On the orbits of an operator with spectral radius one

J.M.A.M. van Neerven

California Institute of Technology Alfred P. Sloan Laboratory of Mathematics Pasadena, CA 91125, U.S.A.

Recently, V. Müller proved the following result. Let T be a bounded operator on a complex Banach space X with r(T)=1. Then for all $0<\epsilon<1$ and $(\alpha_n)\in c_0$ of norm one there is a norm one vector $x\in X$ such that

$$||T^k x|| \ge (1 - \epsilon)|\alpha_k|, \quad \forall k = 0, 1, 2, \dots$$

In this note, we give a completely elementary proof for the power bounded case, which works in the real case as well. Also, we give some analogous results for the weak orbits $\langle x^*, T^n x \rangle$.

1991 Mathematics Subject Classification: 47A10, 93D05. Keywords & phrases: Spectral radius, power bounded operator.

0. Introduction

In [M], V. Müller proved the following theorem.

Theorem. Let T be a bounded operator on a complex Banach space X with spectral radius r(T) = 1. Then for all $0 < \epsilon < 1$ and $(\alpha_n) \in c_0$ of norm one there is a norm one vector $x \in X$ such that

$$||T^k x|| \ge (1 - \epsilon)|\alpha_k|, \quad \forall k = 0, 1, 2, \dots$$

For bounded operators on a Hilbert space, the above result was proved by Beauzamy [B, Thm. III.2.A.1]. He also shows that if there is no point spectrum on $\{|z|=1\}$, such an x can be found in any ball of radius one.

For an application of the Theorem to stability theory of semigroups of operators, see [N].

This research was supported by the Netherlands Organization for Scientific Research (NWO).

The proof given in [M] relies on results from Fredholm theory. In fact, in case $r_e(T) < r(T) = 1$, where $r_e(T)$ is the essential spectral radius, there is an unimodular eigenvalue, and the theorem is trivial. The actual proof therefore concentrates on the case $r_e(T) = r(T)$.

For power bounded operators T, we will give a completely elementary proof of the Theorem. We do not use spectral theory, and our method works for both real and complex Banach spaces. In the case of a real Banach space, we define $r(T) = r(T_{\mathbb{C}})$, where $T_{\mathbb{C}}$ is the complexification of T; cf. [Ru].

As usual, c_0 denotes the Banach space of all sequences $\alpha = (\alpha_n)_{n=0}^{\infty}$ that converge to zero, with norm $\|\alpha\| = \sup_n |\alpha_n|$.

Proof of the Theorem for power bounded operators

Suppose T is a bounded operator on a real or complex Banach space X with r(T) = 1. Then there exists a constant C > 0 with the following property. For each sequence $\alpha \in c_0$ of norm ≤ 1 there exists a norm one vector $x \in X$ and a subsequence (n_k) such that

$$||T^{n_k}x|| \ge C|\alpha_k|, \quad \forall k = 0, 1, 2, \dots$$

Proof: First note that we may assume without loss of generality that $T^n \to 0$ strongly. In particular, by the uniform boundedness theorem there is a constant M such that $\sup_n ||T^n|| = M < \infty$. Let $\alpha \in c_0$ be of norm one. Fix $0 < c < \infty$ $\frac{1}{2}M^{-1}$, fix $0 < \delta < c$ and choose m so large that

$$2^{-m+1} + M \sum_{i=1}^{\infty} 2^{-mi} < \delta \text{ and } \sum_{i=0}^{\infty} 2^{-mi} < 1 + \delta.$$

(In fact, the second is implied by the first).

Put $N_{-1} = -1$, $M_{-1} = -1$. Choose $N_0 \ge 0$ such that $|\alpha_i| \le 2^{-m}$, $\forall i \geq N_0$.

In the complex case, $r(T) \geq 1$ implies that $||T^n|| \geq 1$ for all $n \in \mathbb{N}$. In the real case, we use that $\|T_{\mathbb{C}}\|\,\leq\,2\|T\|$ to conclude that $r(T)\,\geq\,1$ implies $||T^n|| \geq \frac{1}{2}$ for all $n \in \mathbb{N}$. In either case, the choice of c implies that there is a norm one vector $x_0 \in X$ such that $||T^{N_0}x_0|| \geq cM$. For all $n = 0, 1, ..., N_0$ we have $||T^n x_0|| \ge M^{-1} ||T^{N_0} x_0|| \ge c$. Put $n_j := j, j = 0, ..., N_0$. Since $\lim_n ||T^n x_0|| = 0$, we may choose M_0 such that $||T^n x_0|| \le 2^{-m}$, for all $n \ge M_0$.

Inductively, suppose norm one vectors $x_0, x_1, ..., x_{l-1} \in X$, and numbers $N_0 < N_1 < ... < N_{l-1}$ and $n_1 < n_2 < < n_{N_{l-1}}$ and $M_0, ..., M_{l-1}$ have been chosen subject to the following conditions:

$$\begin{array}{ll} \text{(a)} \ |\alpha_i| \leq 2^{-m(j+1)}, \ \forall i \geq N_j; \ j=0,1,...,l-1; \\ \text{(b)} \ n_{N_{j-1}+1} \geq M_{j-1}, \ \forall j=0,1,...,l-1; \end{array}$$

(b)
$$n_{N_{j-1}+1} \ge M_{j-1}, \ \forall j = 0, 1, ..., l-1;$$

(c) $||T^{n_k}x_j|| \ge c, \forall k = N_{j-1} + 1, ..., N_j; j = 0, ..., l - 1.$

(d)
$$||T^n x_i|| \le 2^{-m(j+2)}$$
, $\forall 0 \le i \le j$ and $n \ge M_j$; $j = 0, 1, ..., l-1$.

Choose $N_l \geq N_{l-1} + 1$ such that $|\alpha_i| \leq 2^{-m(l+1)}$, $\forall i \geq N_l$. Then (a) holds for the induction variable l. Choose a norm one vector $x_l \in X$ and numbers $n_{N_{l-1}+1} < \dots < n_{N_l}$ such that $n_{N_{l-1}+1} > n_{N_{l-1}}$, $n_{N_{l-1}+1} \geq M_{l-1}$ (this is (b)) and

$$||T^{n_k}x_l|| \ge c, \quad k = N_{l-1} + 1, ..., N_l.$$

Then (c) is satisfied. Finally, choose M_l such that

$$||T^n x_i|| \le 2^{-m(l+2)}, \quad \forall 0 \le i \le l \text{ and } n \ge M_l.$$

Then again (a)-(d) hold for the value l. Continue this process by induction. Put

$$x := \sum_{j=0}^{\infty} 2^{-mj} x_j.$$

Now let k be a fixed integer and choose $j \ge 0$ such that $N_{j-1} + 1 \le k \le N_j$. If $j \ge 1$, then by (a) and the fact that $k \ge N_{j-1}$ we have,

$$2^{-mj} = 2^{-m[(j-1)+1]} \ge |\alpha_k|.$$

In case j=0, note that this inequality holds trivially. By (b) we have $n_k \ge n_{N_{j-1}+1} \ge M_{j-1}$ and consequently, by (d), for all $0 \le i \le j-1$ we have $\|T^{n_k}x_i\| \le 2^{-m(j+1)}$. Therefore,

$$\sum_{i=0}^{j-1} 2^{-mi} \|T^{n_k} x_i\| \le 2^{-m(j+1)+1}.$$

Also, we have the trivial estimate

$$\sum_{i=j+1}^{\infty} 2^{-mi} \|T^{n_k} x_i\| \le 2^{-mj} M \sum_{i=1}^{\infty} 2^{-mi}.$$

Therefore,

$$||T^{n_k}x|| \ge 2^{-mj} \left(c - 2^{-m+1} - M \sum_{i=1}^{\infty} 2^{-mi}\right) \ge 2^{-mj} (c - \delta) \ge |\alpha_k|(c - \delta).$$

Finally, observe that x has norm $\leq \sum_{j=0}^{\infty} 2^{-mj} \leq 1 + \delta$. Hence, by rescaling x to a norm one vector, for the rescaled x we obtain

$$||T^{n_k}x|| \ge \frac{c-\delta}{1+\delta}|\alpha_k|.$$

This proves the theorem, with $C = (c - \delta)/(1 + \delta)$. ////

Theorem 1.2. Let T be a power bounded operator on a real or complex Banach space X with r(T) = 1. Then for all $\epsilon > 0$ and all $\alpha \in c_0$ of norm one, there exists a norm one vector $x \in X$ such that

$$||T^k x|| \ge (1 - \epsilon)|\alpha_k|, \quad \forall k = 0, 1, 2, \dots$$

Proof: Step 1. Put $\sup_n \|T^n\| = M < \infty$. Define the equivalent norm $\|\cdot\|$ on X by $\|x\| = \sup_n \|T^nx\|$. Then $\|x\| \le \|x\| \le M\|x\|$ and $\|T\| \le 1$. Let (β_n) be a norm one sequence in c_0 such that $\beta_n \downarrow 0$ and $\beta_n \ge |\alpha_n|$ for all n. By the Lemma, there exists a vector x of $\|\cdot\|$ -norm one and a subsequence (n_k) such that $\|T^{n_k}x\| \ge C\beta_k$. Set $c := CM^{-1}$. We have $\|x\| \le 1$, and for all k we have

$$||T^k x|| \ge M^{-1} ||T^k x|| \ge M^{-1} ||T^{n_k} x|| \ge c\beta_k \ge c|\alpha_k|.$$

Step 2. We will now show that the constant c can actually be replaced by $1-\epsilon$. Let $0<\epsilon<1$ be arbitrary and fix a norm one $(\alpha_n)\in c_0$. Fix some $\delta>0$ such that $(1-\delta)(1+\delta)^{-1}\geq 1-\epsilon$. We start by choosing integers $0=M_0< M_1<\ldots$ such that $|\alpha_k|\leq (1+\delta)^{-n}$ whenever $k\geq M_n$. Next, choose integers $0=N_0< N_1<\ldots$ in such a way that $N_n\geq M_n$ for each n and $N_m+N_n\leq N_{m+n}$ for all n,m. Define the norm one element $(\beta_n)\in c_0$ by $\beta_k=(1+\delta)^{-n}$ whenever $N_n\leq k< N_{n+1}$. Note that $\beta\geq |\alpha|$.

We claim that $\beta_{m+n} \geq (1+\delta)^{-1}\beta_m\beta_n$. Indeed, choose k_m and k_n such that $N_{k_m} \leq m \leq N_{k_m+1}$ and $N_{k_n} \leq n \leq N_{k_n+1}$. Then $\beta_m = (1+\delta)^{-k_m}$ and $\beta_n = (1+\delta)^{-k_n}$, whereas from $m+n < N_{k_m+1} + N_{k_n+1} \leq N_{k_m+k_n+2}$ we have $\beta_{m+n} \geq (1+\delta)^{-k_m-k_n-1}$. This proves the claim.

Now choose a norm one vector $y \in X$ such that $||T^k y|| \ge c\beta_k$ for all k, where c is the constant of Step 1. Let

$$\gamma := \inf_{k} \frac{\|T^k y\|}{\beta_k}.$$

Note that $\gamma \geq c$; moreover, for all k we have $||T^k y|| \geq \gamma \beta_k$. Choose an index k_0 such that

$$\frac{\gamma \beta_{k_0}}{\|T^{k_0}y\|} \ge 1 - \delta$$

and put $x = ||T^{k_0}y||^{-1} T^{k_0}y$. Then for all n we have

$$||T^n x|| = \frac{||T^{k_0 + n} y||}{||T^{k_0} y||} \ge \frac{\gamma \beta_{k_0 + n}}{||T^{k_0} y||} \ge (1 - \delta) \frac{\beta_n}{1 + \delta} \ge (1 - \epsilon) |\alpha_n|.$$

////

2. The weak case

In this section, we will give some partial answers as to whether every operator T with $r(T) \geq 1$ has weak orbits that converge to zero arbitrarily slowly.

Lemma 2.1. [N, Cor. 2.5] Let X be a real or complex Banach space. Let $\beta_n \geq 0$, $n \in \mathbb{N}$, and assume that $\sum_{n=0}^{\infty} \beta_n = \infty$. If $1 \leq p < \infty$ and T is a bounded operator such that

$$\sum_{n=0}^{\infty} \beta_n |\langle x^*, T^n x \rangle|^p < \infty, \quad \forall x \in X < x^* \in X^*,$$

then r(T) < 1.

Theorem 2.2. Let T be a bounded operator on a real or compex Banach space X with r(T) = 1. Let $\alpha \in c_0$ be of norm one. Then each sequence (n_k) has a subsequence (n_{k_j}) with the property that there exist norm one vectors $x \in X$, $x^* \in X^*$ such that

$$|\langle x^*, T^{n_{k_j}} x \rangle| \ge |\alpha_{k_j}|, \quad j = 0, 1, \dots$$

Proof: By replacing α_n by $\sup_{k\geq n} |\alpha_k|$, we may assume that $\alpha_0=1$ and $\alpha_n\downarrow 0$. Put $N_0:=-1$ and for $k=1,2,\ldots$ put

$$N_k := \max\{n \in \mathbb{N} : \alpha_n \ge k^{-1}\}.$$

Then for $0 \le n \le N_1$ we have $\alpha_n = 1$ and for $k \ge 1$ and $N_k + 1 \le n \le N_{k+1}$ we have $(k+1)^{-1} \le \alpha_n < k^{-1}$. Define the sequence (β_n) by $\beta_n = 1, n = 0, ..., N_1$, and

$$\beta_n := k^{-1}(N_{k+1} - N_k)^{-1}, \quad n = N_k + 1, ..., N_{k+1}; \ k = 1, 2, ...$$

Then $\sum_{n=0}^{\infty} \beta_n = \infty$, and

$$\sum_{n=0}^{\infty} \alpha_n \beta_n \le N_1 + 1 + \sum_{k=1}^{\infty} (N_{k+1} - N_k) \cdot k^{-1} \cdot k^{-1} (N_{k+1} - N_k)^{-1} < \infty.$$

Let (n_k) be any given sequence, and define $(\tilde{\beta}_n)$ by

$$\tilde{\beta}_j := \begin{cases} \beta_k, & \text{if } j = n_k \text{ for some } k; \\ 0, & \text{else.} \end{cases}$$

Then $\sum_{j=0}^{\infty} \tilde{\beta}_j = \sum_{n=0}^{\infty} \beta_n = \infty$. By Lemma 2.1, there exist $x \in X$ and $x^* \in X^*$ such that

$$\sum_{j=0}^{\infty} \tilde{\beta}_j |\langle x^*, T^j x \rangle| = \sum_{k=0}^{\infty} \beta_k |\langle x^*, T^{n_k} x \rangle| = \infty.$$

Since $\sum_{n=0}^{\infty} \alpha_n \beta_n < \infty$, there have to be infinitely many indices n_k for which

$$|\langle x^*, T^{n_k} x \rangle| \ge \alpha_k.$$

This proves the theorem. ////

In the case of a positive operator on a Banach lattice the full weak analogue of the Theorem holds. This is the content of our next result.

Theorem 2.3. Let T be a positive operator on a real or complex Banach lattice with r(T) = 1. Then for each $\epsilon > 0$ and $\alpha \in c_0$ of norm one, there exist norm one vectors $0 \le x \in X$ and $0 \le x^* \in X^*$ such that

$$\langle x^*, T^n x \rangle \ge (1 - \epsilon) |\alpha_n|, \quad n = 0, 1, 2, \dots$$

Proof: We may assume that $\alpha_n \downarrow 0$. Also, we may assume that X is complex. Indeed, if X is real we consider the complexification $T_{\mathbb{C}}$ on $X_{\mathbb{C}}$, and observe that positive vectors in $X_{\mathbb{C}}$ in fact belong to the real part X.

Choose $\delta > 0$ such that $(1+\delta)^{-2}(1-\delta) \ge 1-\epsilon$. By considering approximate eigenvectors, it is easy to see (cf. [N, Lemma 2.1]) that for each $N \in \mathbb{N}$, there exist norm one vectors $0 \le x_N \in X$ and $0 \le x_N^* \in X^*$ such that

$$\langle x_N^*, T^n x_N \rangle > 1 - \delta, \quad n = 0, 1, ..., N.$$

The proof can now be given along the lines of Lemma 1.1; the positivity simplifies the argument.

Choose m such that $\sum_{n=0}^{\infty} 2^{-mn} \le 1 + \delta$. For each k = 0, 1, ..., let

$$N_k = \max\{n \in \mathbb{N} : \alpha_n \ge 2^{-2mk}\},\$$

and choose norm one vectors $0 \le x_k \in X$ and $0 \le x_k^* \in X^*$ such that

$$\langle x_k^*, T^n x_k \rangle \ge 1 - \delta, \quad n = 0, 1, ..., N_{k+1}.$$

Set $x = (1+\delta)^{-1} \sum_{k=0}^{\infty} 2^{-mk} x_k$ and $x^* = (1+\delta)^{-1} \sum_{k=0}^{\infty} 2^{-mk} x_k^*$. Then both x and x^* are positive vectors of norm ≤ 1 . Fix $n \in \mathbb{N}$. If $0 \leq n \leq N_0$, then

$$\langle x^*, T^n x \rangle \ge (1+\delta)^{-2} \langle x_0^*, T^n x_0 \rangle \ge (1+\delta)^{-2} (1-\delta) \ge 1 - \epsilon = (1-\epsilon)\alpha_n.$$

We used that $\alpha_n=1$ for $n=0,...,N_0$. If $n\geq N_0+1$, say $N_j+1\leq n\leq N_{j+1}$ for some j, then $\alpha_n\leq \alpha_{N_j+1}<2^{-2mj}$ and consequently,

$$\langle x^*, T^n x \rangle \ge 2^{-2mj} (1+\delta)^{-2} \langle x_j^*, T^n x_j \rangle \ge 2^{-2mj} (1-\epsilon) \ge (1-\epsilon)\alpha_n.$$

////

Theorem 2.3 fails for arbitrary operators, at least in the case of real scalars. Indeed, we have the following counterexample in $X = \mathbb{R}^2$.

Example 2.4. Let $\gamma \in [0, 2\pi)$ be a number such that $\gamma/(2\pi)$ is irrational. Let T_{γ} be rotation over γ in $X = \mathbb{R}^2$. Let C > 0 be an arbitrary real number. For $x, y \in \mathbb{R}^2$ on norm one, let n(x, y) denote the first integer such that

$$|\langle T_{\gamma}^n x, y \rangle| < \frac{C}{2}.$$

Because the orbit $n \mapsto T_{\gamma}^n x$ is dense in the unit circle by the assumption on γ , the numbers n(x,y) indeed exist. We claim that

$$N := \sup\{n(x, y) : ||x|| = ||y|| = 1\} < \infty.$$

Indeed, suppose not. Then for each $n \in \mathbb{N}$ there are x_n, y_n of norm one such that

 $|\langle T_{\gamma}^k x_n, y_n \rangle| \ge \frac{C}{2}, \quad 0 \le k \le n.$

Choose a subsequence (n_j) such that $x_{n_j} \to x$ and $y_{n_j} \to y$, and fix k. Then for all j such that $n_j \geq k$ we have

$$\begin{split} |\langle T_{\gamma}^k x, y \rangle| \geq & |\langle T_{\gamma}^k x_{n_j}, y_{n_j} \rangle| - |\langle T_{\gamma}^k x_{n_j}, y_{n_j} \rangle| \\ & - |\langle T_{\gamma}^k (x - x_{n_j}), y \rangle| - |\langle T_{\gamma}^k x_{n_j}, y - y_{n_j} \rangle|. \end{split}$$

Letting $j \to \infty$ we obtain

$$|\langle T_{\gamma}^k x, y \rangle| \ge \frac{C}{2}, \quad \forall k \in \mathbb{N}.$$

This contradicts the finiteness of n(x,y). Now let $\alpha \in c_0$ be the vector

$$\alpha = (1, 1, ..., 1, 0, 0, ...),$$

where $\alpha_n = 1$ for $0 \le n \le N$ and $\alpha_n = 0$ for n > N. Then for all norm one vectors $x, y \in \mathbb{R}^2$ there is a $k = k(x, y) \in 0, ..., N$ such that

$$|\langle T_{\gamma}^k x, y \rangle| < C|\alpha_k|.$$

////

As it turns out, this example works because T_{γ} is unitary. To see why, we need some terminology Let H be a real or complex Hilbert space. An operator T on H is called an *isometry* if ||Tx|| = ||x|| for all $x \in H$ or equivalently, if $T^*T = I$. The operator T is called an *unilateral shift* if there is an orthogonal decomposition $H = \bigoplus_{n \in \mathbb{N}} H_n$ such that $TH_n \subset H_{n+1}$ and the map $T: H_n \to H_{n+1}$ is an isometry for all $n \in \mathbb{N}$. In the following lemma we use the so-called Wold decomposition: If T is an isometry on a Hilbert space H, then there is an orthogonal decomposition $H = H_0 \oplus H_1$ with $TH_i \subset H_i$, i = 0, 1, such that $T_0 := T|_{H_0}$ is unitary and $T_1 := T|_{H_1}$ is an unilateral shift. For a proof we refer to [SF], Theorem 1.1.

Now we have the following result: Let T be a non-unitary isometry on a real or complex Hilbert space H. Then for all $\epsilon > 0$ and $\alpha \in c_0$ of norm one, there exist norm one vectors $x \in H$, $y \in H$, such that

$$|\langle T^n x, y \rangle| \ge (1 - \epsilon) |\alpha_n|, \quad \forall n \in \mathbb{N}.$$
 (*)

Indeed, let $H = H_0 \oplus H_1$ be the Wold decomposition. Since T is not unitary, H_1 is non-empty. By considering the restriction of T to H_1 , we therefore may assume that T is an unilateral shift on H.

Let $H = \bigoplus_{n \in \mathbb{N}} H_n$ be an orthogonal decomposition of H such that $T: H_n \to H_{n+1}$ is an isometry. Fix an arbitrary norm one vector $x_0 \in H_0$ and put $x_n := T^n x_0$. The closed linear span of $\{x_n : n \in \mathbb{N}\}$ is isometric to l^2 and the restriction of T to this span acts as the shift on l^2 . Therefore, we can apply Theorem 2.3.

In fact, inspecting the proof of Theorem 2.3 for the shift operator on l^2 , it is not hard to see that in fact we can find an $0 \le x \in l^2$ of norm one such that $\langle T^n x, x \rangle \ge (1 - \epsilon) |\alpha_n|$ for all n. This implies that one can even achieve x = y in (*).

References

- [B] B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North Holland (1988).
- [M] V. Müller, Local spectral radius formula for operators on Banach spaces, Czech. Math. J. 38 (1988) 726-729.
- [N] J.M.A.M. van Neerven, Exponential stability of operators and operator semigroups, submitted.
- [R] A.F. Ruston, Fredholm theory in Banach spaces, Cambridge Univ. Press (1986).
- [SF] B. Sz.-Nagy and C. Foias, Harmonic analysis of Operators in Hilbert Space, North Holland (1970).