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On the orbits of an operator with spectral radius one
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Recently, V. Müller proved the following result. Let T be a bounded operator

on a complex Banach space X with r(T ) = 1. Then for all 0 < ε < 1 and

(αn) ∈ c0 of norm one there is a norm one vector x ∈ X such that

‖T kx‖ ≥ (1− ε)|αk|, ∀k = 0, 1, 2, ...

In this note, we give a completely elementary proof for the power bounded

case, which works in the real case as well. Also, we give some analogous

results for the weak orbits 〈x∗, Tnx〉.
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0. Introduction

In [M], V. Müller proved the following theorem.

Theorem. Let T be a bounded operator on a complex Banach space X with
spectral radius r(T ) = 1. Then for all 0 < ε < 1 and (αn) ∈ c0 of norm one
there is a norm one vector x ∈ X such that

‖T kx‖ ≥ (1− ε)|αk|, ∀k = 0, 1, 2, ...

For bounded operators on a Hilbert space, the above result was proved by
Beauzamy [B, Thm. III.2.A.1]. He also shows that if there is no point spectrum
on {|z| = 1}, such an x can be found in any ball of radius one.

For an application of the Theorem to stability theory of semigroups of
operators, see [N].

This research was supported by the Netherlands Organization for Scientific
Research (NWO).



2

The proof given in [M] relies on results from Fredholm theory. In fact, in
case re(T ) < r(T ) = 1, where re(T ) is the essential spectral radius, there is an
unimodular eigenvalue, and the theorem is trivial. The actual proof therefore
concentrates on the case re(T ) = r(T ).

For power bounded operators T , we will give a completely elementary
proof of the Theorem. We do not use spectral theory, and our method works
for both real and complex Banach spaces. In the case of a real Banach space,
we define r(T ) = r(TC), where TC is the complexification of T ; cf. [Ru].

As usual, c0 denotes the Banach space of all sequences α = (αn)∞n=0 that
converge to zero, with norm ‖α‖ = supn |αn|.

1. Proof of the Theorem for power bounded operators

Lemma 1. Suppose T is a bounded operator on a real or complex Banach
space X with r(T ) = 1. Then there exists a constant C > 0 with the following
property. For each sequence α ∈ c0 of norm ≤ 1 there exists a norm one vector
x ∈ X and a subsequence (nk) such that

‖Tnkx‖ ≥ C|αk|, ∀k = 0, 1, 2, ..

Proof: First note that we may assume without loss of generality that T n → 0
strongly. In particular, by the uniform boundedness theorem there is a constant
M such that supn ‖Tn‖ = M < ∞. Let α ∈ c0 be of norm one. Fix 0 < c <
1
2M

−1, fix 0 < δ < c and choose m so large that

2−m+1 +M

∞∑

i=1

2−mi < δ and

∞∑

i=0

2−mi < 1 + δ.

(In fact, the second is implied by the first).
Put N−1 = −1, M−1 = −1. Choose N0 ≥ 0 such that |αi| ≤ 2−m,

∀i ≥ N0.
In the complex case, r(T ) ≥ 1 implies that ‖T n‖ ≥ 1 for all n ∈ IN. In

the real case, we use that ‖TC‖ ≤ 2‖T‖ to conclude that r(T ) ≥ 1 implies
‖Tn‖ ≥ 1

2 for all n ∈ IN. In either case, the choice of c implies that there is
a norm one vector x0 ∈ X such that ‖TN0x0‖ ≥ cM. For all n = 0, 1, ..., N0

we have ‖T nx0‖ ≥ M−1‖TN0x0‖ ≥ c. Put nj := j, j = 0, ..., N0. Since
limn ‖Tnx0‖ = 0, we may choose M0 such that ‖T nx0‖ ≤ 2−m, for all n ≥M0.

Inductively, suppose norm one vectors x0, x1, ..., xl−1 ∈ X , and numbers
N0 < N1 < ... < Nl−1 and n1 < n2 < .... < nNl−1

and M0, ...,Ml−1 have been
chosen subject to the following conditions:

(a) |αi| ≤ 2−m(j+1), ∀i ≥ Nj ; j = 0, 1, ..., l− 1;
(b) nNj−1+1 ≥Mj−1, ∀j = 0, 1, ..., l− 1;
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(c) ‖Tnkxj‖ ≥ c, ∀k = Nj−1 + 1, ..., Nj ; j = 0, ..., l− 1.

(d) ‖Tnxi‖ ≤ 2−m(j+2), ∀0 ≤ i ≤ j and n ≥Mj ; j = 0, 1, ..., l− 1.

Choose Nl ≥ Nl−1 + 1 such that |αi| ≤ 2−m(l+1), ∀i ≥ Nl. Then (a) holds
for the induction variable l. Choose a norm one vector xl ∈ X and numbers
nNl−1+1 < ... < nNl such that nNl−1+1 > nNl−1

, nNl−1+1 ≥ Ml−1 (this is (b))
and

‖Tnkxl‖ ≥ c, k = Nl−1 + 1, ..., Nl.

Then (c) is satisfied. Finally, choose Ml such that

‖Tnxi‖ ≤ 2−m(l+2), ∀0 ≤ i ≤ l and n ≥Ml.

Then again (a)-(d) hold for the value l. Continue this process by induction.
Put

x :=

∞∑

j=0

2−mjxj .

Now let k be a fixed integer and choose j ≥ 0 such that Nj−1 + 1 ≤ k ≤ Nj . If
j ≥ 1, then by (a) and the fact that k ≥ Nj−1 we have,

2−mj = 2−m[(j−1)+1] ≥ |αk|.

In case j = 0, note that this inequality holds trivially. By (b) we have nk ≥
nNj−1+1 ≥ Mj−1 and consequently, by (d), for all 0 ≤ i ≤ j − 1 we have

‖Tnkxi‖ ≤ 2−m(j+1). Therefore,

j−1∑

i=0

2−mi‖Tnkxi‖ ≤ 2−m(j+1)+1.

Also, we have the trivial estimate

∞∑

i=j+1

2−mi‖Tnkxi‖ ≤ 2−mjM
∞∑

i=1

2−mi.

Therefore,

‖Tnkx‖ ≥ 2−mj
(
c− 2−m+1 −M

∞∑

i=1

2−mi
)
≥ 2−mj(c− δ) ≥ |αk|(c− δ).

Finally, observe that x has norm ≤∑∞j=0 2−mj ≤ 1 + δ. Hence, by rescaling x
to a norm one vector, for the rescaled x we obtain

‖Tnkx‖ ≥ c− δ
1 + δ

|αk|.

This proves the theorem, with C = (c− δ)/(1 + δ). ////
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Theorem 1.2. Let T be a power bounded operator on a real or complex
Banach space X with r(T ) = 1. Then for all ε > 0 and all α ∈ c0 of norm one,
there exists a norm one vector x ∈ X such that

‖T kx‖ ≥ (1− ε)|αk|, ∀k = 0, 1, 2, ...

Proof: Step 1. Put supn ‖Tn‖ = M <∞. Define the equivalent norm ||| · ||| on
X by |||x||| = supn ‖Tnx‖. Then ‖x‖ ≤ |||x||| ≤M‖x‖ and |||T ||| ≤ 1. Let (βn) be
a norm one sequence in c0 such that βn ↓ 0 and βn ≥ |αn| for all n. By the
Lemma, there exists a vector x of ||| · |||-norm one and a subsequence (nk) such
that |||Tnkx||| ≥ Cβk. Set c := CM−1. We have ‖x‖ ≤ 1, and for all k we have

‖T kx‖ ≥M−1|||T kx||| ≥M−1|||Tnkx||| ≥ cβk ≥ c|αk|.

Step 2. We will now show that the constant c can actually be replaced
by 1 − ε. Let 0 < ε < 1 be arbitrary and fix a norm one (αn) ∈ c0. Fix
some δ > 0 such that (1 − δ)(1 + δ)−1 ≥ 1− ε. We start by choosing integers
0 = M0 < M1 < ... such that |αk| ≤ (1 + δ)−n whenever k ≥ Mn. Next,
choose integers 0 = N0 < N1 < ... in such a way that Nn ≥ Mn for each n
and Nm +Nn ≤ Nm+n for all n,m. Define the norm one element (βn) ∈ c0 by
βk = (1 + δ)−n whenever Nn ≤ k < Nn+1. Note that β ≥ |α|.

We claim that βm+n ≥ (1 + δ)−1βmβn. Indeed, choose km and kn such
that Nkm ≤ m ≤ Nkm+1 and Nkn ≤ n ≤ Nkn+1. Then βm = (1 + δ)−km and
βn = (1 + δ)−kn , whereas from m+ n < Nkm+1 +Nkn+1 ≤ Nkm+kn+2 we have
βm+n ≥ (1 + δ)−km−kn−1. This proves the claim.

Now choose a norm one vector y ∈ X such that ‖T ky‖ ≥ cβk for all k,
where c is the constant of Step 1. Let

γ := inf
k

‖T ky‖
βk

.

Note that γ ≥ c; moreover, for all k we have ‖T ky‖ ≥ γβk. Choose an index
k0 such that

γβk0

‖T k0y‖ ≥ 1− δ

and put x = ‖T k0y‖−1 T k0y. Then for all n we have

‖Tnx‖ =
‖T k0+ny‖
‖T k0y‖ ≥

γβk0+n

‖T k0y‖ ≥ (1− δ) βn
1 + δ

≥ (1− ε)|αn|.

////
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2. The weak case

In this section, we will give some partial answers as to whether every
operator T with r(T ) ≥ 1 has weak orbits that converge to zero arbitrarily
slowly.

Lemma 2.1. [N, Cor. 2.5] Let X be a real or complex Banach space. Let
βn ≥ 0, n ∈ IN, and assume that

∑∞
n=0 βn = ∞. If 1 ≤ p < ∞ and T is a

bounded operator such that
∞∑

n=0

βn|〈x∗, Tnx〉|p <∞, ∀x ∈ X < x∗ ∈ X∗,

then r(T ) < 1.

Theorem 2.2. Let T be a bounded operator on a real or compex Banach
space X with r(T ) = 1. Let α ∈ c0 be of norm one. Then each sequence (nk)
has a subsequence (nkj ) with the property that there exist norm one vectors
x ∈ X , x∗ ∈ X∗ such that

|〈x∗, Tnkj x〉| ≥ |αkj |, j = 0, 1, ...

Proof: By replacing αn by supk≥n |αk |, we may assume that α0 = 1 and αn ↓ 0.
Put N0 := −1 and for k = 1, 2, ... put

Nk := max{n ∈ IN : αn ≥ k−1}.
Then for 0 ≤ n ≤ N1 we have αn = 1 and for k ≥ 1 and Nk+1 ≤ n ≤ Nk+1 we
have (k+ 1)−1 ≤ αn < k−1. Define the sequence (βn) by βn = 1, n = 0, ..., N1,
and

βn := k−1(Nk+1 −Nk)−1, n = Nk + 1, ..., Nk+1; k = 1, 2, ...

Then
∑∞
n=0 βn =∞, and

∞∑

n=0

αnβn ≤ N1 + 1 +
∞∑

k=1

(Nk+1 −Nk) · k−1 · k−1(Nk+1 −Nk)−1 <∞.

Let (nk) be any given sequence, and define (β̃n) by

β̃j :=

{
βk, if j = nk for some k;
0, else.

Then
∑∞

j=0 β̃j =
∑∞

n=0 βn = ∞. By Lemma 2.1, there exist x ∈ X and
x∗ ∈ X∗ such that

∞∑

j=0

β̃j |〈x∗, T jx〉| =
∞∑

k=0

βk|〈x∗, Tnkx〉| =∞.

Since
∑∞
n=0 αnβn <∞, there have to be infinitely many indices nk for which

|〈x∗, Tnkx〉| ≥ αk.
This proves the theorem. ////
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In the case of a positive operator on a Banach lattice the full weak analogue
of the Theorem holds. This is the content of our next result.

Theorem 2.3. Let T be a positive operator on a real or complex Banach
lattice with r(T ) = 1. Then for each ε > 0 and α ∈ c0 of norm one, there exist
norm one vectors 0 ≤ x ∈ X and 0 ≤ x∗ ∈ X∗ such that

〈x∗, Tnx〉 ≥ (1− ε)|αn|, n = 0, 1, 2, ...

Proof: We may assume that αn ↓ 0. Also, we may assume that X is complex.
Indeed, if X is real we consider the complexification TC on XC, and observe
that positive vectors in XC in fact belong to the real part X .

Choose δ > 0 such that (1+δ)−2(1−δ) ≥ 1−ε. By considering approximate
eigenvectors, it is easy to see (cf. [N, Lemma 2.1]) that for each N ∈ IN, there
exist norm one vectors 0 ≤ xN ∈ X and 0 ≤ x∗N ∈ X∗ such that

〈x∗N , TnxN 〉 ≥ 1− δ, n = 0, 1, ..., N.

The proof can now be given along the lines of Lemma 1.1; the positivity sim-
plifies the argument.

Choose m such that
∑∞

n=0 2−mn ≤ 1 + δ. For each k = 0, 1, ..., let

Nk = max{n ∈ IN : αn ≥ 2−2mk},

and choose norm one vectors 0 ≤ xk ∈ X and 0 ≤ x∗k ∈ X∗ such that

〈x∗k , Tnxk〉 ≥ 1− δ, n = 0, 1, ..., Nk+1.

Set x = (1 + δ)−1
∑∞

k=0 2−mkxk and x∗ = (1 + δ)−1
∑∞

k=0 2−mkx∗k. Then both
x and x∗ are positive vectors of norm ≤ 1. Fix n ∈ IN. If 0 ≤ n ≤ N0, then

〈x∗, Tnx〉 ≥ (1 + δ)−2〈x∗0, Tnx0〉 ≥ (1 + δ)−2(1− δ) ≥ 1− ε = (1− ε)αn.

We used that αn = 1 for n = 0, ..., N0. If n ≥ N0 + 1, say Nj + 1 ≤ n ≤ Nj+1

for some j, then αn ≤ αNj+1 < 2−2mj and consequently,

〈x∗, Tnx〉 ≥ 2−2mj(1 + δ)−2〈x∗j , Tnxj〉 ≥ 2−2mj(1− ε) ≥ (1− ε)αn.

////

Theorem 2.3 fails for arbitrary operators, at least in the case of real scalars.
Indeed, we have the following counterexample in X = IR2.

Example 2.4. Let γ ∈ [0, 2π) be a number such that γ/(2π) is irrational.
Let Tγ be rotation over γ in X = IR2. Let C > 0 be an arbitrary real number.
For x, y ∈ IR2 on norm one, let n(x, y) denote the first integer such that

|〈Tnγ x, y〉| <
C

2
.
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Because the orbit n 7→ T nγ x is dense in the unit circle by the assumption on γ,
the numbers n(x, y) indeed exist. We claim that

N := sup{n(x, y) : ‖x‖ = ‖y‖ = 1} <∞.

Indeed, suppose not. Then for each n ∈ IN there are xn, yn of norm one such
that

|〈T kγ xn, yn〉| ≥
C

2
, 0 ≤ k ≤ n.

Choose a subsequence (nj) such that xnj → x and ynj → y, and fix k. Then
for all j such that nj ≥ k we have

|〈T kγ x, y〉| ≥|〈T kγ xnj , ynj 〉| − |〈T kγ xnj , ynj 〉|
− |〈T kγ (x− xnj ), y〉| − |〈T kγ xnj , y − ynj 〉|.

Letting j →∞ we obtain

|〈T kγ x, y〉| ≥
C

2
, ∀k ∈ IN.

This contradicts the finiteness of n(x, y). Now let α ∈ c0 be the vector

α = (1, 1, ..., 1, 0, 0, ...),

where αn = 1 for 0 ≤ n ≤ N and αn = 0 for n > N . Then for all norm one
vectors x, y ∈ IR2 there is a k = k(x, y) ∈ 0, ..., N such that

|〈T kγ x, y〉| < C|αk |.

////

As it turns out, this example works because Tγ is unitary. To see why, we
need some terminology Let H be a real or complex Hilbert space. An operator
T on H is called an isometry if ‖Tx‖ = ‖x‖ for all x ∈ H or equivalently, if
T ∗T = I . The operator T is called an unilateral shift if there is an orthogonal
decomposition H = ⊕n∈INHn such that THn ⊂ Hn+1 and the map T : Hn →
Hn+1 is an isometry for all n ∈ IN. In the following lemma we use the so-called
Wold decomposition: If T is an isometry on a Hilbert space H , then there is
an orthogonal decomposition H = H0⊕H1 with THi ⊂ Hi, i = 0, 1, such that
T0 := T |H0 is unitary and T1 := T |H1 is an unilateral shift. For a proof we
refer to [SF], Theorem 1.1.

Now we have the following result: Let T be a non-unitary isometry on a
real or complex Hilbert space H . Then for all ε > 0 and α ∈ c0 of norm one,
there exist norm one vectors x ∈ H , y ∈ H , such that

|〈Tnx, y〉| ≥ (1− ε)|αn|, ∀n ∈ IN. (∗)
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Indeed, let H = H0 ⊕H1 be the Wold decomposition. Since T is not unitary,
H1 is non-empty. By considering the restriction of T to H1, we therefore may
assume that T is an unilateral shift on H .

Let H = ⊕n∈INHn be an orthogonal decomposition of H such that T :
Hn → Hn+1 is an isometry. Fix an arbitrary norm one vector x0 ∈ H0 and put
xn := Tnx0. The closed linear span of {xn : n ∈ IN} is isometric to l2 and the
restriction of T to this span acts as the shift on l2. Therefore, we can apply
Theorem 2.3.

In fact, inspecting the proof of Theorem 2.3 for the shift operator on l2, it
is not hard to see that in fact we can find an 0 ≤ x ∈ l2 of norm one such that
〈Tnx, x〉 ≥ (1− ε)|αn| for all n. This implies that one can even achieve x = y
in (∗).
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