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Abstract. Let A = d/dθ denote the generator of the rotation group
in the space C(Γ), where Γ denotes the unit circle. We show that the
stochastic Cauchy problem

(1) dU(t) = AU(t) + f dbt, U(0) = 0,

where b is a standard Brownian motion and f ∈ C(Γ) is fixed, has a weak
solution if and only if the stochastic convolution process t 7→ (f ∗ b)t has
a continuous modification, and that in this situation the weak solution
has a continuous modification. In combination with a recent result of
Brzeźniak, Peszat and Zabczyk it follows that (1) fails to have a weak
solution for all f ∈ C(Γ) outside a set of the first category.

Over the past decades, a theory of stochastic differential equations in
Hilbert spaces has been developed by many authors and is well documented
in the monographs of Da Prato and Zabczyk [4, 5]. When trying to ex-
tend this theory to the Banach space setting, one immediately encounters
the fundamental problem of setting up a theory of stochastic integration for
Banach space-valued processes. For the class of Banach spaces with mar-
tingale type 2 (which includes, for example, the Lp-spaces for 2 6 p < ∞)
this problem has been successfully addressed and a satisfactory theory of
stochastic differential equations in these spaces is available. An overview
with references to the literature is given in [1].

A theory of stochastic integration for functions with values in arbitrary
Banach spaces which does not require any a priori geometric assumptions
has been recently put forward in [2, 11], where it has been applied to lin-
ear stochastic differential equations driven by cylindrical Brownian motions.
The main idea is to define the stochastic integral in a weak sense and to prove
a version of the Itô isometry in which the L2-norm of the stochastic integral
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replaced by the radonifying norm of a certain integral operator canonically
associated with the integrated function.

A problem that was left open in these works is that of the existence of a
continuous modification of the solutions, even in the case where the equation
is driven by a rank one Brownian motion. In the Hilbert space case, the
existence of a continuous version of the solutions of linear equations driven
by an arbitrary Brownian motion follows from the factorization method
of Da Prato, Kwapień and Zabczyk; see [4, Chapter 5]. The present paper
grew out an attempt to examine the situation in the Banach space setting for
certain special cases where the semigroup generated by A possesses minimal
smoothing properties. To explain the main idea, let C(Γ) denote the Banach
space of continuous real-valued functions on the unit circle Γ. In a recent
paper [3], Brzeźniak, Peszat, and Zabczyk showed that for ‘most’ functions
f ∈ C(Γ), the stochastic convolution with a standard real-valued Brownian
motion b = {bt}t>0,

t 7→ (f ∗ b)t =

∫ t

0
f(t− s mod 2π) dbs,

fails to have a modification with continuous trajectories. Indeed, the authors
showed that the set of all f ∈ C(Γ) for which such a modification exists is
of the first category in C(Γ). The main ingredient is a deep regularity result
for random trigonometric series [7, Theorem 8.1]. This seems to suggest an
approach towards a negative solution of the continuous modification problem
for stochastic equations in C(Γ). To see why, let A = d/dθ denote the
generator of the rotation group S = {S(t)}t>0 in C(Γ) and consider the
problem

(2)
dU(t) = AU(t) dt + f dbt, t > 0,

U(0) = 0,

where f ∈ C(Γ) is a given function. If this problem has a weak solution
{Uf (t)}t>0 in C(Γ) (in the sense of [2, 11]), then for all t > 0 we have

〈Uf (t), δ0〉 =

∫ t

0
〈S(t− s)f, δ0〉 dbs =

∫ t

0
f(t− s mod 2π) dbs

almost surely, where δ0 denotes the Dirac measure at 0. By the Brzeźniak-
Peszat-Zabczyk result, the right hand side fails to have a continuous modifi-
cation for all functions f outside a set of the first category in C(Γ). Interest-
ingly, however, it turns out that precisely for these f the above problem fails
to have a weak solution. This is the content of our main result, Theorem
1. This theorem shows that problem (2) actually provides an example of
nonexistence and, at the same time, some evidence for a positive solution to
the continuous modification problem.

Theorem 1. For a given function f ∈ C(Γ), the problem (2) has a weak
solution if and only if the convolution process f ∗ b has a modification with
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continuous trajectories, and in this situation the weak solution has a modi-
fication with continuous trajectories.

Let (Ω,F ,P ) be a probability space with filtration {Ft}t∈[0,T ] and let H
be a real Hilbert space with inner product [·, ·]H . A cylindrical H-Wiener
process on (Ω,P ) indexed by the interval [0, T ] is a familyWH = {WH

t }t∈[0,T ]

of bounded linear operators from H into L2(Ω) with the following properties:

(1) For all h ∈ H, {WH
t h}t∈[0,T ] is an adapted Brownian motion;

(2) For all s, t ∈ [0, T ] and g, h ∈ H we have

E (WH
s g ·WH

t h) = (s ∧ t)[g, h]H .

The noise term in (2) fits into this framework as follows:

Example 2. Suppose E is a real Banach space and let x ∈ E be a fixed
nonzero element. Let H denote the one-dimensional subspace spanned by
x, endowed with the norm ‖cx‖H := |c|. If b = {bt}t∈[0,T ] is a standard
real-valued Brownian motion, then

WH
t (cx) := cbt, c ∈ R

defines a cylindrical H-Wiener process.

The ‘only if’ part of the theorem is a consequence of the following re-
sult, which gives some further support towards a positive solution to the
continuous modification problem.

Proposition 3. Let A be the generator of a C0-group {S(t)}t>0 on a real
Banach space E. Furthermore let {WH

t }t>0 be a cylindrical H-Wiener pro-
cess, where H is a separable real Hilbert space, and let B : H → E be a
bounded operator. If {U(t)}t>0 is a weak solution of the stochastic Cauchy
problem

(3)
dU(t) = AU(t) dt+B dWH

t , t > 0,

U(0) = 0,

then {U(t)}t>0 has a modification with continuous trajectories.

The proof below is based upon the trivial observation that the group
property implies that for all 0 6 t 6 T we have

(4)

∫ t

0
S(t− s)B dWH

s = S(t− T )

∫ t

0
S(T − s)B dWH

s .

This identity enables one to deduce properties of the stochastic convolution
process from the corresponding properties of the stochastic integral process.
The same idea was applied in [6] to the unitary dilations of Hilbert space
contraction semigroups to obtain a maximal inequality for stochastic convo-
lution of such semigroups with respect to a Hilbert space-valued Brownian
motion.

Before turning to the proof of the proposition we need to give a meaning to
the stochastic integrals in (4). We do this in two steps. First, the stochastic
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integral of a step function in f ∈ L2(0, T ;H) with respect to a cylindrical
H-Wiener processWH is defined in the obvious way, and by the Itô isometry

E
∣∣∣
∫ T

0
f(t) dWH

t

∣∣∣
2

=

∫ T

0
‖f(t)‖2H dt

this definition extends to arbitrary functions f ∈ L2(0, T ;H). Second, an
operator-valued function Φ : (0, T ) → L (H,E) is said to be H-weakly L2

if Φ∗(·)x∗ ∈ L2(0, T ;H) for all x∗ ∈ E∗, and stochastically integrable with
respect to WH if it is H-weakly L2 and for every measurable set A ⊆ (0, T )
there exists a strongly measurable E-valued random variable XA such that
for all x∗ ∈ E∗ we have

〈XA, x
∗〉 =

∫ T

0
1A(t)Φ∗(t)x∗ dWH

t

almost surely. The random variable XA, if it exists, is determined uniquely
almost everywhere and Gaussian. We call XA the stochastic integral of Φ
over A, notation

XA =

∫ T

0
1A(t)Φ(t) dWH

t .

For a systematic development of this integral we refer to [11], where it is
shown that in the above definition it suffices to consider the set A = (0, T ).
Note that if Φ is stochastically integrable on (0, T ), then Φ is stochastically

on every subinterval (0, t) and we have
∫ t

0 Φ(s) dWH
s =

∫ T
0 1(0,t)(s)Φ(s) dWH

s

almost surely.
Let us now assume that H is separable and fix an orthonormal basis

(hn)∞n=1 for H. Upon identifying L (R , E) with E in the canonical way, for
each n > 1 the E-valued function Φ(·)hn is stochastically integrable with
respect to the cylindrical R -Wiener process (i.e., real Brownian motion)
WH

(·)hn and we have the ‘coordinate expansion’ [11, Theorem 4.2]

(5) XA =

∞∑

n=1

∫ T

0
1A(t)Φ(t)hn dW

H
t hn,

where the series converges unconditionally in L2(Ω;E).

Lemma 4. Let H be separable and let Φ : (0, T ) → L (H,E) be stochasti-
cally integrable with respect to the cylindrical H-Wiener process WH . Then
the E-valued process

Yt :=

∫ t

0
Φ(s) dWH

s , t ∈ [0, T ],

is a martingale which has a modification with continuous trajectories.

Proof. The martingale property is evident. To prove the existence of a
continuous modification we fix an orthonormal basis (fm)∞m=1 in L2(0, T )
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and an orthonormal basis (hn)∞n=1 in H. For N > 1 we put

Y (N) :=

N∑

m,n=1

∫ T

0
fm(s)Φ(s)hn ds

∫ T

0
fm(s) dWH

s hn,

where the first of these integrals exists as a Pettis integral; the Pettis in-
tegrability of the functions t 7→ f(t)Φ(t)h for f ∈ L2(0, T ) and h ∈ H
follows from the fact [11, Theorem 2.3] that the stochastic integrability of
t 7→ Φ(t)h implies the existence of a bounded operator IΦ,h : L2(0, T ) → E
which satisfies

〈IΦ,hf, x
∗〉 =

∫ T

0
f(t)〈Φ(t)h, x∗〉 dt, f ∈ L2(0, T ), x∗ ∈ E∗.

For all t ∈ [0, T ],

Y
(N)
t := E (Y (N)|Ft) =

N∑

m,n=1

∫ T

0
fm(s)Φ(s)hn ds

∫ t

0
fm(s) dWH

s hn.

In particular, for each N > 1 the process t 7→ Y
(N)
t has a version with

continuous trajectories.

We claim that for each t ∈ [0, T ] we have limN→∞ Y
(N)
t = Yt in L2(Ω;E).

For the reader’s convenience we outline the proof, which follows an argument
from [11]. By expanding [Φ∗(·)x∗, hn]H with respect to the basis (fm)∞m=1
and using (5), for all x∗ ∈ E∗ we have

〈Yt, x∗〉 =

∞∑

n,m=1

∫ T

0
fm(s)〈Φ(s)hn, x

∗〉 ds
∫ t

0
fm(s) dWH

s hn

with convergence in L2(Ω); this convergence is unconditional since (hπ(n))n>1

is an orthonormal basis for every permutation π of the positive integers. The
Itô-Nisio theorem [9, Theorem 2.1.1 (i)⇔(v) and Theorem 2.2.1] now implies
that

Yt =

∞∑

n,m=1

∫ T

0
fm(s)Φ(s)hn ds

∫ t

0
fm(s) dWH

s hn

unconditionally in L2(Ω;E), and the claim follows.
The existence of a continuous modification of Y now follows from a stan-

dard application of Doob’s inequality. �

Proof of Proposition 3: Fix T > 0. It is sufficient to show that the process
{U(t)}t∈[0,T ] has a continuous modification.

We know from [2, 11] that if a weak solution {U(t)}t>0 exists, it is unique,
for every t > 0 the L (H,E)-valued function s 7→ S(t− s)B is stochastically
integrable on (0, t), and {U(t)}t>0 is given by

U(t) =

∫ t

0
S(t− s)B dWH

s = S(t− T )

∫ t

0
S(T − s)B dWH

s , t ∈ [0, T ].
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By Lemma 4, the right hand side has a continuous modification on [0, T ]. �
Proof of Theorem 1: Using the construction of Example 2 we see that (2) is
a special case of (3) by taking H = span{x} and WH

t (cx) = cbt, and defining
Bf : H → C(Γ) by Bf (cx) := cf . By Proposition 3 and the observations at
the beginning of the paper, (2) fails to have a weak solution whenever the
convolution of f with b fails to have a continuous modification.

Let us now assume that, conversely, the convolution process f ∗ b has a
continuous modification. Then the convolution process t 7→ (f ∗ b̃)t has a

continuous modification as well, where b̃t := b2π+t − b2π. Indeed, this may
be deduced from [8, Lemma 3.24] or from a general comparison result for
Gaussian processes [10, Theorem 12.16]. Now define, for θ ∈ Γ,

(6) Xf (θ) :=

∫ 2π+θ

0
f(2π + θ − s mod 2π) dbs −

∫ θ

0
f(θ − s mod 2π) db̃s,

where on the right hand side we take the continuous modifications, and
notice that

Xf (θ) =

∫ 2π

0
f(θ − s mod 2π) dbs

almost surely. Hence by the Pettis measurability theorem and the stochastic
Fubini theorem, (6) defines a centred C(Γ)-valued Gaussian random variable
Xf , and for any finite Borel measure µ ∈ (C(Γ))∗ the variance of 〈Xf , µ〉 is
given by

E 〈Xf , µ〉2 = E
(∫ 2π

0

∫ 2π

0
f(θ − s mod 2π) dbs dµ(θ)

)2

= E
(∫ 2π

0

∫ 2π

0
f(θ − s mod 2π) dµ(θ) dbs

)2

=

∫ 2π

0

(∫ 2π

0
f(θ − s mod 2π) dµ(θ)

)2
ds

= 〈Qfµ, µ〉.
Here, the operator Qf ∈ L (C(Γ)∗, C(Γ)) is defined by

Qfµ :=

∫ 2π

0
S(t)BfB

∗
fS
∗(t)µdt.

The existence of a global weak solution Uf now follows from [11, Corollary
7.2], cf. also [2, Theorem 5.3] �

Remark 5. It is not hard to see that the solution Uf is given by Uf (t, θ) =∫ t
0 f(t+ θ − s mod 2π) dbs almost surely.

Remark 6. Also in the space Lp(Γ) with 1 6 p < 2, the problem (2) fails to
have a weak solution for ‘most’ functions f ∈ Lp(Γ). More precisely, as a
consequence of the Kahane-Khinchine inequalities it was shown in [11] that
in this situation a weak solution exists if and only if f ∈ L2(Γ).
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Remark 7. We have seen in Proposition 3 that the existence of a weak
solution U to problem (3) implies the existence of a continuous modification
of U whenever A is the generator of a C0-group on E. Another situation
where this is known to happen is the case where A generates an analytic
C0-semigroup on E; see [2, Proposition 4.3, Theorem 6.1].
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