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0. Introduction

Let {T (t)}t>0 be a C0-semigroup of bounded linear operators on a (real or complex)
Banach space X. By defining T ∗(t) := (T (t))∗ for each t, one obtaines a semigroup {T ∗(t)}t>0

on the dual space X∗. Throughout this paper, we will denote the semigroups {T (t)}t>0 and
{T ∗(t)}t>0 by T (t) and T ∗(t), respectively, and it will be clear from the context when we mean
the semigroup or the single operator.

The adjoint semigroup T ∗(t) fails in general to be strongly continuous again. Therefore
it makes sense to define

X� = {x∗ ∈ X∗ : lim
t↓0
‖T ∗(t)x∗ − x∗‖ = 0}.

This is the maximal subspace of X∗ on which T ∗(t) acts in a strongly continuous way. The
space X� was introduced by Phillips in 1955 [Ph]. Recently, this space has been studied ex-
tensively by various authors (e.g., [Ne], [NP], [P]), in particular in connection with applications
to certain evolution equations (e.g., [Cl]).

The purpose of this paper is to study the properties of E� in case E is a Banach lattice
and T (t) is a positive C0-semigroup. Virtually nothing is known about the Banach lattice
properties of E� and one of the most obvious questions, viz. under what conditions E� is a
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sublattice of E∗, is wide open. If T ∗(t) is a lattice semigroup, in particular if T (t) extends to
a positive group, then E� is a sublattice [Cl, Part IV]; this follows from

|T ∗(t)(x�)+ − (x�)+| = |(T ∗(t)x�)+ − (x�)+| 6 |T ∗(t)x� − x�|

and the lattice property of the norm. Recently, Grabosch and Nagel [GN] constructed a
positive C0-semigroup on an AL-space E for which E� is not a sublattice of E∗. In fact, in
this example the space E�, with the order inherited from E∗, even fails to be a Banach lattice
in its own right.

In order to motivate our main results, we start by considering in some detail the translation
group T (t) on C0(R ), given by T (t)f(s) = f(t+ s). This semigroup has some features which
turn out to be representative for the abstract situation.

Theorem 0.1. Let T (t) be the translation group on E = C0(R ).
(i) ([Pl]) µ ∈ E� if and only µ is absolutely continuous with respect to the Lebesgue measure

m.
(ii) ([MG],[WY]) If µ ∈ E∗ is singular with respect to m, then T ∗(t)µ ⊥ µ for almost all

t ∈ R . In particular, for any ν ∈ E∗ we have lim supt↓0 ‖T ∗(t)ν − ν‖ = 2‖νs‖, where νs
is the singular part of ν.

(iii) The space of singular measures is T ∗(t)-invariant.

Note that T ∗(t)ν is just the translate in the opposite direction of ν in the sense that for
a measurable set G we have (T ∗(t)ν)(G) = ν(G − t). Also, by (i) it is clear that a measure
µ is singular if and only if µ ⊥ E� in the Banach lattice sense. Versions of Theorem 0.1 for
commutative locally compact groups (instead of R ) can be found in [GM, Chapter 8]. In [Pa2],
the Wiener-Young theorem ((ii) above) has been analysed in detail in the context of adjoint
semigroups. There, extensions have been obtained for the adjoints of positive semigroups
essentially on C(K)-spaces. In the present paper, most of the results in [Pa2] will be extended
to positive semigroups on arbitrary Banach lattices. For the convenience of the reader, we
include full proofs. Although several proofs are completely different, this causes a small overlap
with [Pa2].

We will prove the following Banach lattice versions of (i)-(iii). Let T (t) be a positive
C0-semigroup on a Banach lattice E. Then:

(i) E� is a projection band if E∗ has order continuous norm (Theorem 2.1).

The most important class of (non-reflexive) Banach lattices whose duals have order con-
tinuous norm is the class of AM-spaces. This class contains C0(R ). In contrast, note that the
dual of an AL-space does not have order continuous norm unless E is finite-dimensional.

(ii) Suppose x∗ ⊥ E�. Then we have lim supt↓0 ‖T ∗(t)x∗ − x∗‖ > 2‖x∗‖ (Theorem 4.4). If
moreover E∗ has order continuous norm or E has a quasi-interior point, then T ∗(t)x∗ ⊥ x∗
for almost all t > 0 (Corollary 3.4).

(iii) The disjoint complement of E� is T ∗(t)-invariant if T ∗(t) is a lattice semigroup (Corollary
4.8).

We use (iii) to show that if T ∗(t) is a lattice semigroup, then the quotient E∗/(E�)dd is
either zero or else ‘very large’ (Theorem 4.10). Here (E�)dd is the band generated by E�.

We assume the reader to be familiar with some standard theory of Banach lattices. For
more information as well as the terminology we refer to [M], [AB], [S], [Z]. Throughout this
paper, all Banach spaces and lattices may be either real or complex.
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1. Some preliminary information

In this section we recall some of the basic facts about adjoint semigroups which will be
used in the sequel. Proof can be found e.g. in [BB].

Let T (t) be a C0-semigroup (i.e., a strongly continuous semigroup) on a Banach space
X. Its generator will be denoted by A with domain D(A). Considering the adjoint semigroup
T ∗(t) on the dual space X∗, we define

X� = {x∗ ∈ X∗ : lim
t↓0
‖T ∗(t)x∗ − x∗‖ = 0},

the domain of strong continuity of T ∗(t). Then X� is a T ∗(t)-invariant, norm closed, weak∗-
dense subspace of X∗ (hence X� = X∗ if X is reflexive). The space X� is precisely the norm
closure of D(A∗), the domain of the adjoint of A. In particular, for λ ∈ %(A) = %(A∗) we have
R(λ,A∗)x∗ ∈ X� for all x∗ ∈ X∗, where R(λ,A∗) = R(λ,A)∗ = (λ − A∗)−1 is the resolvent.
For all x∗ ∈ X∗ we have limλ→∞ λR(λ,A∗)x∗ = x∗, where the limit is in the weak∗-sense. An
alternative description of X� is given by

X� = {x∗ ∈ X∗ : lim
λ→∞

‖λR(λ,A∗)x∗ − x∗‖ = 0}.

If T (t) extends to a C0-group, then the space X� with respect to the semigroup {T (t)}t>0 is
equal to the domain of strong continuity of the group {T (t)}t∈R .

Examples of spaces X� for various semigroups can be found in [BB], [Ne], [NP]. In
particular we mention that if T is the translation group on C0(R ) or L1(R ), the space X�

can be identified canonically with L1(R ) and BUC(R ) (the space of all bounded, uniformly
continuous functions on R ), respectively.

We will have the occasion to use the so-called weak∗-integrals (or Gelfand integrals) of
X∗-valued functions. Let [a, b] ⊂ R and f : [a, b]→ X∗ a weak∗-continuous function (or, more
generally, a weak∗-measurable function such that t 7→ 〈f(t), x〉 ∈ L1[a, b] for all x ∈ X). The

weak∗-integral weak∗
∫ b
a
f(t) dt ∈ X∗ is then defined by the formula

〈weak∗
∫ b

a

f(t) dt, x〉 =

∫ b

a

〈f(t), x〉 dt, ∀x ∈ X.

In this situation, the function t 7→ ‖f(t)‖ is a Borel function on [a, b] and we have the estimate

∥∥∥weak∗
∫ b

a

f(t) dt
∥∥∥ 6

∫ b

a

‖f(t)‖ dt.

If T (t) is a C0-semigroup onX, then for each x∗ ∈ X∗ the map t 7→ T ∗(t)x∗ is weak∗-continuous
on [0,∞) and for all 0 6 a < b ∈ R we have

weak∗
∫ b

a

T ∗(t)x∗ dt ∈ D(A∗) ⊂ X�.

Finally we say a few words about the Banach lattice situation. Let E be a Banach lattice
and T (t) a positive C0-semigroup on E. Suppose that M,ω are such that ‖T (t)‖ 6Meωt for
all t > 0. If λ ∈ R is such that λ > ω, then λ ∈ %(A) and R(λ,A) > 0 (for the basic theory
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of positive semigroups we refer to [Na]). As mentioned in the introduction, E� need not be a
sublattice of E∗. As usual, we denote by (E�)d the disjoint complement of E� in E∗, i.e.,

(E�)d = {x∗ ∈ E∗ : x∗ ⊥ y� for all y� ∈ E�}.

Here x∗ ⊥ y� means that |x∗| ∧ |y�| = 0. Then (E�)dd, the disjoint complement of (E�)d, is
equal to the band generated by E�. Since E� = D(A∗), it is clear that (E�)dd = (D(A∗))dd.
In general, (E�)d is not T ∗(t)-invariant (see Example 3.7). However, the subspace (E�)dd is
always T ∗(t)-invariant. Indeed, if x∗ ∈ E∗ is such that |x∗| 6 |R(λ,A∗)y∗| for some y∗ ∈ E∗
and λ > ω, then |T ∗(t)x∗| 6 R(λ,A∗)T ∗(t)|y∗|. This shows that the (order) ideal generated by
R(λ,A∗)(E∗) = D(A∗) is T ∗(t)-invariant. Since T ∗(t), being the adjoint of a positive operator,
is order continuous, this implies that the band (D(A∗))dd = (E�)dd is T ∗(t)-invariant as well.

2. The structure of E�

In this section we will assume that T (t) is a positive C0-semigroup on a Banach lattice E.

Theorem 2.1. If E� is contained in a sublattice of E∗ with order continuous norm, then
E� is an ideal in E∗. In particular, if E∗ has order continuous norm, then E� is a projection
band.

Proof: Let F be a sublattice of E∗ with order continuous norm, containing E�.
Step 1. First let 0 6 |x∗| 6 y∗ with y∗ ∈ E�. We will show that x∗ ∈ E�. Choose λ0 > 0

be such that R(λ,A) > 0 for λ > λ0. Put

G := {λR(λ,A)∗y∗ : λ > λ0}.

Since y∗ ∈ E�, this set is relatively compact subset of F , hence certainly relatively weakly
compact in F . Let

solFG := {f ∈ F : ∃g ∈ G with |f | 6 g}
be the solid hull of G in F . Since F has order continuous norm, solFG is relatively weakly
compact in F [M, Prop. 2.5.12 (iv)]. Since E� ⊂ F and 0 6 |λR(λ,A)∗x∗| 6 R(λ,A)∗|x∗| 6
λR(λ,A)∗y∗ for all λ > λ0, it is clear that

H := {λR(λ,A)∗x∗ : λ > λ0} ⊂ solFG.

In particular, H is relatively weakly compact in F . Let z∗ be any σ(F ∗, F )-accumulation point
of H as λ → ∞. Then z∗ is also a weak- and hence a weak∗-accumulation point of H. But
on the other hand, weak∗ limλ→∞ λR(λ,A)∗x∗ = x∗. Therefore necessarily z∗ = x∗. Since
λR(λ,A)∗x∗ ∈ E� for each λ > λ0, it follows that x∗ belongs to the weak closure of E�.
Hence x∗ ∈ E�.

Step 2. Suppose |x∗| 6 |y∗| with y∗ ∈ E�. We will show that x∗ ∈ E�. By Step 1 it
suffices to show that |x∗| ∈ E�. Therefore we may assume that x∗ > 0. For λ > λ0 put

z∗λ := |λR(λ,A)∗y∗| ∧ x∗.

Then, since x∗ > 0 and λR(λ,A)∗ > 0,

0 6 z∗λ 6 |λR(λ,A)∗y∗| 6 λR(λ,A)∗|y∗|,
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and since λR(λ,A)∗|y∗| is a positive element in E�, it follows from Step 1 that z∗λ ∈ E�. But
since y∗ ∈ E� we have limλ→∞ |λR(λ,A)∗y∗| = |y∗|, and therefore

lim
λ→∞

z∗λ = lim
λ→∞

|λR(λ,A)∗y∗| ∧ x∗ = |y∗| ∧ x∗ = x∗.

Since E� is closed it follows that x∗ ∈ E�. This proves that E� is an ideal.
The second statement is a consequence of the fact that every closed ideal in a Banach

lattice with order continuous norm is a projection band. ////

In [NP] we observed that if E is a σ-Dedekind complete Banach lattice, then the band
generated by E� is the whole E∗. In fact, this follows from weak∗ limλ→∞ λR(λ,A)∗x∗ = x∗

and the fact that every band projection in the dual of a σ-Dedekind complete Banach lattice is
weak∗-sequentially continuous [AB, Thm. 13.14] (consider the band projection onto the band
generated by E�).

Corollary 2.2. If E is a σ-Dedekind complete Banach lattice whose dual has order contin-
uous norm, then E� = E∗.

An example of such a Banach lattice is E = c0.
The following corollary is a converse of Theorem 2.1 in case R(λ,A) is weakly compact

for some λ ∈ %(A) (hence for all λ ∈ %(A)). This is the case if and only if E is �-reflexive with
respect to T (t); see [Pa1].

Corollary 2.3. If R(λ,A) is weakly compact, then the following assertions are equivalent:
(i) E� is an ideal;
(ii) E� is contained in a sublattice with order continuous norm;
(iii) E� is a σ-Dedekind complete sublattice.

Proof: (iii)⇒(ii): If E� is σ-Dedekind complete then, by the weak compactness of R(λ,A),
E� actually has order continuous norm [NP]. (ii)⇒(i) follows from Theorem 2.1 and (i)⇒(iii)
follows from the fact that the dual of a Banach lattice is always Dedekind complete. ////

3. Disjointness almost everywhere

Throughout this section, let T (t) be a positive C0-semigroup on a Banach lattice E. Fix
a real λ ∈ %(A) with λ > ω, with ω ∈ R such that ‖T (t)‖ 6 Meωt for a suitable constant
M > 1.

We start with the simple observation that x ∈ {R(λ,A)x}dd for all 0 6 x ∈ E. Indeed,
suppose y ∈ E such that y ∧R(λ,A)x = 0. Since 0 6 R(µ,A)x 6 R(λ,A)x for all µ > λ, this
implies that

y ∧ (µR(µ,A)x) = 0.

Now it follows from limµ→∞ µR(µ,A)x = x that y ∧ x = 0. This shows that

{R(λ,A)x}d ⊂ {x}d,

and hence x ∈ {R(λ,A)x}dd.
For the adjoint semigroup the situation is different. It can happen that x∗ ⊥ R(λ,A∗)x∗

for some 0 6 x∗ ∈ X∗. For example, let T (t) be translation group on E = C0(R ) and let x∗
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be a measure which is singular with respect to the Lebesgue measure. Then x∗ ⊥ L1(R ), here
identifying absolutely continuous measures with their L1-densities. But R(λ,A∗)x∗ ∈ E� =
L1(R ), so indeed x∗ ⊥ R(λ,A∗)x∗.

As one of the results of this section we will characterize these functionals x∗ as the elements
of (E�)d. The following lemma is a first step towards this characterization.

We will use repeatedly the formula

(∗) 〈x∗ ∧ y∗, x〉 = inf{〈x∗, u〉+ 〈y∗, v〉 : u, v ∈ [0, x], u + v = x},

valid for arbitrary x∗, y∗ ∈ E∗ and 0 6 x ∈ E (see e.g. [Z], Theorem 83.6).

Lemma 3.1. Suppose 0 6 x ∈ E, 0 6 x ∈ E∗ and 0 6 y∗ ∈ E∗ satisfy 〈R(λ,A∗)x∗ ∧
y∗, x〉 = 0. Then, for almost all t > 0 (with respect to the Lebesgue measure) we have
〈T ∗(t)x∗ ∧ y∗, x〉 = 0.

Proof: The formula (*) applied to T ∗(t)x∗ ∧ y∗ shows that for x > 0 the function f(t) :=
〈T ∗(t)x∗ ∧ y∗, x〉 is measurable, being the infimum of continuous functions. We must show
that f = 0 a.e. Fix ε > 0. By (*), applied to R(λ,A∗)x∗ ∧ y∗, it is possible to choose
u, v ∈ [0, x] such that u+ v = x and

〈R(λ,A∗)x∗, u〉 < ε, 〈y∗, v〉 < ε.

Then
∫ ∞

0

e−λt〈T ∗(t)x∗ ∧ y∗, x〉dt 6
∫ ∞

0

e−λt〈T ∗(t)x∗, u〉dt +

∫ ∞

0

e−λt〈y∗, v〉dt

= 〈R(λ,A∗)x∗, u〉+ λ−1〈y∗, v〉 6 (1 + λ−1)ε.

Since ε > 0 is arbitrary it follows that
∫ ∞

0

e−λt〈T ∗(t)x∗ ∧ y∗, x〉dt = 0.

The lemma now follows from the fact that the integrand is a positive function. ////

Thus, if R(λ,A∗)x∗∧y∗ = 0, then by the lemma for all x > 0 we have 〈T ∗(t)x∗∧y∗, x〉 = 0,
except for t belonging to a set of measure zero. This exceptional set, however, may vary with
x and therefore one cannot conclude that T ∗(t)x∗ ∧ y∗ = 0 for almost all t. The following
example shows that indeed this need not be the case.

Example 3.2. Let T be the unit circle in the complex plane, which will be identified
with the interval [0, 2π), and let C(T ) denote the Banach lattice of continuous functions on
T . Let E = l1([0, 2π);C(T )). With the pointwise order, E is a Banach lattice. Note that
E∗ = l∞([0, 2π);M(T )), where M(T ) = C(T )∗ is the space of bounded Borel measures on T .
Define an element x∗ ∈ E∗ by x∗(α) = δ0 + δα, where δα is the Dirac measure concentrated
at α. Let R(t) be the rotation group on C(T ) and define a positive C0-group T (t) on E by

(T (t)x)(α) := R(t)(x(α)).

Then, using the fact that the lattice operations on E are defined pointwise, for any t ∈ [0, π)
we have

‖T ∗(t)x∗ ∧ x∗‖ > ‖(T ∗(t)x∗ ∧ x∗)(t)‖ = ‖R(t)(x∗(t)) ∧ x∗(t)‖
= ‖(δt + δ2t) ∧ (δ0 + δt)‖ = ‖δt‖ = 1.



7

Theorem 3.3. Suppose that E has a quasi-interior point, or that E∗ has order continuous
norm. Then R(λ,A∗)x∗ ∧ y∗ = 0 (0 6 x∗, y∗ ∈ E∗) implies that T ∗(t)x∗ ∧ y∗ = 0 for almost
all t > 0.

Proof: Suppose first that u > 0 is quasi-interior. We have by Lemma 3.1 that

〈T ∗(t)x∗ ∧ y∗, u〉 = 0, a.a t > 0.

Since u is a quasi-interior point, this implies that

T ∗(t)x∗ ∧ y∗ = 0, a.a t > 0.

If E∗ has order continuous norm, then for all z∗ ∈ E∗ the closed unit ball BE is approximately
z∗-order bounded [M, Prop. 2.3.2], i.e. for all ε > 0 and z∗ ∈ E∗ there is an x > 0 such that

BE ⊂ [−x, x] + εBz∗ .

Here Bz∗ is the closed unit ball of the seminorm pz∗ defined by pz∗(x) = 〈|z∗|, |x|〉. Choose
xn > 0 such that BE ⊂ [−xn, xn] + n−1By∗ . By Lemma 3.1, there is a set Fn ⊂ R>0 of full
measure such that for all t ∈ Fn we have 〈T ∗(t)x∗ ∧ y∗, xn〉 = 0. Fix any t ∈ Fn. Let y ∈ BE
arbitrary. Write y = y1 + y2 with y1 ∈ [−xn, xn], y2 ∈ n−1By∗ . Then

〈T ∗(t)x∗ ∧ y∗, |y|〉 6 〈T ∗(t)x∗ ∧ y∗, |y1|〉+ 〈T ∗(t)x∗ ∧ y∗, |y2|〉 6 0 + 〈y∗, |y2|〉 6
1

n
.

It follows that 〈T ∗(t)x∗ ∧ y∗, |y|〉 = 0 for all t ∈ F := ∩nFn. Since y is arbitrary and the Fn
do not depend on y, it follows that T ∗(t)x∗ ∧ y∗ = 0 for t ∈ F . ////

Corollary 3.4. Suppose x∗ ∈ E∗, y∗ ∈ (E�)d and either E∗ has order continuous norm or
E has a quasi-interior point. Then T ∗(t)x∗ ⊥ y∗ for almost all t > 0.

Proof: y∗ ⊥ E� implies |y∗| ⊥ E�, so in particular R(λ,A∗)|x∗| ∧ |y∗| = 0. Therefore
T ∗(t)|x∗| ∧ |y∗| = 0 for almost all t. But |T ∗(t)x∗| 6 T ∗(t)|x∗|, hence for almost all t also
|T ∗(t)x∗| ∧ |y∗|=0. ////

The following theorem gives the characterization of functionals in (E�)d, mentioned at
the beginning of this section.

Theorem 3.5. For 0 6 x∗ ∈ E∗ the following statements are equivalent:
(i) x∗ ∈ (E�)d;
(ii) R(λ,A∗)x∗ ∧ x∗ = 0;
(iii) For all 0 6 x ∈ E we have 〈T ∗(t)x∗ ∧ x∗, x〉 = 0 for almost all t > 0;
(iv) For all 0 6 x ∈ E we have lim inf t↓0〈T ∗(t)x∗ ∧ x∗, x〉 = 0.

Proof: The implications (i)⇒(ii) and (iii)⇒(iv) are trivial, and (ii)⇒(iii) follows from Lemma
3.1. So only (iv)⇒(i) needs proof. Take 0 6 x∗ ∈ E∗ satisfying (iv). Since E� = D(A∗) =
R(λ,A∗)E∗, it is sufficient to prove that x∗ ⊥ R(λ,A∗)y∗ for all y∗ ∈ E∗. Moreover, since
|R(λ,A∗)y∗| 6 R(λ,A∗)|y∗| ∈ E�, all we have to show is that x∗∧z� = 0 for all 0 6 z� ∈ E�.
To this end, fix 0 6 z� ∈ E� and let x∗1 ∈ E∗ be any vector such that 0 6 x∗1 6 nx∗ ∧ z� for
some number n ∈ N . It follows from 0 6 x∗1 6 nx∗ that

0 6 T ∗(t)x∗1 ∧ x∗1 6 T ∗(t)nx∗ ∧ nx∗ = n(T ∗(t)x∗ ∧ x∗),
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so x∗1 satisfies (iv) as well. Fix ε > 0 and 0 6 x ∈ E with ‖x‖ = 1. There exists δ > 0 such
that ‖T ∗(t)z� − z�‖ < ε for all 0 6 t < δ. Furthermore, since lim inf t↓0〈T ∗(t)x∗1 ∧ x∗1, x〉 = 0,
there exists 0 < t0 < δ such that

0 6 〈T ∗(t0)x∗1 ∧ x∗1, x〉 < ε.

By the formula (*), there exist 0 6 u, v ∈ E such that u+ v = x and

〈T (t0)∗x∗1, u〉 < ε, 〈x∗1, v〉 < ε.

Then
〈x∗1, u〉 = 〈x∗1, x〉 − 〈x∗1, v〉 > 〈x∗1, x〉 − ε

and
〈T ∗(t0)x∗1, v〉 = 〈x∗1, x〉+ 〈T ∗(t0)x∗1 − x∗1, x〉 − 〈T ∗(t0)x∗1, u〉 > 〈x∗1, x〉 − 2ε.

This implies that
〈z�, v〉 = 〈T ∗(t0)z�, v〉 − 〈T ∗(t0)z� − z�, v〉

> 〈T ∗(t0)x∗1, v〉 − ‖T ∗(t0)z� − z�‖ ‖v‖
>
(
〈x∗1, x〉 − 2ε

)
− ε‖v‖ > 〈x∗1, x〉 − 3ε.

Hence
〈z�, x〉 = 〈z�, u〉+ 〈z�, v〉 > 〈x∗1, u〉+

(
〈x∗1, x〉 − 3ε

)
> 〈2x∗1, x〉 − 4ε.

Since ε is arbitrary it follows that 〈z�, x〉 > 〈2x∗1, x〉 for all x > 0, i.e. 0 6 2x∗1 6 z�. Hence,
0 6 2x∗1 6 2nx∗ ∧ z� and we can repeat the above argument. After doing so k times we
find that 0 6 2kx∗1 6 z�. Hence this holds for all k ∈ N , so x∗1 = 0. In particular, letting
x∗1 = x∗ ∧ z�, it follows that x∗ ∧ z� = 0. This completes the proof. ////

Next we will study the behaviour of T ∗(t) on the disjoint complement (E�)d. In general,
(E�)d need not be T ∗(t)-invariant. It may even happen that T ∗(t)E∗ ⊂ E� for all t > 0, e.g.
if T (t) is a analytic semigroup. Using the above theorem we obtain the following result.

Corollary 3.6. If T ∗(t) is a lattice semigroup, then (E�)d is T ∗(t)-invariant.

Proof: If 0 6 x∗ ∈ (E�)d, then R(λ,A∗)x∗ ∧ x∗ = 0. Hence also

R(λ,A∗)T ∗(t)x∗ ∧ T ∗(t)x∗ = T ∗(t)(R(λ,A∗)x∗ ∧ x∗) = 0,

so T ∗(t)x∗ ∈ (E�)d by Theorem 3.5. ////

We note that, in particular, if T (t) extends to a positive group, then T ∗(t) is a lattice
semigroup and the above corollary applies. Furthermore we note that, as observed before, if
T ∗(t) is a lattice semigroup, then E� is a sublattice of E∗.

The following example shows that Corollary 3.6 (and some results to follow) fail if T ∗(t)
is not a lattice semigroup.

Example 3.7. Let T (t) be the semigroup on E = C[0, 1] defined by

T (t)f(s) =

{
f(t+ s), t+ s 6 1;
f(1), else.

Then one easily verifies the following facts:
(i) E� = L1[0, 1] ⊕ R δ1;
(ii) δ0 ⊥ E� and T ∗(t)δ0 = δ1 ∈ E� for all t > 1.
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In view of Corollary 3.6 we will restrict our attention in the last part of this section mainly
to the situation in which T ∗(t) is a lattice semigroup. We will study the occurrence of mutually
disjoint elements in the orbits {T ∗(t)x∗ : t > 0}, where 0 6 x∗ ∈ (E�)d. The first result in
this direction is a simple consequence of Theorem 3.3.

Proposition 3.8. Assume that E∗ has order continuous norm, or that E has a quasi-interior
point. Furthermore, assume that T ∗(t) is a lattice semigroup. Then for 0 6 x∗ ∈ (E�)d we
have:
(i) If s > 0 is fixed, then T ∗(t)x∗ ⊥ T ∗(s)x∗ for almost all t > 0;
(ii) T ∗(t)x∗ ⊥ T ∗(s)x∗ for almost all pairs (t, s) > 0 (with respect to the Lebesgue measure

on R+ × R+).

Proof: (i) Take s > 0. It follows from Corollary 3.6 that T ∗(s)x∗ ∈ (E�)d. Now the result
follows from Theorem 3.3 (with y∗ = T ∗(s)x∗).

(ii) This follows via Fubini’s theorem from (i). ////

Suppose that (E�)d 6= {0} and let 0 < x∗ ∈ (E�)d be fixed. We define

t0 := inf{t > 0 : T ∗(t)x∗ = 0}.

If T ∗(t)x∗ 6= 0 for all t > 0 we put t0 =∞. If t0 <∞, it follows from the weak∗-continuity of
t 7→ T ∗(t)x∗ that T ∗(t0)x∗ = 0; in particular t0 > 0. Hence T ∗(t)x∗ > 0 for all 0 6 t < t0 and
T ∗(t)x∗ = 0 for all t > t0.

We will say that a set H ⊂ [0, t0) supports a disjoint system (for x∗) if {T ∗(t)x∗ : t ∈ H} is
a disjoint system in E∗, i.e. T ∗(t)x∗ ⊥ T ∗(s)x∗ for any two t 6= s ∈ H. In view Proposition 3.8
one might ask whether there exist ‘large’ sets supporting a disjoint system. Observe already
that, by Zorn’s lemma, any set supporting a disjoint system is contained in a maximal one.

Let m∗ denote the outer Lebesgue measure.

Lemma 3.9. Suppose that E∗ has order continuous norm, or E has a quasi-interior point.
Suppose T ∗(t) is a lattice semigroup and let x∗ ∈ (E�)d.
(i) If H ⊂ [0, t0) is a countable set supporting a disjoint system, and if J ⊂ [0, t0) is an open

interval, then there exists s ∈ J\H such that H ∪ {s} supports a disjoint system.
(ii) If H ⊂ [0, t0) is a maximal set supporting a disjoint system, then H is uncountable.
(iii) Let H ⊂ [0, t0) support a disjoint system. If T ∗(t)x∗ ∧ T ∗(s)x∗ > 0 for some 0 < s < t,

then m∗([0, t]\H) > 1
2s.

Proof: (i) For t ∈ H let

Ft = {h > 0 : T ∗(h)x∗ ∧ T ∗(t)x∗ = 0}.

By Proposition 3.8(i) we know that m(R +\Ft) = 0. Since H is countable, the set F = ∩{Ft :
t ∈ H} satisfies m(R+\F ) = 0 as well, and hence F ∩ J 6= ∅. Now take any s ∈ F ∩ J .

(ii) Follows immediately from (i).
(iii) Since T ∗(t)x∗ ∧ T ∗(s)x∗ > 0, also T ∗(t − s + h)x∗ ∧ T ∗(h)x∗ > 0 for all 0 6 h 6 s.

Hence, if h ∈ H ∩ [0, s], then h+ t− s 6∈ H, i.e.

([0, s] ∩H) + t− s ⊂ [0, t]\H,

so m∗([0, s] ∩H) 6 m∗([0, t]\H). Now

s 6 m∗([0, s] ∩H) +m∗([0, s]\H) 6 2m∗([0, t]\H),

so m∗([0, t]\H) > 1
2s. ////
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We do not know whether a maximal set supporting a disjoint system must be measurable.
This is the reason for taking the outer Lebesgue measure rather than the Lebesgue measure.

Example 3.10. Let T (t) be the translation group on E = C(T ). Let x∗ = δ0 + δ1 and
let n ∈ N . Then T ∗(2n)x∗ 6⊥ T ∗(2n+ 1)x∗. The set H = [0, 1) ∪ [2, 3) ∪ ... ∪ [2n, 2n+ 1) is a
maximal set supporting a disjoint system for x∗. By letting n→∞ we see that the constant
1
2 in Lemma 3.9(iii) is optimal.

Theorem 3.11. Suppose that E∗ has order continuous norm, or E has a quasi-interior
point. Suppose T ∗(t) is a lattice semigroup and let x∗ ∈ (E�)d.
(i) There exists an uncountable dense set H ⊂ [0, t0) supporting a disjoint system.
(ii) If T (t) extends to a positive group, then either the orbit {T ∗(t)x∗ : t ∈ R } is a disjoint

system, or m∗(R \H) =∞ for each set H ⊂ R supporting a disjoint system.

Proof: (i) Let (Jn)∞n=1 be an enumeration of the open intervals in [0, t0) with rational endpoints.
Using Lemma 3.9(i) we inductively construct a sequence (tn)∞n=1 supporting a disjoint system
with tn ∈ Jn for all n. This sequence (tn) is contained in some maximal H supporting a
disjoint system. Clearly H is dense in [0, t0), and by Lemma 3.9(ii) H is uncountable.

(ii) Now assume in addition that T (t) extends to a positive group, and that H ⊂ R
supports a disjoint system with m∗(R+\H) = K <∞. Then also H+ := H ∩ R+ supports a
disjoint system andm∗(R+\H+) 6 K. It follows from Lemma 3.9(iii) that T ∗(t)x∗∧T ∗(s)x∗ =
0 for all s 6= t > 2K. Therefore, if s 6= t in R , then for n so lage that s+ n > 2K, t+ n > 2K
we have

T ∗(n)(T ∗(t)x∗ ∧ T ∗(s)x∗) = T ∗(t+ n)x∗ ∧ T ∗(s+ n)x∗ = 0.

Since T ∗(n) is injective, this implies that T ∗(t)x∗ ∧ T ∗(s)x∗ = 0. ////

In the situation of Theorem 3.11, it is clear from (i) that (E�)d is not norm separable.
So in this situation we have either (E�)d = {0} or (E�)d is non-separable. In this direction
we can prove more, under much weaker assumptions , using a different method of proof. This
is what we will do next.

First we recall some facts. Let E be a Banach lattice and J ⊂ E an ideal. The annihilator
J⊥ = {x∗ ∈ E∗ : 〈x∗, x〉 = 0,∀x ∈ J} is a band in E∗, and hence we have the band
decomposition E∗ = J⊥ ⊕ (J⊥)d. Let PJ be the band projection in E∗ onto (J⊥)d.

Lemma 3.12. Let J ⊂ E be an ideal and 0 6 T : E → E be a positive operator such that
T (J) ⊂ J . Then PJT

∗ 6 T ∗PJ .

Proof: Since T (J) ⊂ J implies that T ∗(J⊥) ⊂ J⊥, it follows that T ∗(I−PJ) = (I−PJ)T ∗(I−
PJ ), and so PJT

∗PJ = PJT
∗. Hence PJT

∗ = PJT
∗PJ 6 T ∗PJ . ////

In the following theorem, T (t) is any positive C0-semigroup on E. We do not assume that
T ∗(t) be a lattice semigroup.

Theorem 3.13. If (E�)d contains a weak order unit, then T ∗(t)(E∗) ⊂ (E�)dd for all t > 0.

Proof: Let 0 6 w∗ ∈ (E�)d be a weak order unit. Fix 0 6 x∗ ∈ E∗ and 0 6 x ∈ E. Let
J be the closed ideal in E generated by the orbit {T (t)x : t > 0}. Then J is T (t)-invariant
and has a quasi-interior point 0 6 u ∈ J . By Lemma 3.1, 0 6 w∗ ∈ (E�)d implies that
〈T ∗(t)x∗ ∧ w∗, u〉 = 0 for almost all t > 0. Since

0 6 PJ (T ∗(t)x∗) ∧ w∗ 6 T ∗(t)x∗ ∧w∗,
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it follows that 〈PJ (T ∗(t)x∗) ∧w∗, u〉 = 0 a.e., and hence PJ (T ∗(t)x∗)∧w∗ ∈ J⊥ a.e. But also
PJ (T ∗(t)x∗) ∧ w∗ ∈ (J⊥)d, so PJ (T ∗(t)x∗) ∧ w∗ = 0 a.e., hence PJ (T ∗(t)x∗) ∈ (E�)dd a.e.

Now observe that, if t > 0 is such that PJ (T ∗(t)x∗) ∈ (E�)dd, then by Lemma 3.12,

PJ (T ∗(t+ s)x∗) = PJ (T ∗(s)T ∗(t)x∗) 6 T ∗(s)PJ (T ∗(t)x∗).

Also, as observed in Section 1, (E�)dd is T ∗(t)-invariant. Combining these facts, we conclude
that PJ (T ∗(t)x∗) ∈ (E�)dd for all t > 0. Therefore, PJ (T ∗(t)x∗∧w∗) = 0, i.e., T ∗(t)x∗∧w∗ ∈
J⊥ for all t > 0, which implies in particular that 〈T ∗(t)x∗ ∧ w∗, x〉 = 0 for all t > 0. Since
0 6 x ∈ E was arbitrary, it follows that T ∗(t)x∗ ∧ w∗ = 0 for all t > 0, i.e., T ∗(t)x∗ ∈ (E�)dd

for all t > 0. ////

Together with Theorem 2.1 this implies:

Corollary 3.14. Suppose E∗ has order continuous norm. If (E�)d contains a weak order
unit, then T ∗(t)(E∗) ⊂ E� for all t > 0, i.e. T ∗(t) is strongly continuous for t > 0.

Corollary 3.15. Suppose E∗ has order continuous norm and suppose T (t) extends to a (not
necessarily positive) group. Then either E∗ = E� or (E�)d does not contain a weak order
unit.

Corollary 3.16. Suppose T ∗(t) is a lattice semigroup. Then either (E�)d = {0} or (E�)d

does not contain a weak order unit.

Proof: Suppose (E�)d contains a weak order unit. By Theorem 3.13, T ∗(t)(E∗) ⊂ (E�)dd for
all t > 0. It follows from Corollary 3.6 that (E�)d is T ∗(t)-invariant, and hence T ∗(t)((E�)d) =
{0} for all t > 0. From the weak∗-continuity of t 7→ T ∗(t)x∗ it now follows that (E�)d =
{0}. ////

The preceding results can be regarded as lattice versions of the following result proved
in [Ne]: If T (t) is a C0-semigroup on a Banach space X such that X∗/X� is separable, then
T (t)(X∗) ⊂ X� for all t > 0, i.e. T ∗(t) is strongly continuous for t > 0. In particular, if T (t)
extends to a group, then either X� = X∗ or X∗/X� is non-separable.

In the setting of Corollary 3.15, one might wonder when exactly one has E� = E∗. In
this direction, we can prove:

Proposition 3.17. Let E = C0(Ω) with Ω locally compact Hausdorff, and let T (t) be a
positive C0-group on E. If E� = E∗ then T (t) is a multiplication group.

Proof: Since each operator T ∗(t) is a lattice isomorphism, atoms in M(Ω) = (C0(Ω))∗ are
mapped to atoms. Hence, for each ω ∈ Ω we have T ∗(t)δω = φω(t)δω(t), say. Here δω is the
Dirac measure at ω. By the strong continuity of t 7→ T ∗(t)δω, we must have that ω(t) = ω, so
T ∗(t)δω = φω(t)δω . For f ∈ C0(Ω) one then has

(T (t)f)(ω) = 〈δω , T (t)f〉 = φω(t)〈f, δω〉 = φω(t)f(ω).

////

Every multiplication group on a real Banach lattice E has a bounded generator [Na,
Proposition. C-II.5.16]. If E is complex, then a positive semigroup leaves invariant the real
part of E. Therefore, both in the real and complex case, from the above results we conclude:

Corollary 3.18. Let T (t) be a positive C0-group with unbounded generator on the Banach
lattice E = C0(Ω). Then (E�)d does not contain a weak order unit.
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4. Limes superior estimates

We start in this section with an arbitrary C0-semigroup T (t) on a Banach space X. We
choose M > 1 and ω ∈ R such that ‖T (t)‖ 6Meωt. It is our objective to study the quantity
‖T ∗(t)x∗ − x∗‖ as t ↓ 0 for x∗ ∈ X∗. Our first results are general limes superior estimates,
which we will improve later in the context of positive semigroups.

For x∗ ∈ X∗ define
ρ(x∗) := lim sup

t↓0
‖T ∗(t)x∗ − x∗‖.

It is clear that ρ defines a seminorm on X∗. Note that ρ(x∗ + x�) = ρ(x∗) for all x� ∈ X�
and x∗ ∈ X∗. In particular, ρ(x∗) = 0 if and only if x∗ ∈ X�. Furthermore,

ρ(x∗) 6 lim sup
t↓0

(
‖T ∗(t)‖+ 1

)
‖x∗‖ 6 (M + 1)‖x∗‖

for all x∗ ∈ X∗.
Since X� is a closed subspace of X∗, the quotient space X∗/X� is a Banach space. Let

q : X∗ → X∗/X� be the quotient map. The following result shows that the seminorm ρ is
actually equivalent to the quotient norm on X∗/X�.

Theorem 4.1. For all x∗ ∈ X∗ we have ‖qx∗‖ 6 ρ(x∗) 6 (M + 1)‖qx∗‖.
Proof: For arbitrary x∗ ∈ X∗ and x� ∈ X� we have

ρ(x∗) = ρ(x∗ + x�) 6 (M + 1)‖x∗ + x�‖.

By taking the infimum over all x� ∈ X� we obtain ρ(x∗) 6 (M + 1)‖qx∗‖.
For the converse, we recall that for any τ > 0 we have weak∗

∫ τ
0
T ∗(t)x∗ dt ∈ X�.

Therefore,

‖qx∗‖ 6
∥∥∥1

τ
weak∗

∫ τ

0

T ∗(t)x∗ dt− x∗
∥∥∥ =

1

τ

∥∥∥weak∗
∫ τ

0

T ∗(t)x∗ − x∗ dt
∥∥∥

6 1

τ

∫ τ

0

‖T ∗(t)x∗ − x∗‖ dt 6 sup
06t6τ

‖T ∗(t)x∗ − x∗‖.

Hence,

‖qx∗‖ 6 inf
τ>0

(
sup

06t6τ
‖T ∗(t)x∗ − x∗‖

)
= ρ(x∗).

////

We mention an immediate consequence of the above theorem.

Corollary 4.2. Let X� ⊂ Y , with Y a complemented subspace of X∗, say X∗ = Y ⊕ Z.
Then there is a constant C > 0 such that for all x∗ ∈ Z we have

lim sup
t↓0

‖T ∗(t)x∗ − x∗‖ > C‖x∗‖.

Proof: Since X� ⊂ Y , the formula |||x∗||| := ‖qx∗‖ defines a norm on Z which satisfies |||x∗||| =
infx�∈X� ‖x∗−x�‖ > infy∈Y ‖x∗−y‖. But X∗/Y ' Z and consequently |||x∗||| > C‖x∗‖. Now
we can apply Theorem 4.1. ////



13

On the quotient space X∗/X� we can define a quotient semigroup T ∗q (t) via the formula

T ∗q (t)qx∗ := q(T ∗(t)x∗).

Using the equivalence in Theorem 4.1, we can investigate some properties of this quotient
semigroup via the seminorm ρ. For this purpose, the following result turns out to be useful.

Lemma 4.3. Let [a, b] ⊂ R be a closed interval and f : [a, b] → X ∗ a weak∗-continuous
function. Then t 7→ ρ(f(t)) is a bounded Borel function on [a, b] and

ρ
(
weak∗

∫ b

a

f(t) dt
)
6
∫ b

a

ρ(f(t)) dt.

Proof: For n ∈ N , n > 0, define

ρn(x∗) := sup
06t6 1

n

‖T ∗(t)x∗ − x∗‖, x∗ ∈ X∗.

Each ρn is a seminorm on X∗ and ρn(x∗) ↓ ρ(x∗) for all x∗ ∈ X∗. Note that

ρn(x∗) = sup
06t6 1

n

(
sup
‖x‖61

|〈T ∗(t)x∗ − x∗, x〉|
)

= sup
06t6 1

n

(
sup
‖x‖61

|〈x∗, (T (t)− I)x〉|
)

= sup{|〈x∗, y〉| : y ∈ Dn},

where Dn =
⋃

06t6 1
n

(T (t) − I)BX , BX being the closed unit ball of X. Hence, ρn(f(t)) =

supx∈Dn |〈f(t), x〉| for all a 6 t 6 b. Being the pointwise supremum of continuous functions,
ρn(f(·)) is lower semi-continuous. Since ρn(f(t)) ↓ ρ(f(t)) for all a 6 t 6 b, it follows that
ρ(f(·)) is a Borel function.

For x ∈ Dn we have

∣∣∣〈weak∗
∫ b

a

f(t) dt, x〉
∣∣∣ =

∣∣∣
∫ b

a

〈f(t), x〉 dt
∣∣∣ 6

∫ b

a

|〈f(t), x〉| dt 6
∫ b

a

ρn(f(t)) dt,

and so

ρ
(
weak∗

∫ b

a

f(t) dt
)
6 ρn

(
weak∗

∫ b

a

f(t) dt
)

= sup
x∈Dn

∣∣∣〈weak∗
∫ b

a

f(t) dt, x〉
∣∣∣ 6

∫ b

a

ρn(f(t)) dt.

Finally, it follows from the monotone convergence theorem that

∫ b

a

ρn(f(t)) dt ↓
∫ b

a

ρ(f(t)) dt.

This concludes the proof. ////

The above lemma can be used to prove the following property of the seminorm ρ.
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Proposition 4.4. For all x∗ ∈ X∗ we have

ρ(x∗) 6 lim sup
t↓0

ρ(T ∗(t)x∗ − x∗).

In particular, if x∗ ∈ X∗ is such that limt→∞ ρ(T ∗(t)x∗ − x∗) = 0, then ρ(x∗) = 0, i.e.,
x∗ ∈ X�.

Proof: For all x∗ ∈ X∗ and τ > 0 we have, using Lemma 4.3,

ρ(x∗) = ρ
(1

τ
weak∗

∫ τ

0

T ∗(t)x∗ − x∗ dt
)

6 1

τ

∫ τ

0

ρ(T ∗(t)x∗ − x∗) dt 6 lim sup
t↓0

ρ(T ∗(t)x∗ − x∗).

A combination of this result with Theorem 4.1 yields the following:

Corollary 4.5. If limt→∞ ‖T ∗q (t)qx∗ − qx∗‖ = 0, then qx∗ = 0.

Thus the only element in X∗/X� whose T ∗q (t)-orbit is strongly continuous, is the zero
element. This result was first proved in [Ne]. The (more complicated) proof given there shows
that in fact the following stronger result is true: if the T ∗q (t)-orbit of some qx∗ is norm-separable
in X∗/X�, then it is identically zero for t > 0.

We now return to the case of a positive C0-semigroup on a Banach lattice. In Theorem 0.1,
E� is complemented in E∗ and therefore we can already conclude from Theorem 4.1 that the
limes superior estimate must hold with some constant C. In general E� is not complemented,
but we always have a direct sum decomposition of E∗ into the band generated by E� and
the disjoint complement of E� (which of course may be {0}). Therefore Corollary 4.2 can be
applied and we get a constant C > 0 such that for all x∗ ⊥ E� we have

lim sup
t↓0

‖T ∗(t)x∗ − x∗‖ > C‖x∗‖.

The following theorem shows that in fact we can achieve C = 2.

Theorem 4.6. Let T (t) be a positive C0-semigroup on a Banach lattice E. If x∗ ∈ (E�)d,
then lim supt↓0 ‖T ∗(t)x∗ − x∗‖ > 2‖x∗‖.
Proof: First we observe that for x∗ ∈ E∗ and 0 6 x ∈ E,

lim inf
t↓0
〈|T ∗(t)x∗|, x〉 > 〈|x∗|, x〉.

Indeed, if |y| 6 x, then

lim inf
t↓0
〈T ∗(t)|x∗|, x〉 > lim inf

t↓0
|〈T ∗(t)x∗, y〉| = lim

t↓0
|〈T ∗(t)x∗, y〉| = |〈x∗, y〉|,

and hence
lim inf
t↓0
〈|T ∗(t)x∗|, x〉| > sup{|〈x∗, y〉| : |y| 6 x} = 〈|x∗|, x〉.

Now take x∗ ∈ (E�)d and 0 6 x ∈ E with ‖x‖ = 1. From Lemma 3.1 we know that
〈T ∗(t)|x∗| ∧ |x∗|, x〉 = 0 for almost all t > 0, and hence 〈|T ∗(t)x∗| ∧ |x∗|, x〉 = 0 a.e. Using the
lattice identity [AB, Theorem 1.4(4)]

2
(
|T ∗(t)x∗| ∧ |x∗|

)
= |T ∗(t)x∗|+ |x∗| −

∣∣|T ∗(t)x∗| − |x∗|
∣∣,
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we see that, for almost every t > 0,

‖T ∗(t)x∗ − x∗‖ > 〈|T ∗(t)x∗ − x∗|, x〉 > 〈
∣∣|T ∗(t)x∗| − |x∗|

∣∣, x〉 = 〈|T ∗(t)x∗|, x〉+ 〈|x∗|, x〉.

This implies that

lim sup
t↓0

‖T ∗(t)x∗ − x∗‖ > lim inf
t↓0
〈|T ∗(t)x∗|, x〉 + 〈|x∗|, x〉 > 2〈|x∗|, x〉.

Since 0 6 x ∈ E of norm one is arbitrary, the result follows. ////

If E∗ has order continuous norm, then by Theorem 2.1 E� is a projection band. Let π
be the band projection onto its disjoint complement.

Corollary 4.7. If E∗ has order continuous norm, then

2‖πx∗‖ 6 lim sup
t↓0

‖T ∗(t)x∗ − x∗‖ 6 (M + 1)‖πx∗‖.

In particular, if M = 1, i.e., if limt↓0 ‖T (t)‖ = 1, then lim supt↓0 ‖T ∗(t)x∗ − x∗‖ = 2‖πx∗‖.
If x∗ contained in the band generated by E� but not contained in E� itself, then the

limes superior can be anything between 0 and 2, as is shown by the following example.

Example 4.8. Let E = L1(R ), T (t) the translation group on E. Let f ∈ C0(R ) be of
norm one such that f = 0 on [−1, 1]. Let 0 6 α 6 1 and define g ∈ E∗ = L∞(R ) by

g(s) :=




f(s), |s| > 1;
α, s ∈ [0, 1];
−α, s ∈ [−1, α).

Then ‖g‖ = 1, g belongs to the band generated by E�, and lim supt↓0 ‖T ∗(t)g − g‖ = 2α.
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