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Abstract

Noting that every L1-space satisfies a randomized version of the UMD property, we
show how a general stochastic Fubini theorem for the stochastic integral of operator-
valued processes with respect to cylindrical Brownian motions can be obtained as an
application of the theory of stochastic integration developed recently by Lutz Weis and
the authors.

1 Introduction

The stochastic Fubini theorem and stochastic processes indexed by a parameter have been
studied by many authors, cf. [1, 4, 5, 8, 12, 19, 22]. A general version of the stochastic Fubini
theorem, valid for real-valued semimartingales as integrators, is due to Doléans-Dade [8] and
Jacod [12, Théorème 5.44]. Roughly speaking it can be formulated as follows. Let (S,Σ, µ)
be a σ-finite measure space, let (Ω,F ,P) be a probability space and let φ : S×[0, T ]×Ω → R
be Σ⊗B([0, T ])⊗F -measurable. If (t, ω) 7→ φs(t, ω) := φ(s, t, ω) is integrable with respect
to a semimartingale X for all s ∈ S, if the process (t, ω) 7→

∫
S
φs(t) dµ(s) is well defined

and integrable with respect to X, and if∫
S

∣∣∣ ∫ T

0

φs(t) dX(t)
∣∣∣ dµ(s) <∞ almost surely, (1.1)

then, almost surely,∫
S

∫ T

0

φs(t) dX(t) dµ(s) =
∫ T

0

∫
S

φs(t) dµ(s) dX(t).

Motivated by applications to stochastic differential equations in infinite dimensions, it is
desirable to have a version of the stochastic Fubini theorem for integrals of operator-valued
processes with respect to cylindrical Hilbert space-valued semimartingales. Generalizing an
earlier result of Chojnowska-Michalik [4], a stochastic Fubini theorem for L (H,H ′)-valued
processes with respect to H-cylindrical Brownian motions WH was proved by Da Prato and
Zabczyk [5]. Here H and H ′ are separable real Hilbert spaces. In this result the condition
(1.1) is replaced by the condition

φ ∈ L1(S;L2((0, T )× Ω;S;L2(H,H ′))), (1.2)

where L2(H,H ′) denotes the Hilbert-Schmidt operators from H into H ′.
The purpose of this paper is to prove a stochastic Fubini theorem for integration of

L (H,E)-valued processes with respect H-cylindrical Brownian motions under assumptions
analogous to (1.1) but which may be easier to verify in concrete applications. Here, E is
assumed to be a real Banach space. Since the special case E = R already exhibits all main
ideas, we have written out our results in detail for H-valued processes only; here we identify
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L (H,R) with H. The extension to L (H,E)-valued processes is sketched at the end of the
paper. It turns out that condition (1.2) may be weakened to

φ ∈ L1(S;L2(0, T ;L2(H,H ′))) almost surely.

Our approach to the stochastic Fubini theorem is based on a straightforward extension
of the theory of stochastic integration developed recently by Lutz Weis and the authors in
[15] to processes with values in a UMD− space, together with the basic fact that L1-spaces
possess the UMD− property. The idea is to interpret the stochastic integral parametrized
by S as a stochastic integral in the Banach space L1(S). The essence of the stochastic
Fubini theorem is then nothing but the statement that a bounded linear functional may be
moved into the stochastic integral:∫

S

∫ T

0

φs(t) dWH(t) dµ(s) =
〈 ∫ T

0

φ(·)(t) dWH(t),1
〉
〈L1(S),L∞(S)〉

=
∫ T

0

〈φ(·)(t),1〉〈L1(S;H),L∞(S)〉 dWH(t) =
∫ T

0

∫
S

φs(t) dµ(s) dWH(t).

In order to develop this simple idea in a rigorous way, some measurability problems have to
be overcome. The main difficulty consists of lifting measurability properties of φ that hold
pointwise in s to the corresponding L1(S)-valued functions. This problem is discussed in
Section 2. The main results of the paper are contained in Section 3.

In a forthcoming paper, the results of this paper will be applied to study stochastic
evolution equations.

2 Measure theoretical preliminaries

Let (S,Σ) be a measurable space and let (Y, d) be a complete metric space. A function
φ : S → Y is called Σ-simple if it is of the form φ =

∑N
n=1 1An ⊗ yn with An ∈ Σ and

yn ∈ Y for n = 1, . . . , N . countably valued Σ-simple functions are defined similarly. A
function φ : S → Y is called strongly Σ-measurable if it is the pointwise limit in Y of
a sequence of Σ-simple functions. It is well-known [18, Lemma V-2-4] that a function
φ : S → Y is strongly Σ-measurable if and only if the following two conditions are satisfied:

(i) the range of φ is separable;

(ii) we have φ−1(B) ∈ Σ for all Borel sets B in Y .

This implies that the pointwise limit of a sequence of strongly Σ-measurable functions is
strongly Σ-measurable again.

By covering the range of a strongly Σ-measurable function φ with countably many balls
Bn

j with radius 1
n and centre yn

j , and defining φn to have the constant value yn
j on the set

φ−1(Bn
k \

⋃
j<k B

n
j ) we obtain a countably valued Σ-simple function φn : S → Y such that

sups∈S d(φn(s), φ(s)) 6 1
n . Thus every strongly Σ-measurable function is the uniform limit

of a sequence of countably valued Σ-simple functions.
As was mentioned in the introduction, it will be important to lift measurability proper-

ties of a process indexed by a parameter s to the corresponding L1(S)-valued process. This
problem is easily reduced to the following abstract question:

If (Ω,F ) is a measurable space, E is a Banach space, and φ : S ×Ω → E is
a Σ⊗F -measurable function with the property that all sections φs are strongly
G -measurable, where G is some sub-σ-algebra of F , does it follows that φ is
strongly Σ⊗ G -measurable?

In general the answer is negative even for indicator functions (cf. the example below).
On the other hand, the answer is ‘almost positive’ if (Ω,F , ν) is a σ-finite measure space,
in the sense that φ has a modification which does have the required properties. We call two
functions φ : S × Ω → E and φ̃ : S × Ω → E modifications of each other if for all s ∈ S we
have φ(s, ω) = φ̃(s, ω) for ν-almost all ω ∈ Ω.
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Proposition 2.1 Let (S,Σ) and (Ω,F , ν) be as above, let G be a sub-σ-algebra of F , and
let E be a Banach space. If φ : S × Ω → E is a strongly Σ ⊗F -measurable function with
the property that for all s ∈ S the function φs is strongly G -measurable, then φ admits a
strongly Σ⊗ G -measurable modification.

We may assume without loss of generality that ν(Ω) < ∞. In fact, if ν(Ω) = ∞, pick
sets Ωn ∈ F such that µ(Ωn) > 0 is strictly increasing with n and

⋃
n>1 Ωn = Ω. Put

Y1 := Ω1 and Yn+1 = Ωn+1 \ Ωn for n > 1, and define

ν̃(A) :=
∑
n>1

1
2n

ν(A ∩ Yn)
ν(Yn)

, A ∈ F .

Then ν̃ is a probability measure on (Ω,F ) which has the same null sets as ν, and therefore
we may replace ν by ν̃ in Proposition 2.1.

From now on we assume that ν(Ω) <∞. We denote by L0(Ω;E) the space of strongly
F -measurable functions, identifying functions that are equal ν-almost everywhere. This is
a complete metric space with respect to the translation invariant metric ‖ · ‖0 defined by

‖f‖0 :=
∫

Ω

‖f(ω)‖ ∧ 1 dν(ω).

A sequence in L0(Ω;E) converges in the metric ‖·‖0 if and only if it converges in ν-measure.
If G is a sub-σ-algebra of F , we denote by L0(Ω,G ;E) the closed subspace of L0(Ω;E)
consisting of all strongly G -measurable functions, identifying again functions that are equal
ν-almost everywhere.

For a sequence (fn)n>1 in L0(Ω;E) and a := (an)n>1 ∈ l1, we make the following
observation: if ‖fn‖0 6 an for all n > 1, then limn→∞ fn = 0 ν-almost everywhere. Indeed,
define g : Ω → [0,∞] by g(ω) :=

∑
n>1 ‖fn(ω)‖ ∧ 1. We have∫

Ω

g(ω) dν(ω) =
∑
n>1

‖fn‖0 = ‖a‖l1 <∞.

Hence g is ν-almost everywhere finite and the claim follows. The proof of the proposition
follows the proof of the celebrated result of Dellacherie and Meyer on the existence of a
progressively measurable version of adapted measurable processes [6, Theorem IV.30] with
some simplifications due to the absence of a filtration, and is included for the reader’s
convenience.

Proof of Proposition 2.1. Assume that ν(Ω) <∞. It follows from the Fubini theorem that
for all s ∈ S, φ(s, ·) is a strongly F -measurable function, so we may define ψ : S → L0(Ω;E)
as (ψ(s))(ω) := φ(s, ω). We claim that ψ is strongly Σ-measurable. By a monotone class
argument we can find a sequence of Σ ⊗ F -simple functions φn : S × Ω → E, each of
which is a finite linear combination of functions of the form 1A×F ⊗ x with A ∈ Σ, F ∈ F ,
x ∈ E, such that φ = limn→∞ φn pointwise on S × Ω. Define ψn : S → L0(Ω;E) as
(ψn(s))(ω) := φn(s, ω). Then each ψn is a Σ-simple function and for all s ∈ S we have
ψ(s) = limn→∞ ψn(s) in L0(Ω;E). This proves the claim.

Choose a sequence of countably valued Σ-simple functions ηn : S → L0(Ω;E), say

ηn(s) =
∑

k

1An
k
(s)hn

k

with An
k ∈ Σ and hn

k : Ω → E strongly F -measurable, such that for all s ∈ S we have

‖ψ(s)− ηn(s)‖0 6 2−n.

For n, k > 1 let sn
k ∈ An

k be arbitrary and fixed. Then ‖ψ(sn
k )− hn

k‖0 6 2−n. Put

φ̃n(s, ω) :=
∑

k

1An
k
(s)φ(sn

k , ω).
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By the G -measurability assumption on the sections of φ, we obtain a countably valued
Σ-simple function ψ̃n : S → L0(Ω,G ;E) by

(ψ̃n(s))(ω) := φ̃n(s, ω),

and for all s ∈ S we have

‖ψ(s)− ψ̃n(s)‖0 6 ‖ψ(s)− ηn(s)‖0 + ‖ηn(s)− ψ̃n(s)‖0 6 2−n+1.

By the observation preceding the proof, for all s ∈ S we have

φ(s, ω) = (ψ(s))(ω) = lim
n→∞

(ψ̃n(s))(ω) = lim
n→∞

φ̃n(s, ω) for ν-almost all ω ∈ Ω.

Let C be the set of all (s, ω) ∈ S × Ω for which the sequence (φ̃n(s, ω)) converges. Then
the function

φ̃(s, ω) := lim
n→∞

1C(s, ω)φ̃n(s, ω).

is a Σ⊗ G -measurable modification of φ. �

The following example was communicated to us by Klaas Pieter Hart. It shows that
in general the strong G -measurability of the sections φs of a jointly measurable function φ
does not imply the strong Σ⊗ G -measurability of φ.

Example. Let (S,Σ) = (Ω,F ) = (ω1,P), where ω1 is the first uncountable ordinal and
P = P(ω1) is its power set. Let G be the sub-σ-algebra of P consisting of all sets that
are either countable or have countable complement. Let

A := {(α, β) ∈ ω1 × ω1 : α < β}.

It is well known that P ⊗P = P(ω1×ω1) [21], see also [13, Theorem 12.5], and therefore
A ∈ P ⊗P. Moreover, for all α ∈ ω1 the section Aα := {β ∈ ω1 : (α, β) ∈ A} belongs to
G . We will show that A 6∈ P ⊗ G . The example announced above is obtained by taking
for φ the indicator function of A.

Define an increasing family of collections of subsets (Cβ)β∈ω1 as follows. Let C0 denote
the collection of all measurable rectangles in P ⊗ G . If β ∈ ω1 is a successor ordinal, say
β = α + 1, let Cβ be the collection of all sets obtained from Cα by taking complements,
intersections, and countable unions. If β ∈ ω1 is a limit ordinal, let Cβ :=

⋃
α<β Cα. Note

that P ⊗ G =
⋃

β∈ω1
Cβ . With induction on β it is seen that every C ∈ Cβ belongs to a

σ-algebra generated by a countable family of measurable rectangles in P ⊗ G .
Suppose now, for a contradiction, that A ∈ P ⊗ G . Since there is a first ordinal

β ∈ ω1 such that A ∈ Cβ , there exists a countable collection of measurable rectangles
Pn × Gn ∈ P ⊗ G such that A ∈ PA := σ(Pn × Gn; n = 1, 2, . . . ). Choose α1 ∈ ω1 such
that Gn ⊆ [0, α1) for all countable Gn and Gn ⊇ [α1, ω1) for all Gn whose complement is
countable. For each n, (Fn ×Gn)∩ (ω1× [α1, ω1)) equals either ∅ or Fn × [α1, ω). Hence if
B ∈ PA, then B ∩ (ω1 × [α1, ω1)) = PB × [α1, ω) for some PB ⊆ ω1. But obviously there
exists no set PA ⊆ ω1 such that A ∩ (ω1 × [α1, ω1)) = PA × [α1, ω1). Thus A 6∈ PA, a
contradiction.

Remark. Let ν be the probability measure on (ω1,G ) defined by

ν(P ) :=
{

0, if P is countable,
1, if P is uncountable.

Any modification of the indicator function 1A fails to be P ⊗ G -measurable equally well.
This does not contradict Proposition 2.1, since ν cannot be extended to a measure on
(ω1,P).

We continue with a measurability result for functions having Lp-sections.

Proposition 2.2 Let (S,Σ) and (Ω,F , ν) be as before, let 1 6 p < ∞, and let E be a
Banach space. If φ : S × Ω → E is a strongly Σ⊗F -measurable function such that for all
s ∈ S we have φs ∈ Lp(Ω;E), then the function ψ : S → Lp(Ω;E) defined by ψ(s) := φs is
strongly Σ-measurable.
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Proof. Let (Ωk) be an increasing sequence of sets in F with ν(Ωk) < ∞ and
⋃

k Ωk = Ω.
By approximating φ with the functions 1Ωk∩{‖φ‖6k}φ and recalling that pointwise limits of
strongly Σ-measurable functions are strongly Σ-measurable, we may assume that ν(Ω) <∞
and that φ is uniformly bounded.

Choose a sequence of Σ-simple functions φn : S × Ω → E, each of which is a finite
linear combination of functions of the form 1A×F ⊗ x with A ∈ Σ, F ∈ F , x ∈ E, such
that φ = limn→∞ φn pointwise on S × Ω. These functions may be chosen in such a way
that in addition we have ‖φn‖∞ 6 2‖φ‖∞. By the dominated convergence theorem, for
all s ∈ S we have φ(s, ·) = limn→∞ φn(s, ·) in Lp(Ω;E). Define the Σ-simple functions
ψn : S → Lp(Ω;E) by ψn(s) := φn(s, ·). Then for all s ∈ S,

ψ(s) = φ(s, ·) = lim
n→∞

φn(s, ·) = lim
n→∞

ψn(s) in Lp(Ω;E).

This shows that ψ is strongly Σ-measurable. �

Note that we did not assume Lp(Ω;E) to be separable. If this is the case, the above
proof can be simplified somewhat by using the Pettis measurability theorem.

By repeated application of Proposition 2.2 we obtain:

Proposition 2.3 Let (S,Σ) be as before, let (Ω,F , ν) and (Ω̃, F̃ , ν̃) be σ-finite measure
spaces, let 1 6 p, p̃ <∞, and let E be a Banach space. If φ : S × Ω× Ω̃ → E is a strongly
Σ⊗F ⊗ F̃ -measurable function such that for all s ∈ S we have φs ∈ Lp(Ω;Lp̃(Ω̃;E)), then
the function ψ : S → Lp(Ω;Lp̃(Ω̃;E)) defined by ψ(s) := φs is strongly Σ-measurable.

3 The stochastic Fubini theorem

Let H be a separable real Hilbert space. A family WH = {WH(t)}t∈[0,T ] of bounded
linear operators from H to L2(Ω) is called a H-cylindrical Brownian motion if WHh =
{WH(t)h}t∈[0,T ] is an real Brownian motion for each h ∈ H and

E(WH(s)g ·WH(t)h) = (s ∧ t) [g, h]H s, t ∈ [0, T ], g, h ∈ H.

Let E be a real Banach space. A function Φ : [0, T ] → L (H,E) belongs to L2(0, T ;H)
scalarly if for all x∗ ∈ E∗ the function t 7→ Φ∗(t)x∗ belongs to L2(0, T ;H). Note that by
the separability of H and the Pettis measurability theorem [7], the strong measurability of
t 7→ Φ∗(t)x∗ is equivalent to its weak measurability.

Definition. A function Φ : [0, T ] → L (H,E) is called stochastically integrable with respect
to WH if Φ belongs to L2(0, T ;H) scalarly and there exists there exists a sequence (Φn) of
step functions such that:

(i) For all x∗ ∈ E∗ we have lim
n→∞

Φ∗
nx

∗ = Φ∗x∗ in L2(0, T ;H);

(ii) There exists a strongly measurable random variable Y : Ω → E such that

Y = lim
n→∞

∫ T

0

Φn(t) dWH(t) in L0(Ω;E). (3.1)

We then write Y =:
∫ T

0
Φ(t) dWH(t).

Note that (i) and (ii) imply that for all x∗ ∈ E∗,〈 ∫ T

0

Φ(t) dWH(t), x∗
〉

=
∫ T

0

Φ∗(t)x∗ dWH(t) almost surely.

The stochastic integral for L2(0, T ;H)-functions on the right hand side of (3.1) is defined
in the usual way: for step functions we put∫ T

0

N∑
n=1

1(tn−1,tn] ⊗ hn dWH(t) :=
N∑

n=1

WH(tn)hn −WH(tn−1)hn
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and this definition is extended to arbitrary L2(0, T ;H)-functions by approximation and
using the Itô isometry.

It was shown in [16] that Φ is stochastically integrable with respect toWH if and only if Φ
belongs to L2(0, T ;H) scalarly and there exists a γ-radonifying operator IΦ : L2(0, T ;H) →
E such that

〈IΦg, x∗〉 =
∫ T

0

[g(t),Φ∗(t)x∗]H dt, g ∈ L2(0, T ;H), x∗ ∈ E∗. (3.2)

If (3.2) holds, we shall say that Φ represents the operator IΦ. Recall that a bounded
operator S from a separable real Hilbert space H into E is called γ-radonifying if for some
(every) Gaussian sequence (γn) and some (every) orthonormal basis (hn) of H the sum∑

n γn Shn converges in the L2 sense. The vector space of all γ-radonifying operators from
H to E is denoted by γ(H , E). It is a Banach space with respect to the norm ‖ · ‖γ(H ,E),

‖S‖2
γ(H ,E) = E

∥∥∥∑
n

γn Shn

∥∥∥2

.

If Φ : [0, T ] → L (H,E) is stochastically integrable, then for the operator IΦ from (3.2)
we have

‖IΦ‖2
γ(L2(0,T ;H),E) = E

∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥2

.

Let (S,Σ, µ) be a σ-finite measure space and fix an arbitrary 1 6 p < ∞. In the next
two lemmas we consider a strongly Σ ⊗ B([0, T ])-measurable function φ : S × [0, T ] → H
which has the property that for all t ∈ [0, T ] and h ∈ H, the function s 7→ [φ(s, t), h]H
belongs to Lp(S). We then define Φ : [0, T ] → L (H,Lp(S)) by

(Φ(t)h)(s) := [φ(s, t), h]H . (3.3)

As an application of Proposition 2.2 we have:

Lemma 3.1 Let the function Φ : [0, T ] → L (H,Lp(S)) defined by (3.3). For all h ∈ H the
function Φh : [0, T ] → Lp(S) defined by (Φh)(t) := Φ(t)h is strongly B([0, T ])-measurable.

The following lemma gives a necessary and sufficient condition for the stochastic inte-
grability of the function Φ. It is a special case of [15, Proposition 4.1], which generalizes the
case H = R considered in [16, Corollary 2.10]. See also [20, Corollary 4.3] and [2, Theorem
2.3] for related results.

Lemma 3.2 The function Φ : [0, T ] → L (H,Lp(S)) defined by (3.3) is stochastically
integrable in Lp(S) with respect to an H-cylindrical Brownian motion WH if and only if φ
defines an element of Lp(S;L2(0, T ;H)). In this case we have

E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥2

= ‖Φ‖2
γ(L2(0,T ;H),Lp(S)) hp ‖φ‖2

Lp(S;L2(0,T ;H)).

Here ‘hp’ means that we have a two-sided estimate with constants depending only on p.

In order to extend the notions introduced above to processes Φ : [0, T ]×Ω → L (H,E)
we need to introduce some terminology. Throughout, F = (Ft)t∈[0,T ] denotes a filtration
satisfying the usual conditions. We assume that the H-cylindrical Brownian motion WH is
adapted to F, by which we mean that for all h ∈ H the real-valued Brownian motion WHh
is adapted to F.

A process Φ : [0, T ] × Ω → L (H,E) belongs to L0(Ω;L2(0, T ;H)) scalarly if for all
x∗ the process Φ∗x∗ belong to L0(Ω;L2(0, T ;H)). Such a process is said to represent an
element XΦ of L0(Ω; γ(L2(0, T ;H);E)) if for all f ∈ L2(0, T ;H) and x∗ ∈ E∗ we have

〈XΦf, x
∗〉 =

∫ T

0

[f(t),Φ∗(t)x∗]H dt almost surely.
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A process Φ : [0, T ] × Ω → L (H,E) is called scalarly progressively measurable with
respect to F if for all h ∈ H and x∗ ∈ E∗ the process Φ∗x∗ is progressively measurable with
respect to F. By the Pettis measurability theorem, this happens if and only if for all h ∈ H
and x∗ ∈ E∗ the process 〈Φh, x∗〉 is progressively measurable with respect to F.

A process Φ : [0, T ] × Ω → L (H,E) is called elementary progressive with respect to F
if it is of the form

Φ(t, ω) =
N∑

n=1

M∑
m=1

1(tn−1,tn]×Amn
(t, ω)

K∑
k=1

hk ⊗ xkmn,

where 0 6 t0 < · · · < tN 6 T , Amn ∈ Ftn−1 , xknm ∈ E, and (hk)k>1 is a fixed orthonor-
mal basis for H. Clearly, every elementary progressive process is scalarly progressive and
represents an element of L0(Ω; γ(L2(0, T ;H);E)).

Definition. A process Φ : [0, T ] × Ω → L (H,E) is called stochastically integrable with
respect to WH if Φ belongs to L0(Ω;L2(0, T ;H)) scalarly and there exists a sequence (Φn)
of elementary progressive processes such that:

(i) For all x∗ ∈ E∗ we have lim
n→∞

Φ∗
nx

∗ = Φ∗x∗ in L0(Ω;L2(0, T ;H));

(ii) There exists a strongly measurable random variable Y : Ω → E such that

Y = lim
n→∞

∫ T

0

Φn(t) dWH(t) in L0(Ω;E).

We then write Y =:
∫ T

0
Φ(t) dWH(t). It is easy to check that if Φ is stochastically integrable,

then Φ is scalarly progressively measurable and for all x∗ ∈ E∗ we have〈 ∫ T

0

Φ(t) dWH(t), x∗
〉

=
∫ T

0

Φ∗(t)x∗ dWH(t) almost surely. (3.4)

Remark. In [15] a slightly narrower definition of stochastic integrability is used and a
correspondingly stronger version of Proposition 3.4 is proved. Since the proposition is used
only as a technical tool in the proof of Theorem 3.5, where it is applied to elementary
progressive processes Φn, the simpler definition given above is sufficient for our present
purposes. We refer to [15] for a fuller explanation on this point.

Let (rn)n>1 be a Rademacher sequence. A Banach space E is called a UMD− space if
for some (every) 1 < p < ∞ there exists a constant βp such that for every finite E-valued
martingale difference sequence (dn)N

n=1 independent of (rn)n>1 we have

E
∥∥∥ N∑

n=1

dn

∥∥∥p

6 βp
p E

∥∥∥ N∑
n=1

rndn

∥∥∥p

.

The class of UMD+ spaces is defined by reversing the estimate. By a simple randomization
argument it is seen that a Banach space is a UMD space if and only if it is both UMD−

and UMD+. The classes of UMD− and UMD+ space were introduced by Garling [11] who
proved among other things:

• If E is a UMD+ space, then its dual E∗ is a UMD− space. If E∗ is a UMD+ space,
then its predual E is a UMD− space1.

• Every UMD− space has finite cotype. Every UMD+ space is superreflexive.

• E is a UMD space if and only if E is both UMD− and UMD+.
1This corrects a misprint in the published version
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For the theory of UMD spaces we refer to the review article by Burkholder [3] and the
references given therein.

By [11, Theorem 2] and the Lévy-Octaviani inequalities one easily sees that a Banach
space E is a UMD− space if and only if for some (every) p ∈ [1,∞) there exists a constant
β̃−p,E > 0 such that for all E-valued martingale difference sequences (dn)N

n=1 we have

E sup
16n6N

∥∥∥ n∑
k=1

dk

∥∥∥p

6 (β̃−p,E)p EẼ
∥∥∥ N∑

k=1

r̃kdk

∥∥∥p

.

This may be used to prove:

Proposition 3.3 If (S,Σ, µ) is σ-finite and E is a UMD− space, then for all p ∈ [1,∞)
the space Lp(S;E) is a UMD− space.

The fact that L1(S), and more generally every space which is finitely representable in l1,
is a UMD− space is proved in [11, Theorem 3]. Apart from the trivial case where (S,Σ, µ)
consists of finitely many atoms, the space L1(S) is an example of a UMD− space that is
not a UMD space.

The following proposition is proved in the same way as [15, Theorem 3.7] and generalizes
of a result of McConnell [14] for H = R and UMD spaces E. It uses an obvious one-sided
generalization of [10, Theorem 2′] to UMD− spaces.

Proposition 3.4 Let E be a UMD− space and let Φ : [0, T ]× Ω → L (H,E) be a scalarly
progressively measurable process. If Φ represents an element XΦ of L0(Ω; γ(L2(0, T ;H), E)),
then Φ is stochastically integrable with respect to WH , and there exists a sequence of ele-
mentary progressive processes Φn : [0, T ]× Ω → L (H,E) such that:

(i) lim
n→∞

XΦn = XΦn in L0(Ω; γ(L2(0, T ;H), E));

(ii) lim
n→∞

∫ T

0

Φn(t) dWH(t) =
∫ T

0

Φ(t) dWH(t) in L0(Ω;E).

Below we shall apply the proposition to the space E = L1(S). By Lemma 3.2, the
space L0(Ω; γ(L2(0, T ;H), L1(S))) can be identified with L0(Ω;L1(S;L2(0, T ;H))) isomor-
phically.

After these preparations we are in a position to state and prove our first main result.

Theorem 3.5 (Stochastic Fubini theorem, first version) Let φ : S × [0, T ]×Ω → H
be a process satisfying the following assumptions:

(i) φ is strongly Σ⊗B([0, T ])⊗F -measurable;

(ii) For all s ∈ S, the section φs is progressively measurable;

(iii) For almost all ω ∈ Ω, (s, t) 7→ φ(s, t, ω) belongs to L1(S;L2(0, T ;H)).

Then:

1. For almost all s ∈ S, the process φs is stochastically integrable with respect to WH ;

2. For almost all (t, ω) ∈ [0, T ] × Ω, s 7→ φs(t, ω) defines an element of L1(S;H) and
there exists a progressively measurable process 〈φ, µ〉 : [0, T ] × Ω → H, stochastically
integrable with respect to WH , such that

〈φ, µ〉(t, ω) =
∫

S

φs(t, ω) dµ(s)

for almost all (t, ω) ∈ [0, T ]× Ω;
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3. For almost all ω ∈ Ω, s 7→
(∫ T

0
φs(t) dWH(t)

)
(ω) belongs to L1(S) and∫

S

(∫ T

0

φs(t) dWH(t)
)
(ω) dµ(s) =

(∫ T

0

〈φ, µ〉(t) dWH(t)
)
(ω).

If in (iii) we make the stronger assumption that φ ∈ Lp(Ω;L1(S;L2(0, T ;H))) for some
p ∈ [1,∞), then it follows from similar estimates as in [15] that

E
∣∣∣∫ T

0

〈φ, µ〉(t) dWH(t)
∣∣∣p 6 CpE‖φ‖p

L1(S;L2(0,T ;H)),

for some universal constant Cp, and the equality in (3) may be interpreted in Lp(Ω).

Proof. By Proposition 2.1 (where we replace Ω by [0, T ]×Ω and for G we take the progressive
σ-algebra P of [0, T ]× Ω) we may choose a version of φ which is Σ⊗P-measurable.

(1): For almost all ω ∈ Ω we have φ(s, ·, ω) ∈ L2(0, T ;H) for almost all s ∈ S. Hence
by Fubini’s theorem, for almost all s ∈ S the process (t, ω) 7→ φ(s, t, ω) has trajectories
in L2(0, T ;H) almost surely. By standard results it follows that for almost all s ∈ S the
process φs is stochastically integrable with respect to WH .

(2): Using the embedding

L1(S;L2(0, T ;H)) ↪→ L1(S;L1(0, T ;H)) h L1(0, T ;L1(S,H))

and the Fubini theorem, (iii) implies that for almost all (t, ω) ∈ [0, T ] × Ω the function
s 7→ φ(s, t, ω) defines an element of L1(S;H). The exceptional set N being progressively
measurable, we may redefine φ(·, t, ω) to be 0 for (t, ω) ∈ N and thereby assume that
φ(·, t, ω) defines an element of L1(S;H) for all (t, ω) ∈ [0, T ]× Ω. Now define an operator-
valued process Φ : [0, T ]× Ω → L (H,L1(S)) by

(Φ(t, ω)h)(s) := [φ(s, t, ω), h]H .

Since by (ii) the process (t, ω) 7→ [φ(s, t, ω), h]H is progressively measurable for all s ∈ S,
it follows by Proposition 2.2 that Φh is strongly progressively measurable for all h ∈ H. In
particular, Φ is scalarly progressively measurable.

By Proposition 2.3, the random variable ω 7→ φ(·, ·, ω) is strongly F -measurable from Ω
to L1(S;L2(0, T ;H)). Thus φ defines an element of L0(Ω;L1(S;L2(0, T ;H))). By Propo-
sition 3.4 and the remark following it, Φ is stochastically integrable with respect to WH .

Identifying integration with respect to µ with a bounded linear operator Tµ acting from
L (H,L1(S)) toH in the canonical way, we have 〈φ, µ〉 = Tµ◦Φ. Since Tµ◦Φ is stochastically
integrable with respect to WH the result follows.

(3): By what has been proved in Step 2, Φ is scalarly progressive and represents an
element of L0(Ω; γ(L2(0, T ;H), L1(S))). Hence by Proposition 3.4 there exists a sequence of
elementary progressive processes Φn : [0, T ]× Ω → L (H,L1(S)) such that limn→∞XΦn =
XΦ in L0(Ω; γ(L2(0, T ;H), E)). Upon passing to a subsequence we may assume that(( ∫ T

0

Φ(t) dWH(t)
)
(ω)

)
(s) = lim

n→∞

(( ∫ T

0

Φn(t) dWH(t)
)
(ω)

)
(s)

= lim
n→∞

(∫ T

0

(Φn(t))(s) dWH(t)
)
(ω)

for almost all (s, ω) ∈ S × Ω.

(3.5)

For each n, let φn be the element of L0(Ω; (L1(S;L2(0, T ;H)))) corresponding to the process
Φn. By passing to a further subsequence we may also assume that

lim
n→∞

φn(s, ·, ω) = φ(s, ·, ω) in L2(0, T ;H) for almost all (s, ω) ∈ S × Ω. (3.6)

Defining φn,s(t, ω) := φn(s, t, ω), by (3.6) and the Fubini theorem for almost all s ∈ S we
have φs(·, ω) = limn→∞ φn,s(·, ω) in L2(0, T ;H) for almost all ω ∈ Ω. This implies that
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φs(·) = limn→∞ φn,s(·) in L2(0, T ;H) in probability. By standard results on stochastic
integration, from this it follows that for almost all s ∈ S,∫ T

0

φs(t) dWH(t) = lim
n→∞

∫ T

0

φn,s(t) dWH(t) in probability. (3.7)

Comparing limits in (3.5) and (3.7), for almost all s ∈ S we obtain(∫ T

0

φs(t) dWH(t)
)
(ω) =

((∫ T

0

Φ(t) dWH(t)
)
(ω)

)
(s) for almost all ω ∈ Ω.

But then by the Fubini theorem, for almost all ω ∈ Ω we have(∫ T

0

φs(t) dWH(t)
)
(ω) =

((∫ T

0

Φ(t) dWH(t)
)
(ω)

)
(s) for almost all s ∈ S. (3.8)

Since
∫ T

0
Φ(t) dWH(t) is a random variable with values in L1(S), this proves the µ-integrab-

ility assertion. The final identity follows by integrating (3.8) with respect to µ. This gives,
for almost all ω ∈ Ω,∫

S

(∫ T

0

φs(t) dWH(t)
)
(ω) dµ(s) =

∫
S

((∫ T

0

Φ(t) dWH(t)
)
(ω)

)
(s) dµ(s)

(i)
=

〈( ∫ T

0

Φ(t) dWH(t)
)
(ω),1

〉
(ii)
=

( ∫ T

0

Φ∗(t)1 dWH(t)
)
(ω)

(iii)
=

(∫ T

0

〈φ, µ〉(t) dWH(t)
)
(ω).

In (i) the brackets denote the duality between L1(S) and L∞(S), in (ii) we used the identity
(3.4), and in (iii) we used (2) and the Fubini theorem to the effect that for almost all t ∈ [0, T ]
we have, almost surely,

[Φ∗(t)1, h]H =
∫

S

[φ(s, t, ·), h]H dµ(s) = [〈φ, µ〉(t), h]H for all h ∈ H.

�

Theorem 3.5 can easily be extended to the more general situation where φ is a process
with values in L (H,H ′). In this way, a generalization of the result by Da Prato and
Zabczyk [5] as stated in the Introduction is obtained. More generally, one can replace the
rôle of H ′ by an arbitrary real Banach space E. The condition from [5] that φ should take
values in L0(Ω;L2(0, T ;L2(H,H ′)) is then replaced by the condition that φ should take
values in L0(Ω; γ(L2(0, T ;H), E)). The latter condition reduces to the former if E = H ′

since γ(L2(0, T ;H),H ′) = L2(0, T ;L2(H,H ′)) isometrically. In order to be able to give a
precise statement of the theorem we need to introduce some notations from [15].

Every functional x∗ ∈ E∗ induces a bounded operator x∗ : γ(L2(0, T ;H), E)) →
L2(0, T ;H) by

x∗(S) := S∗x∗.

We shall write 〈S, x∗〉 instead of x∗(S). Applying this operator pointwise, we obtain an
operator x∗ : L0(Ω; γ(L2(0, T ;H), E)) → L0(Ω;L2(0, T ;H)) by

(x∗(X))(ω) := X∗(ω)x∗.

In what follows we shall write 〈X,x∗〉 for x∗(X). Let L0
F(Ω; γ(L2(0, T ;H), E)) denote

the closed subspace of all of L0(Ω; γ(L2(0, T ;H), E)) of all elements X such that for all
x∗ ∈ E∗, 〈X,x∗〉 is a progressively measurable as an H-valued process with respect to the
filtration F. Here, we identify the elements 〈X,x∗〉 ∈ L0(Ω;L2(0, T ;H)) with processes
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〈X,x∗〉 : [0, T ] × Ω → H. Note that if X = XΦ is represented by a process Φ, then
〈X,x∗〉 = Φ∗x∗.

Since every elementary progressive process is representable, the subspace of representable
elements is dense in L0

F(Ω; γ(L2(0, T ;H), E)). It is shown as in [15] that the linear operator
XΦ 7→

∫ T

0
Φ(t) dWH(t), which is well defined for representable processes by Proposition 3.4,

has a unique extension to a continuous linear operator

IWH : L0
F(Ω; γ(L2(0, T ;H), E)) → L0(Ω;E).

We shall write
∫ T

0
X dWH for Itô(X).

The proof of Theorem 3.5 can be adapted to obtain the following result.

Theorem 3.6 (Stochastic Fubini theorem, second version) Let E be a UMD− space
and let φ : S × [0, T ]× Ω → L (H,E) be a process satisfying the following assumptions:

(i) For all h ∈ H, φh is strongly Σ⊗B([0, T ])⊗F -measurable;

(ii) For all s ∈ S, the section φs is progressively measurable for all h ∈ H;

(iii) For almost all (s, ω) ∈ S × Ω, the function t 7→ φ(s, t, ω) represents an element
Us,ω ∈ γ(L2(0, T ;H), E), and for almost all ω ∈ Ω, s 7→ Us,ω defines an element of
L1(S; γ(L2(0, T ;H), E)).

Then:

1. For almost all s ∈ S, φs is stochastically integrable with respect to WH ;

2. For all x∗ ∈ E∗, s 7→ φ∗s(t, ω)x∗ defines an element of L1(S;H) for almost all (t, ω) ∈
[0, T ] × Ω, and there exists an element 〈φ, µ〉 ∈ L0

F(Ω; γ(L2(0, T ;H), E)) such that
for all x∗ ∈ E∗ we have〈

〈φ, µ〉, x∗
〉
(t, ω) =

∫
S

φ∗s(t, ω)x∗ dµ(s)

for almost all (t, ω) ∈ [0, T ]× Ω;

3. For almost all ω ∈ Ω, s 7→
(∫ T

0
φs(t) dWH(t)

)
(ω) belongs to L1(S;E) and we have∫

S

(∫ T

0

φs(t) dWH(t)
)
(ω) dµ(s) =

(∫ T

0

〈φ, µ〉(t) dWH(t)
)
(ω).

If E has type 2 we have a continuous embedding L2(0, T ; γ(H,E)) ↪→ γ(L2(0, T ;H), E),
cf. [17]. Condition (iii) is then implied by the stronger condition

(iii)′ For almost all ω ∈ Ω, (s, t) 7→ φ(s, t, ω) defines an element of L1(S;L2(0, T ; γ(H,E))).

If E has cotype 2 we have a continuous embedding γ(L2(0, T ;H), E) ↪→ L2(0, T ; γ(H,E)),
cf. [17]. Because of this, every X ∈ L0

F(Ω; γ(L2(0, T ;H), E)) can be identified with a
progressively measurable process in L0(Ω;L2(0, T ; γ(H,E))) and the use of the abstract
Itô operator can be avoided. Moreover it can be shown that in this situation, (2) can be
strengthened as follows:

(2)′ For almost all (t, ω) ∈ [0, T ] × Ω, s 7→ φ(s, t, ω)h belongs to L1(S;E) for all h ∈ H
and there exists a process 〈φ, µ〉 : [0, T ]×Ω → L (H,E), stochastically integrable with
respect to WH , such that for almost all (t, ω) ∈ [0, T ]× Ω we have

〈φ, µ〉(t, ω)h =
∫

S

φ(s, t, ω)h dµ(s)

for all h ∈ H.
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Both remarks apply if E = H ′ is a Hilbert space, in which case we have γ(H,E) =
γ(H,H ′) = L2(H,H ′).

Finally, in (iii) we may replace the almost sure conditions by moment conditions to
obtain random variables with finite moments in (3). For example, in the case E = H ′ we
could assume that φ ∈ Lp(Ω;L1(S;L2(0, T ;L2(H,H ′)))) for some p ∈ [1,∞), in which case
we obtain

E
∥∥∥∫ T

0

〈φ, µ〉(t) dWH(t)
∥∥∥p

6 CpE‖φ‖p
L1(S;L2(0,T ;L2(H,H′))),

and the equality in (3) may be interpreted in Lp(Ω;E).
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