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0. Introduction

1. Strong continuity of the adjoint semigroup

Let us start with an elementary example of a C0-semigroup whose adjoint fails to
be strongly continuous.

Example 1.1. Let T (t) be the translation semigroup on C0(R ), the Banach
space of continuous functions vanishing at infinity with the sup-norm;

(T (t)f)(s) = f(s+ t).

One easily checks that this is indeed a C0-semigroup and that its adjoint on
(C0(R ))∗ = M(R ), the space of bounded Borel measures on R , is given by

(T ∗(t)µ)(F ) = µ(F − t).

Taking for µ a Dirac measure δ, it is clear that

lim sup
t↓0

‖T ∗(t)δ − δ‖ = 2.

The occurence of the number 2 is no coincidence; cf. Theorem ??? below.
Although T ∗(t) need not be strongly continuous, the inequality

|〈T ∗(t)x∗ − x∗, x〉| 6 ‖x∗‖ ‖T (t)x− x‖

implies that T ∗(t) is weak∗-continuous. Hence, if X is a reflexive Banach space,
then T (t) is weakly continuous. By a standard theorem of semigroup theory, weakly
continuous semigroups are strongly continuous, and we obtain:
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Theorem 1.2 [Ph]. If T (t) is a C0-semigroup on a reflexive Banach space, then
X� = X∗.

The converse of this theorem is not true: there are non-reflexive Banach
spaces on which the adjoint of every C0-semigroup is strongly continuous. In
fact, it is a theorem of Lotz [L] that every C0-semigroup on L∞[0, 1] is uniformly
continuous, i.e.

lim
t↓0
‖T (t)− I‖ = 0.

Of course, the adjoint of such a semigroup is uniformly continuous as well, and
hence strongly continuous.

Lotz’s theorem shows that there exists Banach spaces X which admit ‘trivial’
semigroups only. If X does admit ‘sufficiently many’ semigroups, then the converse
of Theorem 1.2 does hold. A sequence (xn) is called a Schauder basis for X if for
each x ∈ X there is a unique scalar sequence (αn) such that

x =
∞∑

n=1

αnxn.

The coordinate functionals are the (bounded) functionals (xn)∗ given by

〈x∗n, x〉 = αn.

Theorem 1.3. If X is a non-reflexive Banach space with a shauder basis, then
there exists a C0-semigroup on X whose adjoint fails to be strongly continuous.

In fact, X has a (probably different) Schauder basis whose coordinate functionals
span a proper closed subspace of X∗. On the other hand, on every Banach space
with a Schauder basis the formula

T (t)xn = e−ntxn

can be shown to define a C0-semigroup such that X� is precisely the closed linear
span of the coordinate functionals.

Theorem 1.3 shows that in general reflexivity if the only sufficient criterion
that guaratees X� = X∗. If one restricts oneself to special classes of Banach spaces
or semigroups however, one may hope for stronger results. The most striking one
is the following theorem about c0, the Banach space of all scalar sequences which
converge to 0 with the sup-norm.

Theorem 1.4. Let T (t) be a C0-semigroup on c0. If there exist M < 2 and
ω ∈ R such that ‖T (t)‖ 6Meωt, then c�0 = c∗0.

Recall that for every C0-semigroup there are constants M > 1 and ω ∈ R
such that ‖T (t)‖ 6Meωt; the point is that M should be less than 2. At first sight,
the role of the number 2 is quite mysterious. Here is a full explanation. For a
closed subspace Y of a dual Banach space X∗ define the characteristic ρ(Y ) of Y
by

ρ(Y ) := inf
x∈X,‖x‖=1

‖x‖Y ,

where ‖x‖Y := supy∈BY |〈y, x〉|. In other words, we norm X with Y and ask how
bad this norm is. If α‖ · ‖ 6 ‖ · ‖Y 6 ‖ · ‖, then by definition ρ(Y ) > α. Also, if Y
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is not weak∗-dense, then ρ(Y ) = 0. Now X := c0 can be shown [GS] to have the
following property: If Y is any proper closed subspace of X ∗, then ρ(Y ) 6 1

2
. If

‖T (t)‖ 6Meωt with M < 2, then for all x ∈ c0 we have

1

2
‖x‖ < 1

M
‖x‖ 6 ‖x‖′ = ‖x‖c�0

and it follows immediately that c�0 cannot be a proper subspace of l1. An entirely
elementary proof of Theorem 1.4 is given in [Ne].

The constant 2 is optimal, as is shows by the following example.

Example 1.5. (The summing semigroup) Let xn = (0, 0, ..., 0, 1, 0, ...) the nth
unit vector of c0 and put

yn =
n∑

k=1

xn = (1, 1, ..., 1, 0, 0, ...).

The sequence (yn) can be shown to be a Schauder basis for c0 (the so-called sum-
ming basis). The formula

T (t)yn = e−ntyn

then defines a C0-semigroup on c0 satisfying ‖T (t)‖ 6 2 for all t. Moreover, c�0 is
the closed linear span of the coordinate functionals of (yn), which is a co-dimension
one subspace of c∗0.

As a final example, there is the following result for C0-groups.

Theorem 1.6. Suppose T (t) is a C0-group on a Banach space X whose dual has
the Radon-Nikodym property. Then X� = X∗.

If fact, if T (t) is a C0-semigroup on such a space, then it can be shown that
the adjoint semigroup is strongly continuous for t > 0.

2. The co-dimension of X� in X∗

Knowing that X� can be a proper subspace of X∗, the question arises what can
be said about its ‘relative size’ in X∗. We noted already in the introduction that
X� is weak∗-dense in X∗, but with respect to the norm-topology the situation is
far more subtle. In that case, the natural object of study is the size of the quotient
space X∗/X�. We start with noting that there is a nice description of the quotient
norm of X∗/X�.

Theorem 2.1. Let T (t) be a C0-semigroup on a Banach space X. Then

‖qx∗‖ = lim sup
t↓

‖T ∗(t)x∗ − x∗‖

defines an equivalent norm on X∗/X�.
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Example 1.5 seems to indicate that not very much can be said about the size
of X∗/X�. Indeed, for that semigroup we have

dim c∗0/c
�
0 = 1,

and by taking direct sums it is possible to construct semigroups for which X ∗/X�

can have any finite dimension. Let us analyse this example more closely. Since
c∗0 = l1 has the Radon-Nikodym property, by the remark after Theorem 1.6 the
adjoint semigroup is strongly continuous for t > 0. This is equivalent to saying
that T ∗(t)x∗ ∈ c�0 for every t > 0 and x∗ ∈ l1. Letting q : c∗0 → c∗0/c

�
0 be the

quotient map, this is in turn equivalent to saying that q(T ∗(t)x∗) = 0 for all t > 0
and x∗ ∈ l1.

On X∗/X�, there is a natural quotient semigroup Tq(t), defined by

Tq(t)qx
∗ = q(T ∗(t)x∗).

In the above example, all orbits of Tq(t) are zero for t > 0. In general, one has the
following result. We say that a Banach valued function is separably valued if its
range is contained in some separable subspace.

Theorem 2.2. Let T (t) be a C0-semigroup on a Banach space X. If the orbit
t 7→ Tq(t)qx

∗ is separably-valued, then Tq(t)qx
∗ = 0 for all t > 0.

In particular this theorem implies that non-zero orbits of the quotient semi-
group cannot be strongly continuous. An elegant elementary proof of this fact was
recently obtained by Ben de Pagter.

Corollary 2.3. If X∗/X� is separable, then T ∗(t) is strongly continuous for
t > 0.

Corollary 2.4. If T (t) extends to a C0-group, then X∗/X� is either zero or
non-separable.

3. The adjoint of a positive semigroup

Many semigroups encountered in applications are positive, i.e. they map positive
elements to positive elements. Throughout this section, we assume that T (t) is a
positive C0-semigroup on a Banach lattice E.

The first question we address is whether E� has some nice lattice properties
if T (t) has. For example, one might hope that E� is a sublattice if T (t) is positive.
This was an open problem for some time and was finally solved to the negative by
Grabosch and Nagel [???], who constructed a counterexample on an L1-space E.

On the other hand, if E is for example a space of continuous functions, then
E� is even a projection band [???]:

Theorem 3.1. Let T (t) be a positive C0-semigroup on a Banach lattice E. If
E∗ has order continuous norm, then E� is a projection band in E∗.
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Apart from the almost trivial fact that E� is a sublattice if T (t) is a positive
C0-group, and more geenrally if T ∗(t) is a lattice semigroup, no significant positive
results about the lattice structure of E� are known.

The next two results are concerned with the behaviour of the adjoint itself.

Theorem 3.2. Let T (t) be a positive C0-semigroup on E = C(K), K compact
Hausdorff. If T ∗(t) is weakly Borel measurable, then it is strongly continuous for
t > 0.

In particular, if T (t) extends to a C0-group, then T ∗(t)x∗ is weakly Borel
measurable if and only if x∗ ∈ E�.

Theorem 3.2 is highly non-trivial; it depends on a deep result result of Riddle,
Saab and Uhl that a weakly Borel measurable map taking values in the dual of
a separable Banach space is Pettis integrable, and on a detailed analysis of the
behaviour of the second adjoint semigroup T ∗∗(t). One might wonder whether
weak (i.e. weak Lebesgue) measurability already implies strong continuity for
t > 0. Under certain set-theoretical assumptions, this is true, but it is an open
question whether this can be proved within ZFC.

At least equally non-trivial is the following beautiful result of Talagrand [T]:

Theorem 3.3. Let T (t) be the translation group on L1(R ). If for some f ∈
L∞(R ) the orbit t 7→ T ∗(t)f is weakly measurable, then f is equal a.e. to a
Riemann measurable function.

Recall that a function is Riemann measurable if it is continuous a.e.
These results support the following conjecture of Ben de Pagter: Let T (t)

be a positive C0-group on a Banach lattice E and let x∗ ∈ E∗. Then the orbit
t 7→ T ∗(t)x∗ is weakly measurable if and only if x∗ belongs to the Dedekind closure
of E� in E∗. Indeed, the Dedekind closure of C0(R ) (which is the �-dual of L1(R )
with respect to the translation group) is precisely the space of Riemann measurable
functions. On the other hand, a projection band (for example, the �-dual of C(K)
with respect to any positive C0-semigroup) is always Dedekind closed.

After these ‘weak implies strong’ results, we turn to the lattice properties
of individual orbits of T ∗(t). The most interesting results are concerned with the
behaviuor of elements is E∗ which are disjoint from E�. Before turning to these,
let us remark that such elements do not exist if E is σ-Dedekind complete, e.g. if
E = L1(µ) or more generally a Banach function space. Thus the results to follow
are non-empty only for ‘continuous functions’-like spaces, such as C(K) or C0(Ω).

Theorem 3.4. Let T (t) be a positive C0-semigroup on a Banach lattice E.
Suppose that either E has a quasi-interior point of E∗ has order continuos norm.
If x∗ ⊥ E�, then T ∗(t)x∗ ⊥ x∗ for almost all t > 0.

Recall that u ∈ E us a quasi-interior point if the ideal generated by u is norm
dense in E. Every separable Banach lattice and every L∞-space have quasi-interior
points.

In the special case where T (t) is the translation group on E = C0(R ), we
have x∗ ⊥ E� = L1(R ) if and only if x∗ is singular with respect to the Lebesgue
measure, an the theorem reduces to the classical theorem of Wiener and Young
that a singluar measure on R is disjoint to almost all of its translates.

Theorem 3.4 fails for arbitrary Banach lattices. Nevertheless we have the
following result.
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Theorem 3.5. Let T (t) be a positive C0-semigroup on a Banach lattice E. If
x∗ ⊥ E�, then

lim sup
t↓0

‖T ∗(t)x∗ − x∗‖ > 2‖x∗‖.

If E has a quasi-interior point or E∗ has order continuous norm, this follows
readily from Theorem 3.4; the general case can be reduced to this, but can also be
proved directly.

Our final result is concerned with the question when the disjoint complement
of E� is T ∗(t)-invariant.

Theorem 3.6. Let T (t) be a positive C0-semigroup on a Banach lattice E. If
T ∗(t) is a lattice semigroup, then the disjoint complement of E� is T ∗(t)-invariant.

In particular this is the case is T (t) extends to a positive group.
Our final two results are concerned woth multiplication semigroups. A C0-

semigroup on a Banach lattice E is called a multiplication semigroup if each oper-
ator T (t) is a band preserving operator. On can show that on most classical space
of functions, an operator is band preserving if and only if it can be represented as
multiplication with some (continuous, measurable) function. Multiplication semi-
groups are positive.

Theorem 3.7. If T (t) is a multiplication semigroup, then E� is an ideal in E∗

and T ∗(t) is strongly continuous for t > 0.
There are two trivial examples of�-reflexive multiplication semigroups: those

on reflexive Banach lattices E, and multiplication semigroups of the form T (t)xn =
ekntxn, where (xn) is an unconditional Schauder basis for E and (kn) is a sequence
of real numbers which is bounded from above. Not that in both cases, E has order
continuous norm. The following therorem states that these are essentially the only
exampes:

Theorem 3.8. If E is �-reflexive with respect to a multiplication semigroup,
then E has order continuous norm. Furthermore, if E does not contain a reflexive
projection band, then E has an unconditional Schauder basis (xn) and T (t) is
of the form T (t)xn = ekntxn, where (kn) is a sequence of real numbers which is
bounded from above.

In general, if E is reflexive with respect to a positive C0-semigroup, then E
need not have order continuous norm, as is shown be the rotation group on C(Γ),
Γ being the unit circle. However, the following is true:

Theorem 3.9. If a Banach space X is �-reflexive with respect to a C0-semigroup
T (t), then X does not contain a closed subspace isomorphic to l∞. In particular,
if X is a σ-Dedekind complete Banach lattice, then X must have order continuous
norm.

The second statement follows from the general result in Banach lattice theory
that a σ-Dedekind complete Banach lattice has order continuous norm if it does
not contain a closed subspace isomorphic to l∞.
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