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Abstract. We present a survey of the theory of γ-radonifying operators and

its applications to stochastic integration in Banach spaces.

Contents

1. Introduction 1
2. Banach space-valued random variables 4
3. γ-Radonifying operators 8
4. The theorem of Hoffmann-Jørgensen and Kwapień 18
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1. Introduction

The theory of γ-radonifying operators can be traced back to the pioneering works
of Gel′fand [40], Segal, [110], Gross [42, 43], who considered the following
problem. A cylindrical distribution on a real Banach space F is a bounded linear
operator W : F ∗ → L2(Ω), where F ∗ is the dual of F and (Ω,F ,P) is a probability
space. It is said to be Gaussian if Wx∗ is Gaussian distributed for all x∗ ∈ F ∗. If T
is a bounded linear operator from F into another real Banach space E, then T maps
every Gaussian cylindrical distribution W to a cylindrical Gaussian distribution
T (W ) : E∗ → L2(Ω) by

T (W )x∗ := W (T ∗x∗), x∗ ∈ E∗.

Date: September 22, 2014.
2000 Mathematics Subject Classification. Primary: 47B10; Secondary: 28C20, 46B09, 47B10,

60B11, 60H05.
Key words and phrases. γ-Radonifying operators, stochastic integral, isonormal process,

Gaussian random variable, covariance domination, uniform tightness, K-convexity, type and

cotype.
Support by VICI subsidy 639.033.604 of the Netherlands Organisation for Scientific Research

(NWO) is gratefully acknowledged.

1



2 JAN VAN NEERVEN

The problem is to find criteria on T which ensure that T (W ) is Radon. By this
we mean that there exists a strongly measurable Gaussian random variable X ∈
L2(Ω;E) such that

T (W )x∗ = 〈X,x∗〉, x∗ ∈ E∗

(the terminology “Radon” is explained by Proposition 2.1 and the remarks following
it). The most interesting instance of this problem occurs when F = H is a real
Hilbert space with inner product [·, ·] and W : H → L2(Ω) is an isonormal process,
i.e. a cylindrical Gaussian distribution satisfying

EW (h1)W (h2) = [h1, h2], h1, h2 ∈ H.

Here we identify H with its dual H∗ via the Riesz representation theorem. A
bounded operator T : H → E such that T (W ) is Radon is called γ-radonifying.
Here the adjective ‘γ-’ stands for ‘Gaussian’.

Gross [42, 43] obtained a necessary and sufficient condition for γ-radonification
in terms of so-called measurable seminorms on H. His result includes the classical
result that a bounded operator from H into a Hilbert space E is γ-radonifying
if and only if it is Hilbert-Schmidt. These developments marked the birth of the
theory of Gaussian distributions on Banach spaces. The state-of the-art around
1975 is presented in the lecture notes by Kuo [69].
γ-Radonifying operators can be thought of as the Gaussian analogues of p-

absolutely summing operators. For a systematic exposition of this point of view
we refer to the lecture note by Badrikian and Chevet [4], the monograph by
Schwartz [108] and the Maurey-Schwartz seminar notes published between
1972 and 1976. More recent monographs include Bogachev [9], Mushtari [84],
and Vakhania, Tarieladze, Chobanyan [117].

In was soon realised that spaces of γ-radonifying operators provide a natural
tool for constructing a theory of stochastic integration in Banach spaces. This
idea, which goes back to a paper of Hoffman-Jørgensen and Pisier [48], was
first developed systematically in the Ph.D. thesis of Neidhardt [93] in the con-
text of 2-uniformly smooth Banach spaces. His results were taken up and further
developed in a series of papers by Dettweiler (see [29] and the references given
there) and subsequently by Brzeźniak (see [11, 13]) who used the setting of mar-
tingale type 2 Banach spaces; this class of Banach spaces had been proved equal,
up to a renorming, to the class of 2-uniformly smooth Banach spaces by Pisier
[98]. The more general problem of radonification of cylindrical semimartingales has

been covered by Badrikian and Üstünel [5], Schwartz [109] and Jakubowski,
Kwapień, Raynaud de Fitte, Rosiński [55].

If E is a Hilbert space, then a strongly measurable function f : R+ → E is
stochastically integrable with respect to Brownian motions B if and only if f ∈
L2(R+;E). It had been known for a long time that functions in L2(R+;E) may fail
to be stochastically integrable with respect to B. The first simple counterexamples,
for E = `p with 1 6 p < 2, were given by Yor [119]. Rosiński and Suchanecki
[104] (see also Rosiński [102, 103]) were able to get around this by constructing a
stochastic integral of Pettis type for functions with valued in an arbitrary Banach
space. This integral was interpreted in the language of γ-radonifying operators by
van Neerven and Weis [90]; some of the ideas in this paper were already implicit
in Brzeźniak and van Neerven [14]. The picture that emerged is that the space
γ(L2(R+), E) of all γ-radonifying operators from L2(R+) into E, rather than the
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Lebesgue-Bochner space L2(R+;E), is the ‘correct’ space of E-valued integrands for
the stochastic integral with respect to a Brownian motion B. Indeed, the classical
Itô isometry extends to the space γ(L2(R+), E) in the sense that

E
∥∥∥∫ ∞

0

φdB
∥∥∥2

= ‖φ̃‖2γ(L2(R+),E)

for all simple functions φ : R+ → H ⊗ E; here φ̃ : L2(R+) → E is given by

integration against φ; on the level of elementary tensors, the identification φ 7→ φ̃ is
given by the identity mapping f ⊗x 7→ f ⊗x. For Hilbert spaces, this identification
sets up an isomorphism

L2(R+;E) h γ(L2(R+), E).

In the converse direction, if the identity mapping f ⊗ x 7→ f ⊗ x extends to an
isomorphism L2(R+;E) ' γ(L2(R+), E), then E has both type 2 and cotype 2, so
E is isomorphic to a Hilbert space by a classical result of Kwapień [70].

Interpreting B as an isonormal process W : L2(R+)→ L2(Ω) by putting

W (f) :=

∫ ∞
0

f dB,(1.1)

this brings us back to the question originally studied by Gross. However, instead
of thinking of an operator Tφ : L2(R+)→ E as ‘acting’ on the isonormal process W ,
we now think of W as ‘acting’ on Tφ as an ‘integrator’. This suggests an abstract
approach to E-valued stochastic integration, where the ‘integrator’ is an arbitrary
isonormal processes W : H → L2(Ω), with H an abstract Hilbert space, and the
‘integrand’ is a γ-radonifying operator from H to E. For finite rank operators

T =
∑N
n=1 h⊗ x the stochastic integral with respect to W is then given by

W (T ) = W
( N∑
n=1

h⊗ x
)

:=

N∑
n=1

W (h)⊗ x.

In the special case H = L2(R+) and W given by a standard Brownian motion
through (1.1), this is easily seen to be consistent with the classical definition of the
stochastic integral.

This idea will be worked out in detail. This paper contains no new results;
the novelty is rather in the organisation of the material and the abstract point
of view. Neither have we tried to give credits to many results which are more or
less part of the folklore of the subject. This would be difficult, since theory of
γ-radonifying operators has changed face many times. Results that are presented
here as theorems may have been taken as definitions in previous works and vice
versa, and many results have been proved and reproved in apparently different but
essentially equivalent formulations by different authors. Instead, we hope that the
references given in this introduction serves as a guide for the interested reader who
wants to unravel the history of the subject. For the reasons just mentioned we
have decided to present full proofs, hoping that this will make the subject more
accessible.

The emphasis in this paper is on γ-radonifying operators rather than on stochas-
tic integrals. Accordingly we shall only discuss stochastic integrals of deterministic
functions. The approach taken here extends to stochastic integrals of stochastic
processes if the underlying Banach space is a so-called UMD space by following the
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lines of van Neerven, Veraar, Weis [88]. We should mention that various alter-
native approaches to stochastic integration in general Banach spaces exist, among
them the vector measure approach of Brooks and Dinculeanu [10] and Din-
culeanu [32], and the Doléans measure approach of Metivier and Pellaumail
[83]. As we see it, the virtue of the approach presented here is that it is tailor-made
for applications to stochastic PDEs; see, e.g., Brzeźniak [11, 13], Da Prato and
Zabczyk [27], van Neerven, Veraar, Weis [86, 89] and the references therein.
For an introduction to these applications we refer to the author’s 2007/08 Internet
Seminar lecture notes [85].

Let us finally mention that the applicability of radonifying operators is by no
means limited to vector-valued stochastic integration. Radonifying norms have
been used, under the guise of l-norms, in the local theory of Banach space for
many years; see e.g. Diestel, Jarchow, Tonge [30], Kalton and Weis [62],
Pisier [101], Tomczak-Jaegermann [114]. In harmonic analysis, γ-radonifying
norms are the natural generalisation of the square functions arising in connection
with Littlewood-Paley theory (see e.g. Stein [111]) and were used as such in
Kalton and Weis [63], Hytönen [49], Hytönen, McIntosh, Portal [50], and
Hytönen, van Neerven, Portal [51]. Further applications have appeared in
interpolation theory, see Kalton, Kunstmann, Weis [60] and Suárez and Weis
[112], control theory, see Haak and Kunstmann [44], and in image processing, see
Kaiser and Weis [58]. This list is far from being complete.

This paper is loosely based on the lectures presented at the 2009 workshop on
Spectral Theory and Harmonic Analysis held at the Australian National University
in Canberra. It is a pleasure to thank the organisers Andrew Hassell and Alan
McIntosh for making this workshop into such a success.

Notation. Throughout these notes, we use the symbols H and E to denote real
Hilbert spaces and real Banach spaces, respectively. The inner product of a Hilbert
space H will be denoted by [·, ·]H or, if no confusion can arise, by [·, ·]. We will
always identify H with its dual via the Riesz representation theorem. The duality
pairing between a Banach space E and its dual E∗ will be denoted by 〈·, ·〉E,E∗
or simply 〈·, ·〉. The space of all bounded linear operators from a Banach space E
into another Banach space F is denoted by L (E,F ). The word ‘operator’ always
means ‘bounded linear operator’.

2. Banach space-valued random variables

Let (A,A , µ) be a σ-finite measure space and E a Banach space. A function
f : A→ E is called simple if it is a finite linear combination of functions of the form
1B⊗x with B ∈ A of finite µ-measure and x ∈ E, and strongly measurable if there
exists a sequence of simple functions fn : A→ E such that limn→∞ fn = f pointwise
almost surely. By the Pettis measurability theorem, f is strongly measurable if and
only if f is essentially separably valued (which means that there exists a null set
N ∈ A and a separable closed subspace E0 of E such that f(ξ) ∈ E0 for all ξ 6∈ N)
and weakly measurable (which means that 〈f, x∗〉 is measurable for all x∗ ∈ E∗).

When (Ω,F ,P) is a probability space, strongly measurable functions f : Ω→ E
are called random variables. Standard probabilistic notions such as independence
and symmetry carry over to the E-valued case in an obvious way. Following tradi-
tion in the probability literature, random variables will be denoted by the letter X
rather than by f . The distribution of an E-valued random variable X is the Borel
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probability measure µX on E defined by

µX(B) := P{X ∈ B}, B ∈ B(E).

The set {X ∈ B} := {ω ∈ Ω : X(ω) ∈ B} may not belong to F , but there always
exists a set F ∈ F such that the symmetric difference F∆{X ∈ B} is contained in
a null set in F , and therefore the measure µX is well-defined.

For later use we collect some classical facts concerning E-valued random vari-
ables. Proofs, further results, and references to the literature can be found in
Albiac and Kalton [1], Diestel, Jarchow, Tonge [30], Kwapień and Woy-
czyński [73], Ledoux and Talagrand [76], and Vakhania, Tarieladze, Chob-
anyan [117].

The first result states that E-valued random variables are tight:

Proposition 2.1. If X is a E-valued random variable, then for every ε > 0 there
exists a compact set K in E such that P{X 6∈ K} < ε.

Proof. Since X is separably valued outside some null set, we may assume that E
is separable. Let (xn)n>1 be a dense sequence in E and fix ε > 0. For each integer
k > 1 the closed balls B(xn,

1
k ) cover E, and therefore there exists an index Nk > 1

such that

P
{
X ∈

Nk⋃
n=1

B
(
xn,

1
k

)}
> 1− ε

2k
.

The set K :=
⋂
k>1

⋃Nk

n=1B
(
xn,

1
k

)
is closed and totally bounded. Since E is

complete, K is compact. Moreover, P{X 6∈ K} <
∑
k>1 2−kε = ε. �

This result implies that the distribution µX is a Radon measure, i.e. for all
B ∈ B(E) and ε > 0 there exists a compact set K ⊆ B such that µX(B \K) < ε.
Indeed, the proposition allows us to choose a compact subset C of E such that
µX(C) > 1− 1

2ε, and by the inner regularity of Borel measures on complete separable

metric spaces there is a closed set F ⊆ B with µ(B\F ) < 1
2ε. The set K = C∩F has

the desired properties. Conversely, every Radon measure µ on E is the distribution
of the random variable X(x) = x on the probability space (E,B(E), µ).

Motivated by the above proposition, a family X of E-valued random variables
is called uniformly tight if for every ε > 0 there exists a compact set K in E such
that P{X 6∈ K} < ε for all X ∈X .

A sequence of E-valued random variables (Xn)n>1 is said to converge in dis-
tribution to an E-valued random variable X if limn→∞ Ef(Xn) = Ef(X) for all
f ∈ Cb(E), the space of all bounded continuous functions f on E.

Proposition 2.2 (Prokhorov’s theorem). For a family X of E-valued random
variables the following assertions are equivalent:

(1) X is uniformly tight;
(2) every sequence in X has a subsequence which converges in distribution.

Excellent accounts of this result and its ramifications can be found in Billings-
ley [7] and Parathasarathy [95].

We continue with a maximal inequality.

Proposition 2.3 (Lévy’s inequality). Let X1, . . . , XN be independent symmetric
E-valued random variables, and put Sn :=

∑n
j=1Xj for n = 1, . . . , N . Then for all



6 JAN VAN NEERVEN

r > 0 we have
P
{

max
16n6N

‖Sn‖ > r
}
6 2P{‖SN‖ > r}.

This inequality will be used in Section 4. It is also the main ingredient of a
theorem of Itô and Nisio, presented here only in its simplest formulation which
goes back to Lévy.

Proposition 2.4 (Lévy, Itô-Nisio). Let (Xn)n>1 be a sequence of independent
symmetric E-valued random variables, and put Sn :=

∑n
j=1Xj for n > 1. The

following assertions are equivalent:

(1) the sequence (Sn)n>1 converges in probability;
(2) the sequence (Sn)n>1 converges almost surely.

Let (xi)i∈I be a family of elements of a Banach space E, indexed by a set I.
The sum

∑
i∈I xi is summable to an element s ∈ E if for all ε > 0 there is a finite

subset J ⊆ I such that for all finite subsets J ′ ⊆ I containing J we have∥∥∥s−∑
j∈J′

xj

∥∥∥ < ε.

Stated differently, this means that limJ sJ = s, where sJ :=
∑
j∈J xj and the limit

is taken along the net of all finite subsets J ⊆ I.
As we shall see in Example 3.2, this summability method adequately captures

the convergence of coordinate expansions with respect to arbitrary maximal or-
thonormal systems in Hilbert spaces. For countable index sets I, summability is
equivalent to unconditional convergence. The ‘only if’ part is clear, and the ‘if’
part can be seen as follows. Suppose, for a contradiction, that

∑
i∈I xn = s uncon-

ditionally while
∑
i∈I xn is not summable to s. Let I = (in)n>1 be an enumeration.

There is an ε > 0 and an increasing sequence J1 ⊆ J2 ⊆ . . . of finite subsets of I
such that {i1, . . . , ik} ⊆ Jk and ‖s− sJk‖ > ε. Clearly

⋃
k>1 Jk = I. If I = (i′n)n>1

is an enumeration with the property that Jk = {i′1, . . . , i′Nk
} for all k > 1 and

suitable N1 6 N2 6 . . . , the sum
∑
n>1 xi′n fails to converge to s. This contradicts

the unconditional convergence of the sum
∑
i∈I xi to s.

Convergence of sums of random variables in in Lp(Ω;E) has been investigated
systematically by Hoffmann-Jørgensen [47]. Here we only need the following
prototypical result:

Proposition 2.5. Let 1 6 p <∞, let (Xi)i∈I be an indexed family of independent
and symmetric random variables in Lp(Ω;E) and let S ∈ Lp(Ω;E). The following
assertions are equivalent:

(1)
∑
i∈I Xi is summable to S in Lp(Ω;E)

(2)
∑
i∈I〈Xi, x

∗〉 is summable to 〈S, x∗〉 in Lp(Ω) for all x∗ ∈ E∗.

Proof. We only need to prove the implication (2)⇒(1).
Let [I] denote the collection of all finite subsets of I. For J ∈ [I] set SJ :=∑
j∈J Xj . From (2) it easily follows that for all J ∈ [I] and x∗ ∈ E∗ the random

variables 〈SJ , x∗〉 and 〈S − SJ , x∗〉 are independent. If we denote by FJ the σ-
algebra generated by {Xj : j ∈ J}, for all x∗ ∈ E∗ it follows that

〈E(S|FJ), x∗〉 = E(〈S, x∗〉|FJ) = 〈SJ , x∗〉
in Lp(Ω). As a consequence,

E(S|FJ) = SJ
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in Lp(Ω;E). Now (1) follows from the elementary version of the E-valued martin-
gale convergence theorem (see Diestel and Uhl [31, Corollary V.2]). �

We continue with a useful comparison result for Rademacher sequences and
Gaussian sequences. Recall that a Rademacher sequence is a sequence of inde-
pendent random variables taking the values ±1 with probability 1

2 . A Gaussian
sequence is a sequence of independent real-valued standard Gaussian random vari-
ables.

Proposition 2.6. Let (rn)n>1 be a Rademacher sequence and (γn)n>1 a Gaussian
sequence.

(1) For all 1 6 p <∞ and all finite sequences x1, . . . , xN ∈ E we have

E
∥∥∥ N∑
n=1

rnxn

∥∥∥p 6 ( 1
2π)

p
2E
∥∥∥ N∑
n=1

γnxn

∥∥∥p.
(2) If E has finite cotype, then for all 1 6 p < ∞ there exists a constant

Cp,E > 0 such that for all finite sequences x1, . . . , xN ∈ E we have

E
∥∥∥ N∑
n=1

γnxn

∥∥∥p 6 Cpp,EE∥∥∥ N∑
n=1

rnxn

∥∥∥p.
For the definition of cotype we refer to Section 11. We will only need part (1)

which is an elementary consequence of the Kahane contraction principle (see Ka-
hane [57]) and the fact that the sequences (γn)n>1 and (rn|γn|)n>1 are identically
distributed when (rn)n>1 is independent of (γn)n>1.

We finish this section with the so-called Kahane-Khintchine inequalities.

Proposition 2.7 (Kahane-Khintchine inequalities). Let (rn)n>1 be a Rademacher
sequence and (γn)n>1 a Gaussian sequence.

(1) For all 1 6 p, q <∞ there exists a constant Cp,q, depending only on p and
q, such that for all finite sequences x1, . . . , xN ∈ E we have(

E
∥∥∥ N∑
n=1

rnxn

∥∥∥p) 1
p

6 Cp,q
(
E
∥∥∥ N∑
n=1

rnxn

∥∥∥q) 1
q

.

(2) For all 1 6 p, q <∞ there exists a constant Cγp,q, depending only on p and
q, such that for all finite sequences x1, . . . , xN ∈ E we have(

E
∥∥∥ N∑
n=1

γnxn

∥∥∥p) 1
p

6 Cγp,q
(
E
∥∥∥ N∑
n=1

γnxn

∥∥∥q) 1
q

.

The least admissible constants in these inequalities are called the Kahane-Khint-
chine constants and are usually denoted by Kp,q and Kγ

p,q. Note that Kp,q = 1 if
p 6 q by Hölder’s inequality. It was shown by Lata la and Oleszkiewicz [74]

that K2,1 =
√

2.
Part (2) of the proposition can be deduced from part (1) by a central limit

theorem argument (which can be justified by Lemma 9.1 below); this gives the
inequality Kγ

p,q 6 Kp,q.
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3. γ-Radonifying operators

After these preparations we are ready to introduce the main object of study, the
class of γ-radonifying operators. Throughout this section H is a real Hilbert space
and E is a real Banach space. Gaussian random variables are always assumed to
be centred.

Definition 3.1. An H-isonormal process on a probability space (Ω,F ,P) is a map-
ping W : H → L2(Ω) with the following properties:

(i) for all h ∈ H the random variable W (h) is Gaussian;
(ii) for all h1, h2 ∈ H we have EW (h1)W (h2) = [h1, h2].

Isonormal processes lie at the basis of Malliavin calculus. We refer to Nualart
[94] for an introduction to this subject. We shall use isonormal processes to set up
an abstract version of the vector-valued Itô stochastic integral. As the scalar Itô
stochastic integral arises naturally within Malliavin calculus, the theory developed
below serves as a natural starting point for setting up a vector-valued Malliavin
calculus. This idea is taken up in Maas [78] and Maas and van Neerven [79].

We turn to some elementary properties of isonormal processes. From (ii) we have

E|W (c1h1 + c2h2)− (c1W (h1) + c2W (h2))|2 = 0,

which shows that W is linear. As a consequence, for all h1, . . . , hN ∈ H the random
variables W (h1), . . . ,W (hN ) are jointly Gaussian (which means that every linear
combination is Gaussian as well). Recalling that jointly Gaussian random variables
are independent if and only if they are uncorrelated, another application of (ii)
shows that W (h1), . . . ,W (hN ) are independent if and only if h1, . . . , hN ∈ H are
orthogonal.

Example 3.2. Let H be a Hilbert space with maximal orthonormal system (hi)i∈I
and let (γi)i∈I be a family of independent standard Gaussian random variables with
the same index set. Then for all h ∈ H,

∑
i∈I γi[h, hi] is summable in L2(Ω) and

W (h) :=
∑
i∈I

γi[h, hi], h ∈ H,

defines an H-isonormal process. To see this let h ∈ H be fixed. Given ε > 0 choose
indices i1, . . . , iN ∈ I such that∥∥∥h− N∑

n=1

[h, hin ]hin

∥∥∥ < ε.

For any finite set J ′ ⊆ I containing i1, . . . , iN we then have, by the Pythagorean
theorem, ∥∥∥h−∑

j∈J′
[h, hj ]hj

∥∥∥ < ε.

This implies that
∑
i∈I [h, hi]hi is summable to h. Since W clearly defines an isomet-

ric linear mapping from the linear span of (hi)i∈I into L2(Ω) satisfying W (hi) = γi,∑
i∈I γi[h, hi] is summable in L2(Ω). Denoting its limit by W (h), the easy proof

that the resulting linear map W : H → L2(Ω) is isonormal is left to the reader.

Example 3.3. If B is a standard Brownian motion, then the Itô stochastic integral

W (h) :=

∫ ∞
0

h dB, h ∈ L2(R+),
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defines an L2(R+)-isonormal process W . Conversely, if W is an L2(R+)-isonormal
process, then

B(t) := W (1[0,t]), t > 0,

is a standard Brownian motion. Indeed, this process is Gaussian and satisfies
EB(s)B(t) = [1(0,s), 1(0,t)]L2(R+) = s ∧ t for all s, t > 0.

Example 3.4. Let B be a Brownian motion with values in a Banach space E and let
H be the closed linear span in L2(Ω) spanned by the random variables 〈B(1), x∗〉,
x∗ ∈ E∗. Then B induces an L2(R+; H )-isonormal process by putting

W (f ⊗ 〈B(1), x∗〉) :=

∫ ∞
0

f d〈B, x∗〉, f ∈ L2(R+), x∗ ∈ E∗.

To see this, note that since 〈B, x∗〉 is a real-valued Brownian motion,

E|〈B(t), x∗〉|2 = tE|〈B(1), x∗〉|2

for all t > 0. Hence by normalising the Brownian motions 〈B, x∗〉, the Itô isometry
gives

EW (f ⊗ 〈B(1), x∗〉)W (g ⊗ 〈B(1), y∗〉) = E〈B(1), x∗〉〈B(1), y∗〉[f, g]L2(R+)

= [f ⊗ 〈B(1), x∗〉, g ⊗ 〈B(1), x∗〉]L2(R+;H ).

Remark 3.5. In many papers, H -cylindrical Brownian motions are defined as a
family W = (W (t))t>0 of bounded linear operators from H to L2(Ω) with the
following properties:

(i) for all h ∈H , the process (W (t)h)t>0 is a Brownian motion;
(ii) for all t1, t2 > 0 and h1, h2 ∈H we have

E(W (t1)h1 ·W (t2)h2) = (t1 ∧ t2)[h1, h2].

Subsequent arguments frequently use that the family {W (t)h : t > 0, h ∈ H } is
jointly Gaussian, something that is not obvious from (i) and (ii). If we add this as
an additional assumption, then every H -cylindrical Brownian motion defines an
L2(R+; H )-isonormal process in a natural way and vice versa.

In the special case H = L2(D), where D is a domain in Rd, L2(D)-cylindrical
Brownian motions provide the rigorous mathematical model of space-time white
noise on D.

In what follows, W : H → L2(Ω) will always denote a fixed H-isonormal process.
For any Banach space E, W induces a linear mapping from H ⊗ E to L2(Ω)⊗ E,
also denoted by W , by putting

W (h⊗ x) := W (h)⊗ x

and extending this definition by linearity. The problem we want to address is
whether there is a norm on H ⊗E turning W into a bounded operator from H ⊗E
into L2(Ω;E).

Example 3.6. Let B be a Brownian motion and let W : L2(R+) → L2(Ω) be the
associated isonormal process. Identifying E-valued step functions with elements in
L2(R+)⊗ E we have

W (1(a,b) ⊗ x) =

∫ ∞
0

1(a,b) ⊗ x dB.
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Thus, W can be viewed as an E-valued extension of the stochastic integral with
respect to B. In the same way, for isonormal processes W : L2(R+; H ) → L2(Ω)
we have

W (1(a,b) ⊗ h)⊗ x) =

∫ ∞
0

1(a,b) ⊗ (h⊗ x) dW,

where the right-hand side is the side the stochastic integral for H ⊗ E-valued
step functions with respect to H -cylindrical Brownian motions introduced in van
Neerven and Weis [90].

Suppose an element in H⊗E of the form
∑N
n=1 hn⊗xn is given with h1, . . . , hN

orthonormal in H. Then the random variables W (h1), . . . ,W (hN ) are independent
and standard Gaussian and therefore

E
∥∥∥ N∑
n=1

W (hn)⊗ xn
∥∥∥2

= E
∥∥∥ N∑
n=1

γnxn

∥∥∥2

,

where (γn)Nn=1 is any Gaussian sequence. The right-hand side is independent of the

representation of the element in H ⊗E as a finite sum
∑N
n=1 hn⊗xn as long as we

choose the vectors h1, . . . , hN orthonormal in H. Indeed, suppose we have a second
representation

N∑
n=1

hn ⊗ xn =

M∑
m=1

h′m ⊗ x′m,

where the vectors h′1, . . . , h
′
M are again orthonormal in H. There is no loss in

generality if we assume that the sequences (hn)Nn=1 and (h′m)Mm=1 span the same
finite-dimensional subspace G of H. In fact we may consider the linear span of the
set {h1, . . . , hN , h

′
1, . . . , h

′
M} and complete both sequences to orthonormal bases,

say (hk)Kk=1 and (h′k)Kk=1, for this linear span. Then we may write

K∑
k=1

hk ⊗ xk =

K∑
k=1

h′k ⊗ x′k

with xk = 0 for k = N + 1, . . . ,K and x′m = 0 for k = M + 1, . . . ,K. Under this
assumption, we have M = N = K and there is an orthogonal transformation O on
G such that Oh′k = hk for all k = 1, . . . ,K. Then

xk =

K∑
j=1

[h′j , hk]x′j =

K∑
j=1

[Ohj , hk]x′j .

Let O = (ojk) denote the matrix representation with respect to the basis (hk)Kk=1.
Then,

E
∥∥∥ K∑
k=1

γkxk

∥∥∥2

= E
∥∥∥ K∑
k=1

γk

K∑
j=1

ojkx
′
j

∥∥∥2

= E
∥∥∥ K∑
j=1

( K∑
k=1

ojkγk

)
x′j

∥∥∥2

= E
∥∥∥ K∑
j=1

γ′jx
′
j

∥∥∥2

,

where γ′j :=
∑K
k=1 ojkγk. Writing γ = (γ1, . . . , γK) and γ′ = (γ′1, . . . , γ

′
K), this

means that

γ′ = Oγ.

As Rd-valued Gaussian random variables, γ and γ′ have covariance matrices I (by
assumption) and OIO∗ = I (since O is orthogonal), respectively. Stated differently,
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the random variables γ′j form a standard Gaussian sequence, and thereby we have
proved the asserted well-definedness.

Definition 3.7. The Banach space γ(H,E) is defined as the completion of H ⊗ E
with respect to the norm∥∥∥ N∑

n=1

hn ⊗ xn
∥∥∥2

γ(H,E)
:= E

∥∥∥ N∑
n=1

γnxn

∥∥∥2

,

where it is assumed that h1, . . . , hN are orthonormal in H.

The following example is used frequently in the context of stochastic integrals,
where H1 = L2(R+) and H2 = H is some abstract Hilbert space:

Example 3.8. Let H1 and H2 be Hilbert spaces and let H1⊗̂H2 denote the Hilbert
space completion of their tensor product. Then for all h ∈ H1 and h1, . . . , hN ∈ H2,
x1, . . . , xN ∈ E,∥∥∥ N∑

n=1

(h⊗ hn)⊗ xn
∥∥∥
γ(H1⊗̂H2,E)

= ‖h‖H1

∥∥∥ N∑
n=1

hn ⊗ xn
∥∥∥
γ(H2,E)

.

The preceding discussion can be summarized as follows.

Proposition 3.9 (Itô isometry). Every isonormal process W : H → L2(Ω) induces
an isometry, also denoted by W , from γ(H,E) into L2(Ω;E).

For H = L2(R+; H ) this result reduces to the Itô isometry for the stochastic
integral with respect to H -cylindrical Brownian motions of van Neerven and
Weis [90].

We continue with some elementary mapping properties of the spaces γ(H,E).
The first is an immediate consequence of Definition 3.7.

Proposition 3.10. Let H0 be a closed subspace of H. The inclusion mapping
i0 : H0 → H induces an isometric embedding i0 : γ(H0, E)→ γ(H,E) by setting

i0(h0 ⊗ x) := i0h0 ⊗ x.

The next proposition is in some sense the dual version of this result:

Proposition 3.11 (Composition with orthogonal projections). Let H0 be a closed
subspace of H. Let P0 be the orthogonal projection in H onto H0 and let E0 denote
the conditional expectation operator with respect to the σ-algebra F0 generated by
the family of random variables {W (h0) : h0 ∈ H0}. The operator P0 extends to a
surjective linear contraction P0 : γ(H,E)→ γ(H0, E) by setting

P0(h⊗ x) := P0h⊗ x

and the following diagram commutes:

γ(H,E)
W−−−−→ L2(Ω;E)

P0

y E0

y
γ(H0, E)

W−−−−→ L2(Ω,F0;E)
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Proof. For h ∈ H0 we have E0W (h) = W (h) = W (P0h). For h ⊥ H0, the random
variable W (h) is independent of {W (h1), . . . ,W (hN )} for all h1, . . . , hN ∈ H0, and
therefore W (h) is independent of F0. Hence,

E0W (h) = EW (h) = 0 = W (0) = W (P0(h)).

This proves the commutativity of the diagram

H
W−−−−→ L2(Ω)

P0

y E0

y
H0

W−−−−→ L2(Ω,F0)

For elementary tensors h⊗ x ∈ H ⊗ E it follows that

E0W (h⊗ x) = E0W (h)⊗ x = W (P0h)⊗ xn = W (P0(h⊗ x)).

By linearity, this proves that the E-valued diagram commutes as well. That P0 ex-
tends to a linear contraction from γ(H,E) to γ(H0, E) now follows from the facts
that E0 is a contraction from L2(Ω;E) to L2(Ω,F0;E) and both W : γ(H,E) →
L2(Ω;E) and W : γ(H0, E)→ L2(Ω,F0;E) are isometric embeddings. The surjec-
tivity of P0 follows from the surjectivity of E0. �

Proposition 3.12 (Composition with functionals). Every functional x∗ ∈ E∗ ex-
tends to a bounded operator x∗ : γ(H,E)→ H by setting

x∗(h⊗ x) := 〈x, x∗〉h
and the following diagram commutes:

γ(H,E)
W−−−−→ L2(Ω;E)

x∗
y x∗

y
H

W−−−−→ L2(Ω)

Proof. For elementary tensors we have

W (x∗(h⊗ x)) = 〈x, x∗〉W (h) = 〈W (h⊗ x), x∗〉.
By linearity this proves that W ◦ x∗ = x∗ ◦ W on H ⊗ E. That x∗ extends to
a bounded operator from γ(H,E) → H now follows from the fact that both W :
H → L2(Ω) and W : γ(H,E)→ L2(Ω;E) are isometric embeddings. �

In particular it follows, for T ∈ γ(H,E), that the E-valued random variables
W (T ) are Gaussian (cf. Definition 7.1). This point will be taken up in more detail
in Section 7.

So far we have treated H ⊗ E as an abstract tensor product of H and E. The
elements of H ⊗ E define bounded linear operators from H to E by the formula

(h⊗ x)h′ := [h, h′]x, h′ ∈ H,
and we have∥∥∥ N∑

n=1

hn ⊗ xn
∥∥∥2

L (H,E)
= sup
‖h‖61

∥∥∥ N∑
n=1

[hn, h]xn

∥∥∥2

= sup
‖(an)Nn=1‖261

∥∥∥ N∑
n=1

anxn

∥∥∥2

6 E
∥∥∥ N∑
n=1

γnxn

∥∥∥2

=
∥∥∥ N∑
n=1

hn ⊗ xn
∥∥∥2

γ(H,E)
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where the inequality follows from the fact that for any x∗ ∈ E∗ of norm one and
any choice (an)Nn=1 ∈ `2N of norm 6 1 we have∣∣∣ N∑

n=1

an〈xn, x∗〉
∣∣∣2 6 N∑

n=1

|an|2
N∑
n=1

|〈xn, x∗〉|2 6
N∑
n=1

|〈xn, x∗〉|2

= E
∣∣∣ N∑
n=1

γn〈xn, x∗〉
∣∣∣2 6 E

∥∥∥ N∑
n=1

γnxn

∥∥∥2

.

This shows that the identity map on H⊗E has a unique extension to a continuous
and contractive linear operator

j : γ(H,E)→ L (H,E).

To prove that j is injective let W : H → L2(Ω) be an isonormal process. For all

T ∈ H⊗E, say T =
∑N
n=1 hn⊗xn as before, the adjoint operator (jT )∗ ∈ L (E∗, H)

is given by (jT )∗x∗ =
∑N
n=1〈xn, x∗〉hn, so

E|〈W (T ), x∗〉|2 = E
∣∣∣ N∑
n=1

γn〈xn, x∗〉
∣∣∣2 =

N∑
n=1

|〈xn, x∗〉|2 = ‖(jT )∗x∗‖2.

By approximation, the identity of the left- and right-hand sides extends to arbitrary
T ∈ γ(H,E). Now if jT = 0 for some T ∈ γ(H,E), then

E|〈W (T ), x∗〉|2 = ‖(jT )∗x∗‖2 = 0

for all x∗ ∈ E∗, so W (T ) = 0 and therefore T = 0.

Definition 3.13. An operator T ∈ L (H,E) is called γ-radonifying if it belongs to
γ(H,E).

From now on we shall always identify γ(H,E) with a linear subspace of L (H,E).

Proposition 3.14. Every operator T ∈ γ(H,E) is compact.

Proof. Let limn→∞ Tn = T in γ(H,E) with each operator Tn of finite rank. Then
limn→∞ Tn = T in L (H,E) and therefore T is compact, it being the uniform limit
of a sequence of compact operators. �

The degree of compactness of an operator can be quantified by its entropy num-
bers. Proposition (3.14) can be refined accordingly; see Section 13.

Under the identification of γ(H,E) with a linear subspace of L (H,E), Proposi-
tion 3.12 states that if W is an H-isonormal process, then for all T ∈ γ(H,E) and
x∗ ∈ E∗ we have

〈W (T ), x∗〉 = W (T ∗x∗).

Similarly, Proposition 3.11 states that for all T ∈ γ(H,E) and orthogonal projec-
tions P from H onto a closed subspace H0 we have T |H0

∈ γ(H0, E) and

‖T |H0
‖γ(H0,E) 6 ‖T‖γ(H,E).

As an application we deduce a representation for the norm of γ(H,E) in terms
of finite orthonormal systems.
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Proposition 3.15. For all T ∈ γ(H,E) we have

‖T‖2γ(H,E) = sup
h

E
∥∥∥ N∑
n=1

γnThn

∥∥∥2

where the supremum is over all finite orthonormal systems h = {h1, . . . , hN} in H.

Proof. The inequality ‘6’ is obtained by approximating T with elements fromH⊗E.
For the inequality ‘>’ we note that for all finite-dimensional subspaces H0 of H we
have ‖T‖γ(H,E) > ‖T |H0‖γ(H0,E). The operator T |H0 , being of finite rank from
H0 to E, may be identified with an element of H0 ⊗ E, and the desired inequality
follows from this. �

Definition 3.16. An operator T ∈ L (H,E) satisfying

sup
h

E
∥∥∥ N∑
n=1

γnThn

∥∥∥2

<∞,

where the supremum is over all finite orthonormal systems h = {h1, . . . , hN} in H,
is called γ-summing.

The class of γ-summing operators was introduced by Linde and Pietsch [77].

Definition 3.17. The space of all γ-summings operator from H to E is denoted by
γ∞(H,E).

With respect to the norm

‖T‖2γ∞(H,E) := sup
h

E
∥∥∥ N∑
n=1

γnThn

∥∥∥2

,

γ∞(H,E) is easily seen to be a Banach space. Proposition 3.15 asserts that every
γ-radonifying operator T is γ-summing and

‖T‖γ∞(H,E) = ‖T‖γ(H,E).

Stated differently, γ(H,E) is isometrically contained in γ∞(H,E) as a closed sub-
space. In the next section we shall prove that if E does not contain a closed subspace
isomorphic to c0, then

γ∞(H,E) = γ(H,E),

that is, every γ-summing operator is γ-radonifying.
The next proposition is essentiall due to Kalton and Weis [63].

Proposition 3.18 (γ-Fatou lemma). Consider a bounded sequence (Tn)n>1 in
γ∞(H,E). If T ∈ L (H,E) is an operator such that

lim
n→∞

〈Tnh, x∗〉 = 〈Th, x∗〉 h ∈ H, x∗ ∈ E∗,

then T ∈ γ∞(H,E) and

‖T‖γ∞(H,E) 6 lim inf
n→∞

‖Tn‖γ∞(H,E).
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Proof. Let h1, . . . , hK be a finite orthonormal system in H. Let (x∗m)m>1 be a se-
quence of unit vectors in E∗ which is norming for the linear span of {Th1, . . . , ThK}.
For all M > 1 we have, by the Fatou lemma,

E sup
m=1,...,M

∣∣∣〈 K∑
k=1

γkThk, x
∗
m

〉∣∣∣2 6 lim inf
n→∞

E sup
m=1,...,M

∣∣∣〈 K∑
k=1

γkTnhk, x
∗
m

〉∣∣∣2
6 lim inf

n→∞
‖Tn‖2γ∞(H,E).

Taking the limit M →∞ we obtain, by the monotone convergence theorem,

E
∥∥∥ K∑
k=1

γkThk

∥∥∥2

6 lim inf
n→∞

‖Tn‖2γ∞(H,E).

�

We continue with a useful criterion for membership of γ∞(H,E). Its proof
stands a bit apart from the main line of development and depends on an elementary
comparison result in Section 6, but for reasons of presentation we prefer to present
it here.

Proposition 3.19 (Testing against an orthonormal basis). Let H be a separable
Hilbert space with orthonormal basis (hn)n>1. An operator S ∈ L (H,E) belongs
to γ∞(H,E) if and only if

sup
N>1

E
∥∥∥ N∑
n=1

γn Shn

∥∥∥2

<∞.

In this situation we have

‖S‖2γ∞p (H,E) = sup
N>1

E
∥∥∥ N∑
n=1

γn Shn

∥∥∥2

.

Proof. Let {h′1, . . . , h′k} be an orthonormal system in H. For K > 1 let PK denote
the orthogonal projection onto the span of {h1, . . . , hK}. For all x∗ ∈ E∗ and
K > k we have

k∑
j=1

〈SPKh′j , x∗〉2 6 ‖PKS∗x∗‖2 =

K∑
n=1

〈Shn, x∗〉2.

From Lemma 6.1 below it follows that

E
∥∥∥ k∑
j=1

γj SPKh
′
j

∥∥∥2

6 E
∥∥∥ K∑
n=1

γn Shn

∥∥∥2

6 sup
N>1

E
∥∥∥ N∑
n=1

γn Shn

∥∥∥2

.

Hence by Fatou’s lemma,

E
∥∥∥ k∑
j=1

γj Sh
′
j

∥∥∥2

6 lim inf
K→∞

E
∥∥∥ k∑
j=1

γj SPKh
′
j

∥∥∥2

6 sup
N>1

E
∥∥∥ N∑
n=1

γn Shn

∥∥∥2

.

It follows that

‖S‖pγ∞(H,E) 6 sup
N>1

E
∥∥∥ N∑
n=1

γn Shn

∥∥∥2

.

The converse inequality trivially holds and the proof is complete. �
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We continue with two criteria for γ-radonification. The first is stated in terms
of maximal orthonormal systems.

Theorem 3.20 (Testing against a maximal orthonormal system). Let H be a
Hilbert space with a maximal orthonormal system (hi)i∈I and let (γi)i∈I be a family
of independent standard Gaussian random variables with the same index set. An
operator T ∈ L (H,E) belongs to γ(H,E) if and only if∑

i∈I
γiThi

is summable in L2(Ω;E). In this situation we have

‖T‖2γ(H,E) = E
∥∥∥∑
i∈I

γiThi

∥∥∥2

.

Proof. We may assume that γi = W (hi) for some H-isonormal process W .
We begin with the ‘if’ part and put X :=

∑
i∈I γiThi. Given ε > 0 choose

i1, . . . , iN ∈ I such that for all finite subsets J ⊆ I containing i1, . . . , iN we have
E‖X −XJ‖2 < ε2, where XJ :=

∑
j∈J γjThj . Set TJ :=

∑
j∈J hj ⊗ Thj . Then for

all finite subsets J, J ′ ⊆ I containing i1, . . . , iN we have

‖TJ − TJ′‖γ(H,E) = ‖W (TJ)−W (TJ′)‖L2(Ω;E) = ‖XJ −XJ′‖L2(Ω;E) < 2ε.

It follows that the net (TJ)J is Cauchy in γ(H,E) and therefore convergent to some
S ∈ γ(H,E). From

W (S∗x∗) =
∑
i∈I

γi〈Thi, x∗〉 = W (T ∗x∗)

it follows that S∗x∗ = T ∗x∗ for all x∗ ∈ E∗ and therefore S = T .
For the ‘only if’ part we note that

∑
i[hi, T

∗x∗]hi is summable to T ∗x∗ (cf.
Example 3.2) and therefore

〈W (T ), x∗〉 = W (T ∗x∗) =
∑
i∈I

[hi, T
∗x∗]W (hi) =

∑
i∈I

γi[hi, T
∗x∗] =

∑
i∈I

γi〈Thi, x∗〉

for all x∗ ∈ E∗. Hence by Proposition 2.5,
∑
i∈I γiThi = W (T ) in L2(Ω;E).

Finally, by Proposition 3.9, E‖
∑
i∈I γiThi‖2 = E‖W (T )‖2 = ‖T‖2γ(H,E). �

For operators T ∈ L (H,E) we have an orthogonal decomposition

(3.1) H = ker(T )⊕ ran(T ∗).

The following argument shows that for all T ∈ γ(H,E) the subspace ran(T ∗) is
separable. Let Tn → T in γ(H,E) with each Tn ∈ H ⊗ X. The range of each
adjoint operator T ∗n is finite-dimensional. Therefore the closure of

⋃
n>1 ran(T ∗n) is

a separable closed subspace H0 of H. By the Hahn-Banach theorem, H0 is weakly
closed. Hence upon passing to the limit for n → ∞ we infer that ran(T ∗) ⊆ H0

and the claim is proved.
If (hn)n>1 is an orthonormal basis for any separable closed subspace H ′ ⊆ H

containing ran(T ∗), then Theorem 3.20 implies that an operator T ∈ L (H,E)
belongs to γ(H,E) if and only if the sum

∑
n>1 γnThn converges in L2(Ω;E), in

which case we have

‖T‖2γ(H,E) = E
∥∥∥∑
n>1

γnThn

∥∥∥2

.
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In particular, if H itself is separable this criterion may be applied for any orthonor-
mal basis (hn)n>1 of H and we have proved:

Corollary 3.21. If H is a separable Hilbert space with orthonormal basis (hn)n>1,
and if (γn)n>1 is a Gaussian sequence, then a bounded operator T : H → E belongs
to γ(H,E) if and only if

∑
n>1 γnThn converges in L2(Ω;E). In this situation we

have

‖T‖2γ(H,E) = E
∥∥∥∑
n>1

γnThn

∥∥∥2

.

In many papers, this result is taken as the definition of the space γ(H,E). The
obvious disadvantage of this approach is that it imposes an unnecessary separability
assumption on the Hilbert spaces H. We mention that an alternative proof of the
corollary could be given along the lines of Proposition 3.19.

The next criterion for membership of γ(H,E) is phrased in terms of functionals:

Theorem 3.22 (Testing against functionals). Let W : H → L2(Ω) be an isonormal
process. A bounded linear operator T : H → E belongs to γ(H,E) if and only if
there exists a random variable X ∈ L2(Ω;E) such that for all x∗ ∈ E∗ we have

W (T ∗x∗) = 〈X,x∗〉

in L2(Ω). In this situation we have W (T ) = X in L2(Ω;E).

Proof. To prove the ‘only if’ part, take X = W (T ).
For the ‘if’ part we need to work harder. Let G be the closed subspace in

L2(Ω) spanned by the random variables of the form 〈X,x∗〉, x∗ ∈ E∗. By a Gram-
Schmidt argument, choose a maximal orthonormal system (gi)i∈I in G of the form
gi = 〈X,x∗i 〉 for suitable x∗i ∈ E∗. Then (gi)i∈I is a family of independent standard
Gaussian random variables. Put hi = T ∗x∗i and xi = Thi. From

[hi, hj ] = EW (hi)W (hj) = E〈X,x∗i 〉〈X,x∗j 〉 = Egigj = 0 (i 6= j)

we infer that (hi)i∈I is a maximal orthonormal system for its closed linear spanH0 in
H. Expanding against (gi)i∈I , for all x∗ ∈ E∗ we have 〈X,x∗〉 =

∑
i∈I ci〈X,x∗i 〉 =∑

i∈I cigi with summability in L2(Ω) (cf. Example 3.2), where

ci = E〈X,x∗〉〈X,x∗i 〉 = [T ∗x∗, T ∗x∗i ] = 〈Thi, x∗〉.

Hence, 〈X,x∗〉 =
∑
i∈I gi〈Thi, x∗〉 with summability in L2(Ω). This being true for

all x∗ ∈ E∗, by Proposition 2.5 we then have X =
∑
i∈I giThi with summability in

L2(Ω;E). Now Theorem 3.20 implies that T ∈ γ(H0, E). Since T vanishes on H⊥0 ,
Proposition 3.10 implies that T ∈ γ(H,E).

The final assertion follows from 〈W (T ), x∗〉 = W (T ∗x∗) = 〈X,x∗〉. �

A bounded operator T from a separable Hilbert space into another Hilbert space
E is γ-radonifying if and only if T is Hilbert-Schmidt, i.e., for all orthonormal bases
(hn)n>1 of H we have ∑

n>1

‖Thn‖2 <∞.

The simple proof is contained in Proposition 13.5. Without proof we mention
the following extension of this result to Banach spaces E, due to Kwapień and
Szymański [72] (see also [9, Theorem 3.5.10]):
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Theorem 3.23. Let H is a separable Hilbert space and E a Banach space. If
T ∈ γ(H,E), then there exists an orthonormal basis (hn)n>1 of H such that∑

n>1

‖Thn‖2 <∞.

4. The theorem of Hoffmann-Jørgensen and Kwapień

In the previous section we have seen that every γ-radonifying operator is γ-
summing. The main result of this section is the following converse, essentially due
to Hoffmann-Jørgensen and Kwapień: if E does not contains a closed subspace
isomorphic to c0, then every γ-summing operator is γ-radonifying.

We begin with some preparations. A sequence of E-valued random variables
(Yn)n>1 is said to be bounded in probability if for every ε > 0 there exists an r > 0
such that

sup
n>1

P {‖Yn‖ > r} < ε.

Lemma 4.1. Let (Xn)n>1 be a sequence of independent symmetric E-valued ran-
dom variables and let Sn =

∑n
j=1Xj. The following assertions are equivalent:

(1) the sequence (Sn)n>1 is bounded almost surely;
(2) the sequence (Sn)n>1 is bounded in probability.

Proof. (1)⇒(2): Fix ε > 0 and choose r > 0 so that P{supn>1 ‖Sn‖ > r} < ε. Then

P{‖Sn‖ > r} 6 P{sup
n>1
‖Sn‖ > r} < ε

for all n > 1, and therefore (Sn)n>1 is bounded in probability.
(2)⇒(1): Fix ε > 0 arbitrary and choose r > 0 so large that P{‖Sn‖ > r} < ε

for all n > 1. By Proposition 2.3, for all n > 1 we have

P
{

sup
16k6n

‖Sk‖ > r
}
6 2P

{
‖Sn‖ > r

}
< 2ε.

It follows that P{supk>1 ‖Sk‖ > r} 6 2ε for all r > 0, so P{supk>1 ‖Sk‖ =∞} 6 2ε.
Since ε > 0 was arbitrary, this shows that (Sn)n>1 is bounded almost surely. �

In the proof of the next theorem we shall apply the following criterion, due to
Bessaga and Pelczyński (see [1]), to detect isomorphic copies of the Banach
space c0: if (yn)n>1 is a sequence in E such that

(i) lim supn→∞ ‖yn‖ > 0;

(ii) there exists M > 0 such that ‖
∑k
j=1 ajyj‖ 6 M for all k > 1 and all

a1, . . . , ak ∈ {−1, 1},
then (yn)n>1 has a subsequence whose closed linear span is isomorphic to c0.

Theorem 4.2 (Hoffmann–Jørgensen and Kwapień [47, 71]). For a Banach
space E the following assertions are equivalent:

(1) for all sequences (Xn)n>1 of independent symmetric E-valued random vari-
ables, the almost sure boundedness of the partial sum sequence (Sn)n>1 im-
plies the almost sure convergence of (Sn)n>1;

(2) the space E contains no closed subspace isomorphic to c0.

Proof. We shall prove the implications (1)⇒(3)⇒(2)⇒(3)⇒(1), where
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(3) for all sequences (xn)n>1 in E, the almost sure boundedness of the partial
sums of

∑
n>1 rnxn implies limn→∞ xn = 0.

(1)⇒(3): This implication is trivial.
(3)⇒(2): Let un denote the n-th unit vector of c0. The sum

∑
n>1 rn(ω)un fails

to converge for all ω ∈ Ω while its partial sums are uniformly bounded.
(2)⇒(3): Suppose (3) does not hold. Then there exists a sequence (xn)n>1 in E

with lim supn→∞ ‖xn‖ > 0 such that the partial sums of
∑
n>1 rnxn are bounded

almost surely.
Let G denote the σ-algebra generated by the sequence (rn)n>1. We claim that

for all B ∈ G ,

lim
n→∞

P
(
B ∩ {rn = −1}

)
= lim
n→∞

P
(
B ∩ {rn = 1}

)
= 1

2P(B).

For all B ∈ GN , the σ-algebra generated by r1, . . . , rN , this follows immediately
from the fact that rn is independent of GN for all n > N . The case for B ∈ G now
follows from the general fact of measure theory that for any B ∈ G and any ε > 0
there exist N sufficiently large and BN ∈ GN such that P(BN∆B) < ε.

Choose M > 0 in such a way that

P
{

sup
n>1

∥∥∥ n∑
j=1

rjxj

∥∥∥ 6M} > 1

2
.

By the observation just made we can find an index n1 > 1 large enough such that
for all a1 ∈ {−1, 1} we have

P
{

sup
n>1

∥∥∥ n∑
j=1

rjxj

∥∥∥ 6M, rn1
= a1

}
>

1

4
.

Continuing inductively, we find a sequence 1 6 n1 < n2 . . . such that for all all
choices a1, . . . , ak ∈ {−1, 1},

P
{

sup
n>1

∥∥∥ n∑
j=1

rjxj

∥∥∥ 6M, rn1 = a1, . . . , rnk
= ak

}
>

1

2k+1
.

Now define

r′j :=
{

rj , j = nk for some k > 1,
−rj , else.

Then by symmetry, for all k > 1 we have

P
{

sup
n>1

∥∥∥ n∑
j=1

r′jxj

∥∥∥ 6M, rn1
= a1, . . . , rnk

= ak

}
>

1

2k+1
.

Since

P
{
rn1

= a1, . . . , rnk
= ak

}
=

1

2k

it follows that for all k > 1 and all choices a1, . . . , ak ∈ {−1, 1}, the event{
sup
n>1

∥∥∥ n∑
j=1

rjxj

∥∥∥ 6M, sup
n>1

∥∥∥ n∑
j=1

r′jxj

∥∥∥ 6M, rn1
= a1, . . . , rnk

= ak

}
has positive probability. For any ω in this event,∥∥∥ k∑

j=1

ajxnj

∥∥∥ =
∥∥∥1

2

nk∑
j=1

rj(ω)xj +
1

2

nk∑
j=1

r′j(ω)xj

∥∥∥ 6M.
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Since this holds for all choices a1, . . . , ak ∈ {−1, 1}, the Bessaga-Pelczyński criterion
implies that the sequence (xnj )j>1 has a subsequence whose closed linear span is
isomorphic to c0.

(3)⇒(1): Suppose the partial sums of
∑
n>1Xn are bounded almost surely.

Let 1 6 n1 < n2 < . . . be an arbitrary increasing sequence of indices and let
Yk := Snk+1

− Snk
. The partial sums of

∑
k>1 Yk are bounded almost surely.

On a possibly larger probability space, let (rn)n>1 be a Rademacher sequence in-
dependent of (Xn)n>1. By Lemma 4.1, the partial sums of

∑
k>1 Yk are bounded in

probability on ΩX , and because (Yn)n>1 and (rnYn)n>1 are identically distributed
the same is true for the partial sums of

∑
k>1 rkYk. Another application of Lemma

4.1 shows that the partial sums of this sum are bounded almost surely. By Fubini’s
theorem it follows that for almost all ω ∈ Ω, the partial sums of

∑
k>1 rkYk(ω)

are bounded almost surely. By (3), limk→∞ Yk(ω) = 0 for almost all ω ∈ Ω. This
implies that limk→∞ Yk = limk→∞ Snk+1

− Snk
= 0 in probability.

Suppose now that the sequence (Sn)n>1 fails to converge almost surely. Then
by Proposition 2.4 it fails to converge in probability, and there exists an ε > 0 and
increasing sequence 1 6 n1 < n2 < . . . such that

P{‖Snk+1
− Snk

‖ > ε} > ε ∀k = 1, 3, 5, . . .

This contradicts the assertion just proved. �

Now we are in a position to state and prove a converse to Proposition 3.15.

Theorem 4.3. Let H be a Hilbert space and E a Banach space not containing a
closed subspace isomorphic to c0. Then γ∞(H,E) = γ(H,E) isometrically.

This result implies that when E does not contain a copy of c0, results involving
γ-summing operators (such as the γ-Fatou lemma (Proposition 3.18) and the γ-
multiplier theorem (Theorem 5.2) may be reformulated in terms of γ-radonifying
operators.

Proof. Let T ∈ γ∞(H,E) be given and fixed; we must show that T ∈ γ(H,E).
Once we know this, the equality of norms ‖T‖γ∞(H,E) = ‖T‖γ(H,E) follows from
Proposition 3.15.

We begin by proving that there exists a separable closed subspace H1 of H such
that T vanishes on H⊥1 . To this end let H0 be the null space of T and let (hi)i∈I
be a maximal orthonormal system for H1 := H⊥0 . We want to prove that H1 is
separable, i.e., that the index set I is countable. Suppose the contrary. Then there
exists an integer N > 1 such that ‖Thi‖ > 1/N for uncountably many i ∈ I. Put
J := {i ∈ I : ‖Thi‖ > 1/N}. Let (jn)n>1 be any sequence in J with no repeated
entries. For all N > 1 we have

E
∥∥∥ N∑
n=1

γnThjn

∥∥∥2

6M,

where M is the supremum in the statement of the theorem. This means that

the sequence of random variables SN :=
∑N
n=1 γnThjn , N > 1, is bounded in

L2(Ω;E), and therefore bounded in probability. By Lemma 4.1, this sequence is
bounded almost surely. An application of Theorem 4.2 then shows that the sum∑
n>1 γnThjn converges almost surely. Now Proposition 2.6 can be used to the

effect that the Rademacher sum
∑
n>1 rnThjn converges almost surely as well. But
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this forces limn→∞ Thjn = 0, contradicting the fact that jn ∈ J for all n > 1. This
proves the claim.

By the claim we may assume that H is separable; let (hn)n>1 be an orthonormal
basis for H. Repeating the argument just used,

∑
n>1 γnThn converges almost

surely. To prove the L2(Ω;E)-convergence of this sum, put XN :=
∑N
j=1 γjThj

and X :=
∑
n>1 γnThn. By Fubini’s theorem and Proposition 2.3,

E sup
16n6N

‖Xn‖2 =

∫ ∞
0

2rP
{

sup
16n6N

‖Xn‖ > r
}
dr

6
∫ ∞

0

4rP{‖XN‖ > r} dr = 2E‖XN‖2.

Hence E supn>1 ‖Xn‖2 6 2 supn>1 E‖Xn‖2 by the monotone convergence theorem,

and this supremum is finite by assumption. Hence limn→∞ E‖Xn−X‖2 = 0 by the
dominated convergence theorem.

An appeal to Theorem 3.20 and the remark following it finishes the proof. �

The assumption that E should not contain an isomorphic copy of c0 cannot be
omitted, as is shown by the next example due to Linde and Pietsch [77].

Example 4.4. The multiplication operator T : `2 → c0 defined by

T
(
(αn)n>1

)
:= (αn/

√
log(n+ 1))n>1

is γ-summing but fails to be γ-radonifying.
To prove this we begin with some preliminary estimates. Let γ be a standard

Gaussian random variable and put

G(r) := P{|γ|2 6 r} =
1√
2π

∫ √r
−
√
r

e−
1
2x

2

dx =
1√
2π

∫ r

0

e−
1
2y

√
y
dy.

An integrations by parts yields, for all r > 0,

(4.1)

G(r) = 1− 1√
2π

∫ ∞
r

e−
1
2y

√
y
dy

= 1− 2√
2π

e−
1
2 r

√
r

+
1√
2π

∫ ∞
r

e−
1
2y

y
√
y
dy > 1− 2√

2π

e−
1
2 r

√
r
.

Another integration by parts yields, for r > 2,

(4.2)

G(r) = 1− 2√
2π

e−
1
2 r

√
r

+
2√
2π

e−
1
2 r

r
√
r
− 3√

2π

∫ ∞
r

e−
1
2y

y2√y
dy

6 1− 2√
2π

(1− r−1)
e−

1
2 r

√
r
6 1− 1√

2π

e−
1
2 r

√
r
.

Let (un)n>1 be the standard unit basis of `2. We check that the assumptions of
Proposition 3.19 are satisfied by showing that

sup
N>1

E
∥∥∥ N∑
n=1

γnTun

∥∥∥2

c0
= sup
N>1

E
(

sup
16n6N

|γn|2

log(n+ 1)

)
<∞.
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Using (4.1) we estimate, for t > 4,

P
{

sup
16n6N

|γn|2

log(n+ 1)
> t
}

= 1−
N∏
n=1

G(t log(n+ 1))

6 1−
N∏
n=1

(
1− 2√

2π

1√
(n+ 1)t t log(n+ 1)

)
6

2√
2π

N∑
n=1

1√
(n+ 1)t t log(n+ 1)

6
2√

2π log 2

1√
2t−4 t

∑
n>1

1

(n+ 1)2
.

In the last line we used that for t > 4 we have (n + 1)t = (n + 1)t−4(n + 1)4 >
2t−4(n+ 1)4. Therefore,

E
(

sup
16n6N

|γn|2

log(n+ 1)

)
6 4 +

2√
2π log 2

∑
n>1

1

(n+ 1)2

∫ ∞
4

1√
2t−4 t

dt <∞.

To prove that T is not γ-radonifying we argue by contradiction. If T is γ-
radonifying, then the sum X :=

∑
n>1 γnTun converges in L2(Ω; c0). The relation

c0 =
⋃
N>1

⋂
n>N

{
(xn)n>1 ∈ c0 : |xn| 6 1

}
implies ∑

N>1

∏
n>N

P
{
|γn|2 6 log(n+ 1)

}
=
∑
N>1

P
{ ⋂
n>N

{
|Xn| 6 1

}}
> 1.

where Xn is the n-th coordinate of X. But for N > 7 we have log(n + 1) > 2 for
all n > N and (4.2) gives∏

n>N

P{|γn|2 6 log(n+ 1)} 6
∏
n>N

(
1− 1√

2π

1√
(n+ 1) log(n+ 1)

)
= 0,

noting that ∑
n>N

1√
(n+ 1) log(n+ 1)

=∞.

This is contradiction concludes the proof.

5. The γ-multiplier theorem

The main result of this section states that functions with γ-bounded range act
as multipliers on certain spaces of γ-radonifying operators. This establishes a con-
nection between the notions of γ-radonification and γ-boundedness.

Definition 5.1. Let E and F be Banach spaces. An operator family T ⊆ L (E,F )
is said to be γ-bounded if there exists a constant M > 0 such that(

E
∥∥∥ N∑
n=1

γnTnxn

∥∥∥2) 1
2

6M
(
E
∥∥∥ N∑
n=1

γnxn

∥∥∥2) 1
2

,

for all N > 1, all T1, . . . , TN ∈ T , and all x1, . . . , xN ∈ E.
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The least admissible constant M is called the γ-bound of T , notation: γ(T ).
Every γ-bounded family T is uniformly bounded and we have

sup
T∈T

‖T‖ 6 γ(T ).

Replacing Gaussian random variables by Rademacher variables in the above defi-
nition we arrive at the related notion of R-boundedness. By a simple randomization
argument, every R-bounded family is γ-bounded; the converse holds if E has finite
cotype (since in that case Gaussian sums can be estimated in terms of Rademacher
sums; see Proposition 2.6). The notion of R-boundedness plays an important role
in vector-valued harmonic analysis as a tool for proving Fourier multiplier theo-
rems; we refer to Clément, de Pagter, Sukochev, Witvliet [24] and the
lecture notes of Denk, Hieber, Prüss [28] and Kunstmann and Weis [68] for
an introduction to this topic and further references.

It is not hard to prove that closure of the convex hull of a γ-bounded family in
the strong operator topology is γ-bounded with the same γ-bounded. From this one
deduces the useful fact that integral means of γ-bounded families are γ-bounded;
this does not increase the γ-bound.

Let (A,A , µ) be a σ-finite measure space. With slight abuse of terminology,
a function φ : A → L (E,F ) is called strongly measurable if φx : A → F is
strongly measurable for all x ∈ E. For a bounded and strongly measurable function
φ : A→ L (H,E) we define the operator Tφ ∈ L (L2(A;H), E) by

Tφf :=

∫
A

φf dµ.

Note that if φ is a simple function with values in H ⊗ E (such a function will be
called a finite rank simple function), then Tφ ∈ γ(L2(A;H), E).

Now we are ready to state and prove the main result of this section, due to
Kalton and Weis [63] in a slightly simpler formulation.

Theorem 5.2 (γ-Bounded functions as γ-multipliers). Let (A,A , µ) be a σ-finite
measure space. Suppose that M : A → L (E,F ) is strongly measurable and has
γ-bounded range M := {M(t) : t ∈ A}. Then for every finite rank simple function
φ : A→ γ(H,E) the operator TMφ belongs to γ∞(L2(A;H), F ) and

‖TMφ‖γ∞(L2(A;H),F ) 6 γ(M ) ‖Tφ‖γ(L2(A;H),E).

As a result, the map M̃ : Tφ 7→ TMφ has a unique extension to a bounded operator

M̃ : γ(L2(A;H), E)→ γ∞(L2(A;H), F )

of norm ‖M̃‖ 6 γ(M ).

Proof. The uniqueness part follows from the fact that (L2(A)⊗H)⊗E is dense in
γ(L2(A;H), E).

To prove the boundedness of M̃ we let φ : A → H ⊗ E be a finite rank simple
function which is kept fixed throughout the proof. Since we are fixing φ there is
no loss of generality if we assume H to be finite-dimensional, say with orthonormal
basis (hn)Nn=1. Also, by virtue of the strong measurability of M , we may assume
that the σ-algebra A is countably generated. This implies that L2(A) is separable,
say with orthonormal basis (gm)m>1.
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Step 1 – In this step we consider the special case of the theorem where M is a
simple function. By passing to a common refinement we may suppose that

φ =

k∑
j=1

1Bj
Uj , M =

k∑
j=1

1Bj
Mj ,

with disjoint sets Bj ∈ A of finite positive measure; the operators Uj ∈ H ⊗E are
of finite rank and the operators Mj belong to M . Then,

Mφ =

k∑
j=1

1Bj
MjUj .

This is a simple function with values in H ⊗ F which defines an operator TMφ ∈
γ(L2(A;H), F ), and

‖TMφ‖2γ(L2(A;H),F ) = E
∥∥∥ k∑
j=1

N∑
n=1

γjn

√
µ(Bj)MjΦjhn

∥∥∥2

6 (γ(M ))2E
∥∥∥ k∑
j=1

N∑
n=1

γjn

√
µ(Bj)Φjhn

∥∥∥2

= (γ(M ))2‖Tφ‖2γ(L2(A;H),E).

Step 2 – Let (Aj)j>1 be a generating collection of sets in A and let, for all k > 1,
Ak := σ(A1, . . . , Ak). Define the functions Mk : A→ L (E,F ) by

Mkx := E(Mx|Ak).

Since Ak is a finite σ-algebra, Mk is a simple function. It is easily checked that for
all f ∈ L2(A;H) we have TMkφf = TMφE(f |Ak), and therefore

lim
k→∞

TMkφf = TMφf

strongly in F . By the γ-Fatou lemma (Proposition 3.18) it follows that TMφ ∈
γ∞(L2(A;H), E) and

‖TMφ‖γ∞(L2(A;H),E) 6 lim inf
k→∞

‖TMφ‖γ(L2(A;H),F ) 6 γ(M )‖Tφ‖γ(L2(A;H),E).

�

It appears to be an open problem whether the operator M̃ actually takes values
in γ(L2(A;H), E) even in the simplest possible setting A = (0, 1) and H = R. Of
course, an affirmative answer for Banach spaces E not containing an isomorphic
copy of c0 is obtained through an application of Theorem 4.2.

We continue with some examples of γ-bounded families. The first two results
are due to Weis [118].

Example 5.3. Let (A,A , µ) be a σ-finite measure space and let T be a γ-bounded
subset of L (E,F ). Suppose f : A → L (E,F ) is a function with the following
properties:

(i) the function ξ 7→ f(ξ)x is strongly µ-measurable for all x ∈ E;
(ii) we have f(ξ) ∈ T for µ-almost all ξ ∈ A.
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For φ ∈ L1(A) define Tφf ∈ L (E,F ) by

Tφf x :=

∫
A

φ(ξ)f(ξ)x dµ(ξ), x ∈ E,

The family T φ
f := {Tφf : ‖φ‖1 6 1} is γ-bounded and γ(T φ

f ) 6 γ(T ).

Example 5.4. Let f : (a, b)→ L (E,F ) be continuously differentiable with∫ b

a

‖f ′(s)‖ ds <∞.

Then Tf := {f(s) : s ∈ (a, b)} is γ-bounded and γ(Tf ) 6 ‖f(a)‖+
∫ b
a
‖f ′(s)‖ ds.

The next example is taken from Hytönen and Veraar [53]. A related example,
where Fourier type instead of type is used and the cotype is not taken into account,
is due to Girardi and Weis [41].

Example 5.5. If X has type p and cotype q, then the range of any function f ∈
B
d/r
r,1 (Rd; L (X,Y )) is γ-bounded. Here B

d/r
r,1 (Rd; L (X,Y )) is the Besov space of

exponents (r, 1, d/r).

The next example is due to Kaiser and Weis [58] (first part) and Hytönen
and Veraar [53] (second part).

Example 5.6. Define, for every h ∈ H, the operator Uh : E → γ(H,E) by

Uhx := h⊗ x, x ∈ E.
If E has finite cotype, the family {Uh : ‖h‖ 6 1} is γ-bounded. Dually, define, for
every h ∈ H, the operator Mh : γ(H,E)→ E by

MhT := Th, T ∈ γ(H,E).

If E has finite type, the family {Mh : ‖h‖ 6 1} is γ-bounded.

The final example is due to Haak and Kunstmann [44] and van Neerven and
Weis [92]; it extends a previous result for Lp-spaces of Le Merdy [75].

Example 5.7. (A,A , µ) be a σ-finite measure space, let E have property (α) (see
Definition 13.11 below) and let φ : A → L (E) be a strongly measurable function
with the property that integral operators with kernel φx belong to γ(L2(A), E) for
all x ∈ E. For g ∈ L2(A) we may define an operator Tg ∈ L (E) by

Tgx :=

∫
A

g φx dµ.

Then the family {Tg : ‖g‖L2(A) 6 1} is γ-bounded.

This list of examples could be enlarged ad libitum. We refrain from doing so and
refer instead to the references cited after Definition 5.1.

6. The ideal property

Our next aim is to prove that γ(H,E) is an operator ideal in L (H,E). The
proof of this fact relies on a classical domination result for finite Gaussian sums in
E. Although a more general comparison principle for Gaussian random variables
will be presented in Section 8, we shall give an elementary proof which is taken
from Albiac and Kalton [1].
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Lemma 6.1 (Covariance domination I). Let x1, . . . , xM and y1, . . . , yN be elements
of E satisfying

M∑
m=1

〈xm, x∗〉2 6
N∑
n=1

〈yn, x∗〉2

for all x∗ ∈ E∗. Then for all 1 6 p <∞,

E
∥∥∥ M∑
m=1

γmxm

∥∥∥p 6 E
∥∥∥ N∑
n=1

γnyn

∥∥∥p.
Proof. Denote by F the linear span of {x1, . . . , xM , y1, . . . , yN} in E. Define Q ∈
L (F ∗, F ) by

Qz∗ :=

N∑
n=1

〈yn, z∗〉yn −
M∑
m=1

〈xm, z∗〉xm, z∗ ∈ F ∗.

The assumption of the theorem implies that 〈Qz∗, z∗〉 > 0 for all z∗ ∈ F ∗, and it is
clear that 〈Qz∗1 , z∗2〉 = 〈Qz∗2 , z∗1〉 for all z∗1 , z

∗
2 ∈ F ∗. Since F is finite-dimensional,

by linear algebra we can find a sequence (xj)
M+k
j=M+1 in F such that Q is represented

as

Qz∗ =

M+k∑
j=M+1

〈xj , z∗〉xj , z∗ ∈ F ∗.

Now,
M+k∑
m=1

〈xm, z∗〉2 =

N∑
n=1

〈yn, z∗〉2, z∗ ∈ F ∗.

The random variables X :=
∑M+k
m=1 γmxm and Y :=

∑N
n=1 γ

′
nyn have Fourier trans-

forms

E exp(−i〈X,x∗〉) = exp
(
− 1

2

M+k∑
m=1

〈xm, x∗〉2
)
,

E exp(−i〈Y, x∗〉) = exp
(
− 1

2

N∑
n=1

〈yn, x∗〉2
)
.

Hence by the preceding identity and the uniqueness theorem for the Fourier trans-
form, X and Y are identically distributed. Thus, for all 1 6 p <∞,

E
∥∥∥M+k∑
m=1

γmxm

∥∥∥p = E′
∥∥∥ N∑
n=1

γ′nyn

∥∥∥p.
Noting that

E
∥∥∥ M∑
m=1

γmxm

∥∥∥p 6 E
∥∥∥M+k∑
m=1

γmxm

∥∥∥p,
the proof is complete. This inequality follows, e.g., by noting that if X and Y are
independent E-valued random variables, with Y symmetric, then for all 1 6 p <∞
we have E‖X‖p 6 E‖X + Y ‖p. Indeed, since X − Y and X + Y are identically

distributed, by the triangle inequality we have (E‖X‖p)
1
p 6 1

2 (E‖X − Y ‖p)
1
p +

1
2 (E‖X + Y ‖p)

1
p = (E‖X + Y ‖p)

1
p . �
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We continue with a result which describes what is arguably the most important
property of spaces of γ-radonifying operators, the so-called ideal property. It can
be traced back to Gross [42, Theorem 5].

Theorem 6.2 (Ideal property). Let H and H ′ be Hilbert spaces and E and E′

Banach spaces. For all S ∈ L (H ′, H), T ∈ γ∞(H,E), and U ∈ L (E,E′) we have
UTS ∈ γ∞(H ′, E′) and

‖UTS‖γ∞(H′,E′) 6 ‖U‖ ‖T‖γ∞(H,E)‖S‖.

If T ∈ γ(H,E), then UTS ∈ γ(H ′, E′) and

‖UTS‖γ(H′,E′) 6 ‖U‖ ‖T‖γ(H,E)‖S‖.

Proof. The left ideal property is trivial. Thus the first assertion it suffices to prove
that if T ∈ γ∞(H,E), then TS ∈ γ∞(H ′, E) and ‖TS‖γ∞(H′,E) 6 ‖T‖γ∞(H,E)‖S‖.

Let (h′j)
k
j=1 be any finite orthonormal system in H ′. Denote by H̃ ′, H̃, Ẽ the

spans in H ′, H, E of (h′j)
k
j=1, (Sh′j)

k
j=1, (TSh′j)

k
j=1 respectively. Then T and S

restrict to operators T̃ : H̃ → Ẽ and S̃ : H̃ ′ → H̃.

Let (h̃m)Mm=1 be an orthonormal basis for H̃. For all x∗ ∈ Ẽ∗ we have

k∑
j=1

〈TSh′j , x∗〉2 = ‖S̃∗T̃ ∗x∗‖2
H̃
6 ‖S̃∗‖2 ‖T̃ ∗x∗‖2

H̃
= ‖S̃‖2

M∑
m=1

〈T h̃m, x∗〉2.

Hence, by Lemma 6.1,

E
∥∥∥ k∑
j=1

γjTSh
′
j

∥∥∥2

6 ‖S‖2 E
∥∥∥ M∑
m=1

γmT h̃m

∥∥∥2

6 ‖S‖2 ‖T‖2γ(H,E).

The desired inequality follows by taking the supremum over all finite orthonormal
systems in H ′.

Next let T ∈ γ(H,E) be given. If T ∈ H ⊗ E is a finite rank operator, say

T =
∑N
n=1 hn ⊗ xn, then TS =

∑N
n=1 S

∗hn ⊗ xn belongs to H ′ ⊗ E. Hence TS ∈
γ(H ′, E), and by Proposition 3.15 and the estimate above we have ‖TS‖γ(H′,E) 6
‖T‖γ(H,E)‖S‖. For general T ∈ γ(H,E) the result now follows by approximation.

�

As a first application we show that arbitrary bounded Hilbert space operators

S ∈ L (H1, H2) extend to bounded operators S̃ ∈ L (γ(H1, E), γ(H2, E)) in a
natural way.

Corollary 6.3 (Kalton and Weis [63]). Let H1 and H2 be Hilbert spaces. For
all S ∈ L (H1, H2) the mapping

S̃ : h⊗ x 7→ Sh⊗ x, h ∈ H1, x ∈ E,

has a unique extension to a bounded operator S̃ ∈ L (γ(H1, E), γ(H2, E)) of the
same norm.

Proof. For rank one operators T = h ⊗ x we have S̃Th′ = [h, S∗h′]x = TS∗h′.

By linearity, this shows that for all T ∈ H ⊗ E we have S̃T = T ◦ S∗. The

boundedness of S̃ now follows from the right ideal property, which also gives the

estimate ‖S̃‖ 6 ‖S‖. The reverse estimate is trivial. �
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If S ⊆ L (H1, H2) is a uniformly bounded family of Hilbert space operators, the

family S̃ := {S̃ : S ∈ S } is uniformly bounded in L (γ(H1, E), γ(H2, E)). If E

has the so-called property (α) (see Definition 13.11), then S̃ is actually γ-bounded
(see Section 5 for the definition). This result is due to Haak and Kunstmann
[44].

We continue with two convergence results, taken from Cox and van Neerven
[26] and van Neerven, Veraar, Weis [88].

Corollary 6.4 (Convergence by left multiplication). If E and F are Banach spaces
and Un, U ∈ L (E,F ) satisfy limn→∞ Un = U strongly, then for all T ∈ γ(H,E)
we have limn→∞ UnT = UT in γ(H,F ).

Proof. Suppose first that T is a finite rank operator, say T =
∑k
j=1 hj ⊗ xj with

h1, . . . , hk orthonormal in H and x1, . . . , xk from E. Then

lim
n→∞

‖UnT − UT‖2γ(H,F ) = lim
n→∞

E
∥∥∥ k∑
j=1

γj(Un − U)xj

∥∥∥2

= 0.

The general case follows from the density of the finite rank operators in γ(H,E),
the norm estimate ‖UnT − UT‖γ(H,F ) 6 ‖Un − U‖‖T‖γ(H,E), and the uniform
boundedness of the operators Un. �

Corollary 6.5 (Convergence by right multiplication). If H and H ′ are Hilbert
spaces and Sn, S ∈ L (H ′, H) satisfy limn→∞ S∗n = S∗ strongly, then for all T ∈
γ(H,E) we have limn→∞ TSn = TS in γ(H ′, E).

Proof. By the uniform boundedness principle, the strong convergence limn→∞ S∗n =
S∗ implies supn>1 ‖Sn‖ < ∞. Hence by the estimate ‖T ◦ (Sn − S)‖γ(H′,E) 6
‖T‖γ(H,E)‖Sn − S‖ it suffices to consider finite rank operators T ∈ γ(H,E), say

T =
∑M
m=1 hm ⊗ xm. If h′1, . . . , h

′
k are orthonormal in H ′, then by the triangle

inequality,(
E
∥∥∥ k∑
j=1

γjT ◦ (S − Sn)h′j

∥∥∥2) 1
2

=
(
E
∥∥∥ M∑
m=1

k∑
j=1

γj [hm, (S − Sn)h′j ]xm

∥∥∥2) 1
2

6
M∑
m=1

(
E
∥∥∥ k∑
j=1

γj [hm, (S − Sn)h′j ]xm

∥∥∥2) 1
2

=

M∑
m=1

‖xm‖
(
E
∣∣∣ k∑
j=1

γj [(S∗ − S∗n)hm, h
′
j ]
∣∣∣2) 1

2

6
M∑
m=1

‖xm‖‖S∗hm − S∗nhm‖.

Taking the supremum over all finite orthonormal systems in H ′, from Proposition
3.15 we obtain

‖T ◦ (S − Sn)‖γ(H′,E) 6
M∑
m=1

‖xm‖‖S∗hm − S∗nhm‖.

The right-hand side tends to zero as n→∞. �

Here is a simple illustration:
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Example 6.6. Consider an operator R ∈ γ(H,E) and let (hn)n>1 be an orthonormal
basis for (ker(R))⊥ (recall that this space is separable; see the discussion preceding
Corollary 3.21). Let Pn denote the orthogonal projection in H onto the span of
{h1, . . . , hn}. Then limn→∞RPn = R in γ(H,E).

Corollary 6.7 (Measurability). Let (A,A , µ) be a σ-finite measure space and H
a separable Hilbert space. For a function φ : A → γ(H,E) define φh : A → E by
(φh)(t) := φ(t)h for h ∈ H. The following assertions are equivalent:

(1) φ is strongly µ-measurable;
(2) φh is strongly µ-measurable for all h ∈ H.

Proof. It suffices to prove that (2) implies (1). If (hn)n>1 is an orthonormal basis
for H, then with the notations of the Example 6.6 for all ξ ∈ A we have

φ(ξ) = lim
n→∞

φ(ξ)Pn = lim
n→∞

n∑
j=1

[ · , hj ]φ(ξ)hj ,

with convergence in the norm of γ(H,E). The result now follows from the measur-
ability of the right-hand side. �

7. Gaussian random variables

An Rd-valued random variable X = (X1, . . . , Xd) is called Gaussian if every

linear combination
∑d
j=1 cjXj is Gaussian. Noting that

∑d
j=1 cjXj = 〈X, c〉 with

c = (c1, . . . , cd), this suggests the following definition.

Definition 7.1. An E-valued random variable is called Gaussian if the real-valued
random variables 〈X,x∗〉 are Gaussian for all x∗ ∈ E∗.

Gaussian random variables have good integrability properties:

Proposition 7.2 (Fernique). Let X a uniformly tight family of E-valued Gauss-
ian random variables. Then there exists a constant β > 0 such that

sup
X∈X

E exp(β‖X‖2) <∞.

Proof. We follow Bogachev [9] and Fernique [37].
For each X ∈X let X ′ be an independent copy of X. Then X−X ′ and X+X ′

are identically distributed. Hence, for all t > s > 0,

(7.1)

P{‖X‖ 6 s} · P{‖X ′‖ > t}

= P
{∥∥∥X +X ′√

2

∥∥∥ 6 s} · P{∥∥∥X −X ′√
2

∥∥∥ > t
}

6 P
{∣∣ ‖X‖ − ‖X ′‖ ∣∣ 6 s√2, ‖X‖+ ‖X ′‖ > t

√
2
}

(∗)
6 P

{
‖X‖ > t− s√

2
, ‖X ′‖ > t− s√

2

}
= P

{
‖X‖ > t− s√

2

}
· P
{
‖X ′‖ > t− s√

2

}
,

where in (∗) we used that{
|ξ − η| 6 s

√
2 and ξ + η > t

√
2
}
⊆
{
ξ >

t− s√
2

and η >
t− s√

2

}
.
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By the uniform tightness of X , there exists r > 0 such that P{‖X‖ 6 r} > 3
4

for all X ∈X . Then

α0 :=
P{‖X‖ > r}
P{‖X‖ 6 r}

6
1

3
.

Define t0 := r and tn+1 := r +
√

2tn for n > 0. By induction it is easy to check
that tn = r(1 +

√
2)
(
(
√

2)n+1 − 1
)
. Put

αn+1 :=
P{‖X‖ > tn+1}
P{‖X‖ 6 r}

, n > 0.

By (7.1) and the fact that X and X ′ are identically distributed,

αn+1 =
P{‖X‖ > r +

√
2tn}

P{‖X‖ 6 r}
6

(
P{‖X‖ > tn}
P{‖X‖ 6 r}

)2

= α2
n, ∀n > 0.

Therefore, αn 6 α2n

0 6 3−2n

and P{‖X‖ > tn} = P{‖X‖ 6 r} · αn 6 1
32n . With

β := (1/(24r2)) log 3 we have, for any X ∈X ,

E exp(β‖X‖2) 6 P{‖X‖ 6 t0} · exp(βt20) +
∑
n>0

P{tn < ‖X‖ 6 tn+1} · exp(βt2n+1)

6 exp(εr2) +
∑
n>0

1

32n exp
(
βr2(1 +

√
2)2
(
(
√

2)n+2 − 1)2
))

6 exp(εr2) +
∑
n>0

exp
(

2n
[
− log 3 + 4βr2(1 +

√
2)2
])
,

where we used that t0 = r and 4(1 +
√

2)2 < 24. By the choice of β, the sum on
the right-hand side if finite. �

It is known that

E exp
( 1

2α2
‖X‖2

)
<∞

if and only if α2 > σ2
X , where

σ2
X = sup

‖x∗‖61

E|〈X,x∗〉|2

is the weak variance of X; see Marcus and Shepp [80] and Ledoux and Tala-
grand [76, Corollary 3.2].

Fernique’s theorem (or rather the much weaker statement that E‖X‖2 < ∞)
allows us to define the covariance operator of a Gaussian random variable X as the
operator Q ∈ L (E∗, E) by

Qx∗ := E〈X,x∗〉X.
Noting that E〈X,x∗〉2 = 〈Qx∗, x∗〉, the Fourier transform of X can be expressed in
terms of Q by

E exp(−i〈X,x∗〉) = exp(− 1
2 〈Qx

∗, x∗〉).
If T ∈ γ(H,E) is a γ-radonifying operator and W is an H-isonormal process,

then W (T ) is a Gaussian random variable. We shall prove next that every Gaussian
random variable X : Ω → E canonically arises in this way. To this end we define
the Hilbert space HX as the closed linear span in L2(Ω) of the random variables
〈X,x∗〉. The inclusion mapping WX : HX → L2(Ω) is an isonormal process.
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Theorem 7.3 (Karhunen-Loève). Let X be an E-valued Gaussian random vari-
able. Then the linear operator TX : HX → E defined by

TX〈X,x∗〉 := E〈X,x∗〉X,

is bounded and belongs to γ(HX , E), and we have

WX(TX) = X.

Proof. For all x∗, y∗ ∈ E∗ we have

|〈TX〈X,x∗〉, y∗〉| 6 E|〈X,x∗〉〈X, y∗〉| 6 ‖〈X,x∗〉‖L2(Ω)‖〈X, y∗〉‖L2(Ω)

= ‖〈X,x∗〉‖HX
‖〈X, y∗〉‖L2(Ω) 6MX‖〈X,x∗〉‖HX

‖y∗‖,

where MX is the norm of the bounded operator from E∗ to L2(Ω) defined by x∗ 7→
〈X,x∗〉. This proves that TX is a bounded operator of norm ‖TX‖ 6MX . To prove
that TX ∈ γ(HX , E) we check the assumptions of Theorem 3.22: for all x∗ ∈ E∗
we have T ∗Xx

∗ = 〈X,x∗〉 and therefore WX(T ∗Xx
∗) = WX(〈X,x∗〉) = 〈X,x∗〉. �

These results are complemented by the next characterisation of γ-radonifying
operators in terms of Gaussian random variables.

Theorem 7.4. For a bounded linear operator T ∈ L (H,E) the following are
equivalent:

(1) T ∈ γ(H,E);
(2) there exists an E-valued Gaussian random variable X satisfying

E〈X,x∗〉2 = ‖T ∗x∗‖2, x∗ ∈ E∗.

In this situation we have ‖T‖2γ(H,E) = E‖X‖2.

Proof. (1)⇒(2): Take X = W (T ), where W is any H-isonormal process.
(2)⇒(1): Let G be the closure of the range of T ∗ in H. Then W (T ∗x∗) := 〈X,x∗〉

defines a G-isonormal process, and Theorem 3.22 implies that T ∈ γ(G,E). Since
T ≡ 0 on G⊥ it follows that T ∈ γ(H,E).

To prove the final identity we note that for all x∗ ∈ E∗ we have E〈W (T ), x∗〉2 =
E〈X,x∗〉2. This implies that the Gaussian random variables W (T ) and X are
identically distributed. Therefore by Proposition 3.9, E‖X‖2 = E‖W (T )‖2 =
‖T‖2γ(G,E) = ‖T‖2γ(H,E). �

8. Covariance domination

Our next aim is to generalise the simple covariance domination inequality of
Lemma 6.1.

We begin with a classical inequality for Gaussian random variables with values
in Rd due to Anderson [2]. The Lebesgue measure of a Borel subset B of Rd is
denoted by |B|.

Lemma 8.1. If C and K are symmetric convex subsets of Rd, then for all x ∈ Rd
we have

|(C − x) ∩K| 6 |C ∩K|.

Proof. By the Brunn-Minkowski inequality (see Federer [36, Theorem 3.2.41]),

| 12 (C + x) ∩K + 1
2 [(C − x) ∩K]| 1d > 1

2 |(C + x) ∩K| 1d + 1
2 |(C − x) ∩K| 1d .
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Now (C − x) ∩K = −[(C + x) ∩K] and therefore |(C − x) ∩K| = |(C + x) ∩K|.
Plugging this into the estimate and raising both sides to the power d we obtain

| 12 (C + x) ∩K + 1
2 [(C − x) ∩K]| > |(C − x) ∩K|.

Since 1
2 [(C+x)∩K]+ 1

2 [(C−x)∩K] ⊆ C ∩K this gives the desired inequality. �

Recall our convention that Gaussian random variables are always centred.

Theorem 8.2 (Anderson). Let X be an Rd-valued Gaussian random variable
and let C ⊆ Rd be a symmetric convex set. Then for all x ∈ Rd we have

P{X + x ∈ C} 6 P{X ∈ C}.

Proof. If K is symmetric and convex, then by the lemma,∫
Rd

1C−x(y)1K(y) dy 6
∫
Rd

1C(y)1K(y) dy.

Approximating y 7→ exp(− 1
2y

2) from below by positive linear combinations of in-
dicators of symmetric convex sets, with monotone convergence we conclude that

P{X + x ∈ C} =
1√

(2π)d

∫
Rd

1C−x(y) exp(− 1
2 |y|

2) dy

6
1√

(2π)d

∫
Rd

1C(y) exp(− 1
2 |y|

2) dy = P{X ∈ C}.

�

As an application of Anderson’s inequality we have the following comparison
result for E-valued Gaussian random variables (see Neidhardt [93, Lemma 28]).

Theorem 8.3 (Covariance domination II). Let X1 and X2 be Gaussian random
variables with values in E. If for all x∗ ∈ E∗ we have

E〈X1, x
∗〉2 6 E〈X2, x

∗〉2,
then for all closed convex symmetric sets C in E we have

P1{X1 6∈ C} 6 P2{X2 6∈ C}.

Proof. We proceed in two steps.
Step 1 - First we prove the theorem for E = Rd. Let Q1 and Q2 denote the

covariance matrices of X1 and X2. The assumptions of the theorem imply that
the matrix Q2 −Q1 is symmetric and non-negative definite, and therefore it is the
covariance matrix of some Gaussian random variable X3 with values in Rd. On
a possibly larger probability space (Ω̃, F̃ , P̃) let X̃j be independent copies of Xj .

Then X̃1 + X̃3 has covariance matrix Q1 + (Q2 − Q1) = Q2. Hence, by Fubini’s
theorem and Anderson’s inequality,

P{X2 ∈ C} = P̃{X̃1 + X̃3 ∈ C} 6 P{X1 ∈ C}.
Step 2 - We will reduce the general case to the finite-dimensional case by a

procedure known as cylindrical approximation. Let X1 and X2 be Gaussian random
variables with values in a real Banach space E. By strong measurability, X1 and
X2 take their values in a separable closed subspace of E almost surely and therefore
we may assume that E itself is separable.

For each u ∈ {C there exists an element x∗u ∈ E∗ such that 〈u, x∗u〉 > 1 and
〈x, x∗u〉 6 1 for all x ∈ C. Since C is symmetric, we also have −〈x, x∗u〉 6 1 for all
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x ∈ C. Choose balls Bu with centres u such that 〈v, x∗u〉 > 1 for all v ∈ Bu. The
family {Bu : u ∈ {C} is an open cover of {C and by the Lindelöf property of E it
has a countable subcover {Bun : n > 1}. Let us write Bn := Bun and x∗n := x∗un

.
Put

CN := {x ∈ E : |〈x, x∗n〉| 6 1, n = 1, . . . , N}, N > 1.

Each CN is convex and symmetric, we have C1 ⊇ C2 ⊇ . . . and, noting that u 6∈ CN
for all u ∈ BN ,

⋂
N>1 CN = C.

Define RN -valued Gaussian variables by Xj,N := TNXj for j = 1, 2, where
T : E → RN is given by TNx := (〈x, x∗1〉, . . . , 〈x, x∗N 〉). The covariances of Xj,N are
given by TNQjT

∗
N , and for all ξ ∈ RN we have

〈TNQ1T
∗
Nξ, ξ〉 = 〈Q1T

∗
Nξ, T

∗
Nξ〉 6 〈Q2T

∗
Nξ, T

∗
Nξ〉 = 〈TNQ2T

∗
Nξ, ξ〉.

Hence, by what we have already proved,

P{X2 ∈ CN} = P{X2,N ∈ [−1, 1]N} 6 P{X1,N ∈ [−1, 1]N} = P{X1 ∈ CN}.

Upon letting N →∞ we obtain P{X2 ∈ C} 6 P{X1 ∈ C}. �

Corollary 8.4. Let X1 and X2 be Gaussian random variables with values in E
and assume that for all x∗ ∈ E∗ we have

E〈X1, x
∗〉2 6 E〈X2, x

∗〉2.

Suppose φ : E → [0,∞) is lower semi-continuous, convex and symmetric. Then,

Eφ(X1) 6 Eφ(X2).

Proof. By the assumptions of φ, for each r > 0 the set Cr := {x ∈ E : φ(x) 6 r}
is closed, convex and symmetric. Therefore, by Theorem 8.3,

P{φ(X1) 6 r} = P{X1 ∈ Cr} > P{X2 ∈ Cr} = P{φ(X2) 6 r}.

Hence,

Eφ(X1) =

∫ ∞
0

P{φ(X1) > r} dr 6
∫ ∞

0

P{φ(X2) > r} dr = Eφ(X2).

�

In particular we obtain that E‖X1‖p 6 E‖X2‖p for all 1 6 p <∞; this extends
Lemma 6.1.

Our next aim is to deduce from Theorem 8.3 a domination theorem for Gaussian
covariance operators (Theorem 8.8 below). The proof is based on standard repro-
ducing kernel Hilbert space arguments; classical references are Aronszajn [3] and
Schwartz [107]. We have already employed reproducing kernel arguments implic-
itly with the introduction of the space HX in the course of proving Theorem 7.3. In
the absence of Gaussian random variables X, a somewhat more abstract approach
is necessary.

The starting point is the trivial observation that covariance operators Q ∈
L (E∗, E) of E-valued Gaussian random variables are positive and symmetric, i.e.,
〈Qx∗, x∗〉 > 0 for all x∗ ∈ E∗ and 〈Qx∗, y∗〉 = 〈Qy∗, x∗〉 for all x∗, y∗ ∈ E∗.

Now let Q ∈ L (E∗, E) be an arbitrary positive symmetric operator. On the
range of Q, the formula

[Qx∗, Qy∗]HQ
:= 〈Qx∗, y∗〉
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defines an inner product [ · , · ]HQ
. Indeed, if Qx∗ = 0, then [Qx∗, Qy∗]HQ

=
〈Qx∗, y∗〉 = 0, and if Qy∗ = 0, then [Qx∗, Qy∗]HQ

= 〈Qx∗, y∗〉 = 〈Qy∗, x∗〉 = 0
by the symmetry of Q. This shows that [ · , · ]HQ

is well defined. Moreover, if
[Qx∗, Qx∗]HQ

= 〈Qx∗, x∗〉 = 0, then by the Cauchy-Schwarz inequality we have,
for all y∗ ∈ E∗,

|〈Qx∗, y∗〉| 6 〈Qx∗, x∗〉 12 〈Qy∗, y∗〉 12 = 0.

Therefore, Qx∗ = 0.
Let HQ be the real Hilbert space obtained by completing the range of Q with

respect to [ · , · ]HQ
. From

‖Qx∗‖2HQ
= 〈Qx∗, x∗〉 = |〈Qx∗, x∗〉| 6 ‖Q‖L (E∗,E)‖x∗‖2

we see that Q is bounded from E∗ into HQ, with norm 6 ‖Q‖
1
2

L (E∗,E). From

|〈Qx∗, y∗〉| 6 ‖Qx∗‖HQ
‖Qy∗‖HQ

6 ‖Qx∗‖HQ
‖Q‖L (E∗,HQ)‖y∗‖

it then follows that

‖Qx∗‖ 6 ‖Q‖L (E∗,HQ)‖Qx∗‖HQ
.

Thus, the identity mapping Qx∗ 7→ Qx∗ on the range of Q has a unique extension
to a bounded linear operator, denoted by iQ, from HQ into E and its norm satisfies
‖iQ‖ 6 ‖Q‖L (E∗,HQ).

The pair (iQ, HQ) is the reproducing kernel Hilbert space (RKHS) associated
with Q.

Remark 8.5. In the special case where Q is the covariance operator of an E-valued
Gaussian random variable X, then HQ and the space HX introduced in the proof
of Theorem 7.3 are canonically isometric by means of the mapping i∗Qx

∗ 7→ 〈X,x∗〉.

The next proposition has its origins in the work of Gross [42, 43]; see also
Baxendale [6], Dudley, Feldman, Le Cam [34], Kallianpur [59], Kuelbs
[64], and Satô [106].

Proposition 8.6. Let (iQ, HQ) be the RKHS associated with the positive symmetric
operator Q ∈ L (E∗, E). The mapping iQ : HQ → E is injective and we have the
identity

Q = iQ ◦ i∗Q.
As a consequence, Q is the covariance operator of an E-valued Gaussian random
variable X if and only if iQ ∈ γ(HQ, E). In this situation we have

E‖X‖2 = ‖iQ‖2γ(HQ,E).

Proof. Given an element x∗ ∈ E∗ we denote by hx∗ the element in HQ represented
by Qx∗. With this notation we have iQ(hx∗) = Qx∗ and

[hx∗ , hy∗ ]HQ
= 〈Qx∗, y∗〉.

For all y∗ ∈ E∗ we then have

[hx∗ , hy∗ ]HQ
= 〈Qx∗, y∗〉 = 〈iQ(hx∗), y

∗〉 = [hx∗ , i
∗
Qy
∗]HQ

.

Since the elements hx∗ span a dense subspace of HQ it follows that hy∗ = i∗Qy
∗.

Therefore,

Qy∗ = iQ(hy∗) = iQ(i∗Qy
∗)
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for all y∗ ∈ E∗, and the identity Q = iQ ◦ i∗Q follows. Finally if iQg = 0 for some
g ∈ HQ, then for all y∗ ∈ E∗ we have

[g, hy∗ ]HQ
= [g, i∗Qy

∗]HQ
= 〈iQg, y∗〉 = 0,

and therefore g = 0. This proves that iQ is injective. �

For an interesting addendum to the second part of this theorem we refer to
Mathieu and Fernique [81]. Using a deep regularity result for Gaussian processes
due to Talagrand, they prove that if Q ∈ L (E∗, E) is positive and symmetric,
then iQ ∈ γ(H,E) if and only if there exists a sequence (hn)n>1 in H such that the
following two conditions are satisfied:

(i) limn→∞ ‖hn‖2 log n = 0;
(ii) ‖iQh‖ 6 supn>1 |[h, hn]| for all h ∈ H.

Proposition 8.7. If Q,R ∈ L (E∗, E) are positive symmetric operators such that

〈Rx∗, x∗〉 6 〈Qx∗, x∗〉, x∗ ∈ E∗,

then as subsets of E we have iR(HR) ⊆ iQ(HQ), and this inclusion mapping induces
a contractive embedding HR ↪→ HQ.

Proof. By the Cauchy-Schwarz inequality, for each x∗ ∈ E∗ the mapping i∗Qy
∗ 7→

〈R∗x∗, y∗〉 extends to a bounded linear functional φx∗ on HQ of norm ‖φx∗‖ 6
‖i∗Rx∗‖. By the Riesz representation theorem there exist a unique element hx∗ ∈ HQ

such that [i∗Qy
∗, hx∗ ] = 〈Rx∗, y∗〉 for all y∗ ∈ E∗. Then

〈iQhx∗ , y∗〉 = 〈Rx∗, y∗〉 = 〈iRi∗Rx∗, y∗〉.

This shows that iQhx∗ = iRi
∗
Rx
∗. The contractive embedding HR ↪→ HQ we are

looking for is therefore given by i∗Rx
∗ 7→ hx∗ . �

Theorem 8.8 (Covariance domination III). Let Q ∈ L (E∗, E) be the covariance
operator of an E-valued Gaussian random variable X. Let R be the set of positive
symmetric operators R ∈ L (E∗, E) satisfying

〈Rx∗, x∗〉 6 〈Qx∗, x∗〉, x∗ ∈ E∗.

Then each R ∈ R is the covariance operator of a E-valued Gaussian random vari-
able XR and the family {XR : R ∈ R} is uniformly tight. Moreover, for all R ∈ R
and all 1 6 p <∞ we have

E‖XR‖p 6 E‖X‖p.

Proof. By the second part of Proposition 8.6 we have iQ ∈ γ(HQ, E). By the
right ideal property, for all R ∈ R we have iR = iQ ◦ iR,Q ∈ γ(HR, E), where
iR,Q : HR ↪→ HQ is the embedding of Proposition 8.7. Hence by the second part
of Proposition 8.6 there exists an E-valued Gaussian random variables XR with
covariance operator R.

Let ε > 0 be arbitrary and fixed, and choose a compact set K ⊆ E such that
P{X ∈ K} > 1 − ε. By replacing K by its convex symmetric hull, which is still
compact, we may assume that K is convex and symmetric. In view of

E〈XR, x
∗〉2 = 〈Rx∗, x∗〉 6 〈Qx∗, x∗〉 = E〈X,x∗〉2,

from Theorem 8.3 we obtain that P{XR ∈ K} > P{X ∈ K} > 1− ε. �



36 JAN VAN NEERVEN

9. Compactness

Recall that a sequence of E-valued random variables (Xn)n>1 is said to converge
in distribution to an E-valued random variable X if limn→∞ Ef(Xn) = Ef(X)
for all f ∈ Cb(E) (see Section 2). As it turns out, it is possible to allow certain
unbounded functions f .

Lemma 9.1. Let (Xn)n>1 be a sequence of E-valued random variables converging
in distribution to a random variable X. Let φ : E → [0,∞) be a Borel function
with the property that

sup
n>1

Eφ(Xn) <∞.

If f : E → R is a continuous function with the property that

|f(x)| 6 c(‖x‖)φ(x), x ∈ E,
where c(r) ↓ 0 as r →∞, then

lim
n→∞

Ef(Xn) = Ef(X).

Proof. Put

fR(x) :=

 R, if f(x) > R,
f(x), if −R 6 f(x) 6 R,
−R, if fR(x) < −R,

Then fR ∈ Cb(E) and

(9.1) lim
n→∞

EfR(Xn) = EfR(X).

We also deduce that

(9.2)

lim
R→∞

(
sup
n>1

E|f(Xn)− fR(Xn)|
)
6 lim
R→∞

(
sup
n>1

E
(
1{|f(Xn)|>R}|f(Xn)|

))
6 lim
R→∞

c(δ(R)) sup
n>1

E
(
1{|f(Xn)|>R}φ(Xn)

)
,

where

δ(R) := sup{δ > 0 : |f(x)| 6 R for all ‖x‖ 6 δ}.
From limR→∞ δ(R) = ∞ we see that the right-hand side of (9.2) tends to 0 as
R→∞. Combined with (9.1), this gives the desired result. �

The main result of this section gives a necessary and sufficient condition for
relative compactness in the space γ(H,E). In a rephrasing in terms of sequential
convergence in γ(H,E), this result is due to Neidhardt [93].

Theorem 9.2. Let W be an H-isonormal process. For a subset T of γ(H,E) the
following assertions are equivalent:

(1) the set T is relatively compact in γ(H,E);
(2) the set {W (T ) : T ∈ T } is relatively compact in L2(Ω;E);
(3) the set {W (T ) : T ∈ T } is uniformly tight and for all x∗ ∈ E∗ the set
{T ∗x∗ : T ∈ T } is relatively compact in H.

Proof. (1)⇔(2): This is immediate from the fact that W is isometric.
(1)⇒(3): By the continuity of T 7→ T ∗x∗, {T ∗x∗ : T ∈ T } is relatively compact

in H. It remains to prove that the set {W (T ) : T ∈ T } is uniformly tight. For
this it suffices to prove that every sequence in this set has a subsequence which is
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uniformly tight. Let (Tn)n>1 be a sequence in T and set Xn := W (Tn). By passing
to a subsequence we may assume that (Tn)n>1 is convergent in γ(H,E).

We shall prove that the sequence (Xn)n>1 is uniformly tight. Fix ε > 0 and
choose m0 > 1 so large that 22−2m0 < ε. For every m > m0 we choose Nm > 1 so
large that

‖Tn − TNm
‖γ(H,E) 6 2−2m ∀n > Nm.

Let Xn,m := W (Tn − TNm). By Chebyshev’s inequality, for n > Nm we have

P{‖Xn,m‖ > 2−m}) 6 22mE‖Xn,m‖2 = 22m‖Tn − TNm
‖2γ(H,E) 6 2−2m.

For m > m0 we also choose compact sets Km ⊆ E such that

P{Xn ∈ Km} > 1− 2−2m, 1 6 n 6 Nm,

and let Vm := {x ∈ E : d(x,Km) < 2−m}. For n > Nm we have

P{Xn 6∈ Vm} 6 P{‖Xn−XNm
‖ > 2−m}+P{XNm

6∈ Km} 6 2−2m+2−2m = 21−2m.

On the other hand, for 1 6 n 6 Nm we have

P{Xn 6∈ Vm} 6 P{Xn 6∈ Km} 6 2−2m 6 21−2m.

It follows that the estimate P{Xn 6∈ Vm} 6 21−2m holds for all n > 1.
Let

K :=
⋂

m>m0

Vm.

If finitely many open balls B(xi, 2
−m) cover Km, then the open balls B(xi, 3 ·2−m)

cover Vm. Hence K is totally bounded and therefore compact. For all n > 1,

P{Xn 6∈ K} 6
∑
m>m0

P{Xn 6∈ Vm} 6
∑
m>m0

21−2m < 22−2m0 < ε.

This proves that (Xn)n>1 is uniformly tight.
(3)⇒(1): Let (Tn)n>1 be a sequence in T . We must show that its contains a

Cauchy subsequence.
Choose a separable closed subspace E0 of E such that each Xn = W (Tn) takes

values in E0 almost surely. Noting that the weak∗-topology of the closed unit ball
in E∗0 is metrisable, we can choose a sequence (x∗j )j>1 in E∗ whose restrictions to
E0 are weak∗-dense in the closed unit ball of E∗0 . After passing to a subsequence we
may assume that for all j > 1 the sequence (T ∗nx

∗
j )j>1 converges in H and that the

sequence (Xn)n>1 converges in distribution. We claim that limn,m→∞Xn−Xm = 0
in distribution. To see this fix arbitrary sequences nk → ∞ and mk → ∞. After
passing to a subsequence of the indices k we may assume that (Xnk

− Xmk
)k>1

converges in distribution to some E0-valued random variable Y . Taking Fourier
transforms we see that for all j > 1,

E exp(−i〈Y, x∗j 〉) = lim
k→∞

E exp(−i〈Xnk
−Xmk

, x∗j 〉)

= lim
k→∞

exp(− 1
2‖T

∗
nk
x∗j − T ∗mk

x∗j‖) = 1.

It follows that exp(−i〈Y, x∗〉) = 1 for all x∗ ∈ E∗, and therefore Y = 0 by the
uniqueness theorem for the Fourier transform. This proves the claim.

Thus, for all f ∈ Cb(E) we obtain

lim
m,n→∞

Ef(Xn −Xm) = Ef(0).
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By Lemma 9.1 combined with Proposition 7.2 and Theorem 7.4,

lim
m,n→∞

‖Tn − Tm‖2γ(H,E) = lim
m,n→∞

E‖Xn −Xm‖2 = 0.

�

Here is a simple application:

Theorem 9.3. Let T be a subset of L (H,E) which is dominated in covariance
by some fixed element S ∈ γ(H,E), in the sense that for all T ∈ T and x∗ ∈ E∗,

‖T ∗x∗‖ 6 ‖S∗x∗‖.
Then the following assertions are equivalent:

(1) the set T is relatively compact in γ(H,E);
(2) the set {T ∗x∗ : T ∈ T } is relatively compact in H for all x∗ ∈ E∗.

Proof. By Theorem 8.8 the family {W (T ) : T ∈ T } is uniformly tight and therefore
the result follows from Theorem 9.2. �

Corollary 9.4 (γ-Dominated convergence). Suppose limn→∞ T ∗nx
∗ = T ∗x∗ in H

for all x∗ ∈ E∗. If there exists S ∈ γ(H,E) such that

0 6 ‖T ∗nx∗‖H 6 ‖S∗x∗‖H
for all n > 1 and x∗ ∈ E∗, then limn→∞ Tn = T in γ(H,E).

10. Trace duality

In this section we investigate duality properties of the spaces γ(H,E). As we
shall see we have a natural identification (γ(H,E))∗ = γ(H,E∗) if E is a K-convex
Banach space. In order to define the notion of K-convexity we start with some
preliminaries.

For a Gaussian sequence γ = (γn)n>1 we define projections πγN in L2(Ω;E) by

(10.1) πγNX :=

N∑
n=1

γn E(γnX).

Identifying L2(Ω;E∗) isometrically with a norming subspace of (L2(Ω;E))∗, for all
X∗ ∈ L2(Ω;E∗) we have

(10.2) (πγN )∗X∗ =

N∑
n=1

γn E(γnX
∗).

Lemma 10.1. If γ = (γn)n>1 and γ′ = (γ′n)n>1 are Gaussian sequences, then for
all N > 1 we have

‖πγN‖ = ‖πγ
′

N ‖.
Proof. Define the bounded operator πN on L2(Ω;E) by

(10.3) πNX :=

N∑
n=1

γ′nE(γnX), X ∈ L2(Ω;E).

On the closed subspace L2(Ω;E∗) of (L2(Ω;E))∗, the adjoint operator π∗N is given
by

(10.4) π∗NX
∗ =

N∑
n=1

γnE(γ′nX
∗), X∗ ∈ L2(Ω;E∗).
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Now let X ∈ L2(Ω;E) be given. Given ε > 0 choose Y ∗ ∈ L2(Ω;E∗) of norm one
such that (1 + ε)|〈πNX,Y ∗〉| > ‖πNX‖L2(Ω;E). Then, first comparing (10.1) and
(10.3), and then (10.2) and (10.4),

‖πγNX‖L2(Ω;E) = ‖πNX‖L2(Ω;E) 6 (1 + ε)|〈πNX,Y ∗〉|
= (1 + ε)|〈X,π∗NY ∗〉|
6 (1 + ε)‖X‖L2(Ω;E)‖π∗NY ∗‖L2(Ω;E∗)

= (1 + ε)‖X‖L2(Ω;E)‖(πγ
′

N )∗Y ∗‖L2(Ω;E∗)

6 (1 + ε)‖πγ
′

N ‖‖X‖L2(Ω;E).

Since ε > 0 was arbitrary this shows that ‖πγN‖ 6 ‖π
γ′

N ‖. By reversing the roles of

γ and γ′ we also obtain the converse inequality ‖πγ
′

N ‖ 6 ‖π
γ
N‖. �

This allows us to define
KN (E) := ‖πγN‖.

Clearly, the numbers KN (E) are increasing with N .

Lemma 10.2. For any closed norming subspace F of E∗ we have

E
∥∥∥ N∑
n=1

γnxn

∥∥∥2

6 K2
N (E) sup

{∣∣∣ N∑
n=1

〈xn, x∗n〉
∣∣∣2 : x∗1, . . . , x

∗
N ∈ F, E

∥∥∥ N∑
n=1

γnx
∗
n

∥∥∥2

6 1
}
.

Proof. Put X :=
∑N
n=1 γnxn. Since L2(Ω;F ) is isometric to a norming closed sub-

space of (L2(Ω;E))∗, given ε > 0 we may choose X∗ ∈ L2(Ω;F ) of norm one
such that (1 + ε)|〈X,X∗〉| > ‖X‖L2(Ω;E). Noting that πγNX = X and putting
x∗n := E(γnX

∗) we obtain

‖X‖L2(Ω;E) 6 (1 + ε)|〈X,X∗〉| = (1 + ε)|〈πγNX,X
∗〉|

= (1 + ε)|〈X, (πγN )∗X∗〉| = (1 + ε)
∣∣∣ n∑
n=1

〈xn, x∗n〉
∣∣∣.

Since ε > 0 was arbitrary, the proof is concluded by noting that x∗n ∈ F and

E
∥∥∥ N∑
n=1

γnx
∗
n

∥∥∥2

= E
∥∥∥ N∑
n=1

γnE(γnX
∗)
∥∥∥2

= E‖(πγN )∗X∗‖2 6 ‖πγN‖
2 = K2

N (E).

�

Definition 10.3. A Banach space E is called K-convex if

K(E) := sup
N>1

KN (E)

is finite.

Closed subspaces of K-convex spaces are K-convex. The next result shows that
K-convexity is a self-dual property:

Proposition 10.4. A Banach space E is K-convex if and only if its dual E∗ is
K-convex, in which case we have K(E) = K(E∗).
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Proof. The identity (10.2) shows that (πEN )∗ = πE
∗

N . As an immediate consequence
we see that if E is K-convex, then E∗ is K-convex and K(E) = K(E∗). If E∗ is K-
convex, then E∗∗ is K-convex, and therefore its closed subspace E is K-convex. �

The notion of K-convexity has been introduced by Maurey and Pisier [82] and
was studied thoroughly in Pisier [100, 101]. Usually this notion is defined using
Rademacher variables rather than Gaussian variables. In fact, both definitions are
equivalent. In fact, one may use an argument similar to the one employed in Lemma
10.1 to pass from the Gaussian definition to the Rademacher definition, and a
central limit theorem argument allows one to pass from the Rademacher definition
to the Gaussian definition. For the details we refer to Figiel and Tomczak-
Jaegermann [38] and Tomczak-Jaegermann [116].

Example 10.5. Every Hilbert space E is K-convex and K(E) = 1.

Example 10.6. Let (A,A , µ) be a σ-finite measure space and let 1 < p <∞. Then
Lp(A) is K-convex, and more generally if E is K-convex then then Lp(A;E) is
K-convex and

K(Lp(A;E)) 6

{
Kγ
p,2K(E), if 2 6 p <∞,

Kγ
q,2K(E), if 1 < p 6 2 and 1

p + 1
q = 1

Here Kγ
p,2 and Kγ

q,2 are the Gaussian Kahane-Khintchine constants.

First let 2 6 p <∞. The projections defined by (10.1) in E and Lp(A;E) will be

denoted by πγN and π
γ,Lp(A;E)
n , respectively. For X ∈ L2(Ω;Lp(A;E)) we obtain,

using Jensen’s inequality, Fubini’s theorem, the Kahane-Khintchine inequality, and
the K-convexity of E,

E‖πγ,L
p(A;E)

N X‖2Lp(A;E) = E
(∫

A

∥∥∥ N∑
n=1

γnE(γnX(ξ))
∥∥∥pdµ(ξ)

) 2
p

6
(
E
∫
A

∥∥∥ N∑
n=1

γnE(γnX(ξ))
∥∥∥pdµ(ξ)

) 2
p

6 (Kγ
p,2)2

(∫
A

(
E
∥∥∥ N∑
n=1

γnE(γnX(ξ))
∥∥∥2) p

2

dµ(ξ)
) 2

p

6 (Kγ
p,2)2‖πγN‖

2
(∫

A

(
E‖X(ξ)‖2

) p
2 dµ(ξ)

) 2
p

= (Kγ
p,2)2‖πγN‖

2
∥∥∥E‖X(ξ)‖2

∥∥∥
L

p
2 (A)

6 (Kγ
p,2)2‖πγN‖

2E
∥∥∥‖X(ξ)‖2

∥∥∥
L

p
2 (A)

= (Kγ
p,2)2‖πγN‖

2E
(∫

A

‖X(ξ)‖p dµ(ξ)
) 2

p

= (Kγ
p,2)2‖πγN‖

2E‖X‖2Lp(A;E).

This proves the result for 2 6 p <∞.
Next let 1 < p < 2. We can identify (Lq(A;E∗)) isometrically with a closed sub-

space of (Lp(A;E))∗, 1
p + 1

q = 1. Since E∗ is K-convex, by what we just proved the

space Lq(A;E∗) is K-convex. Hence Lp(A;E), being isometrically contained in the
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dual of Lq(A;E∗), is K-convex, and K(Lp(A;E)) 6 K(Lq(A;E∗)) 6 Kγ
q,2K(E∗) =

Kγ
q,2K(E∗).

Example 10.7. The space c0 fails to be K-convex. To see this, let (γn)n>1 be a
Gaussian sequence and let (un)n>1 be the standard basis of c0. Set

XN :=

N∑
n=1

sgn(γn)un.

We have ‖XN‖L2(Ω;c0) = 1 and E(γnXN ) = E|γn|un =
√
π/2un, so

‖πγNXNE‖2c0 =
π

2
E
∥∥∥ N∑
n=1

γnun

∥∥∥2

c0
.

Arguing as in Example 4.4, the right hand side can be bounded from below by a
term which grows asymptotically like logN . It follows that ‖πγN‖ > C logN .

A deep theorem of Pisier [100] states that a Banach space E is K-convex if and
only if E has non-trivial type (the notion of type is discussed in the next section).
The following simple proof that every Banach space with type 2 is K-convex was
given by Blasco, Tarieladze, Vidal [8]; see also Chobanyan and Tarieladze
[19] and Maurey and Pisier [82].

Proposition 10.8. If E has type 2, then E is K-convex and Kγ(E) 6 T γ2 (E).

Proof. Let X =
∑k
j=1 1Ωjxj be simple, with the measurable sets Ωj disjoint and of

positive probability. Let yj :=
√
P(Ωj)xj , so

E‖X‖2 =

k∑
j=1

‖yj‖2

and

E〈X,x∗〉2 =

k∑
j=1

〈yj , x∗〉2, x∗ ∈ E∗.

Let zn := E(γnX). Then, by the orthonormality of Gaussian sequences in L2,

N∑
n=1

〈zn, x∗〉2 =

N∑
n=1

E(γn〈X,x∗〉)2 6 E〈X,x∗〉2 =

k∑
j=1

〈yj , x∗〉2.

Hence by covariance domination,

E‖πγNX‖
2 = E

∥∥∥ N∑
n=1

γnzn

∥∥∥2

6 E
∥∥∥ k∑
k=1

γjyj

∥∥∥2

6 (T γ2 (E))2
k∑
j=1

‖yj‖2 = (T γ2 (E))2E‖X‖2.

It follows that ‖πγN‖ 6 T γ2 (E). Since N > 1 was arbitrary this gives K(E) 6
T γ2 (E). �

The next result is essentially due to Pisier [101]; its present formulation was
stated by Kalton and Weis [63]. It describes a natural pairing between γ(H,E)
and γ(H,E∗), the so-called trace duality.
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Theorem 10.9 (Trace duality). For all T ∈ H ⊗ E and S ∈ H ⊗ E∗ we have

|tr(S∗T )| 6 ‖T‖γ(H,E)‖S‖γ(H,E∗).

As a consequence, for all S ∈ γ(H,E∗) the mapping φS : T 7→ tr(S∗T ) defines an
element φS ∈ (γ(H,E))∗ of norm

‖φS‖ 6 ‖S‖γ(H,E∗).

If E is K-convex, the mapping φ : S 7→ φS is an isomorphism of γ(H,E∗) onto
(γ(H,E))∗ and

‖S‖γ(H,E∗) 6 K(E)‖φS‖.

Proof. For the proof of the first assertion we may assume that T =
∑N
n=1 hn ⊗ xn

and S =
∑N
n=1 hn ⊗ x∗n with h1, . . . , hN orthonormal in H. Then,

|tr(S∗T )| =
∣∣∣tr N∑

m=1

N∑
n=1

〈xm, x∗n〉hm ⊗ hn
∣∣∣ =

∣∣∣ N∑
n=1

〈xn, x∗n〉
∣∣∣

=
∣∣∣E〈 N∑

m=1

γmxm,

N∑
n=1

γnx
∗
n

〉∣∣∣ 6 ‖T‖γ(H,E)‖S‖γ(H,E∗).

Lemma 10.2, applied to the Banach spaces E∗ and the norming subspace E ⊆ E∗∗,
shows that

‖S‖γ(H,E∗) 6 K(E) sup
{
|tr(S∗T )| : ‖T‖γ(H,E) 6 1

}
= K(E)‖φS‖.

This shows that φ is an isomorphic embedding of γ(H,E∗) into (γ(H,E))∗.
It remains to prove that φ is surjective. To this end let Λ ∈ (γ(H,E))∗ be given.

We claim that the bounded operator S : H → E∗ defined by 〈x, Sh〉 = 〈h ⊗ x,Λ〉
belongs to γ(H,E∗) and that S = Λ in (γ(H,E))∗. Fix any finite orthonormal
system (hn)Nn=1 in H. By Lemma 10.2, applied to E∗ and the norming subspace
E ⊆ E∗∗,

E
∥∥∥ N∑
n=1

γnShn

∥∥∥2

6 K2(E) sup
∣∣∣ N∑
n=1

〈xn, Shn〉
∣∣∣2

= K2(E) sup
∣∣∣ N∑
n=1

〈hn ⊗ xn,Λ〉
∣∣∣2 = K2(E)‖Λ‖2.

Example 10.7 shows that a K-convex subspace cannot contain an isomorphic copy
of c0, and therefore an appeal to Theorem 4.3 finishes the proof. �

Our final result relates the notion of K-convexity to isonormal processes.

Theorem 10.10. Let E be K-convex and let W : H → L2(Ω) be an isonormal
process. The closure of the range of the induced mapping W : γ(H,E)→ L2(Ω;E)
is the range of a projection PW in L2(Ω;E) of norm ‖PW ‖ 6 K(E).

Proof. Let (hi)i∈I be a maximal orthonormal system in H. We claim that the
projection PW is given as the strong operator limit limJ P

W
J , where

PWJ X :=
∑
j∈J

γjE(γjX),

with γj = W (hj). Here the limit is taken along the net of all finite subsets J of I.
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To see that the strong limit exists, recall that every X ∈ L2(Ω;E) can be ap-

proximated by simple functions of the form X =
∑k
n=N 1An

⊗ xn. By the uniform
boundedness of the projections PWJ and linearity it suffices to show that the limit
limJ P

W
J Xn exists for each Xn := 1An

⊗ xn. But in L2(Ω), the limit limJ P
W
J 1An

exists by standard facts about orthogonal projections in Hilbert spaces.
From ‖PWJ ‖ 6 K(E) for all finite subsets J ⊆ I we infer ‖PW ‖ 6 K(E). �

11. Embedding theorems

As we have seen in Example 3.6, if W : L2(R+;H) → L2(Ω) is an isonormal
process, then the induced isometric mapping

W : γ(L2(R+;H), E)→ L2(Ω;E)

can be interpreted as a stochastic integral. Indeed, the stochastic integral of the
H ⊗ E-valued function f ⊗ (h⊗ x) can be defined by∫ ∞

0

f ⊗ (h⊗ x) dW := W ((f ⊗ h)⊗ x),

and this definition extends by linearity to functions φ ∈ L2(R+) ⊗ (H ⊗ E). The
isometric property of the induced mapping W then expresses that

E
∥∥∥∫ ∞

0

φdW
∥∥∥2

= ‖Tφ‖2γ(L2(R+;H),E),

where T : L2(R+)⊗ (H ⊗ E)→ (L2(R+)⊗H)⊗ E is the linear mapping

T (f ⊗ (h⊗ x)) := (f ⊗ h)⊗ x.
Since (L2(R+) ⊗ H) ⊗ E is dense in γ(L2(R+;H), E), the stochastic integral has
a unique isometric extension to γ(L2(R+;H), E). It is therefore of considerable
interest to investigate the structure of the space γ(L2(R+;H), E). In this section
we shall prove various embedding theorems which show that suitable Banach spaces
of γ(H,E)-valued functions embed in γ(L2(R+;H), E).

The simplest example of such an embedding occurs when E has type 2.

Definition 11.1. A Banach space E is said to have type p ∈ [1, 2] if there exists a
constant Cp > 0 such that for all finite sequences x1, . . . , xN in E we have(

E
∥∥∥ N∑
n=1

rnxn

∥∥∥2) 1
2

6 Cp
( N∑
n=1

‖xn‖p
) 1

p

.

The space E is said to have cotype q ∈ [2,∞] if there exists a constant Cq > 0 such
that for all finite sequences x1, . . . , xN in E we have( N∑

n=1

‖xn‖q
) 1

q

6 Cq
(
E
∥∥∥ N∑
n=1

rnxn

∥∥∥2) 1
2

.

For q =∞ we make the obvious adjustment in this definition.

The least constants in the above definitions are denoted by Tp(E) and Cq(E),
respectively, and are called the type and cotype constant of E.

Remark 11.2. In the definitions of type and cotype, the Rademacher variables may
be replaced by Gaussian random variables; this only affects the numerical values
of the type and cotype constants. The Gaussian type and cotype constants of a
Banach space E are denoted by T γp (E) and Cγq (E), respectively.
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It is easy to check that the inequalities defining type and cotype cannot be
satisfied for any p > 2 and q < 2, respectively, even in one-dimensional spaces E.
This explains the restrictions imposed on these numbers.

Example 11.3. Every Banach space has type 1 and cotype ∞.

Example 11.4. Every Hilbert space has type 2 and cotype 2. A deep result of
Kwapień [70] states that, conversely, every Banach space with type 2 and cotype
2 is isomorphic to a Hilbert space.

Example 11.5. Let (A,A , µ) be a σ-finite measure space and let 1 6 r < ∞. If
E has type p (cotype q), then Lr(A;E) has type min{p, r} (cotype max{q, r}). In
particular, Lr(A) has type min{2, r} and cotype max{2, r}.

Let us prove this for the case of type, the case of cotype being similar. If r < p
we may replace p by r and thereby assume that 1 6 p 6 r < ∞; we shall prove
that Lr(A;E) has type p, with

Tp(L
r(A;E)) 6 K2,rKr,2Tp(E) =

 K2,rTp(E), if 1 6 r < 2;
Tp(E), if r = 2;

Kr,2Tp(E), if 2 < r <∞.

Here K2,r and Kr,2 are the Kahane-Khintchine constants.
Let f1, . . . , fN ∈ Lr(A;E). By using the Fubini theorem, the Kahane-Khintchine

inequality, type p, Hölder’s inequality, and the triangle inequality in L
r
p (A),(

E
∥∥∥ N∑
n=1

rnfn

∥∥∥r
Lr(A;E)

) 1
r

=
(∫

A

E
∥∥∥ N∑
n=1

rnfn(ξ)
∥∥∥r dµ(ξ)

) 1
r

6 Kr,2

(∫
A

(
E
∥∥∥ N∑
n=1

rnfn(ξ)
∥∥∥2) r

2

dµ(ξ)
) 1

r

6 Kr,2Tp(E)
(∫

A

( N∑
n=1

‖fn(ξ)‖p
) r

p

dµ(ξ)
) 1

r

= Kr,2Tp(E)
∥∥∥ N∑
n=1

‖fn‖p
∥∥∥ 1

p

L
r
p (A)

6 Kr,2Tp(E)
( N∑
n=1

∥∥∥‖fn‖p∥∥∥
L

r
p (A)

) 1
p

= Kr,2Tp(E)
( N∑
n=1

‖fn‖pLr(A;E)

) 1
p

.

An application of the Kahane-Khintchine inequality to change moments in the left
hand side finishes the proof of the first assertion.

If a Banach space has type p for some p ∈ [1, 2], then it has type p′ for all
p′ ∈ [1, p]; if a Banach space has cotype q for some q ∈ [2,∞], then it has cotype q′

for all q′ ∈ [q,∞]. A simple duality argument shows that if E has type p, then the
dual space E∗ has cotype p′, 1

p + 1
p′ = 1. If E is K-convex and has cotype p, then

the dual space E∗ has type p′, 1
p + 1

p′ = 1. The K-convexity assumption cannot be

omitted: `1 has cotype 2 while its dual `∞ fails to have non-trivial type.
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The next theorem goes back to Hoffmann-Jørgensen and Pisier [48] and
Rosiński and Suchanecki [104]; in its present formulation it can be found in van
Neerven and Weis [91].

Theorem 11.6. Let (A,A , µ) be a σ-finite measure space.

(1) If E has type 2, then the mapping (f ⊗ h)⊗ x 7→ f ⊗ (h⊗ x) has a unique
extension to a continuous embedding

L2(A; γ(H,E)) ↪→ γ(L2(A;H), E)

of norm at most T2(E). Conversely, if the identity mapping f ⊗ x 7→ f ⊗ x
extends to a bounded operator from L∞(0, 1;E) to γ(L2(0, 1), E), then E
has type 2.

(2) If E has cotype 2, then the mapping f ⊗ (h⊗x) 7→ (f ⊗h)⊗x has a unique
extension to a continuous embedding

γ(L2(A;H), E) ↪→ L2(A; γ(H,E))

of norm at most C2(E). Conversely, if the identity mapping f ⊗ x 7→ f⊗
extends to a bounded operator from γ(L2(0, 1), E) to L1(0, 1;E), then E
has cotype 2.

Proof. We shall prove (1); the proof of (2) is very similar.
Let (fm)Mm=1 and (hn)Nn=1 be orthonormal systems in L2(A) and H, respectively,

with fm = cm1Am
for suitable disjoint sets Am ∈ A ; here cm := 1/

√
µ(Am) is a

normalising constant. Let (γmn)m,n>1 be a Gaussian sequence on (Ω,F ,P) and
let (r′m)m>1 be a Rademacher sequence on a second probability space (Ω′,F ′,P′).
For each ω′ ∈ Ω′ the Gaussian sequences (γmn)m,n>1 and (rm(ω′)γmn)m,n>1 are
identically distributed. Averaging over Ω′, using Fubini’s theorem and the type 2
property of L2(Ω;E), we obtain∥∥∥ M∑

m=1

N∑
n=1

(fm ⊗ hn)⊗ xmn
∥∥∥2

γ(L2(A;H),E)

= E
∥∥∥ M∑
m=1

N∑
n=1

γmnxmn

∥∥∥2

= EE′
∥∥∥ M∑
m=1

r′m

N∑
n=1

γmnxmn

∥∥∥2

6 T 2
2 (E)

M∑
m=1

E
∥∥∥ N∑
n=1

γmnxmn

∥∥∥2

= T 2
2 (E)

M∑
m=1

E
∥∥∥ N∑
n=1

γnxmn

∥∥∥2

= T 2
2 (E)

M∑
m=1

c2mµ(Am)E
∥∥∥ N∑
n=1

γnxmn

∥∥∥2

= T 2
2 (E)

∥∥∥ M∑
m=1

N∑
n=1

fm ⊗ (hn ⊗ xmn)
∥∥∥2

L2(A;γ(H,E))
.
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It is easy to check that elements of the form
∑M
m=1

∑N
n=1(fm ⊗ hn) ⊗ xmn and∑M

m=1

∑N
n=1(fm ⊗ (hn ⊗ xmn) are dense in γ(L2(A;H), E) and L2(A; γ(H,E)),

respectively. This gives the first assertion.
The proof of the converse relies on the preliminary observation that in the def-

inition of type 2 we may restrict ourselves to vectors of norm one. To prove this
we follow James [56]. Keeping in mind Remark 11.2, suppose there is a constant
C such that for all N > 1 and all x1, . . . , xN ∈ E of norm one we have(

E
∥∥∥ N∑
n=1

γnxn

∥∥∥2) 1
2

6 Cp
( N∑
n=1

‖xn‖p
) 1

p

.

Now let x1, . . . , xN ∈ E have integer norms, say ‖xn‖ = Mn, and let (γmn)m,n>1 be

a doubly indexed Gaussian sequence. Since
∑M2

n
m=1 γmn and Mnγn are identically

distributed, we have

E
∥∥∥ N∑
n=1

γnxn

∥∥∥2

= E
∥∥∥ N∑
n=1

M2
n∑

m=1

γmn
xn
‖xn‖

∥∥∥2

6 C2

N∑
n=1

M2
n∑

m=1

∥∥ xn
‖xn‖

∥∥2
= C2

N∑
n=1

‖xn‖2.

Upon dividing by a large common integer, this inequality extends to x1, . . . , xN ∈ E
having rational norms, and the general case follows from this by approximation.

Suppose now that E fails type 2, and let N > 1 be fixed. By the observation
(and Remark 11.2), there exist x1, . . . , xM ∈ E of norm one such that

E
∥∥∥ M∑
m=1

γmxm

∥∥∥2

> N2
M∑
m=1

‖xm‖2.

Let I1, . . . , IM be disjoint intervals in (0, 1) of measure |Im| = 1/M2.

Then, using that the functions
√
M1Im are orthonormal in L2(0, 1),∥∥∥ M∑

m=1

1Im ⊗ xm
∥∥∥2

γ(L2(0,1),E)
=

1

M
E
∥∥∥ M∑
m=1

γmxm

∥∥∥2

>
CN2

M

M∑
m=1

‖xm‖2

= N2 = N2
∥∥∥ M∑
m=1

1Im ⊗ xm
∥∥∥
L∞(0,1;E)

.

This shows that the identity mapping on L2(0, 1)⊗E does not extend to a bounded
operator from L∞(0, 1;E) into γ(L2(0, 1), E). �

Note that if φ := f ⊗ (h⊗ x), then Tφ := f ⊗ (h⊗ x) is the operator given by

(11.1) Tφg =

∫
A

φg dµ, g ∈ L2(A;H).

Corollary 11.7. If the identity mapping f ⊗x 7→ f ⊗x extends to an isomorphism

L2(R+;E) ' γ(L2(R+), E),

then E is isomorphic to a Hilbert space

Proof. By Theorem 11.6, E has type 2 and cotype 2 and E is isomorphic to a
Hilbert space by Kwapień’s theorem cited earlier. �
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We continue with an example of van Neerven and Weis [91] which shows
that in certain spaces without cotype 2 there exist bounded strongly measurable
functions φ : (0, 1)→ L (H;E) such that the operator Tφ defined by (11.1) belongs
to γ(L2(0, 1;H), E), even though φ(t) 6∈ γ(H,E) for all t ∈ (0, 1).

Example 11.8. Let H = `2 and E = `p with 2 < p < ∞. For k = 1, 2, . . . choose
sets Ak ⊆ (0, 1) of measure 1

k in such a way that for all t ∈ (0, 1) we have

(11.2) #{k > 1 : t ∈ Ak} =∞.

Define the operators φ(t) : `2 → `p as coordinate-wise multiplication with the
sequence (a1(t), a2(t), . . . ), where

(11.3) ak(t) =

{
1, if t ∈ Ak,
0, otherwise.

Then ‖φ(t)‖ = 1 for all t ∈ (0, 1) and none of the operators φ(t) is γ-radonifying.
Indeed, this follows from Proposition 13.7 below, according to which we have φ(t) ∈
γ(`2, `p) if and only if ∑

k>1

‖φ∗(t)e∗k‖
p
`2 <∞,

where e∗k denote the k-th unit vector of lq ( 1
p + 1

q = 1). By (11.2) and (11.3), the

sum
∑∞
k=1 ‖φ∗(t)e∗k‖

p
`2 diverges for all t ∈ [0, 1].

The associated operator Tφ : L2(0, 1; `2)→ `p is well-defined and bounded, and
we have

‖Tφu∗k‖2`2 =

∫ 1

0

a2
k(t) dt = |Ak| =

1

k
.

Consequently, ∑
k>1

‖Tφu∗k‖
p
`2 =

∑
k>1

1

k
p
2

<∞

and Tφ is γ-radonifying.

Using the scale of Besov spaces, a version of Theorem 11.6(1) can be given for
Banach spaces E having type p ∈ [1, 2]. In van Neerven, Veraar, Weis [87], it
is shown by elementary methods that if E has type p, then for all Hilbert spaces
H the mapping f ⊗ (h⊗ x) 7→ (f ⊗ h)⊗ x extends to a continuous embedding

B
1
p−

1
2

p,p (0, 1; γ(H,E)) ↪→ γ(L2(0, 1;H), E).

Conversely, by a result of Kalton, van Neerven, Veraar, Weis [61], if the
identity mapping f ⊗ x 7→ f ⊗ x extends to a continuous embedding

B
1
p−

1
2

p,1 (0, 1;E) ↪→ γ(L2(0, 1), E),

then E has type p.
The first assertion is a special case of the main result of Kalton, van Neer-

ven, Veraar, Weis [61], where arbitrary smooth bounded domains D ⊆ Rd are
considered. In this setting, the exponent 1

p −
1
2 has to be be replaced by d

p −
d
2 . It is

deduced from a corresponding result for D = Rd which is proved using Littlewood-
Paley decompositions. This approach is less elementary but it leads to stronger
results. It also yields dual a characterization of spaces with cotype q ∈ [2,∞].
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12. p-Absolutely summing operators.

Let 1 6 p <∞. A bounded operator T : E → F is called p-absolutely summing
if if there exists a constant C > 0 such that for all finite sequences x1, . . . , xN in E
we have

N∑
n=1

‖Txn‖p 6 Cp sup
‖x∗‖61

N∑
n=1

|〈xn, x∗〉|p.

The least admissible constant C is called the p-absolutely summing norm of T ,
notation ‖T‖πp(E,F ).

It follows in a straightforward way from the definition that the space πp(E,F ) of
all p-absolutely summing operators from E to F is a Banach space with respect to
the norm ‖·‖πp(E,F ). We have the following two-sided ideal property: if S : E′ → E
is bounded, T : E → F is p-absolutely summing, and U : F → F ′ is bounded, then
UTS : E′ → F ′ is p-absolutely summing and

‖UTS‖πp(E′,F ′) 6 ‖U‖‖T‖πp(E,F )‖S‖.
We shall prove next that p-absolutely summing operators are γ-radonifying.

The proof is an application of the Pietsch factorisation theorem (see Diestel,
Jarchow, Tonge [30]) which states that if T is p-absolutely summing from E
to another Banach space F , then there exists a Radon probability measure ν on
(BE∗ ,weak∗) such that for all x ∈ E we have

‖Tx‖p 6 ‖T‖pπp(E,F )

∫
BE∗

|〈x, x∗〉|pdν(x∗).

Recall that Kγ
p,q denote the Gaussian Kahane-Khintchine constants.

Proposition 12.1 (Linde and Pietsch [77]). If T ∈ πp(H,E) for some 1 6 p <
∞, then T ∈ γ(H,E) and

‖T‖γ(H,E) 6 max{Kγ
2,p,K

γ
p,2}‖T‖πp(H,E)

Proof. Let h1, . . . , hN be an orthonormal system in H. Then, by the Pietsch fac-
torisation theorem and the Fubini theorem,(

E
∥∥∥ N∑
n=1

γnThn

∥∥∥2) 1
2

6 Kγ
2,p

(
E
∥∥∥ N∑
n=1

γnThn

∥∥∥p) 1
p

6 Kγ
2,p‖T‖πp(H,E)

(
E
∫
BH

∣∣∣[ N∑
n=1

γnhn, h
]
H

∣∣∣pdν(h)
) 1

p

6 Kγ
2,pK

γ
p,2‖T‖πp(H,E)

(∫
BH

( N∑
n=1

|[hn, h]H |2
) p

2

dν(h)
) 1

p

6 Kγ
2,pK

γ
p,2‖T‖πp(H,E) sup

‖h‖H61

( N∑
n=1

|[hn, h]H |2
) 1

2

= Kγ
2,pK

γ
p,2‖T‖πp(H,E).

Since the finite rank operators are dense in πp(H,E), this estimate implies that
T is γ-radonifying with ‖T‖γ∞(H,E) 6 Kγ

2,pK
γ
p,2‖T‖πp(H,E). Finally observe that

Kγ
2,pK

γ
p,2 = max{Kγ

2,p,K
γ
p,2} such at least one of these numbers equals 1. �

We also have a ‘dual’ version:
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Proposition 12.2. If T ∈ γ(H,E), then T ∗ ∈ π2(E∗, H) and

‖T ∗‖π2(E∗,H) 6 ‖T‖γ(H,E).

Proof. Let (hj)j>1 be an orthonormal basis for the separable closed subspace
(ker(T ))⊥ of H. For all x∗1, . . . , x

∗
N in E∗ we have

N∑
n=1

‖T ∗x∗n‖2 =

N∑
n=1

∑
j>1

〈Thj , x∗n〉2 = E
N∑
n=1

〈∑
j>1

γjThj , x
∗
n

〉2

6 E
∥∥∥∑
j>1

γjThj

∥∥∥2

sup
‖x‖61

N∑
n=1

〈x, x∗n〉2

6 ‖T‖2γ(H,E) sup
‖x∗∗‖61

N∑
n=1

〈x∗n, x∗∗〉2.

�

Our next aim is to prove that, roughly speaking, a converse of Proposition 12.2
holds if and only if E has type 2, and to formulate a similar characterisation of
spaces with cotype 2. These results are due to Chobanyan and Tarieladze [19];
see also Diestel, Jarchow, Tonge [30, Chapter 12, Corollaries 12.7 and 12.21].
For further refinements we refer to Kühn [65].

Theorem 12.3. For a Banach space E the following two assertions are equivalent:

(1) E has type 2;
(2) whenever H is a Hilbert space and T ∈ L (H,E) satisfies T ∗ ∈ π2(H,E),

then T ∈ γ(H,E).

In this situation one has

‖T‖γ(H,E) 6 K(E)T γ2 (E)‖T ∗‖π2(E∗,H),

where T γ2 (E) is the Gaussian type 2 constant of E.

Proof. Suppose first that E has type 2 and let T ∈ L (H,E) be as stated. The
dual space E∗ is K-convex by Propositions 10.4 and 10.8, and therefore by Theorem
10.9 we have a natural isomorphism (γ(H,E∗))∗ ' γ(H,E∗∗) given by trace duality.
The idea of the proof is now to show that T defines an element of (γ(H,E∗))∗ via
trace duality. Once we know this it is immediate that T ∈ γ(H,E).

Given S ∈ γ(H,E∗), define

φT (S) := tr(T ∗S) =

N∑
n=1

[T ∗Shn, hn].(12.1)

Since E∗ has cotype 2, the implication (1)⇒(2) of Theorem 12.4 below shows that
S is 2-absolutely summing and

‖S‖π2(H,E∗) 6 C
γ
2 (E∗)‖S‖γ(H,E∗) 6 T

γ
2 (E)‖S‖γ(H,E∗).

It follows that T ∗S, being the composition of two 2-absolutely summing operators,
is nuclear and therefore the sum in (12.1) is absolutely convergent and

|φT (S)| 6
N∑
n=1

|[T ∗Shn, hn]| 6 ‖T ∗‖π2(E∗,H)‖S‖π2(H,E∗)

6 T γ2 (E)‖S‖γ(H,E∗)‖T ∗‖π2(E∗,H).
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This shows that φT is a bounded linear functional on γ(H,E∗) of norm ‖φT ‖ 6
T γ2 (E)‖T ∗‖π2(E∗,H). This proves the implication (1)⇒(2) and the norm estimate.

The proof of the implication (2)⇒(1) is based on the observation that a bounded
operator S : F → `2, where F is a Banach space, is 2-absolutely summing if for all
bounded operators U : `2 → F the composition SU : `2 → `2 is Hilbert-Schmidt.
To prove this, given a sequence (xn)n>1 in F which satisfies

∑
n>1〈xn, x∗〉2 < ∞

for all x∗ ∈ F ∗ we need to show that
∑
n>1 ‖Sxn‖2`2 < ∞. An easy closed graph

argument then shows that S ∈ π2(F, `2).
Let (un)n>1 de the standard unit basis of `2 and consider the operator U : `2 → F

defined by Uun := xn. The operator U is bounded; this follows from

‖Uh‖2 = sup
‖x∗‖61

〈Uh, x∗〉2

= sup
‖x∗‖61

∑
n>1

[h, un]2〈Uun, x∗〉2 6 ‖h‖2`2 sup
‖x∗‖61

∑
n>1

〈xn, x∗〉2.

By assumption, SU is Hilbert-Schmidt, so
∑
n>1 ‖SUun‖2`2 =

∑
n>1 ‖Sxn‖2`2 <∞

as desired, and we conclude that S ∈ π2(F, `2).
By the closed graph theorem, there is a constant K > 0 such that

‖S‖π2(F,`2) 6 K sup
‖U‖61

‖SU‖L2(`2,`2).

Now assume that for all T ∈ L (`2, E) with T ∗ ∈ π2(E∗, `2) we have γ(`2, E).
By a Baire category argument we find a constant C > 0 such that ‖T‖γ(`2,E) 6
C‖T ∗‖π2(E∗,`2). Let x1, . . . , xN in E be arbitrary and given, and define TNun = xn
and TNu = 0 if u ⊥ un for all n = 1, . . . , N . Then,

E
∥∥∥ N∑
n=1

γnxn

∥∥∥2

= E
∥∥∥ N∑
n=1

γnTNun

∥∥∥2

= ‖TN‖2γ(`2,E)

6 C2‖T ∗N‖2π2(E∗,`2) 6 C
2K2 sup

‖U‖61

‖T ∗NU‖2L2(`2,`2)

= C2K2 sup
‖U‖61

‖U∗TN‖2L2(`2,`2) = C2K2 sup
‖U‖61

N∑
n=1

‖U∗TNun‖2`2

= C2K2 sup
‖U‖61

N∑
n=1

‖U∗xn‖2`2 6 C2K2
N∑
n=1

‖xn‖2.

This shows that E has type 2 with constant T γ2 (E) 6 CK. �

Theorem 12.4. For a Banach space E the following two assertions are equivalent:

(1) E has cotype 2;
(2) whenever H is a Hilbert space, T ∈ γ(H,E) implies T ∈ π2(H,E).

In this situation one has

‖T‖π2(H,E) 6 C
γ
2 (E)‖T‖γ(H,E),

where Cγ2 (E) is the Gaussian cotype 2 constant of E.

Proof. (1)⇒(2): We may assume that H is separable. Let (hn)n>1 be an or-
thonormal basis for H, let (γn)n>1 be a Gaussian sequence on a probability space
(Ω,F ,P), and let (r′n)n>1 be a Rademacher sequence on another probability space
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(Ω′,F ′,P′). Fix vectors x1, . . . , xN ∈ H and define U : H → H by Uhn = xn for
n = 1, . . . , N and Uhn = 0 for n > N + 1. Then,

N∑
n=1

‖Txn‖2 = E
N∑
n=1

‖γnTxn‖2

6 (Cγ2 (E))2EE′
∥∥∥ N∑
n=1

r′nγnTxn

∥∥∥2

= (Cγ2 (E))2E
∥∥∥∑
n>1

γnTUhn

∥∥∥2

= (Cγ2 (E))2‖TU‖2γ(H,E) 6 (Cγ2 (E))2‖T‖2γ(H,E)‖U‖
2.

Moreover,

‖U‖ = sup
‖h‖,‖h′‖61

[Uh, h′] = sup
‖h‖,‖h′‖61

N∑
n=1

[h, hn][Uhn, h
′]

6 sup
‖h‖61

( N∑
n=1

[h, hn]2
) 1

2

sup
‖h′‖61

( N∑
n=1

[Uhn, h
′]2
) 1

2

6 sup
‖h′‖61

( N∑
n=1

[xn, h
′]2
) 1

2

.

Combining the estimates we arrive at

N∑
n=1

‖Txn‖2 6 (Cγ2 (E))2‖T‖2γ(H,E) sup
‖h′‖61

N∑
n=1

[xn, h
′]2.

(2)⇒(1): If T ∈ γ(`2, E) implies T ∈ π2(`2, E), then a closed graph argument
produces a constant C > 0 such that ‖T‖π2(`2,E) 6 C‖T‖γ(`2,E) for all T ∈ γ(`2, E).
Now let x1, . . . , xN ∈ E be arbitrary and define T ∈ γ(H,E) by Tun := xn for
n = 1, . . . , N and Tun := 0 for n > N + 1. Then

N∑
n=1

‖xn‖2 =

N∑
n=1

‖Tun‖2 6 ‖T‖2π2(`2,E)

6 C2‖T‖2γ(`2,E) = C2E
∥∥∥ N∑
n=1

γnTun

∥∥∥2

= C2E
∥∥∥ N∑
n=1

γnxn

∥∥∥2

.

Thus E has cotype 2 with constant Cγ2 (E) 6 C. �

13. Miscellanea

In this final section we collect miscellaneous results given conditions for - and
examples of - γ-radonification.

Hilbert sequences. We have introduced γ-radonifying operators in terms of their
action on finite orthonormal systems and obtained characterisations in terms of
summability properties on orthonormal bases. In this section we show that if one is
only interested in sufficient conditions for γ-radonification, the role of orthonormal
systems may be replaced by that of so-called Hilbert sequences. This provides a
more flexible tool to check that certain operators are indeed γ-radonifying.

Let H be a Hilbert space. A sequence h = (hn)n>1 in H is said to be a Hilbert
sequence if there exists a constant C > 0 such that for all scalars α1, . . . , αN ,∥∥∥ N∑

n=1

αnhn

∥∥∥
H
6 C

( N∑
n=1

|αn|2
) 1

2

.
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The infimum of all admissible constants will be denoted by Ch.

Theorem 13.1. Let (hn)n>1 be a Hilbert sequence in H. If T ∈ γ(H,E), then∑
n>1 γnThn converges in L2(Ω;E) and

E
∥∥∥∑
n>1

γnThn

∥∥∥2

6 C2
h‖T‖2γ(H,E).

Proof. Let (h̃n)n>1 be an orthonormal basis for the closed linear space H0 of
(hn)n>1. Since (hn)n>1 is a Hilbert sequence there is a unique S ∈ L (H0) such

that Sh̃n = hn for all n > 1. Moreover, ‖S‖ 6 Ch. Indeed, for h̃ =
∑N
n=1 anh̃n we

have

‖Sh̃‖2H =
∥∥∥ N∑
n=1

anhn

∥∥∥2

H
6 C2

h

N∑
n=1

|an|2 = C2
h‖h̃‖2H ,

and the claim follows from this.
By the right ideal property we have T ◦ S ∈ γ(H0, E) and

E
∥∥∥∑
n>1

γnThn

∥∥∥2

= E
∥∥∥∑
n>1

γnTSh̃n

∥∥∥2

6 ‖T ◦ S‖2γ(H0,E) 6 C
2
h‖T‖2γ(H0,E).

�

A sequence is a Hilbert sequence if it is almost orthogonal:

Proposition 13.2. Let (hn)n∈Z be a sequence in H. If there exists a function
φ : N → R+ such that for all n > m ∈ Z we have

∣∣[hn, hm]
∣∣ 6 φ(n − m) and∑

j>0 φ(j) <∞, then (hn)n∈Z is a Hilbert sequence.

Proof. Let (αn)n∈Z be scalars. Then∥∥∥ N∑
n=−N

αnhn

∥∥∥2

=

N∑
n=−N

|αn|2‖hn‖2 + 2
∑

−N6n<m6N

αnαm[hn, hm]

6 φ(0)
∑
n∈Z
|αn|2 + 2

∑
n<m

|αn||αm|φ(n−m)

= φ(0)
∑
n∈Z
|αn|2 + 2

∑
j>1

φ(j)
∑
n∈Z
|αn| |αn+j |

6
(
φ(0) + 2

∑
j>1

φ(j)
)∑
n∈Z
|αn|2,

where the last estimate follows from the Cauchy-Schwarz inequality. �

For some applications see Haak, van Neerven [45] and Haak, van Neerven,
Veraar [46]. We continue with some explicit examples of Hilbert sequences. The
first is due to Casazza, Christensen, Kalton [17].

Example 13.3. Let φ ∈ L2(R) and define the sequence (hn)n∈Z in L2(R) by hn(t) =
e2πnitφ(t). Let T be the unit circle in C and define f : T→ [0,∞] as

f(e2πit) :=
∑
k∈Z
|φ(t+ k)|2.
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From∥∥∥∑
n∈Z

anhn

∥∥∥2

=
∑
k∈Z

∫ k+1

k

∣∣∣∑
n∈Z

ane
2πintφ(t)

∣∣∣2 dt
=
∑
k∈Z

∫ 1

0

∣∣∣∑
n∈Z

ane
2πintφ(t+ k)

∣∣∣2 dt =

∫ 1

0

∣∣∣∑
n∈Z

ane
2πint

∣∣∣2f(e2πit) dt

we infer that (hn)n∈Z is a Hilbert sequence in L2(R) if and only if there exists a
finite constant B such that f(e2πit) 6 B for almost all t ∈ [0, 1]. In this situation
we have C2

h = ess sup(f).

Example 13.4. Let (λn)n>1 be a sequence in C+ which is properly spaced in the
sense that1

inf
m6=n

∣∣∣λm − λn
Reλn

∣∣∣ > 0.

Then the functions

fn(t) :=
√

Reλne
−λnt, n > 1,

define a Riesz sequence for their closed linear span, i.e., there are constants 0 < c 6
C <∞ such that for all scalars α1, . . . , αN ,

c
( N∑
n=1

|αn|2
) 1

2

6
∥∥∥ N∑
n=1

αnfn

∥∥∥ 6 C( N∑
n=1

|αn|2
) 1

2

,

see Jacob and Zwart [54, Theorem 1, (3)⇔(5)]. In particular, the functions fn
define a Hilbert sequence in L2(R+). From this one easily deduces that for any
a > 0 and ρ ∈ [0, 1) the functions

fn(t) := e−at+2πi(n+ρ)t, n ∈ Z,

define a Hilbert sequence in L2(R+). The following direct proof of this fact is taken
from Haak, van Neerven, Veraar [46, Example 2.5].

For all t ∈ [0, 1),

F (e2πit) =
∑
k∈Z
|f(t+ k)|2 =

∑
k>0

e−2a(t+k) =
e2a(1−t)

e2a − 1
.

Now Example 13.3 implies the result, with constant Ch = 1/
√

1− e−2a.

More on this topic can be found in Young [120].

Conditions on the range space. For certain range spaces, a complete charac-
terisation of γ-radonifying operators can be given in non-probabilistic terms. The
simplest example occurs when the range space is a Hilbert space.

If H and E are Hilbert spaces, we denote by L2(H,E) the space of all Hilbert-
Schmidt operators from H to E, that is, the completion of the finite rank operators
with respect to the norm∥∥∥ N∑

n=1

hn ⊗ xn
∥∥∥2

L2(H,E)
:=

N∑
n=1

‖xn‖2,

where h1, . . . , hN are taken orthonormal in H.

1The formula in the published version contains a misprint
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Proposition 13.5 (Operators into Hilbert spaces). If E is a Hilbert space, then
T ∈ γ(H,E) if and only if T ∈ L2(H,E), and in this case we have

‖T‖γ(H,E) = ‖T‖L2(H,E).

Proof. This follows from the identity

E
∥∥∥ N∑
n=1

γnxn

∥∥∥2

= E
N∑

m,n=1

γmγn[xm, xn] =

N∑
n=1

‖xn‖2.

�

The next two results are taken from van Neerven, Veraar, Weis [88].

Theorem 13.6 (Operators into Lp(A;E)). For all 1 6 p < ∞ the mapping h ⊗
(f ⊗ x) 7→ f ⊗ (h⊗ x) defines an isomorphism of Banach spaces

γ(H,Lp(A;E)) ' Lp(A; γ(H,E)).

For p = 2 this isomorphism is isometric.

Proof. Let f ∈ Lp(A) ⊗ (H ⊗ E), say f =
∑M
m=1 φm ⊗ Tm. By a Gram-Schmidt

argument may assume that the operators Tm ∈ H⊗E are of the form
∑N
n=1 hn⊗xmn

for some fixed orthonormal systems {h1, . . . , hN} in H. Denoting by U the mapping
f ⊗ (h ⊗ x) → h ⊗ (f ⊗ x) from the Kahane-Khintchine inequalities and Fubini’s

theorem we obtain, writing fhn =
∑M
m=1 φm ⊗ xmn,

‖Uf‖γ(H,Lp(A;E)) =
(
E
∥∥∥ N∑
n=1

γnfhn

∥∥∥2

Lp(A;E)

) 1
2

hp
(
E
∥∥∥ N∑
n=1

γnfhn

∥∥∥p
Lp(A;E)

) 1
p

=
(∫

A

E
∥∥∥ N∑
n=1

γnfhn

∥∥∥p dµ) 1
p

hp
(∫

A

(
E
∥∥∥ N∑
n=1

γnfhn

∥∥∥2) p
2

dµ
) 1

p

=
(∫

A

‖f‖pγ(H,E) dµ
) 1

p

= ‖f‖Lp(A;γ(H,E)).

The result now follows by observing that the functions f of the above form are dense
in Lp(A; γ(H,E)) and that their images under U are dense in γ(H,Lp(A;E)). �

The equivalence (1)⇔(3) of the next result shows that an operator from a Hilbert
space into an Lp-space is γ-radonifying if and only if it satisfies a square function
estimate. The equivalence (1)⇔(2) was noted in Brzeźniak and van Neerven
[15].

Proposition 13.7 (Operators into Lp(A)). Let (A,A ) be a σ-finite measure space
and let 1 6 p < ∞. Let (hi)i∈I be a maximal orthonormal system in H. For an
operator T ∈ L (H,Lp(A)) the following assertions are equivalent:

(1) T ∈ γ(H,Lp(A));
(2) there exists a function f ∈ Lp(A;H) such that Th = [f, h] for all h ∈ H.
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(3)
(∑

i∈I |Thi|2
) 1

2 is summable in Lp(A).

In this case we have

‖T‖γ(H,Lp(A)) hp
∥∥∥(∑

i∈I
|Thi|2

) 1
2
∥∥∥.

Proof. The equivalence (1)⇔(2) is a special case of Theorem 13.6. To prove the
equivalence (1)⇔(3) we apply the identity

E
∣∣∣ N∑
n=1

cnγn

∣∣∣2 =

N∑
n=1

|cn|2

with cn = fn(ξ), ξ ∈ A. Combined with the Khintchine inequality, Fubini’s the-
orem, and finally the Kahane-Khintchine inequality in Lp(A), for all f1, . . . , fN ∈
Lp(A) we obtain∥∥∥( N∑

n=1

|fn|2
) 1

2
∥∥∥
p

=
∥∥∥(E∣∣∣ N∑

n=1

γnfn

∣∣∣2) 1
2
∥∥∥
p
hp
∥∥∥(E∣∣∣ N∑

n=1

γnfn

∣∣∣p) 1
p
∥∥∥
p

=
(
E
∥∥∥ N∑
n=1

γnfn

∥∥∥p
Lp(A)

) 1
p hp

(
E
∥∥∥ N∑
n=1

γnfn

∥∥∥2

p

) 1
2

.

The equivalence as well as the final two-sided estimate now follow by taking fn :=
Thin and invoking Theorem 3.20. �

Here is a neat application, which is well-known when p = 2.

Corollary 13.8. Let (A,A ) be a finite measure space. For all T ∈ L (H,L∞(A))
and 1 6 p <∞ we have T ∈ γ(H,Lp(A)) and

‖T‖γ(H,Lp(A)) .p ‖T‖L (H,L∞(A)).

Proof. Let (hi)i∈I be a maximal orthonormal system in H. For any choice of finitely
many indices i1, . . . , iN ∈ I and c ∈ `2N , for µ-almost all ξ ∈ A we have∣∣∣ N∑

n=1

cn(Thin)(ξ)
∣∣∣ 6 ∥∥∥ N∑

n=1

cnThin

∥∥∥
∞

6 ‖T‖L (H,L∞(A))

∥∥∥ N∑
n=1

cnhin

∥∥∥ = ‖T‖L (H,L∞(A))‖c‖.

Taking the supremum over a countable dense set in the unit ball of Rd we obtain
the following estimate, valid for µ-almost all ξ ∈ A:( N∑

n=1

|(Thin)(ξ)|2
) 1

2

6 ‖T‖L (H,L∞(A)).

Now apply Proposition 13.7. �

New γ-radonifying operators from old. The next proposition is a minor
extension of a result of Kalton and Weis [63].
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Proposition 13.9. Let (a, b) be an interval and φ : (a, b) → γ(H,E) be continu-
ously differentiable with ∫ b

a

(s− a)
1
2 ‖φ′(s)‖γ(H,E) ds <∞.

Define Tφ : L2(a, b;H)→ E by

Tφf :=

∫ b

a

φ(t)f(t) dt.

Then Tφ ∈ γ(L2(a, b;H), E) and

‖Tφ‖γ(L2(a,b;H),E) 6 (b− a)
1
2 ‖φ(b)‖γ(H,E) +

∫ b

a

(s− a)
1
2 ‖φ′(s)‖γ(H,E) ds.

Proof. For notational simplicity we shall identify γ(H,E)-valued functions on (a, b)
with the induced operators in L (L2(a, b;H), E).

The integrability condition implies that φ′ is integrable on every interval (a′, b)
with a < a′ < b. Put ψ(s, t) := 1(t,b)(s)φ

′(s) for s, t ∈ (a, b). Then, by the
observations just made,

φ(t) = φ(b)−
∫ b

a

ψ(s, t) ds

for all t ∈ (a, b). By Example 3.8, for all s ∈ (a, b) the function t 7→ ψ(s, t) =
1(t,b)(s)φ

′(s) = 1(a,s)(t)φ
′(s) belongs to γ(L2(a, b;H), E) with norm

‖1(·,b)(s)φ
′(s)‖γ(L2(a,b;H),E) = ‖1(a,s)‖2‖φ′(s)‖γ(H,E) = (s− a)

1
2 ‖φ′(s)‖γ(H,E).

It follows that the γ(L2(a, b;H), E)-valued function s 7→ ψ(s, ·) is Bochner in-
tegrable. Identifying the operator φ(b) ∈ γ(H,E) with the constant function
1(a,b)φ(b) ∈ γ(L2(a, b;H), E), we find that φ ∈ γ(L2(a, b;H), E) and

‖φ‖γ(L2(a,b;H),E) 6 (b− a)
1
2 ‖φ(b)‖γ(H,E) +

∫ b

a

‖ψ(s, ·)‖γ(L2(a,b;H),E) ds

= (b− a)
1
2 ‖φ(b)‖γ(H,E) +

∫ b

a

(s− a)
1
2 ‖φ′(s)‖γ(H,E) ds.

�

The next result is due to Chevet [18]; see also Carmona [16]. We state it
without proof; a fuller discussion would require a discussion of injective tensor
norms (see Diestel and Uhl [31] for an introduction to this topic).

Proposition 13.10. For all T1 ∈ γ(H1, E1) and T2 ∈ γ(H2, E2) we have

T1 ⊗ T2 ∈ γ(H1⊗̂H2, E1⊗̂εE2),

where H⊗̂H ′ denotes the Hilbert space completion of H ⊗H ′ and E1⊗̂εE2 denotes
the injective tensor product of E1 and E2.

In view of the identity C[0, 1]⊗̂εE = C([0, 1];E), the interest of this example lies
in the special case where one of the operators is the indefinite integral from L2(0, 1)
to C[0, 1] (see Proposition 13.17).

The final result of this subsection is a Gaussian version of the Fubini theo-
rem. For its statement we need to introduce another Banach space property. Let
(γ′m)m>1 and (γ′′n)n>1 be Gaussian sequences on probability spaces (Ω′,F ′,P′) and
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(Ω′′,F ′′,P′′), and let (γmn)m,n>1 be a doubly indexed Gaussian sequence on a
probability space (Ω,F ,P).

It is easy to check that (γ′mγ
′′
n)m,n>1 is not a Gaussian sequence. The following

definition singles out a class of Banach spaces in which it is possible to compare
double Gaussian sums with single Gaussian sums.

Definition 13.11. A Banach space E is said to have property (α) if there exists a
constant 0 < C < ∞ such that for all finite sequences (xmn)16m6M, 16n6N in E
we have

1

C2
E
∥∥∥ M∑
m=1

N∑
n=1

γmnxmn

∥∥∥2

6 E′E′′
∥∥∥ M∑
m=1

N∑
n=1

γ′mγ
′′
nxmn

∥∥∥2

6 C2E
∥∥∥ M∑
m=1

N∑
n=1

γmnxmn

∥∥∥2

.

In an equivalent formulation, this property was introduced by Pisier [99]. The
least possible constant C is called the property (α) constant of E, notation α(E).

Let 1 6 p <∞. From

E′E′′
∥∥∥ M∑
m=1

N∑
n=1

γ′mγ
′′
nymn

∥∥∥ 6 (E′E′′∥∥∥ M∑
m=1

N∑
n=1

γ′mγ
′′
nymn

∥∥∥p) 1
p

6 Kγ
p,1

(
E′
(
E′′
∥∥∥ M∑
m=1

N∑
n=1

γ′mγ
′′
nymn

∥∥∥)p) 1
p

= Kγ
p,1

∥∥∥∥∥E′′∥∥∥
M∑
m=1

N∑
n=1

γ′mγ
′′
nymn

∥∥∥∥∥∥∥∥
Lp(Ω′)

6 Kγ
p,1E

′′
∥∥∥ M∑
m=1

N∑
n=1

γ′mγ
′′
nymn

∥∥∥
Lp(Ω′;E)

6 (Kγ
p,1)2E′′

∥∥∥ M∑
m=1

N∑
n=1

γ′mγ
′′
nymn

∥∥∥
L1(Ω′;E)

= (Kγ
p,1)2E′E′′

∥∥∥ M∑
m=1

N∑
n=1

γ′mγ
′′
nymn

∥∥∥
and another application of the Kahane-Khintchine inequalities (in order to prove

similar estimates for the sums
∑M
m=1

∑N
n=1 γmnxmn), we see that the moments of

order 2 in the Definition 13.11 may be replaced by moments of any order p. The
resulting constants will be denoted by αp(E). Thus, α(E) = α2(E).

Example 13.12. Every Hilbert space H has property (α), with constant α(H) = 1.
This is clear by writing out the square norms as inner products.

Example 13.13. Let (A,A , µ) be a σ measure space and let 1 6 p <∞. The space
Lp(A) has property (α), and more generally if E has property (α) then Lp(A;E)
has property (α), with constant

αp(L
p(A;E)) = αp(E).

Indeed, for fmn ∈ Lp(A;E), m = 1, . . . ,M , n = 1, . . . , N , we have

E
∥∥∥ M∑
m=1

N∑
n=1

γmnfmn

∥∥∥p
Lp(A;E)

=

∫
A

E
∥∥∥ M∑
m=1

N∑
n=1

γmnfmn(ξ)
∥∥∥p dµ(ξ)
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6 αpp(E)

∫
A

E′E′′
∥∥∥ M∑
m=1

N∑
n=1

γ′mγ
′′
nfmn(ξ)

∥∥∥pdµ(ξ)

= αpp(E)E′E′′
∥∥∥ M∑
m=1

N∑
n=1

γ′mγ
′′
nfmn

∥∥∥p.
The other bound is proved in the same way. This gives αp(L

p(A;E)) 6 αp(E); the
opposite inequality is trivial.

The next result is due to Kalton and Weis [63]. For further results and refine-
ments see van Neerven and Weis [92].

Proposition 13.14 (γ-Fubini theorem). Let E have property (α). Then the map-
ping h ⊗ (h′ ⊗ x) 7→ (h ⊗ h′) ⊗ x extends uniquely to an isomorphism of Banach
spaces

γ(H, γ(H ′, E)) ' γ(H⊗̂H ′, E).

Proof. For elements in the algebraic tensor products, the equivalence of norms is
merely a restatement of the definition of property (α). The general result follows
from it by approximation. �

Entropy numbers. Following Pietsch [97, Chapter 12], the entropy numbers
en(T ) of a bounded operator T ∈ L (E,F ) are defined as the infimum of all ε > 0
such that there are x1, . . . , x2n−1 ∈ T (BE) such that

T (BE) ⊆
2n−1⋃
j=1

(xj + εBF ).

Here BE and BF denote the closed unit balls of E and F . Note that T is compact
if and only if limn→∞ en(T ) = 0. Thus the entropy numbers en(T ) measure the
degree of compactness of an operator T .

The following result is due to Kühn [66]. Parts (1) and (2) of can be viewed as a
reformulation, in operator theoretical language, of a classical result due to Dudley
[33] and the Gaussian minoration principle due to Sudakov [113], respectively.

Theorem 13.15. Let T ∈ L (H,E) be a bounded operator.

(1) If
∑∞
n=1 n

− 1
2 en(T ∗) <∞, then T ∈ γ(H,E);

(2) If T ∈ γ(H,E), then supn>1 n
1
2 en(T ∗) <∞.

If fact one has the following quantitative version of part (2): there exists an
absolute constant C such that for all Hilbert spaces H, Banach spaces E, and
operators T ∈ γ(H,E) one has

sup
n>1

n
1
2 en(T ∗) 6 C‖T‖γ(H,E).

In combination with a result of Tomczak-Jaegermann [115] to the effect that
for any compact operator T ∈ L (`2, E) one has

1

32
en(T ∗) 6 en(T ) 6 32en(T ∗),



γ-RADONIFYING OPERATORS – A SURVEY 59

this yields (recalling that γ-radonifying operators are supported on a separable
closed subspace, see (3.1)) the inequality

sup
n>1

n
1
2 en(T ) 6 C‖T‖γ(H,E)

for some absolute constant C. See Cobos and Kühn [25] and Kühn and Schon-
beck [67], where these results are applied to obtain estimates for the entropy
numbers of certain diagonal operators between Banach sequence spaces.

Kühn [66] also showed that Theorem 13.15 can be improved for Banach spaces
with (co)type 2:

Theorem 13.16. Let T ∈ L (H,E) be a bounded operator.

(1) If E has type 2 and (
∑∞
n=1(en(T ∗))2)

1
2 <∞, then T ∈ γ(H,E);

(2) If E has cotype 2 and T ∈ γ(H,E), then (
∑∞
n=1(en(T ∗))2)

1
2 <∞.

It appears to be an open problem whether these properties characterise spaces
with type 2 (cotype 2) and whether they can be extended to spaces of type p (cotype
q).

The indefinite integral. The final example is a reformulation of Wiener’s
classical result on the existence of the existence of Brownian motions. The proof
presented here is due to Ciesielski [20].

Proposition 13.17 (Indefinite integration). The operator I : L2(0, 1) → C[0, 1]
defined by

(If)(t) :=

∫ t

0

f(s) ds, f ∈ L2(0, 1), t ∈ [0, 1],

is γ-radonifying.

The proof is based on the following simple lemma (which is related to the esti-
mates in Example 4.4).

Lemma 13.18. For any Gaussian sequence (γn)n>1,

lim sup
N→∞

N∑
n=1

|γn|√
2 log(n+ 1)

6 1.

Proof. For all t > 1,

P{|γn| > t} =
2√
2π

∫ ∞
t

e−
1
2u

2

du 6
2

t
√

2π

∫ ∞
t

ue−
1
2u

2

du =
2

t
√

2π
e−

1
2 t

2

.

Fix α > 1 arbitrarily. For all n > 1 we have 2α log(n+ 1) > 1 and therefore

P
{
|γn| >

√
2α log(n+ 1)

}
6
√

2/π (n+ 1)−α.

The Borel-Cantelli lemma now implies that almost surely |γn| >
√

2α log(n+ 1)
for at most finitely many n > 1. �

Let (χn)n>1 be the L2-normalised Haar functions on (0, 1), which are defined
by h1 ≡ 1 and φn := χjk for n > 1, where n = 2j + k with j = 0, 1, . . . and
k = 0, . . . , 2j − 1, and

χjk = 2j/21( k
2j ,

k+1/2
2j

) − 2j/21(k+1/2
2j ,

k+1
2j

).
Note that the functions χjk are supported on the interval [k−1

2j ,
k
2j ].
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Proof of Proposition 13.17. It suffices to prove that the sum

∑
j>0

2j∑
k=1

γjkIχ
jk(t), t ∈ [0, 1],

converges uniformly on [0, 1] almost surely.
Fixing j > 0, for all t ∈ [0, 1] we have Iχjk(t) = 0 for all but at most one

k ∈ {1, . . . , 2j}, and for this k we have

0 6 Iχjk(t) 6 2−j/2−1, t ∈ [0, 1].

Using this, for all j0 > 0 we obtain the following estimate, uniformly in t ∈ [0, 1]:

∑
j>j0

2j∑
k=1

|γjk(ω)|Iχjk(t) 6 C(ω)
∑
j>j0

2j∑
k=1

√
log(2j + k)Iχjk(t)

6 C(ω)

∞∑
j=j0

2j∑
k=1

√
j + 1Iχjk(t) = C(ω)

∞∑
j=j0

2−j/2−1
√
j + 1,

where

C(ω) := sup
n>1

|γn(ω)|√
log(n+ 1)

is finite almost surely by Lemma 13.18. This proves the result. �

It is straightforward to show that Q := I ◦ I∗ is given by

(Qµ)(t) =

∫ 1

0

s ∧ t dµ(s), µ ∈M [0, 1].

Here M [0, 1] = (C[0, 1])∗ is the space of all bounded Borel measures µ on [0, 1].
The unique Gaussian measure on C[0, 1] with covariance operator Q is called the
Wiener measure.

Refining the proof of Proposition 13.17, one can prove that the indefinite integral
is γ-radonifying from L2(0, 1) into the Hölder space Cα[0, 1] for 0 6 α < 1

2 ; this
reflects the fact that the paths of a Brownian motion are Cα-continuous for all
0 6 α < 1

2 . Alternatively, this can be deduced from the Sobolev embedding theorem

combined with fact that the indefinite integral is γ-radonifying from L2(0, 1) into
the Sobolev space Hα,p(0, 1) for all 2 < p <∞ and α ∈ ( 1

p ,
1
2 ); see Brzeźniak [12].

Concerning the critical exponent α = 1
2 , it is known that the paths of a Brownian

motion B belong to the Besov space B
1
2
p,∞(0, 1) for all 1 6 p < ∞ and there is a

strictly positive constant C > 0 such that

(13.1) P
{
‖B‖

B
1
2
p,∞(0,1)

> C
}

= 1.

see Ciesielski [21, 22], Ciesielski, Kerkyacharian, Roynette [23], Roy-
nette [105], Hytönen and Veraar [52] for a discussion of this result and further
refinements. As a consequence of this inequality one obtains the somewhat sur-
prising fact that the indefinite integral fails to be γ-radonifying from L2(0, 1) into

B
1
2
p,∞(0, 1); the point is that (13.1) prevents B from being a strongly measurable

(i.e. Radon) Gaussian random variable. A similar phenomenon in `∞ had been
discovered previously by Fremlin and Talagrand [39].
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An application to stochastic Cauchy problems In this section we shall briefly
sketch how the theory of γ-radonifying operators enters naturally in the study of
stochastic abstract Cauchy problems driven by an isonormal process. For unex-
plained terminology we refer to Engel and Nagel [35] and Pazy [96] (for the
theory of semigroups of operators) and van Neerven and Weis [90] (for a discus-
sion of stochastic Cauchy problems).

Suppose A is the infinitesimal generator of a strongly continuous semigroup
S = (S(t))t>0 of bounded linear operators on a Banach space E, let WH be an
L2(R+;H)-isonormal process, and let B ∈ L (H,E) be a bounded linear operator.
Building on previous work of Da Prato andZabczyk [27] and van Neerven and
Brzeźniak [14], it has been shown in van Neerven and Weis [90] that the linear
stochastic Cauchy problem

dU(t) = AU(t) dt+B dWH(t), t > 0,

U(0) = u0,

admits a unique weak solution U if and only if for some (and then for all) T > 0
the bounded operator RT : L2(0, T ;H)→ E given by

RT f :=

∫ T

0

S(t)Bf(t) dt

is γ-radonifying from L2(0, T ;H) to E. Here we give two sufficient condition for
this to happen.

Proposition 13.19. Each of the following two conditions imply that RT is γ-
radonifying:

(1) E has type 2 and B ∈ γ(H,E);
(2) S is analytic and B ∈ γ(H,E).

Proof. (1): By the strong continuity and Corollary 6.4 the γ(H,E)-valued function
t 7→ S(t)B is continuous on [0, T ]. In particular it belongs to L2(0, T ; γ(H,E)) and
therefore, by Theorem 11.6, the induced operator RT belongs to γ(L2(0, T ;H), E)).

(2): By the analyticity of S the γ(H,E)-valued function t 7→ S(t)B is continu-
ously differentiable on (0, T ) and∫ T

0

t
1
2 ‖S′(t)B‖γ(H,E) dt 6 CT

∫ T

0

t−
1
2 ‖B‖γ(H,E) dt 6 2CTT

1
2 ‖B‖γ(H,E).

where we used the analyticity of S to estimate ‖S′(t)‖ = ‖AS(t)‖ 6 CT t
−1 for

t ∈ (0, T ). Now Proposition 13.9 implies that RT belongs to γ(L2(0, T ;H), E)). �
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[20] Z. Ciesielski, Hölder conditions for realizations of Gaussian processes, Trans. Amer. Math.
Soc. 99 (1961), 403–413.

[21] Z. Ciesielski, Modulus of smoothness of the Brownian paths in the Lp norm, In: “Con-

structive Theory of Functions” (Varna, Bulgaria, 1991), Bulgarian Academy of Sciences,
Varna, 1991, pp. 71–75.

[22] Z. Ciesielski, Orlicz spaces, spline systems, and Brownian motion, Constr. Approx. 9

(1993), no. 2-3, 191–208.
[23] Z. Ciesielski, G. Kerkyacharian, and B. Roynette, Quelques espaces fonctionnels as-
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[103] J. Rosiński, Bilinear random integrals, Dissertationes Math. 259 (1987), 71 pp.
[104] J. Rosiński and Z. Suchanecki, On the space of vector-valued functions integrable with

respect to the white noise, Colloq. Math. 43 (1980), no. 1, 183–201 (1981).
[105] B. Roynette, Mouvement brownien et espaces de Besov, Stochastics Stochastics Rep. 43

(1993), no. 3-4, 221–260.

[106] H. Satô, Gaussian measure on a Banach space and abstract Wiener measure, Nagoya Math.

J. 36 (1969), 65–81.
[107] L. Schwartz, Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés

(noyaux reproduisants), J. Analyse Math. 13 (1964), 115–256.
[108] L. Schwartz, “Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures”,

Oxford University Press, London, 1973, Tata Institute of Fundamental Research Studies in

Mathematics, No. 6.
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dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 7, 299–301.

[116] N. Tomczak-Jaegermann, “Banach-Mazur Distances and Finite-Dimensional Operator
Ideals”, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Long-

man Scientific & Technical, Harlow, 1989.

[117] N.N. Vakhania, V.I. Tarieladze, and S.A. Chobanyan, “Probability Distributions on
Banach Spaces”, Mathematics and its Applications, vol. 14, D. Reidel Publishing Co., Dor-

drecht, 1987.

[118] L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Math.
Ann. 319 (2001), no. 4, 735–758.
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