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Abstract. Let P be the Ornstein-Uhlenbeck semigroup associated with the
stochastic Cauchy problem

dU(t) = AU(t) dt + dWH(t),

where A is the generator of a C0-semigroup S on a Banach space E, H is
a Hilbert subspace of E, and WH is an H-cylindrical Brownian motion. As-
suming that S restricts to a C0-semigroup on H, we obtain Lp-bounds for
DHP (t). We show that if P is analytic, then the invariance assumption is
fulfilled. As an application we determine the Lp-domain of the generator of
P explicitly in the case where S restricts to a C0-semigroup on H which is
similar to an analytic contraction semigroup. The results are applied to the
1D stochastic heat equation driven by additive space-time white noise.
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1. Introduction

Consider the stochastic Cauchy problem
dU(t) = AU(t) dt + dWH(t), t > 0,

U(0) = x.
(SCP)

Here A generates a C0-semigroup S = (S(t))t>0 on a real Banach space E, H
is a real Hilbert subspace continuously embedded in E, WH is an H-cylindrical
Brownian motion on a probability space (Ω,F P ), and x ∈ E. A weak solution is
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a measurable adapted E-valued process Ux = (Ux(t))t>0 such that t 7→ Ux(t) is
integrable almost surely and for all t > 0 and x∗ ∈ D(A∗) one has

〈Ux(t), x∗〉 = 〈x, x∗〉+
∫ t

0

〈Ux(s), A∗x∗〉 ds + WH(t)i∗x∗ almost surely.

Here i : H ↪→ E is the inclusion mapping. A necessary and sufficient condition for
the existence of a weak solution is that the operators It : L2(0, t; H) → E,

Itg :=
∫ t

0

S(s)ig(s) ds,

are γ-radonifying for all t > 0. If this is the case, then s 7→ S(t−s)i is stochastically
integrable on (0, t) with respect to WH and the process Ux is given by

Ux(t) = S(t)x +
∫ t

0

S(t− s)i dWH(s), t > 0.

For more information and an explanation of the terminology we refer to [30].
Assuming the existence of the solution Ux, on the Banach space Cb(E) of

all bounded continuous functions f : E → R one defines the Ornstein-Uhlenbeck
semigroup P = (P (t))t>0 by

P (t)f(x) := Ef(Ux(t)), t > 0, x ∈ E. (1.1)

The operators P (t) are linear contractions on Cb(E) and satisfy P (0) = I and
P (s)P (t) = P (s + t) for all s, t > 0. For all f ∈ Cb(E) the mapping (t, x) 7→
P (t)f(x) is continuous, uniformly on compact subsets of [0,∞)× E.

If the operator I∞ : L2(0,∞; H) → E defined by

I∞g :=
∫ ∞

0

S(t)ig(t) dt

is γ-radonifying, then the problem (SCP) admits a unique invariant measure µ∞.
This measure is a centred Gaussian Radon measure on E, and its covariance
operator equals I∞I∗∞. Throughout this paper we shall assume that this measure
exists; if (SCP) has a solution, then this assumption is for instance fulfilled if S
is uniformly exponentially stable. The reproducing kernel Hilbert space associated
with µ∞ is denoted by H∞. The inclusion mapping H∞ ↪→ E is denoted by i∞.
Recall that Q∞ := i∞i∗∞ = I∞I∗∞. Is is well-known that S restricts to a C0-
contraction semigroup on H∞ [5] (the proof for Hilbert spaces E extends without
change to Banach spaces E), which we shall denote by S∞.

By a standard application of Jensen’s inequality, the semigroup P has a
unique extension to a C0-contraction semigroup to the spaces Lp(E,µ∞), 1 6
p < ∞. By slight abuse of notation we shall denote this semigroup by P again. Its
infinitesimal generator will be denoted by L. In order to give an explicit expression
for L it is useful to introduce, for integers k, l > 0, the space FCk,l

b (E) consisting
of all functions f ∈ Cb(E) of the form

f(x) = ϕ(〈x, x∗1〉, . . . , 〈x, x∗N 〉)
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with f ∈ Ck
b (RN ) and x∗1, . . . , x

∗
N ∈ D(A∗l). With this notation one has that

FC2,1
b (E) is a core for L, and on this core one has

Lf(x) =
1
2

tr D2
Hf(x) + 〈x,A∗Df(x)〉.

Here,

DHf(x) =
N∑

n=1

∂ϕ

∂xn
(〈x, x∗1〉, . . . , 〈x, x∗N 〉)⊗ i∗x∗n,

Df(x) =
N∑

n=1

∂ϕ

∂xn
(〈x, x∗1〉, . . . , 〈x, x∗N 〉)⊗ x∗n,

denote the Fréchet derivatives into the directions of H and E, respectively.

2. Gradient estimates: the H-invariant case

Our first result gives a pointwise gradient bound for P under the assumption that
S restricts to a C0-semigroup on H which will be denoted by SH . As has been
shown in [17, Corollary 5.6], under this assumption the operator DH is closable as
a densely defined operator from Lp(E,µ∞) to Lp(E,µ; H) for all 1 6 p < ∞. The
domain of its closure is denoted by Dp(DH).

Proposition 2.1 (Pointwise gradient bounds). If S restricts to a C0-semigroup on
H, then for all 1 < p < ∞ there exists a constant C > 0 such that for all t > 0
and f ∈ FC1,0

b (E) we have
√

t|DHP (t)f(x)| 6 Cκ(t)(P (t)|f |p(x))1/p,

where κ(t) := sups∈[0,t] ‖SH(s)‖L (H).

Proof. The proof follows the lines of [25, Theorem 8.10] and is inspired by the
proof of [10, Theorem 6.2.2], where the null controllable case was considered.

The distribution µt of the random variable U0(t) is a centred Gaussian Radon
measure on E. Let Ht denote its RKHS and let it : Ht ↪→ E be the inclusion
mapping. As is well known and easy to prove, cf. [9, Appendix B] one has

Ht =
{∫ t

0

S(t− s)ig(s) ds : g ∈ L2(0, t; H)
}

with

‖h‖Ht = inf
{
‖g‖L2(0,t;H) : h =

∫ t

0

S(t− s)ig(s) ds
}

.

The mapping
φµt : i∗t x

∗ 7→ 〈·, x∗〉, x∗ ∈ E∗,

defines an isometry from Ht onto a closed subspace of L2(E,µt). For h ∈ Ht we
shall write φµt

h (x) := (φµth)(x).
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Fix h ∈ H. Since S restricts to a C0-semigroup SH on H we may consider
the function g ∈ L2(0, t; H) given by g(s) = 1

t S(s)h. From the identity S(t)h =∫ t

0
S(t− s)g(s) ds we deduce that S(t)h ∈ Ht and

‖S(t)h‖2
Ht

6 ‖g‖2
L2(0,t;H) =

1
t2

∫ t

0

‖S(s)h‖2
H ds 6

1
t
κ(t)2‖h‖2

H . (2.1)

Fix a function f ∈ FC1,0
b (E), that is, f(x) = ϕ(〈x, x∗1〉, . . . , 〈x, x∗N 〉) with

ϕ ∈ C1
b(RN ) and x∗1, . . . , x

∗
N ∈ E∗. It is easily checked that for all t > 0 we

have P (t)f ∈ FC1,0
b (E); in particular this implies that P (t)f ∈ Dp(DH). By the

Cameron-Martin formula [3],
1
ε

(
P (t)f(x + εh)−P (t)f(x)

)
=

1
ε

∫
E

(
f(S(t)(x + εh) + y)− f(S(t)x + y)

)
dµt(y)

=
∫

E

1
ε

(EεS(t)h − 1)f(S(t)x + y) dµt(y),

where for h ∈ Ht we write

Eh(x) := exp(φµt

h (x)− 1
2‖h‖

2
Ht

).

It is easy to see that for each h ∈ Ht the family
(

1
ε (Eεh − 1)

)
0<ε<1

is uniformly
bounded in L2(E,µt), and therefore uniformly integrable in L1(E,µt). Passage to
the limit ε ↓ 0 in the previous identity now gives

[DHP (t)f(x), h] =
∫

E

f(S(t)x + y)φµt

S(t)h(y) dµt(y).

By Hölder’s inequality with 1
r + 1

q = 1 and the Kahane-Khintchine inequality,
which can be applied since φµt

S(t)h is a Gaussian random variable,

|[DHP (t)f(x), h]|

6
( ∫

E

|f(S(t)x + y)|r dµt(y)
) 1

r
( ∫

E

|φµt

S(t)h(y)|q dµt(y)
) 1

q

6 Kq

( ∫
E

|f(S(t)x + y)|r dµt(y)
) 1

r
( ∫

E

|φµt

S(t)h(y)|2 dµt(y)
) 1

2

= Kq(P (t)|f |r(x))
1
r ‖S(t)h‖Ht .

Using (2.1) we find that∣∣√t[DHP (t)f(x), h]
∣∣ 6 Kqκ(t)(P (t)|f |r(x))

1
r ‖h‖H ,

and by taking the supremum over all h ∈ H of norm 1 we obtain the desired
estimate. �

Corollary 2.2. If S restricts to a C0-semigroup on H, then for all 1 < p < ∞ the
operators DHP (t), t > 0, extend uniquely to bounded operators from Lp(E,µ∞)
to Lp(E,µ∞; H), and there exists a constant C > 0 such that for any t > 0,

√
t‖DHP (t)‖L (Lp(E,µ∞),Lp(E,µ∞;H)) 6 Cκ(t).
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Proof. Integrating the inequality of the proposition and using the fact that µ∞ is
an invariant measure for P we obtain

‖
√

tDHP (t)f‖p
Lp(E,µ∞) 6 Cpκ(t)p

∫
E

P (t)|f |p(x) dµ∞(x)

= Cpκ(t)p

∫
E

|f |p(x) dµ∞(x) = Cpκ(t)p‖f‖p
Lp(E,µ∞).

�

3. Gradient estimates: the analytic case

Analyticity of the semigroup P on Lp(E,µ∞) has been investigated by several
authors [15, 16, 18, 24]. The following result of [18] is our starting point. Recall
that in the definition of an analytic C0-contraction semigroup, contractivity is
required on an open sector containing the positive real axis.

Proposition 3.1. For any 1 < p < ∞ the following assertions are equivalent:
(1) P is an analytic C0-semigroup on Lp(E,µ∞);
(2) P is an analytic C0-contraction semigroup on Lp(E,µ∞);
(3) S restricts to an analytic C0-contraction semigroup on H∞;
(4) Q∞A∗ acts as a bounded operator in H.

A more precise formulation of (4) is that there should exist a bounded op-
erator B : H → H such that iBi∗x∗ = Q∞A∗x∗ for all x∗ ∈ E∗. The identity
Q∞A∗ + AQ∞ = −ii∗ implies that B + B∗ = −I.

In what follows we shall simply say that ‘P is analytic’ to express that the
equivalent conditions of the proposition are satisfied for some (and hence for all)
1 < p < ∞.

The next result has been shown in [24] for p = 2 and was extended to 1 <
p < ∞ in [25].

Proposition 3.2. If P is analytic, then FC2,1
b (E) is a core for the generator L of

P in Lp(E,µ∞), and on this core L is given by

L = D∗
HBDH .

Our first aim is to show that analyticity of P implies that H is S-invariant.
For self-adjoint P this was proved in [7, 18].

Theorem 3.3. If P is analytic, then S restricts to a bounded analytic C0-semigroup
SH on H.

Proof. Consider the linear mapping

V : i∗∞x∗ 7→ i∗x∗, x∗ ∈ E∗. (3.1)

It is shown in [17] that i∗∞x∗ = 0 implies i∗x∗ = 0, so that this mapping is well-
defined, and that the closability of DH implies the closability of V as a densely
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defined operator from H∞ to H. With slight abuse of notation we denote its closure
by V again and let D(V ) the domain of the closure.

By [1, Proposition 7.1], the operator −V V ∗B is sectorial of angle < π
2 , and

therefore G := V V ∗B generates a bounded analytic C0-semigroup (T (t))t≥0 on
H. To prove the theorem, by uniqueness of analytic continuation and duality it
suffices to show that T (t) ◦ i∗ = i∗ ◦ S∗(t) for all t > 0.

For all x∗ ∈ D(A∗) we have Bi∗x∗ ∈ D(V ∗) and V ∗Bi∗x∗ = i∗∞A∗x∗. Indeed,
for y∗ ∈ E∗ one has

[Bi∗x∗, V i∗∞y∗] = 〈i∗∞A∗x∗, i∗∞y∗〉,
which implies the claim. By applying the operator V to this identity we ob-
tain i∗x∗ ∈ D(G) and G i∗x∗ = i∗A∗x∗, from which it follows that T (t)i∗x∗ =
i∗S∗(t)x∗. This proves the theorem, with SH = T ∗. �

This result should be compared with [18, Theorem 9.2], where it is shown
that if S restricts to an analytic C0-semigroup on H which is contractive in some
equivalent Hilbert space norm, then P is analytic on Lp(E,µ∞).

Under the assumption that P is analytic on Lp(E,µ∞), the gradient estimates
of the previous section can be improved as follows. Recall that a collection of
bounded operators T between Banach spaces X and Y is said to be R-bounded if
there exists a constant C such that for any finite subset T1, . . . , Tn ⊂ T and any
x1, . . . , xn ∈ X we have

E
∥∥∥ n∑

j=1

rjTjxj

∥∥∥2

6 C2E
∥∥∥ n∑

j=1

rjxj

∥∥∥2

,

where (rj)j>1 is an independent collection of Rademacher random variables. The
notion of R-boundedness plays an important role in recent advances in the theory
of evolution equations (see [12, 21]).

Theorem 3.4. If P is analytic, then for all 1 < p < ∞ the set

{
√

tDHP (t) : t > 0}
is R-bounded in L (Lp(E,µ∞), Lp(E,µ∞; H)) and we have the square function
estimate ∥∥∥( ∫ t

0

‖DHP (t)f‖2
H dt

)1/2∥∥∥
Lp(E,µ∞)

. ‖f‖Lp(E,µ∞)

with implied constant independent of f ∈ Lp(E,µ∞).

Proof. By Proposition 3.2 and Theorem 3.3, the theorem is a special case of [25,
Theorem 2.2]. �

The above result plays a crucial role in our recent paper [25] in which Lp-
domain characterisations for the operator L and its square root have been obtained.
Before stating the result, let us informally sketch how Theorem 3.4 enters the argu-
ment. In order to prove a domain characterisation for the operator L, we first aim
to obtain two-sided estimates for ‖

√
−Lf‖Lp(E,µ∞) in terms of suitable Sobolev
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norms. For this purpose we consider a variant of an operator theoretic framework
introduced in [2] in the analysis of the famous Kato square root problem. The
idea behind this framework is that the second order operator L can be naturally
studied through the first order Hodge-Dirac-type operator

Π =
[

0 −D∗
HB

DH 0

]
on Lp(E,µ∞)⊕ Lp(E,µ∞; H).

This operator is bisectorial and its square is the sectorial operator given by

−Π2 =
[
D∗

V BDV 0
0 DV D∗

V B

]
=

[
L 0
0 L

]
,

where L := DV D∗
V B. The approach in [25] consists of proving estimates for

√
−Lf

along the lines of the following formal calculation:

‖DHf‖p = ‖Π(f, 0)‖p 6 ‖Π/
√

Π2‖p ‖
√

Π2(f, 0)‖p = ‖Π/
√

Π2‖p ‖
√

Lf‖p.

Oversimplifying things considerably, the proof consists of turning this calculation
into rigourous mathematics. This can be done once we know that the operator
Π/

√
Π2 is bounded. Since the function z 7→ z/

√
z2 is a bounded analytic function

on each bisector around the real axis, it suffices to show that Π has a bounded
H∞-functional calculus. This in turn will follow if we show that

1. the resolvent set {(it−Π)−1}t∈R\{0} is R-bounded;
2. the operator Π2 admits a bounded functional calculus.

To prove (1), we observe that

(I − itΠ)−1 =
[

(1− t2L)−1 −it(I − t2L)−1D∗
HB

itDH(I − t2L)−1 (I − t2L)−1

]
, t ∈ R \ {0}.

It suffices to prove R-boundedness for each of the entries separately. The diagonal
entries can be dealt with using abstract results on R-boundedness for positive con-
traction semigroups on Lp-spaces. The R-boundedness for the off-diagonal entries
can be derived using Theorem 3.4.

To prove (2) we use the fact that the semigroup generated by L equals P ⊗
S∗H on the range of the gradient DH . Here SH denotes the restriction of the
semigroup S to H (see Theorem 3.3). Therefore (2) follows, provided that the
negative generator −AH of SH has a bounded H∞-calculus. This reduces the
original question about

√
−L to a question about the operator AH , which is defined

directly in terms of the data H and A of the problem. The latter question should
be thought of as expressing the compatibility of the drift (represented by the
operator A) and the noise (represented by the Hilbert space H). This compatibility
condition is not automatically satisfied. In fact, by a result of Le Merdy [22], −AH

admits a bounded H∞-functional calculus on H if and only if SH is an analytic C0-
contraction semigroup on H with respect to some equivalent Hilbert space norm.
Such needs not always be the case, as is shown by well-known examples [26].

The following result summarises the informal discussion above and provides
an additional equivalent condition in terms of the operator A∞. In this result we
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let Dp(D2
H) denote the second order Sobolev space associated with the operator

DH .

Theorem 3.5. Let 1 < p < ∞. If P is analytic on Lp(E,µ∞), then the following
assertions are equivalent:
(1) Dp(

√
−L) = Dp(DH) with norm equivalence

‖
√
−Lf‖Lp(E,µ∞) h ‖DHf‖Lp(E,µ∞;H);

(2) D(
√
−A∞) = D(V ) with norm equivalence

‖
√
−A∞h‖H∞ h ‖V h‖H ;

(3) −AH admits a bounded H∞-functional calculus on H.
If these equivalent conditions are satisfied we have

Dp(L) = Dp(D2
H) ∩ Dp(A∗∞D),

where D is the Malliavin derivative in the direction of H∞.

Proof. By Proposition 3.2 and Theorem 3.3, the theorem is a special case of [25,
Theorems 2.1, 2.2] provided we replace A∞ by A∗∞ in (2). The equivalence of (2)
for A∞ and A∗∞, however, is well known (see also [25, Lemma 10.2]). �

The problem of identifying the domains of
√
−L and L has a long and in-

teresting history. We finish this paper by presenting three known special cases of
Theorem 3.5. In each case, it is easy to verify that (3) is satisfied.

Example 1. For the classical Ornstein-Uhlenbeck operator, which corresponds to
H = E = Rd and A = −I, conditions (2) and (3) of Theorem 3.5 are trivially
fulfilled and (1) reduces to the classical Meyer inequalities of Malliavin calculus.
For a discussion of Meyer’s inequalities we refer to the book of Nualart [31].

Example 2. Meyer’s inequalities were extended to infinite dimensions by Shigekawa
[32], and Chojnowska-Michalik and Goldys [6, 7], who considered the case where
E is a Hilbert space and AH is self-adjoint. Both authors deduce the generalised
Meyer inequalities from square functions estimates. The identification of Dp(L)
in the self-adjoint case is due to Chojnowska-Michalik and Goldys [6, 7], who
extended the case p = 2 obtained earlier by Da Prato [8].

So far, these examples were concerned with the selfadjoint case.

Example 3. A non-selfadjoint extension of Meyer’s inequalities has been given
for the case E = Rd by Metafune, Prüss, Rhandi, and Schnaubelt [27] under
the non-degeneracy assumption H = Rd. In this situation the semigroup P is
analytic on Lp(µ∞) [15], see also [16, 18]; no symmetry assumptions need to be
imposed on A. The S-invariance of H and the fact that the generator of S =
SH admits a bounded H∞-calculus are trivial. Therefore, (3) is satisfied again.
Note that the domain characterisation reduces to Dp(L) = Dp(D2), where D is
the derivative on Rd. The techniques used in [27] to prove (1) are very different,
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involving diagonalisation arguments and the non-commuting Dore-Venni theorem.
The identification of Dp(L) = Dp(D2) for p = 2 had been obtained previously by
Lunardi [23].

Our final corollary extends the characterisations of Dp(L) contained in Ex-
amples 2 and 3 and lifts the non-degeneracy assumption on H in Example 3.

Corollary 3.6. If S restricts to an analytic C0-semigroup on H which is contractive
with respect to some equivalent Hilbert space norm, then for all 1 < p < ∞ we
have

Dp(L) = Dp(D2
H) ∩ Dp(A∗∞D),

where D is the Malliavin derivative in the direction of H∞.

Proof. As has already been mentioned in the discussion preceding Theorem 3.4,
the assumptions imply that P is analytic. Moreover, since the restricted semigroup
SH is similar to an analytic contraction semigroup, its negative generator −AH

admits a bounded H∞-calculus, and the result follows from Theorem 3.5. �

Let us finally mention that the results in [25] have been proved for a more
general class of elliptic operators on Wiener spaces (cf. Section 3 of that paper).
In this setting the data consist of

• an arbitrary Gaussian measure µ on a separable Banach space E with repro-
ducing kernel Hilbert space H ;

• an analytic C0-contraction semigroup S on H with generator A .

Given these data, the semigroup P is defined on L2(E,µ) by second quantisation
of the semigroup S . Roughly speaking, this means that one uses the Wiener-Itô
isometry to identify L2(E,µ) with the symmetric Fock space over H , i.e., the
direct sum of symmetric tensor powers of H . The semigroup P is then defined
by applying S to each factor

P(t)
∑

σ∈Sn

(hσ(1) ⊗ . . .⊗ hσ(n)) :=
∑

σ∈Sn

S (t)hσ(1) ⊗ . . .⊗S (t)hσ(n),

where Sn is the permutation group on {1, . . . , n}. For the details of this construc-
tion we refer to [19]. Equivalently, the semigroup P can be defined via the the
following generalisation of the classical Mehler formula,

P(t)f(x) =
∫

E

f(S (t)x +
√

I −S ∗(t)S (t)y) dµ(y),

which makes sense by virtue of the fact that any bounded linear operator on H
admits a unique measurable linear extension to E [3]. The generator L of the
semigroup P is the elliptic operator formally given by

L = D∗A D,

where D denotes the Malliavin derivative associated with µ and its adjoint D∗ is
the associated divergence operator. The application to Ornstein-Uhlenbeck oper-
ators described in this paper is obtained by taking µ ∼ µ∞ and A ∼ A∗∞ (cf.
[5, 28]).
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4. An example

In this section we present an example of a Hilbert space E, a continuously em-
bedded Hilbert subspace H ↪→ E, and a C0-semigroup generator A on E such
that:

• the semigroup S generated by A fails to be analytic;
• the stochastic Cauchy problem

dU(t) = AU(t) dt + dWH(t)

admits a unique invariant measure, which we denote by µ∞;
• the associated Ornstein-Uhlenbeck semigroup P is analytic on L2(E,µ∞).

Thus, although analyticity of P implies analyticity of SH (Theorem 3.3), it does
not imply analyticity of S.

Let E = L2(R+, e−x dx) be the space of all measurable functions f on R+

such that

‖f‖ :=
( ∫ ∞

0

|f(x)|2 e−xdx
) 1

2
< ∞.

The rescaled left translation semigroup S,

S(t)f(x) := e−tf(x + t), f ∈ E, t > 0, x > 0,

is strongly continuous and contractive on E, and satisfies ‖S(t)‖ = e−t/2. Let
H = H2(C+) be the Hardy space of analytic functions g on the open right-half
plane C+ = {z ∈ C : Re z > 0} such that

‖g‖H := sup
x>0

( ∫ ∞

−∞
|g(x + iy)|2 dy

) 1
2

< ∞.

Since limx→+∞ g(x) = 0 for all g ∈ H, the restriction mapping i : g 7→ g|R+

is well-defined as a bounded operator from H to E. By uniqueness of analytic
continuation, this mapping is injective. Since i factors through L∞(R+, e−x dx),
i is Hilbert-Schmidt [29, Corollary 5.21]. As a consequence (see, e.g., [9, Chapter
11]), the Cauchy problem dU(t) = AU(t) dt + dWH(t) admits a unique invariant
measure µ∞.

The rescaled left translation semigroup SH ,

SH(t)g(z) := e−tg(z + t), f ∈ H, t > 0, Re z > 0,

is strongly continuous on H, it extends to an analytic contraction semigroup of
angle 1

2π, and satisfies ‖SH(t)‖H = e−t/2. Clearly, for all t > 0 we have S(t) ◦ i =
i ◦ SH(t). By these observations combined with [18, Theorem 9.2], the associated
Ornstein-Uhlenbeck semigroup P is analytic.
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5. Application to the stochastic heat equation

In this final section we shall apply our results to the following stochastic PDE with
additive space-time white noise:

∂u

∂t
(t, y) =

∂2u

∂y2
(t, y) +

∂2W

∂t ∂y
(t, y), t > 0, y ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t > 0,

u(0, y) = 0, y ∈ [0, 1].

(5.1)

This equation can be cast into the abstract form (SCP) by taking H = E =
L2(0, 1) and A the Dirichlet Laplacian ∆ on E. The resulting equation

dU(t) = AU(t) dt + dW (t),

U(0) = 0,

where now W denotes an H-cylindrical Brownian motion, has a unique solution
U given by

U(t) =
∫ t

0

S(t− s) dW (s), t > 0,

where S denotes the heat semigroup on E generated by A. Let µ∞ denote the
unique invariant measure on E associated with U , and let H∞ denote its repro-
ducing kernel Hilbert space. Let i∞ : H∞ ↪→ E denote the canonical embedding
and let i : H → E be the identity mapping. By [17, Theorem 3.5, Corollary 5.6]
the densely defined operator V : i∗∞x∗ 7→ i∗x∗ defined in (3.1) is closable from H∞
to H.

Let L be the generator of the Ornstein-Uhlenbeck semigroup P on Lp(E,µ∞)
associated with U . Since P is analytic, the results of Sections 2 and 3 can be
applied. Noting that ∆ is selfadjoint on H, condition (3) of Theorem 3.5 is satisfied
and therefore

Dp(
√
−L) = Dp(D) (1 < p < ∞)

where D = DH = DE denotes the Fréchet derivative on Lp(E,µ∞).
One can go a step further by noting that the problem (5.1) is well-posed even

on the space

Ẽ := C0[0, 1] = {f ∈ C[0, 1] : f(0) = f(1) = 0},

in the sense that the random variables U(t) are Ẽ-valued almost surely and that
U admits has a modification Ũ with continuous (in fact, even Hölder continuous)
trajectories in Ẽ. Moreover, the invariant measure µ∞ is supported on Ẽ. In anal-
ogy to (1.1) this allows us to define an “Ornstein-Uhlenbeck semigroup” P̃ on
Lp(Ẽ, µ∞) associated with Ũ by

P̃ (t)f(x) := Ef(Ũx(t)), t > 0, x ∈ Ẽ,

where Ũx(t) = S̃(t)x + Ũ(t) and S̃ is the heat semigroup on Ẽ. It is important to
observe that we are not in the framework considered in the previous sections, due



12 Jan Maas and Jan van Neerven

to the fact that H = L2(0, 1) is not continuously embedded in Ẽ. Let L̃ denote
the generator of P̃ . Under the natural identification

Lp(Ẽ, µ∞) = Lp(E,µ∞)

(using that the underlying measure spaces are identical up to a set of measure
zero), we have P̃ (t) = P (t) and L̃ = L, so that

Dp(
√
−L̃) = Dp(

√
−L) = Dp(D) (1 < p < ∞). (5.2)

This representation may seem somewhat unsatisfactory, as the right-hand
side refers explicitly to the ambient space E in which Ẽ is embedded. An intrinsic
representation of Dp(

√
−L̃) can be obtained as follows. For functions F : Ẽ → R

of the form

F (f) = φ
( ∫ 1

0

fg1 dt, . . . ,

∫ 1

0

fgN dt
)
, f ∈ Ẽ,

with φ ∈ C2
b(RN ) and g1, . . . , gN ∈ H, we define D̃F : Ẽ → H by

D̃F (f) =
N∑

n=1

∂φ

∂yn

( ∫ 1

0

fg1 dt, . . . ,

∫ 1

0

fgN dt
)
gn, f ∈ Ẽ.

This operator is closable in Lp(Ẽ, µ∞) for all 1 6 p < ∞. On L2(Ẽ, µ∞) we have
the representation

L̃ = D̃∗D̃.

As a result we can apply [25, Theorem 2.1] directly to the operator V and obtain
that

Dp(
√
−L̃) = Dp(D̃) (1 < p < ∞). (5.3)

This answers a question raised by Zdzis law Brzeźniak (personal communication).
To make the link between the formulas (5.2) and (5.3) note that, under the iden-
tification Lp(Ẽ, µ∞) = Lp(E,µ∞), one also has Dp(D̃) = Dp(D).

Remark 5.1. It is possible to give explicit representations for the space H∞ and
the operator V . To begin with, the covariance operator Q∞ of µ∞ is given by

Q∞f =
∫ ∞

0

S(t)S∗(t)f dt =
∫ ∞

0

S(2t)f dt = 1
2∆−1f, f ∈ E.

It follows that the reproducing kernel Hilbert space H∞ associated with µ∞ equals

H∞ = R(
√

Q∞) = D(
√
−∆) = H1

0 (0, 1).

Noting that Q∞ = i∞ ◦ i∗∞, we see that the operator V : i∗∞x∗ 7→ i∗x∗ is given by

D(V ) = H2(0, 1) ∩H1
0 (0, 1),

V f = 2∆f, f ∈ D(V ).

Remark 5.2. Formulas for Dp(L̃) analogous to (5.2) and (5.3) can be deduced from
Theorem 3.5 and [25, Theorem 2.2] in a similar way.



Ornstein-Uhlenbeck operators 13

The Ornstein-Uhlenbeck operators L and L̃ considered above are symmetric
on L2(E,µ∞), and therefore the domain identifications for their square roots could
essentially be obtained from the results of [6, 32]. The above argument, however,
can be applied to a large class of second order elliptic differential operators A on
L2(0, 1) (but explicit representations as in Remark 5.1 are only possible when A
is selfadjoint).

In fact, under mild assumptions on the coefficients and under various types
of boundary conditions, such operators A have a bounded H∞-calculus on H =
E = L2(0, 1) (see [11, 14, 20] and there references therein). By the result of Le
Merdy [22] mentioned earlier, this implies that the analytic semigroup S generated
by A is contractive in some equivalent Hilbertian norm. Hence, by [18, Theorem
9.2], the associated Ornstein-Uhlenbeck semigroup is analytic. Typically, under
Dirichlet boundary conditions, S is uniformly exponentially stable. This implies
(see [9]) that the solution U of (SCP) admits a unique invariant measure. Finally,
the analyticity of S typically implies space-time Hölder regularity of U (see [4, 13]),
so that the corresponding stochastic PDE is well-posed in Ẽ = C0[0, 1]. We plan
to provide more details in a forthcoming publication.
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