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0. Introduction

It is well-known that the spectral bound s(A) and the growth bound ω0(T) of a C0-semigroup
T = {T (t)}t>0 with generator A need not be equal, even if the underlying space is a Hilbert
space [Za] or if the semigroup is a positive semigroup on a Banach lattice [GVW].

On the other hand, it is known that s(A) = ω0(T) for positive C0-semigroups on each of
the spaces L1(µ), L2(µ) and C0(Ω). Recently, L. Weis [We] announced a proof of the long-
standing conjecture that the growth bound and the spectral bound of positive C0-semigroups
on Lp(µ), 1 6 p <∞, coincide.

Since every rearrangement invariant Banach function space with order continuous norm
is an exact interpolation space between L1 and L∞, this suggests that it might be possible to
extend Weis’s arguments to positive C0-semigroups on certain rearrangement invariant Banach
function spaces. However, somewhat earlier W. Arendt [Ar] had shown that for the positive
C0-semigroup T = {T (t)}t>0 on the rearrangement invariant space Lp(1,∞) ∩ Lq(1,∞), 1 6
p < q <∞, defined by

(T (t)f)(s) = f(set), t > 0, s > 1, f ∈ Lp(1,∞) ∩ Lq(1,∞),

one has s(A) 6 − 1
p < − 1

q 6 ω0(T).

In this paper, we study the semigroup TE defined by (TE(t)f)(s) := f(set) in arbitrary
rearrangement invariant Banach function spaces E over (1,∞) and show that in many of
these spaces the equality s(AE) = ω0(TE) fails for TE . Since each operator TE(t) acts as
the restriction to (1,∞) of a dilatation operator, we try to relate s(AE) and ω0(TE) to the
asymptotic behaviour of these operators. Recalling that the Boyd indices αE and αE are
defined in terms of dilatation operators, for spaces over (0,∞) (rather than (1,∞)) it is indeed
fairly easy to show that s(AE) = ω0(TE) = −αE (Theorem 2.6 below). For spaces over
(1,∞), one again can prove that ω0(TE) = −αE but it is more difficult to obtain an estimate
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for s(AE). We obtain such an estimate, which in some special cases gives the correct value
of s(AE) (Theorem 2.5). It is based on the simple observation that TE acts nilpotently on
functions of compact support.

In Sections 3 and 4, we apply our results to extend Arendt’s example into two different
directions. In Section 3, we give conditions on two spaces E and F ensuring that on their
intersection we have s(AE∩F ) < ω0(TE∩F ). These conditions are satisfied for E = Lp and
F = Lq, 1 6 p < q <∞.

The intersection of two Orlicz spaces EΦ ∩ EΨ is an Orlicz space up to an equivalent
norm, and its Young function is given by max{Φ,Ψ} [dJ]. In particular, the space Lp ∩ Lq
of Arendt’s example is an Orlicz space. With this in mind, in Section 4 we give abstract
sufficient properties for a Young function Φ in order that s(AEΦ

) < ω0(TEΦ
) holds in the

Orlicz space EΦ(1,∞). Since these conditions are trivially satisfied by the Young function
Φ(t) = max{tp, tq} of Lp ∩ Lq, 1 6 p < q <∞.

I would like to dedicate this paper to our boy Matthijs who was born during the prepa-
ration of this paper.

1. Preliminaries

In this section we recall some facts about rearrangement invariant Banach function spaces and
C0-semigroups. For proofs and more details we refer to [KPS, Chapter II] (function spaces)
and [P], [Na] (semigroups).

The terminology concerning rearrangement invariant Banach function spaces varies among
different authors. For the sake of definiteness, throughout this paper a rearrangement invariant
Banach function space, or briefly a function space, over (0,∞) is a Banach function space E
over (0,∞) in the sense of [KPS] with the property that f ∈ E, g : (0,∞) → C measurable,
and g∗ 6 f∗ imply that g ∈ E and ‖g‖E 6 ‖f‖E ; here f∗ and g∗ denote the decreasing
arrangements of |f | and |g|, i.e. the unique non-negative, non-increasing, left continuous
functions on (0,∞) equimeasurable with |f | and |g|, respectively.

If a (fn) converges to f in E, then some subsequence of (fn) converges to f pointwise a.e.
The fundamental function of E is the function ϕE defined by ϕE(t) := ‖χHt‖E , where

Ht ⊂ (0,∞) is any measurable subset of measure t and χHt is its characteristic function. By
the rearrangement invariance, this function is well-defined.

For s > 0 let Ds : E → E be the dilatation operator defined by (Dsf)(t) = f(st), t > 0.
This operator is bounded on E. With hE(s) := ‖D 1

s
‖E , we define

αE := sup
0<s<1

lnhE(s)

ln s
= lim

s↓0
lnhE(s)

ln s
; αE := inf

s>1

lnhE(s)

ln s
= lim
s→∞

lnhE(s)

ln s
.

The identities in these definitions are consequences of the theory of submultiplicative functions.
The numbers αE and αE are called the lower- and upper Boyd index of E, respectively, and
satisfy 0 6 αE 6 αE 6 1.

Let E and F be two function spaces over (0,∞). We define E ∩ F as the set of all
measurable functions on (0,∞) that belong to both E and F . This space is a function space
over (0,∞) under the norm

‖f‖E∩F = max{‖f‖E , ‖f‖F }.
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Similarly, the space E +F is defined as the set of all measurable functions on (0,∞) that can
be represented as a sum f = g + h with g ∈ E and h ∈ F . This space is a function space over
(0,∞) under the norm

‖f‖E+F := inf{‖g‖E + ‖h‖F : g + h = f, g ∈ E, h ∈ F}.

For every function space E over (0,∞), we have continuous inclusions L1∩L∞ ⊂ E ⊂ L1+L∞.
In particular, bounded functions of compact support belong to E.

We recall the classical inequality of Hardy and Littlewood for decreasing rearrangements:
for all f ∈ E and g ∈ E we have

∫ ∞

0

|f(t)g(t)| dt 6
∫ ∞

0

f∗(t)g∗(t) dt.

The growth bound of a semigroup T = {T (t)}t>0 of bounded linear operators on a Banach
space X is the quantity

ω0(T) := inf{ω ∈ R : ∃M > 1 such that ‖T (t)‖ 6Meωt for all t > 0}

= lim
t→∞

ln ‖T (t)‖
t

.

The spectral bound of a C0-semigroup is the quantity s(A) := sup{Re λ : λ ∈ σ(A)}. Here, A is
the generator of T and σ(A) is its spectrum. It is easy to see that s(A) 6 ω0(T). We will need
the following proposition, which summarizes [Na, Theorems A-IV.1.4, C-III.1.1, C-IV.1.3]. As
usual, D(A) denotes the domain of A.

Proposition 1.1. Let T be a positive C0-semigroup with generator A on a Banach lattice
E.

(i) If σ(A) 6= ∅, then s(A) ∈ σ(A).
(ii) For all λ ∈ C with Reλ > s(A), for the resolvent R(λ,A) := (λ−A)−1 we have

R(λ,A)x = lim
τ→∞

∫ τ

0

e−λtT (t)x dt, x ∈ E,

the convergence being in the norm of E. In fact, s(A) is the infimum of all s ∈ R such
that (1.1) holds for all λ > s (and hence for all λ ∈ C with Reλ > s).

(iii) s(A) is the infimum of all λ ∈ R such that
∫∞

0
e−λt‖T (t)f‖ dt <∞ for all f ∈ D(A).

2. The main results

It will be necessary to consider function spaces over (0,∞) and (1,∞) simultaneously.
For this purpose, it is useful to introduce the following notation. If E(0,∞) is a function space
over (0,∞), we define E(1,∞) to be the set of all functions f on (1,∞) such that the function
f̃ defined by f̃(s) := f(s + 1), s > 0, belongs to E(0,∞). The space E(1,∞) is a function
space over (1,∞) with respect to the norm ‖f‖E(1,∞) := ‖f̃‖E(0,∞). If E(1,∞) is a function
space over (1,∞), one can define a function space over (0,∞) in the analogous way. If E(0,∞)
and E(1,∞) are related in this way, one has ϕE(0,∞)(t) = ϕE(1,∞)(t) for all t > 0. Therefore,
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we will simply write ϕE(t) to denote both numbers. We define the Boyd indices of a function
space E(1,∞) over (1,∞) to be those of the translated space E(0,∞) and denote both the
indices of E(1,∞) and E(0,∞) by αE and αE .

Let E = E(1,∞) be a function space over (1,∞). We define the semigroup TE on E by

(TE(t)f)(s) = f(set), t > 0, s > 1, f ∈ E(1,∞). (2.1)

By considering the deceasing rearrangements of f and TE(t)f it is easy to see that ‖TE(t)‖ 6 1
for all t > 0. Our first result is an expression for the growth bound of TE .

Theorem 2.1. ω0(TE) = −αE .

Proof: For f ∈ E(1,∞) and t > −1 let f[t] ∈ E(0,∞) be defined by

f[t](s) =

{
f(s− t), s > t+ 1;
0, 0 < s < t+ 1.

For t > 0, f[t] can be identified with an element in E(1,∞) which will be denoted by f{t}.
Also, for f ∈ E(0,∞) and t > 0 we define f(t) ∈ E(0,∞) by

f(t)(s) =

{
f(s− t), s > t;
0, 0 < s < t.

Let f ∈ E(1,∞) of norm one be fixed. Since ‖f[0]‖E(0,∞) = 1, for all t > 0 we have

‖TE(t)f‖E(1,∞) = ‖f(· et)‖E(1,∞) 6 ‖Detf[0]‖E(0,∞) 6 ‖Det‖E(0,∞).

Therefore, for all t > 0, ‖TE(t)‖E(1,∞) 6 ‖Det‖E(0,∞).

Next, let f ∈ E(1,∞) of norm one be arbitrary and fix t > 0. Then, for all s > 0 we have
(TE(t)f{et})[0](s) = (Detf[−1])(1+e−t)(s). Since ‖f{et}‖E(1,∞) = 1, it follows that

‖TE(t)‖E(1,∞) > ‖TE(t)f{et}‖E(1,∞) = ‖(TE(t)f{et})[0]‖E(0,∞)

= ‖(Detf[−1])(1+e−t)‖E(0,∞) = ‖Detf[−1]‖E(0,∞).

If f ranges over all norm one functions in E(1,∞), then f[−1] ranges over all norm one functions
in E(0,∞) and therefore it follows that ‖TE(t)‖E(1,∞) > ‖Det‖E(0,∞).

We have proved that ‖TE(t)‖E(1,∞) = ‖Det‖E(0,∞). Therefore,

1

t
ln ‖TE(t)‖E(1,∞) =

1

t
ln ‖Det‖E(0,∞) =

1

t
lnhE(0,∞)(e

−t) =
lnhE(0,∞)(e

−t)

− ln e−t
.

Letting t→∞, by (1.2) we obtain ω0(TE) = −αE . ////

We are now going to investigate the spectral bound of the generator AE of TE . In order
to be able to define the generator, we first need to make sure that TE is strongly continuous.
The following lemma gives a sufficient condition for this. A simple function is a finite linear
combination of characteristic functions of sets of finite measure.
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Lemma 2.2. Let E = E(1,∞) be a function space over (1,∞) and assume that ϕE(0+) = 0.
Then the restriction TE0

of TE to the closure E0 of the simple functions in E is strongly
continuous. Let AE0

denote its generator. For λ > s(AE0
), the resolvent is given by

(R(λ,AE0
)f)(s) = sλ

∫ ∞

s

t−λ−1f(t) dt, f ∈ E0, a.a. s > 1. (2.2)

Proof: Since ϕE(0+) = 0, it is not difficult to see that T acts in a strongly continuous way
on each characteristic function of a set of finite measure. Hence the restriction of TE to
E0 is strongly continuous. The formula (2.2) follows by a straightforward calculation from
Proposition 1.1 and (2.1), using the fact that norm convergent sequences have pointwise a.e.
convergent subsequences. ////

In particular, TE is strongly continuous on E if ϕE(0+) = 0 and the simple functions are
dense in E. This is the case whenever E has order continuous norm. For this reason, from now
on all function spaces will be assumed to have order continuous norm. This is merely a matter
of convenience; all results to follow are valid without this assumption provided ϕE(0+) = 0
and E is replaced by E0.

The next result gives a lower bound for s(AE).

Theorem 2.3. Let E = E(1,∞) be a function space over (1,∞) with order continuous
norm. If there exist constants 0 6 β 6 1 and C > 0 such that ϕE(t) 6 Ctβ for all t > 1, then
s(AE) > −β.
Proof: Let α > β be arbitrary. We claim that the function fα defined by fα(s) = s−α, s > 1,
defines an element of E. Indeed, by estimating fα on the interval (2n, 2n+1) by 2−nα, for all
M > N ∈ N we have

‖fα|(1,2M ) − fα|(1,2N )‖E 6
M−1∑

n=N

2−nα · ϕE(2n+1 − 2n) 6
∞∑

n=N

2−nα · C2nβ = C
2−N(α−β)

1− 2β−α
.

Therefore, the sequence (fα|(1,2N ))N∈N is Cauchy in E. Since norm convergent sequences have
pointwise a.e. convergent subsequences, the limit must be the function fα. Therefore, fα ∈ E.
By (2.2), for λ > 0 we have

(R(λ,A)fα)(s) = sλ
∫ ∞

s

t−λ−α−1 dt =
1

λ+ α
fα(s), a.a. s > 1.

It follows that fα ∈ D(AE) and AEfα = −αfα, so −α is an eigenvalue of AE . Hence,
s(AE) > −α. Since α > β is arbitrary, it follows that s(AE) > −β. ////

In particular, it follows that s(AE) > −αE . Indeed, it is an easy consequence of the
definition of αE that for all α > αE there exists a constant C such that ϕE(t) 6 Ctα for all
t > 1. Combining this with Theorem 2.1, we see that

−αE 6 s(AE) 6 ω0(TE) = −αE .

The Boyd indices of Lp ∩ Lq, 1 6 p 6 q 6 ∞, are given by αLp∩Lq = 1
q

and αLp∩Lq = 1
p
.

Theorem 2.1 and the fact that s(ALp∩Lq ) 6 − 1
p 6 − 1

q 6 ω0(TLp∩Lq ) might suggest that

in general one has s(AE) = −αE . This need not be the case, as is shown by the following
example.
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Example 2.4. Let E = Lp(1,∞) + Lq(1,∞), where 1 6 p 6 q < ∞. It is well-known

that αLp+Lq = 1
q

and αLp+Lq = 1
p
. On the other hand, ϕLp+Lq (t) = t

1
q for all t > 1. From

Theorems 2.1 and 2.3 it follows that

−1

q
6 s(ALp+Lq) 6 ω0(TLp+Lq) = −αLp+Lq =

1

q
,

and therefore s(ALp+Lq) = ω0(TLp+Lq ) = − 1
q .

Thus, the problem of giving an estimate from above for s(AE) is rather subtle.
In order to motivate the next result, let us make the following observation. Proposition

1.1 shows that in order to find an estimate for s(AE), we have to find exponential growth
bounds for the maps t 7→ TE(t)f with f ∈ D(AE). Now if f is compactly supported, then
TE(t)f = 0 for all sufficiently large t. Therefore, we are free to redefine an arbitrary f ∈ D(AE)
on a compact interval. We will see that by the above lemma we may also assume that f is
non-increasing. So, without loss of generality, we may assume that f is non-increasing and
constant on the interval (1, 2). Then, f is bounded and its decreasing rearrangement satisfies
f∗ > ‖f‖∞χ(0,1).

Theorem 2.5. Let E = E(1,∞) be a function space over (1,∞) with order continuous norm.
Assume there exist constants 0 6 β 6 1 and C > 0 such that for all f ∈ E(0,∞) ∩ L∞(0,∞)
satisfying f∗ > ‖f‖∞χ(0,1) we have

‖D 1
s
f‖E(0,∞) > Csβ‖f‖E(0,∞), ∀s > 1. (2.3)

Then s(AE) 6 −β.

Proof: Fix f ∈ D(AE) and λ > s(AE) arbitrary and let g = (λ−AE)f . Let g̃ be the function
on (1,∞) defined by g̃(s) = g∗(s − 1), s > 1, and let f̃ = R(λ,AE)g̃. By the inequality of
Hardy and Littlewood and (2.2),

0 6 |f | 6 R(λ,AE)|g| 6 R(λ,AE)g̃ 6 f̃ . (2.4)

Moreover, f̃ is non-increasing on (1,∞) by (2.2) and the identity

sλ
∫ ∞

s

t−λ−1f̃(t) dt =

∫ ∞

1

t−λ−1f̃(st) dt.

Fix t > 0 and put εt = essinf1<s<et f̃(s). Then, (f̃ − f̃ ∧ εt)(s) = 0 for almost all s > et and
therefore

TE(t)(f̃ − f̃ ∧ εt) = 0. (2.5)

Also, we have f̃ ∧ εt > εtχ(1,et) = ‖f̃ ∧ εt‖∞χ(1,et). Therefore,

(f̃ ∧ εt)∗ > ‖f̃ ∧ εt‖∞χ(0,et−1).

Let ht := Det−1((f̃ ∧ εt)∗). Then, ht ∈ E(0,∞) ∩ L∞(0,∞) and (ht)
∗ = ht > ‖ht‖∞χ(0,1). If

t > ln 2, then et − 1 > 1 and (2.3) implies

‖(f̃ ∧ εt)∗‖E(0,∞) = ‖D(et−1)−1ht‖
> C(et − 1)β‖ht‖E(0,∞)

= C(et − 1)β‖Det−1((f̃ ∧ εt)∗)‖E(0,∞).
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Hence, if t > ln 2, using (2.4), (2.5), and the notation of Theorem 2.1, we have

‖TE(t)f‖E 6 ‖TE(t)f̃‖E = ‖TE(t)(f̃ ∧ εt)‖E
6 ‖Det((f̃ ∧ εt)[0])‖E(0,∞) = ‖Det((f̃ ∧ εt)∗)‖E(0,∞)

6 ‖Det−1((f̃ ∧ εt)∗)‖E(0,∞) 6 C−1(et − 1)−β‖(f̃ ∧ εt)∗‖E(0,∞)

= C−1(et − 1)−β‖f̃ ∧ εt‖E 6 C−1(et − 1)−β‖f̃‖E .

(2.6)

So far, t > ln 2 was fixed. Since the constant C in (2.6) does not depend on t, it follows that
for all λ > −β, ∫ ∞

0

e−λt‖TE(t)f‖E dt <∞.

Since f ∈ D(AE) is arbitrary, by Proposition 1.1 we obtain s(AE) 6 −β. ////

The final result of this section shows the relevance of working in spaces over (1,∞):

Theorem 2.6. Let E = E(0,∞) be a function space over (0,∞) with order continuous norm.
Then the semigroup UE defined by (UE(t)f)(s) = f(set), s > 0, is a strongly continuous
semigroup on E. Let BE denote its generator. Then, s(BE) = ω0(UE) = −αE .
Proof: Strong continuity is proved as in Lemma 2.2. Since UE(t) = Det for all t > 0, we have
‖UE(t)‖ = ‖Det‖ = hE(e−t) and hence ω0(UE) = limt→∞ t−1lnhE(e−t) = −αE . Next, as in
Lemma 2.2 we have (R(λ,BE)f)(s) = sλ

∫∞
s
t−λ−1f(t) dt for all f ∈ E and almost all s > 0.

Since order continuous norms have the Fatou property, the proof of [BS, Thm. 3.5.15] shows
that for real λ the right hand side defines a bounded operator on E if and only if λ > −αE .
Therefore, s(BE) = −αE by Proposition 1.1. ////

3. Intersection of function spaces

In this section, we will consider two function spaces E and F and give abstract conditions
implying that spectral bound and growth bound of TE∩F are different.

Theorem 3.1. Let E = E(1,∞) and F = F (1,∞) be function spaces over (1,∞) with order
continuous norms and assume there is an inclusion E ∩ L∞ ⊂ F . Then −αE 6 s(AE∩F ) 6
−αE .
Proof: Note that E ∩ F has order continuous norm since E and F have.

Let f ∈ E(0,∞)∩F (0,∞)∩L∞(0,∞) be such that f ∗ > ‖f‖∞χ(0,1). Then ‖f‖E(0,∞) >
ϕE(1)‖f‖∞ and hence

‖f‖F (0,∞) 6 K max{‖f‖E(0,∞), ‖f‖∞} 6 K max{1, (ϕE (1))−1}‖f‖E(0,∞), (3.1)

where K is the norm of the inclusion map E(0,∞) ∩ L∞(0,∞) → F (0,∞). Applying this to
f = χ(0,t) with t > 1 shows that ϕE∩F (t) 6 CϕE(t) for some C and all t > 1. Therefore, by
Theorem 2.3 and the remark following it, s(AE∩F ) > −αE .

Next, we claim that for each α < αE there is a constant C > 0 such that for all g ∈
E(0,∞),

‖D 1
s
g‖E(0,∞) > Csα‖g‖E(0,∞) , ∀s > 1.
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The definition of αE implies that for all t > 0 small enough, ‖D 1
t
‖E(0,∞) 6 tα. Hence,

‖D 1
t
‖E(0,∞) 6 ctα for some constant c and all 0 < t 6 1. With s = t−1, it follows that

for all g ∈ E(0,∞) and all s > 1,

‖g‖E(0,∞) = ‖Ds(D 1
s
g)‖E(0,∞) 6

c

sα
‖D 1

s
g‖E(0,∞).

This proves the claim.
Let ε > 0 be arbitrary. By (3.1) and the claim, for all s > 1 we have

‖D 1
s
f‖E(0,∞)∩F (0,∞) = max{‖D 1

s
f‖E(0,∞), ‖D 1

s
f‖F (0,∞)}

> CsαE−ε‖f‖E(0,∞)

> C min{1,K−1,K−1ϕE(1)}sαE−ε‖f‖E(0,∞)∩F (0,∞) ,

where C is a constant only depending on ε and E. Therefore, by Theorem 2.5, s(AE∩F ) 6
−αE + ε. Since ε is arbitrary, the proof is complete. ////

Since Lp ∩ L∞ ⊂ Lq if 1 6 p 6 q < ∞ with continuous inclusion, Theorem 3.1 implies
s(ALp∩Lq ) 6 − 1

p . Thus, Arendt’s example is a special case of Theorems 2.1 and 3.1. In fact,

we have s(ALp∩Lq) = − 1
p

by Theorem 2.3.

Corollary 3.2. Let E = E(1,∞) and F = F (1,∞) be function spaces over (1,∞) with order
continuous norms and assume that there is a continuous inclusion E ∩ L∞ ⊂ F . If αF 6 αE ,
then s(AE∩F ) 6 −αE 6 −αF 6 ω0(TE∩F ).

Proof: In view of Theorems 2.1 and 3.1, all that remains to be shown is that αF > αE∩F .
By definition of αF , for each α > αF there is a constant C > 0 such that ‖D 1

t
‖F (0,∞) 6

Ctα for all t > 1. Therefore, for all f ∈ E(0,∞) ∩ F (0,∞) and t > 1,

‖Dtf‖E(0,∞)∩F (0,∞) > ‖Dtf‖F (0,∞) > C−1t−α‖D 1
t
(Dtf)‖F (0,∞) = C−1t−α‖f‖F (0,∞).

In particular, applying this to f = χ(0,1) ∈ E(0,∞) ∩ F (0,∞) shows that

‖Dt‖E(0,∞)∩F (0,∞) >
ϕF (1)

C max{ϕE(1), ϕF (1)} t
−α

for all t > 1. The definition of αE∩F implies that αE∩F 6 α. ////

In particular, if αF < αE , then s(AE∩F ) < ω0(TE∩F ).

4. Application to Orlicz spaces

In this section, we apply our abstract results to construct Orlicz space EΦ = EΦ(1,∞)
over (1,∞) in which we have s(AEΦ

) < ω0(TEΦ
). The idea is motivated by the example

in Lp ∩ Lq : the Young function Φ should reflect the essential properties of the fundamental
function of Lp ∩ Lq .
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For the general theory of Orlicz spaces we refer to the book [Z]. Let Φ : (0,∞)→ [0,∞] be

a Young function, i.e. Φ(t) =
∫ t

0
φ(s) ds for some non-decreasing function φ : (0,∞) → [0,∞]

not identically 0 or ∞. We denote by EΦ be the Orlicz space over (0,∞) corresponding to Φ.
Explicitly, EΦ is the space of all measurable functions f on (0,∞) such that

‖f‖ := ‖f‖EΦ
:= inf

{
k > 0 :

∫ ∞

0

Φ(k−1f∗(t)) dt 6 1

}
<∞. (4.1)

With the norm ‖ · ‖, the space EΦ is a rearrangement invariant Banach function space
over (0,∞). If 0 < φ(t) < ∞ for all t > 0, then Φ is strictly increasing and real-valued,
and hence its inverse Φ−1 is well-defined. The fundamental function EΦ is then given by

ϕEΦ
(t) =

(
Φ−1

(
1

t

))−1

.

A Young function Φ is said to satisfy a ∆2-condition if there exists a constant K > 0
such that Φ(2t) 6 KΦ(t) for all t > 0. An Orlicz space satisfying a ∆2-condition has order
continuous norm [Z, Thm. 133.3].

Let 1 6 p < q <∞ and let Φ : (0,∞)→ (0,∞) be any Young function such that:

(i) Φ(t/s) > cs−pΦ(t) for all 0 < t 6 1, all s > 1, and some c > 0;
(ii) Φ(t) > Ctq for all t > 1 and some C > 0.
(iii) Φ satisfies a ∆2-condition.

Note that (i) and (ii) imply that 0 < φ(t) < ∞ for all t > 0. By multiplying Φ with
an appropriate positive real number, we may furthermore assume that Φ(1) = 1 and hence
ϕEΦ

(1) = 1.
Since the norm of EΦ is defined in terms of decreasing rearrangements, (4.1) also gives

the norm of the translated space EΦp,q(1,∞) over (1,∞). In that space, we have the following
result.

Theorem 4.1. Under the above assumptions, the semigroup TEΦ
is strongly continuous on

EΦ(1,∞) and satisfies

s(AEΦ
) 6 −1

p
< −1

q
6 ω0(TEΦ

).

Proof: Strong continuity follows from Lemma 2.2 and the fact that EΦ has order continuous
norm.

First we prove the inequality concerning the growth bound. Rather than calculating the
lower Boyd index, we argue directly as follows. For all t > 0 sufficiently large we have

‖TEΦ
(t)‖ > ‖TEΦ

(t)χ(et,et+1)‖ = ‖χ(1,1+e−t)‖ = ϕEΦ
(e−t) =

(
Φ−1(et)

)−1 > C−1e−
t
q .

Therefore,

ω0(TEΦ
) = lim

t→∞
ln ‖TEΦ

(t)‖
t

> −1

q
.

For the inequality concerning to spectral bound, we verify the conditions of Theorem 2.5
for β = 1

p . Let f ∈ EΦ(0,∞) ∩ L∞(0,∞) satisfy f ∗ > ‖f‖∞χ(0,1). Noting that ‖f‖ >
‖f‖∞ϕEΦ

(1) = ‖f‖∞, we have f∗(t) 6 ‖f‖ for all t > 0. Therefore, for all s > 1 we have

f∗(t) 6 s 1
p ‖f‖ for all t > 0, and

∫ ∞

0

Φ

(
f∗(t)

s
1
p ‖f‖

)
dt > c

s

∫ ∞

0

Φ

(
f∗(t)
‖f‖

)
dt.
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But it is an easy consequence of the ∆2-condition (cf. [Z, Thm 131.8]) that

∫ ∞

0

Φ

(
f∗(t)
‖f‖

)
dt = 1.

Therefore, ∫ ∞

0

Φ

(
(D 1

s
f∗)(t)

s
1
p ‖f‖

)
dt = s

∫ ∞

0

Φ

(
f∗(t)

s
1
p ‖f‖

)
dt > c.

Choose n ∈ N so large that 2nc > 1. Noting that

Φ(2t) =

∫ 2t

0

φ(s) ds > 2

∫ t

0

φ(s) ds = 2Φ(t)

since φ is non-decreasing, it follows that

∫ ∞

0

Φ

(
2n(D 1

s
f∗)(t)

s
1
p ‖f‖

)
dt > 2nc > 1.

By the definition of ‖ · ‖, it follows that ‖D 1
s
f‖ > 2−ns

1
p ‖f‖ for all s > 1. The desired

inequality s(AEΦ
) 6 − 1

p
now follows from Theorem 2.5. ////
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normed Köthe spaces I, II, Indag. Math. 37, 48-69 (1975).

[KPS] S.G. Krein, Yu.I. Petunin, and E.M. Semenov, Interpolation of Linear Operators, Transl.
Math. Monogr. 54, Am. Math. Soc., Providence (1982).

[Na] R. Nagel, (ed.), One-parameter semigroups of positive operators, Lecture Notes in Math.
1184, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1986).

[P] A. Pazy, Semigroups of linear operators and applications to partial differential equations,
Springer-Verlag, Berlin, Heidelberg, New York (1983).

[We] L. Weis, The stability of positive semigroups on Lp spaces, to appear in: Proc. Am.
Math. Soc.

[Z] A.C. Zaanen, Riesz Spaces II, North Holland, Amsterdam (1983).

[Za] J. Zabczyk, Remarks on the control of discrete-time distributed parameter systems, SIAM
J. Control 12, 721-735 (1974).


