of T at x0 ∈ X is of measure

zero. Then the restriction T |Xx0
of T to the hypercyclic subspace Xx0

= {Cx0 : C ∈ {T}′}
is similar to a surjective isometry, whose spectrum is located on the circle ∂D and is of

measure zero. Furthermore, the similarity can be implemented by an affinity with an upper

bound M and lower bound M−1.

Proof. Let V ∈ L(Y) and X ∈ L(X ,Y) be the associated isometry and the intertwining

transformation, respectively. We have seen that σ(V, y0) ⊂ σ(T, x0), where y0 = Xx0.

Let us consider the subspaces Y0 and Y1 introduced in Lemma 1.3. It is clear that

Y ′ = XXx0
is an invariant subspace for V and Y0 ⊂ Y ′ ⊂ Y1. We infer by Lemma 1.3

that σ(V ′) = σ(V, y0) ⊂ ∂D. Applying Theorem 1.2 (and the first remark following it) to

the transformation X ′ : Xx0
→ Y ′, x 7→ Xx, we obtain that X ′ is an affinity with upper

bound M and lower bound M−1. Q.E.D.

If the polynomially bounded operator T is not of class C1• then we can consider the

operator T̃ π(x) := π(Tx) (x ∈ X ) acting on the quotient space X̃ = X /X0(T ). (Here

π : X → X̃ denotes the quotient mapping, and the norm considered on X̃ is induced by

the original norm of X .) It is easy to see that T̃ is polynomially bounded as well, with the

same bound as T .

The transformation X̃ ∈ L(X̃ ,Y), X̃π(x) := Xx (x ∈ X ) will be a quasiaffinity, and

we have X̃T̃ = V X̃. Since ‖X̃‖‖T̃nπ(x)‖ ≥ ‖X̃T̃nπ(x)‖ = ‖V nX̃π(x)‖ = ‖X̃π(x)‖, it

follows that infn ‖T̃nπ(x)‖ > 0 if π(x) 6= 0; therefore T̃ is of class C1•.

Taking into account that X0(T ) is invariant for every operator commuting with T , we

infer that σ(T ) ⊃ σ(T̃ ). Furthermore, it is easy to check that σ(T, x) ⊃ σ(T̃ , π(x)) holds,

for every x ∈ X .
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As a consequence of Theorems 1.2 and 1.4 we obtain the following corollary.

Corollary 1.5. Let T ∈ L(X ) be a polynomially bounded operator (with bound M).

(i) If the unitary spectrum σ(T ) ∩ ∂D is of measure zero, then the quotient operator

T̃ = T/X0(T ) is similar to a surjective isometry.

(ii) If the local unitary spectrum σ(T, x0)∩∂D at x0 is of measure zero, then the restriction

T̃ |{C̃π(x0) : C̃ ∈ {T̃}′} is similar to a surjective isometry.

In both cases the similarity can be implemented by an affinity with upper bound M and

lower bound M−1.

Remarks. 1. In the Hilbert space setting the quotient operator T̃ can be replaced by the

compression PH1
T |H1 of T to the orthogonal complement H1 of H0(T ).

2. If T is a Hilbert space contraction and if H′ is an invariant subspace of T such that

T |H′ is unitary, then H′ is a reducing subspace (i.e. the orthogonal complement of H′ is

also invariant for T ); see [23, Theorem I.3.2].

Using the method of [24] we can extend the Katznelson–Tzafriri-type theorem in [11,

Corollary 2.2] to polynomially bounded operators acting on a Banach space.

Proposition 1.6. Let T ∈ L(X ) be a polynomially bounded operator. If f ∈ A(D) and

f |σ(T ) ∩ ∂D = 0 then limn→∞ ‖Tnf(T )‖ = 0.

Proof. If σ(T ) ∩ ∂D is of positive measure then f = 0, hence we can assume that

σ(T )∩∂D is of measure zero. Let V ∈ L(Y) and X ∈ L(X ,Y) be as before. We know that

σ(V ) ⊂ σ(T ), hence V is invertible and σ(V ) ⊂ ∂D. Since f |σ(V ) = 0, we infer by Lemma

1.1 that f(V ) = 0. Therefore Xf(T ) = f(V )X = 0 and so limn→∞ ‖Tnf(T )x‖ = 0

holds, for every x ∈ X . Applying the previous argumentation to the operator L(T ) ∈
L(L(X )), L(T )Z := TZ, we get the statement. Q.E.D.

We can obtain also a local version of the preceding statement, the proof is left to the

reader.

Proposition 1.7. Let T ∈ L(X ) be a polynomially bounded operator and x0 ∈ X . If

f ∈ A(D) and f |σ(T, x0) ∩ ∂D = 0 then limn→∞ ‖Tnf(T )z‖ = 0 holds, for every z ∈
Xx0

= {Cx0 : C ∈ {T}′}.

It is worth mentioning that the norm-convergence limn→∞ ‖Tnf(T )|Xx0
‖ = 0 does not

hold in general under the previous conditions. Indeed, as it was pointed out to us by
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C.J.K. Batty, a counterexample can be derived from [5, Example 3.4]. Instead of relying

on results in [5] concerning one-parameter semigroups, we prefer here considering the

truncated backward shift operator.

Example 1.8. Let {en}∞n=0 be an orthonormal basis in the Hilbert space H, and let

T ∈ L(H) denote the contraction defined by Ten := en−1 for n ≥ 1, and Te0 := 0.

Let us consider a vector h0 =
∑∞
n=0 ξnen such that ξn 6= 0 for infinitely many n, and

limn→∞(
∑∞
k=n |ξk|2)1/n = 0.

Since limn→∞ ‖Tnh0‖1/n = 0, we infer that σ(T, h0) = 0. (Indeed, (zI−T )F (z) = h0

holds for any z 6= 0, where F (z) =
∑∞

n=1 z
−nTn−1h0.) On the other hand, the entire

function ϕ(z) =
∑∞
n=0 ξnz

n is not a polynomial, hence the vector h0 is cyclic for T by [19,

Corollary II.1.4], that is ∨{T nh0}∞n=0 = H. (The relations σ(T, h0) = {0} and σ(T ) = D

can be contrasted with the equations in Lemma 1.3.(i) concerning isometries.)

It remains to observe that for any non-zero function f ∈ A(D) the operator f̃(T ∗) is

injective, where f̃(z) = f(z). (We refer to the representation of T as multiplication by χ

in the Hardy space H2.) It follows that the operator f(T ) = (f̃(T ∗))∗ has dense range,

and so ‖Tnf(T )‖ = ‖Tn‖ = 1 is true, for any n ∈ N.

2. One-parameter semigroups of Hilbert space contractions

Let T = {T (t)}t∈R+
be a strongly continuous semigroup of contractions acting on the

Hilbert space H (here R+ = {t ∈ R : t ≥ 0}) and let A be the (infinitesimal) generator

of T . It is well-known that A is a densely defined, closed operator and its resolvent

set contains the open, right half-plane (see [20, Section 143]). The Cayley transform

T = (A + I)(A − I)−1 of A is a contraction, called the cogenerator of the semigroup T.

Both A and T determine the semigroup T; for details we refer to [12, Chapter XII] and

[23, Section III.8].

Let us consider the set H0(T) := {h ∈ H : limt→∞ ‖T (t)h‖ = 0} of vectors which are

stable under T. It is easy to verify that H0(T) is a closed subspace, invariant for every

operator in the commutant {T}′ = {C ∈ L(H) : CT (t) = T (t)C for every t ∈ R+} of T.

Let H1(T) denote the orthogonal complement of H0(T) in H.

Using the previous notation, we obtain the following theorem.

Theorem 2.1. Let T = {T (t)}t∈R+
be a strongly continuous contraction semigroup on

the Hilbert space H, and let h1 ∈ H1(T). If the unitary local spectrum σ(A, h1) ∩ iR
of the generator A at h1 is of zero Lebesgue measure, then the hyperinvariant subspace
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Hh1
= {Ch1 : C ∈ {T}′} is reducing for T, Hh1

is included in H1(T), and the restriction

T|Hh1
is a unitary semigroup.

Proof. First of all we show that the unitary local spectrum σ(T, h1)∩∂D of the cogenerator

T is contained in the set φ(σ(A, h1) ∩ iR) ∪ {1}, where φ(z) = (z + 1)/(z − 1), and so the

(linear Lebesgue) measure of σ(T ) ∩ ∂D is zero, as well.

Indeed, let us consider a point z0 ∈ iR\σ(A, h1), and let Ω be an open disc centered at

z0 such that there exists an analytic function F : Ω→H with the property (zI−A)F (z) =

h1 (z ∈ Ω). Then for any z in the open set Ω′ = φ(Ω) we can write (φ(z)I−A)F (φ(z)) = h1

(note that φ−1 = φ). Since (A−I)F (φ(z)) = (φ(z)−1)F (φ(z))−h1 and (A+I)F (φ(z)) =

(φ(z) + 1)F (φ(z))− h1, we infer that

T ((φ(z)− 1)F (φ(z))− h1) = (φ(z) + 1)F (φ(z))− h1,

whence (zI − T )(1− z)−1((φ(z)− 1)F (φ(z))− h1) = h1 follows. Therefore φ(z0) belongs

to the set ∂D\σ(T, h1).

In view of H0(T) = H0(T ) we know that the compression T1 = PH1(T)T |H1(T) is a

contraction of class C1•. It is easy to see that σ(T1, h1) ⊂ σ(T, h1). Thus we obtain by

Theorem 1.4 that the restriction of T1 to the subspace H′ := {Ch1 : C ∈ {T1}′} is unitary.

Since T is a contraction, it follows that T1|H′ = T |H′ and thatH′ is reducing for T (see the

second remark after Corollary 1.5). It is clear now that H′ = {Ch1 : C ∈ {T}′}. Taking

into account that {T}′ = {T}′ (see [23, Theorem III.8.1]), we infer that H′ = Hh1
. Finally,

[23, Theorem III.8.1] and [23, Proposition III.8.2] result in that Hh1
is reducing for T and

the restriction T|Hh1
is a unitary semigroup. Q.E.D.

By a similar method we can derive from Theorem 1.2 that if σ(A)∩ iR is of measure zero

then the semigroup T splits into the orthogonal sum T = T0 ⊕T1, where T0 is a stable

contraction semigroup and T1 is a unitary semigroup. This statement is equivalent to [7,

Corollary 2].
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