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Abstract. A detailed theory of stochastic integration in UMD Banach spaces
has been developed recently in [14]. The present paper is aimed at giving
various sufficient conditions for stochastic integrability.

1. Introduction

In the paper [14] we developed a detailed theory of stochastic integration in UMD
Banach spaces and a number of necessary and sufficient conditions for stochastic
integrability of processes with values in a UMD space were obtained. The purpose
of the present paper is to complement these results by giving further conditions for
stochastic integrability.

In Section 2, we prove a result announced in [14] on the strong approximation
of stochastically integrable processes by elementary adapted processes. In Section
3 we prove two domination results. In Section 4 we state a criterium for stochastic
integrability in terms of the smoothness of the trajectories of the process. This
criterium is based on a recent embedding result due to Kalton and the authors
[9]. In Section 5 we give an alternative proof of a special case of the embedding
result from [9] and we prove a converse result which was left open there. In the final
Section 6 we give square function conditions for stochastic integrability of processes
with values in a Banach function spaces.

We follow the notations and terminology of the paper [14].

2. Approximation

Throughout this note, (Ω,F ,P) is a probability space endowed with a filtration
F = (Ft)t∈[0,T ] satisfying the usual conditions, H is a separable real Hilbert space
with inner product [·, ·]H , and E is a real Banach space with norm ‖ · ‖. The dual
of E is denoted by E∗.
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We call an operator-valued stochastic process Φ : [0, T ]×Ω → L (H,E) elemen-
tary adapted with respect to the filtration F if it is of the form

Φ =

N∑

n=1

M∑

m=1

1(tn−1,tn]×Amn

K∑

k=1

hk ⊗ xkmn,

where 0 6 t0 < · · · < tN 6 T with the convention that (t−1, t0] = {0}, the
sets A1n, . . . , AMn ∈ Ftn−1 are disjoint for all n = 1, . . . , N , and the vectors
h1, . . . , hK ∈ H are orthonormal.

Let WH = (WH(t))t∈[0,T ] be an H-cylindrical Brownian motion, i.e., each WH(t)

is a bounded operator from H to L2(Ω), for all h ∈ H the process WHh =
(WH(t)h)t∈[0,T ] is a Brownian motion, and for all t1, t2 ∈ [0, T ] and h1, h2 ∈ H
we have

E(WH(t1)h1WH(t2)h2) = (t1 ∧ t2)[h1, h2]H .

We will always assume that WH is adapted to F, i.e., each Brownian motion WHh
is adapted to F. The stochastic integral of an elementary adapted process Φ of the
above form with respect to WH is defined in the obvious way as

∫ t

0

Φ dWH =

N∑

n=1

M∑

m=1

1Amn

K∑

k=1

(
WH(tn ∧ t)hk −WH(tn−1 ∧ t)hk

)
⊗ xkmn.

A process Φ : [0, T ] × Ω → L (H,E) is called H-strongly measurable if for all
h ∈ H , Φh is strongly measurable. Similarly, Φ is H-strongly adapted if for all
h ∈ H , Φh is strongly adapted.

An H strongly measurable and adapted process Φ : [0, T ] × Ω → L (H,E)
is called stochastically integrable with respect to WH if there exists a sequence of
elementary adapted processes Φn : [0, T ]×Ω → L (H,E) and a ζ : Ω → C([0, T ];E)
such that

(i) lim
n→∞

〈Φnh, x
∗〉 = 〈Φh, x∗〉 in measure for all h ∈ H and x∗ ∈ E∗;

(ii) lim
n→∞

∫ ·

0

Φn dWH = ζ measure in C([0, T ];E).

The process ζ is uniquely determined almost surely. We call ζ the stochastic integral
of Φ, notation:

ζ =:

∫ ·

0

Φ dWH .

It is an easy consequence of (i), (ii), and [8, Proposition 17.6] that if Φ is stochas-
tically integrable, then for all x∗ ∈ E∗ we have

lim
n→∞

Φ∗
nx

∗ = Φ∗x∗ in L2(0, T ;H) almost surely.

For UMD spaces E we show that in the definition of stochastic integrability
it is possible to strengthen the convergence of the processes Φnh in (i) to strong
convergence in measure. The main result of this section was announced without
proof in [14] and is closely related to a question raised by McConnell [13, page 290].

Theorem 2.1. Let E be a UMD space. If the process Φ : [0, T ]×Ω → L (H,E) is
H-strongly measurable and adapted and stochastically integrable with respect to WH ,
there exists a sequence of elementary adapted processes Φn : [0, T ]×Ω → L (H,E)
such that

(i)′ lim
n→∞

Φnh = Φh in measure for all h ∈ H;
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(ii) lim
n→∞

∫ ·

0

Φn dWH =

∫ ·

0

Φ dWH in measure in C([0, T ];E).

For the definition of the class of UMD Banach spaces and some of its applications
in Analysis we refer to Burkholder’s review article [4].

Let H be a separable real Hilbert space and let (gn)n>1 be a sequence of inde-
pendent standard Gaussian random variables on a probability space (Ω′,F ′,P′). A
linear operator R : H → E is said to be γ-radonifying if for some (every) orthonor-
mal basis (hn)n>1 of H the Gaussian sum

∑
n>1 gnRhn converges in L2(Ω′;E).

The linear space of all γ-radonifying operators from H to E is denoted by γ(H , E).
This is space is a Banach space endowed with the norm

‖R‖γ(H ,E) :=
(

E′
∥∥∥

∑

n>1

gnRhn

∥∥∥
2) 1

2

.

For more information we refer to [3, 5, 10]. The importance of spaces of γ-
radonifying operators in the theory of stochastic integration in infinite dimensions
is well established; see [14, 15] and the references given therein.

An H-strongly measurable function Φ : [0, T ] → L (H,E) is said to represent an
element R ∈ γ(L2(0, T ;H), E) if for all x∗ ∈ E∗ we have Φ∗x∗ ∈ L2(0, T ;H) and,
for all f ∈ L2(0, T ;H),

〈Rf, x∗〉 =

∫ T

0

[f(t),Φ∗(t)x∗] dt.

Extending the above definition, we say that an H-strongly measurable process
Φ : [0, T ]× Ω → L (H,E) represents a random variable X : Ω → γ(L2(0, T ;H), E)
if for all x∗ ∈ E∗ almost surely we have Φ∗x∗ ∈ L2(0, T ;H) and, for all f ∈
L2(0, T ;H),

〈Xf, x∗〉 =

∫ T

0

[f(t),Φ∗(t)x∗]H dt almost surely.

For H-strongly measurable process we have the following simple result [14,
Lemma 2.7].

Lemma 2.2. Let Φ : [0, T ] × Ω → L (H,E) be an H-strongly measurable process
and let X : Ω → γ(L2(0, T ;H), E) be strongly measurable. The following assertions
are equivalent:

(1) Φ represents X.
(2) Φ(·, ω) represents X(ω) for almost all ω ∈ Ω.

For a Banach space F we denote by L0(Ω;F ) the vector space of all F -valued
random variables on Ω, identifying random variables if they agree almost surely.
Endowed with the topology of convergence in measure, L0(Ω;F ) is a complete
metric space. The following result is obtained in [14].

Proposition 2.3. Let E be a UMD space. For an H-strongly measurable and
adapted process Φ : [0, T ]× Ω → L (H,E) the following assertions are equivalent:

(1) Φ is stochastically integrable with respect to WH ;
(2) Φ represents a random variable X : Ω → γ(L2(0, T ;H), E).
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In this case Φh is stochastically integrable with respect to WHh for all h ∈ H, and
for every orthonormal basis (hn)n>1 of H we have

∫ ·

0

Φ dWH =
∑

n>1

∫ ·

0

Φhn dWHhn,

with almost sure unconditional convergence of the series expansion in C([0, T ];E).
Moreover, for all p ∈ (1,∞)

E sup
t∈[0,T ]

∥∥∥
∫ t

0

Φ(s) dWH(s)
∥∥∥

p

hp,E E‖X‖p
γ(L2(0,T ;H),E).

Furthermore, the mapping X 7→
∫ ·

0
Φ dWH has a unique extension to a continuous

mapping

L0(Ω; γ(L2(0, T ;H), E)) → L0(Ω;C([0, T ];E)).

As we will show in a moment, the series expansion in Proposition 2.3 implies
that in order to prove Theorem 2.1 it suffices to prove the following weaker version
of the theorem:

Theorem 2.4. Let E be a UMD space. If the process φ : [0, T ]×Ω → E is strongly
measurable and adapted and stochastically integrable with respect to a Brownian
motion W , there exists a sequence of elementary adapted processes φn : [0, T ]×Ω →
E such that

(i)′ lim
n→∞

φn = φ in measure;

(ii) lim
n→∞

∫ ·

0

φn dW =

∫ ·

0

φdW in measure in C([0, T ];E).

This theorem may actually be viewed as the special case of Theorem 2.1 corre-
sponding to H = R, by identifying L (R, E) with E and identifying R-cylindrical
Brownian motions with real-valued Brownian motions.

To see that Theorem 2.1 follows from Theorem 2.4 we argue as follows. Choose an
orthonormal basis (hn)n>1 of H and define the processes Ψn : [0, T ]×Ω → L (H,E)
by

Ψnh :=

n∑

j=1

[h, hj ]H Φhj .

Clearly, limn→∞ Ψnh = Φh pointwise, hence in measure, for all h ∈ H . In view of
the identity

∫ ·

0

Ψn dWH =
n∑

j=1

∫ ·

0

Φhj dWHhj

and the series expansion in Proposition 2.3, we also have

lim
n→∞

∫ ·

0

Ψn dWH =

∫ ·

0

Φ dWH in measure in C([0, T ];E).

With Theorem 2.4, for each n > 1 we choose a sequence of elementary adapted
processes φj,n : [0, T ] × Ω → E such that limj→∞ φj,n = Φhn in measure and

lim
j→∞

∫ ·

0

φj,n dWHhn =

∫ ·

0

Φhn dWHhn in measure in C([0, T ];E).
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Given k > 1, choose Nk > 1 so large that

P

{∥∥∥
∫ ·

0

Φ − ΨNk
dWH

∥∥∥
∞
>

1

k

}
<

1

k
.

Let λ be denoted for the Lebesgue measure on [0, T ]. For each n = 1, . . . , Nk choose
jk,n > 1 so large that

λ⊗ P

{
‖Φhn − φjk,n,n‖ >

1

kNk

}
<

1

kNk

and

P

{∥∥∥
∫ ·

0

Φhn − φjk,n,n dWHhn

∥∥∥
∞
>

1

k

}
<

1

kNk
.

Define Φk : [0, T ]× Ω → L (H,E) by

Φkh :=

Nk∑

n=1

[h, hn]H φjk,n,n, h ∈ H.

Each Φk is elementary adapted. For all h ∈ H with ‖h‖H = 1 and all δ > 0 we
have, for all k > 1/δ,

|{‖Φh− Φkh‖ > 2δ}|
6 λ⊗ P{‖Φh− ΨNk

h‖ > δ} + λ⊗ P{‖ΨNk
h− Φkh‖ > δ}

< λ⊗ P{‖Φh− ΨNk
h‖ > δ} +

1

k
.

Hence, limk→∞ Φkh = Φh in measure for all h ∈ H . Also,

P

{∥∥∥
∫ T

0

Φ − Φk dWH

∥∥∥
∞
>

2

k

}

6 P

{∥∥∥
∫ T

0

Φ − ΨNk
dWH

∥∥∥
∞
>

1

k

}
+ P

{∥∥∥
∫ T

0

ΨNk
− Φk dWH

∥∥∥
∞
>

1

k

}

<
1

k
+

1

k
=

2

k
,

and therefore lim
k→∞

∫ ·

0

Φk dWH =

∫ ·

0

Φ dWH in measure in C([0, T ];E). Thus the

processes Φk have the desired properties.

This matter having been settled, the remainder of the section is aimed at proving
Theorem 2.4. The following argument will show that it suffices to prove Theorem
2.4 for uniformly bounded processes φ. To see why, for n > 1 define

φn := 1{‖φ‖6n}φ.

The processes φn are uniformly bounded, strongly measurable and adapted, and
we have limn→∞ φn = φ pointwise, hence also in measure.

We claim that each φn is stochastically integrable with respect to W and

lim
n→∞

∫ ·

0

φn dW =

∫ ·

0

φdW in measure in C([0, T ];E).

To see this, let X : Ω → γ(L2(0, T ), E) be the element represented by φ. Put

Xn(ω)f := X(ω)(1{‖φ(·,ω)‖6n}f), f ∈ L2(0, T ).
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Then by [14, Proposition 2.4], limn→∞Xn = X almost surely in γ(L2(0, T ), E). It is
easily checked that φn represents Xn, and therefore φn is stochastically integrable
by Proposition 2.3. The convergence in measure of the stochastic integrals now
follows from the continuity assertion in Proposition 2.3. This completes the proof
of the claim. A more general result in this spirit will be proved in Section 3.

It remains to prove Theorem 2.4 for uniformly bounded processes Φ.
Let Dn denote the finite σ-field generated by the n-th dyadic equipartition of

the interval [0, T ] and let Gn = Dn ⊗ F be the product σ-field in [0, T ] × Ω. Then
G = {Gn}n>1 is a filtration in [0, T ] × Ω with

∨
n>1 Gn = B ⊗ F , where B is the

Borel σ-algebra of [0, T ]. In what follows with think of [0, T ]×Ω as probability space
with respect to the product measure dt

T ⊗P. Note that for all f ∈ L2([0, T ]×Ω;E),
for almost all ω ∈ Ω we have

E(f |Gn)(·, ω) = E(f(·, ω)|Dn) in L2(0, T ;E).

Define the operators Gn on L2([0, T ]× Ω;E) by

Gnf := τnE(f |Gn),

where τn denotes the right translation operator over 2−nT in L2([0, T ]×Ω;E), i.e.,
τnf(t, ω) = 1[2−nT,T ]f(t− 2−nT, ω).

Lemma 2.5. Let φ : [0, T ] × Ω → E be strongly measurable, adapted, uniformly
bounded, and stochastically integrable with respect to W . Then the processes φn :
[0, T ] × Ω → E defined by φn := Gnφ are strongly measurable, adapted, uniformly
bounded, and stochastically integrable with respect to W . Moreover, limn→∞ φn = φ
in measure and

(2.1) lim
n→∞

∫ ·

0

φn dW =

∫ ·

0

φdW in measure in C([0, T ];E).

Proof. First note that each process φn is strongly measurable, uniformly bounded,
strongly measurable and adapted. By the vector-valued martingale convergence
theorem and the strong continuity of translations we have

lim
n→∞

‖φ− φn‖L2([0,T ]×Ω;E)

6 lim
n→∞

‖φ− τnφ‖L2([0,T ]×Ω;E) + lim
n→∞

‖τnφ− τnE(φ|Gn)‖L2([0,T ]×Ω;E)

6 lim
n→∞

‖φ− τnφ‖L2([0,T ]×Ω;E) + lim
n→∞

‖φ− E(φ|Gn)‖L2([0,T ]×Ω;E) = 0.

It follows that limn→∞ φn = φ in L2([0, T ]× Ω;E), and therefore also in measure.
Let X : Ω → γ(L2(0, T ), E) be the random variable represented by φ. For all

n > 1 let the random variable Xn : Ω → γ(L2(0, T ), E) defined by

Xn(ω) := X(ω) ◦ τ∗n ◦ E( · |Dn)

where τ∗n ∈ L (L2(0, T )) denotes the left translation operator. It is easily seen
that for all n > 1, Xn is represented by φn, and therefore φn is stochastically
integrable with respect to W by Proposition 2.3. By [14, Proposition 2.4] we
obtain limj→∞Xn = X almost surely in γ(L2(0, T ), E). Hence, limn→∞Xn = X
in measure in γ(L2(0, T ), E), and (2.1) follows from the continuity assertion in
Proposition 2.3. �
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Now we can complete the proof of Theorem 2.4 for uniformly bounded processes
φ. The processes φn in Lemma 2.5 can be represented as

φn =

2n∑

j=1

1Ij
φj,n,

where the Ij is the j-th interval in the n-th dyadic partition of [0, T ] and the random
variable φj,n : Ω → E is uniformly bounded and Fj -measurable, where Fj =
F2−n(j−1)T . The proof is completed by approximating the φj,n in L0(Ω,Fj ;E)
with simple random variables.

Let E1 and E2 be real Banach spaces. Theorem 2.1 can be strengthened for
L (E1, E2)-valued processes which are integrable with respect to an E1-valued
Brownian motion.

Let µ be a centred Gaussian Radon measure on E1 and let Wµ be an E1-valued
Brownian motion with distribution µ, i.e., for all t > 0 and x∗ ∈ E∗

1 we have

E〈Wµ(t), x∗〉2 = t

∫

E1

〈x, x∗〉2 dµ(x).

Let Hµ denote the reproducing kernel Hilbert space associated with µ and let
iµ : Hµ →֒ E1 be the inclusion operator. We can associate an Hµ-cylindrical
Brownian motion WHµ

with Wµ by the formula

WHµ
(t)i∗µx

∗ := 〈Wµ(t), x∗〉.
We say Φ : [0, T ]× Ω → L (E1, E2) is E1-strongly measurable and adapted if for

all x ∈ E1, Φx is strongly measurable and adapted. An E1-strongly measurable and
adapted process Φ : [0, T ]× Ω → L (E1, E2) is called stochastically integrable with
respect to the E1-valued Brownian motion Wµ if the process Φ ◦ iµ : [0, T ] × Ω →
L (Hµ, E2) is stochastically integrable with respect to WHµ

. In this case we write
∫ ·

0

Φ dWµ :=

∫ ·

0

Φ ◦ iµ dWHµ
.

By the Pettis measurability theorem and the separability of Hµ, the E1-strong
measurability of Φ implies the Hµ-strong measurability of Φ ◦ iµ. We call Φ an
elementary adapted process if Φ ◦ iµ is elementary adapted.

Theorem 2.6. Let E1 be a Banach space and let E2 be a UMD space and fix
p ∈ (1,∞). Let Wµ be an E1-valued Brownian motion with distribution µ. If the
process Φ : [0, T ] × Ω → L (E1, E2) is E1-strongly measurable and adapted and
stochastically integrable with respect to Wµ, there exists a sequence of elementary
adapted processes Φn : [0, T ]× Ω → L (E1, E2) such that

(i)′′ lim
n→∞

Φnx = Φx in measure for µ-almost all x ∈ E1;

(ii) lim
n→∞

∫ ·

0

Φn dWµ =

∫ ·

0

Φ dWµ in measure in C([0, T ];E2).

The proof depends on some well known facts about measurable linear extensions.
We refer to [3, 6] for more details. If µ is a centred Gaussian Radon measure on
E1 with reproducing kernel Hilbert space Hµ and (hn)n>1 is an orthonormal basis
(hn)n>1 for Hµ, then the coordinate functionals h 7→ [h, hn]Hµ

can be extended

to µ-measurable linear mappings hn from E1 to R. Moreover, these extensions
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are µ-essentially unique in the sense that every two such extensions agree µ-almost
everywhere. Putting

Pnx :=

n∑

j=1

hjxhj , x ∈ E1,

we obtain a µ-measurable linear extension of the orthogonal projection Pn in Hµ

onto the span of the vectors h1, . . . , hn. Again this extension is µ-essentially unique,
and we have

(2.2) lim
n→∞

iµPnx =
∑

n>1

hjx iµhj = x for µ-almost all x ∈ E1.

Proof of Theorem 2.6. We will reduce the theorem to Theorem 2.4. Choose an
orthonormal basis (hn)n>1 of the reproducing kernel Hilbert space Hµ and define
the processes Ψn : [0, T ]× Ω → L (E1, E2) by

Ψnx := ΦiµPnx, x ∈ E1.

By (2.2),
lim

n→∞
Ψnx = Φx in measure for µ-almost all x ∈ E1.

Also,

lim
n→∞

∫ ·

0

Ψn dWµ = lim
n→∞

∫ ·

0

Ψn ◦ iµ dWHµ

(∗)
=

∫ ·

0

Φ ◦ iµ dWHµ
=

∫ ·

0

Φ dWµ in measure in C([0, T ];E2),

where the identity (∗) follows by series representation as in the argument following
the statement of Theorem 2.4. The proof may now be completed along the lines of
this argument; for Φk we take

Φkx :=

Nk∑

n=1

hNk
xφjk,n,n, x ∈ E1,

where the elementary adapted processes φj,n approximate Φiµhn and the indices
Nk are chosen as before. �

As a final comment we note that Lp-versions of the results of this section hold
as well; for these one has to replace almost sure convergence by Lp-convergence in
the proofs.

3. Domination

In this section we present two domination results which were implicit in the
arguments so far, and indeed some simple special cases of them have already been
used.

The first comparison result extends [15, Corollary 4.4], where the case of func-
tions was considered.

Theorem 3.1 (Domination). Let E be a UMD space. Let Φ,Ψ : [0, T ] × Ω →
L (H,E) be H-strongly measurable and adapted processes and assume that Ψ is
stochastically integrable with respect to WH . If for all x∗ ∈ E∗ we have

∫ T

0

‖Φ∗(t)x∗‖2
H dt 6

∫ T

0

‖Ψ∗(t)x∗‖2
H dt almost surely,
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then Φ is stochastically integrable and for all p ∈ (1,∞),

E sup
t∈[0,T ]

∥∥∥
∫ t

0

Φ(s) dWH(s)
∥∥∥

p

.p,E E sup
t∈[0,T ]

∥∥∥
∫ t

0

Ψ(s) dWH(s)
∥∥∥

p

,

whenever the right hand side is finite.

Proof. Since Φ and Ψ are H-strongly measurable and adapted, without loss of
generality we may assume that E is separable.

By Proposition 2.3, Ψ represents a random variable Y : Ω → γ(L2(0, T ;H), E).
In particular, for all x∗ ∈ E∗ we have Ψ∗x∗ ∈ L2(0, T ;H) almost surely. We claim
that almost surely,

∫ T

0

‖Φ∗(t)x∗‖2
H dt 6

∫ T

0

‖Ψ∗(t)x∗‖2
H dt for all x∗ ∈ E∗.

Indeed, by the reflexivity and separability of E we may choose a countable, norm
dense, Q-linear subspace F of E∗. Let N1 be a null set such that

(3.1)

∫ T

0

‖Φ∗(t, ω)x∗‖2
H dt 6

∫ T

0

‖Ψ∗(t, ω)x∗‖2
H dt

for all ω ∈ ∁N1 and all x∗ ∈ F . By Lemma 2.2 there exists a null set N2 such
that Ψ(·, ω) represents Y (ω) for all ω ∈ ∁N2. Fix y∗ ∈ E∗ arbitrary and choose a
sequence (y∗n)n>1 in F such that limn→∞ y∗n = y∗ in E∗ strongly. Fix an arbitrary
ω ∈ ∁(N1 ∪N2). We will prove the claim by showing that

(3.2)

∫ T

0

‖Φ∗(t, ω)y∗‖2
H dt 6

∫ T

0

‖Ψ∗(t, ω)y∗‖2
H dt,

By the closed graph theorem there exists a constant Cω such that

‖Ψ∗(·, ω)x∗‖L2(0,T ;H) 6 Cω‖x∗‖ for all x∗ ∈ E∗.

Hence, Ψ∗(·, ω)y∗ = limn→∞ Ψ∗(·, ω)y∗n in L2(0, T ;H), by the strong convergence
of the y∗n’s to y∗. It follows from (3.1), applied to the functionals y∗n−y∗m ∈ F , that
(Φ∗y∗n)n>1 is a Cauchy sequence in L2(0, T ;H). Identification of the limit shows
that Φ∗(·, ω)y∗ = limn→∞ Φ∗(·, ω)y∗n in L2(0, T ;H). Now (3.2) follows from the
corresponding inequality for y∗n by letting n→ ∞.

By the claim and [15, Theorem 4.2 and Corollary 4.4], almost every function
Φ(·, ω) represents an element X(ω) ∈ γ(L2(0, T ;H), E) for which we have

‖X(ω)‖γ(L2(0,T ;H),E) 6 ‖Y (ω)‖γ(L2(0,T ;H),E).

By [14, Remark 2.8]) X is strongly measurable as a γ(L2(0, T ;H), E)-valued ran-
dom variable. Since Φ represents X , Φ is stochastically integrable by Proposition
2.3. Moreover, from Proposition 2.3 we deduce that

E sup
t∈[0,T ]

∥∥∥
∫ t

0

Φ(s) dWH(s)
∥∥∥

p

hp,E E‖X‖p
γ(L2(0,T ;H),E) 6 E‖Y ‖p

γ(L2(0,T ;H),E)

hp,E E sup
t∈[0,T ]

∥∥∥
∫ t

0

Ψ(s) dWH(s)
∥∥∥

p

.

�

The next result extends [15, Theorem 6.2].
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Corollary 3.2 (Dominated convergence). Let E be a UMD space and fix p ∈
(1,∞). For n > 1, let Φn : [0, T ] × Ω → L (H,E) be H-strongly measurable and
adapted and stochastically integrable processes and assume that there exists an H-
strongly measurable and adapted process Φ : [0, T ]×Ω → L (H,E) such that for all
x∗ ∈ E∗,

(3.3) lim
n→∞

Φ∗
nx

∗ = Φ∗x∗ almost surely in L2(0, T ;H).

Assume further that there exists an H-strongly measurable and adapted process
Ψ : [0, T ] × Ω → L (H,E) that is stochastically integrable and for all n and all
x∗ ∈ E∗,

(3.4)

∫ T

0

‖Φ∗
n(t)x∗‖2

H dt 6

∫ T

0

‖Ψ∗(t)x∗‖2
H dt almost surely.

Then Φ is stochastically integrable and

lim
n→∞

∫ ·

0

Φn − Φ dWH = 0 in measure in C([0, T ];E).

Proof. The assumptions (3.3) and (3.4) imply that for all n and x∗ ∈ E∗,

(3.5)

∫ T

0

‖Φ∗
n(t)x∗‖2

H dt 6

∫ T

0

‖Ψ∗(t)x∗‖2
H dt almost surely.

Theorem 3.1 therefore implies that each Φn is stochastically integrable, and by
passing to the limit n → ∞ in (3.5) we see that the same is true for Φ. Let
Zn : Ω → γ(L2(0, T ;H), E) be the element represented by Φn −Φ. By Proposition
2.3 it suffices to prove that

(3.6) lim
n→∞

Zn = 0 in measure in γ(L2(0, T ;H), E).

As in the proof of Theorem 3.1, (3.4) implies that for almost all ω ∈ Ω,

(3.7)

∫ T

0

‖Φ∗
n(t, ω)x∗‖2

H dt 6

∫ T

0

‖Ψ∗(t, ω)x∗‖2
H dt for all n > 1 and x∗ ∈ E∗,

and

(3.8)

∫ T

0

‖Φ∗(t, ω)x∗‖2
H dt 6

∫ T

0

‖Ψ∗(t, ω)x∗‖2
H dt for all n > 1 and x∗ ∈ E∗.

Denoting by Y : Ω → γ(L2(0, T ;H), E) the element represented by Ψ, we obtain
that, for almost all ω ∈ Ω, for all x∗ ∈ E∗,

(3.9) ‖Z∗
n(ω)x∗‖L2(0,T ;H) 6 2‖Y ∗(ω)x∗‖L2(0,T ;H)

Let N1 be a null set such that (3.7) and (3.8) hold for all ω ∈ ∁N1. Then for all
ω ∈ ∁N1 there is a constant C(ω) such that for all x∗ ∈ E∗ and all n > 1,

(3.10)

∫ T

0

‖Φ∗(t, ω) − Φ∗
n(t, ω)x∗‖2

H dt 6 C2(ω)‖x∗‖2.

Let (x∗j )j>1 be a dense sequence in E∗. By (3.3) we can find a null set N2 such

that for all ω ∈ ∁N2 and all j > 1 we have

(3.11) lim
n→∞

Φ∗
n(·, ω)x∗j = Φ∗(·, ω)x∗j in L2(0, T ;H).

Clearly, (3.10) and (3.11) imply that for all ω ∈ ∁(N1 ∪N2) we have

lim
n→∞

Φ∗
n(·, ω)x∗ = Φ∗(·, ω)x∗ in L2(0, T ;H) for all x∗ ∈ E∗,
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hence for almost all ω ∈ Ω, for all x∗ ∈ E∗,

(3.12) lim
n→∞

Z∗
n(ω)x∗ = 0 in L2(0, T ;H).

By (3.9) and (3.12) and a standard tightness argument as in [15, Theorem 6.2] we
obtain that for almost all ω ∈ Ω, limn→∞ Zn(ω) = 0 in γ(L2(0, T ;H), E). This
gives (3.6). �

Again we leave it to the reader to formulate the Lp-version of these results.

4. Smoothness - I

Extending a result of Rosiński and Suchanecki (who considered the case H = R),
it was shown in [15] (for arbitrary Banach spaces E and functions Φ) and [14] (for
UMD Banach spaces and processes Φ) that if E is a Banach space with type 2, then
every H-strongly measurable and adapted process Φ : [0, T ] × Ω → L (H,E) with
trajectories in L2(0, T ; γ(H,E)) is stochastically integrable with respect to an H-
cylindrical Brownian motion WH . Moreover, for H = R this property characterises
the spaces E with type 2. Below (Theorem 4.2) we shall obtain an extension of this
result for processes in UMD spaces with type p ∈ [1, 2).

The results will be formulated in terms of vector valued Besov spaces. We briefly
recall the definition. We follow the approach of Peetre; see [19, Section 2.3.2] (where
the scalar-valued case is considered) and [1, 7, 18]. The Fourier transform of a
function f ∈ L1(Rd;E) will be normalized as

f̂(ξ) =
1

(2π)d/2

∫

Rd

f(x)e−ix·ξ dx, ξ ∈ Rd.

Let φ ∈ S (Rd) be a fixed Schwartz function whose Fourier transform φ̂ is non-
negative and has support in {ξ ∈ Rd : 1

2 6 |ξ| 6 2} and which satisfies
∑

k∈Z

φ̂(2−kξ) = 1 for ξ ∈ Rd \ {0}.

Define the sequence (ϕk)k>0 in S (Rd) by

ϕ̂k(ξ) = φ̂(2−kξ) for k = 1, 2, . . . and ϕ̂0(ξ) = 1 −
∑

k>1

ϕ̂k(ξ), ξ ∈ Rd.

For 1 6 p, q 6 ∞ and s ∈ R the Besov space Bs
p,q(R

d;E) is defined as the space

of all E-valued tempered distributions f ∈ S ′(Rd;E) for which

‖f‖Bs
p,q(R

d;E) :=
∥∥∥
(
2ksϕk ∗ f

)
k>0

∥∥∥
lq(Lp(Rd;E))

is finite. Endowed with this norm, Bs
p,q(R

d;E) is a Banach space, and up to an
equivalent norm this space is independent of the choice of the initial function φ. The
sequence (ϕk ∗ f)k>0 is called the Littlewood-Paley decomposition of f associated
with the function φ.

Next we define the Besov space for domains. Let D be a nonempty bounded
open domain in Rd. For 1 6 p, q 6 ∞ and s ∈ R we define

Bs
p,q(D;E) = {f |D : f ∈ Bs

p,q(R
d;E)}.

This space is a Banach space endowed with the norm

‖g‖Bs
p,q(D;E) = inf

f |D=g
‖f‖Bs

p,q(R
d;E).
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See [20, Section 3.2.2] (where the scalar case is considered) and [2].
We have the following embedding result, which is a straightforward extension of

[9, Theorems 1.1 and 3.2] where the case H = R was considered:

Proposition 4.1. Let E be a Banach space and H be a non-zero separable Hilbert
space. Let D ⊆ Rd be an open domain and let p ∈ [1, 2]. Then E has type p if and
only if we have a continuous embedding

B
d
p
− d

2
p,p (D; γ(H,E)) →֒ γ(L2(D;H);E).

If we combine this result with Proposition 2.3 we obtain the following condition
for stochastic integrability of processes.

Theorem 4.2. Let H be a separable Hilbert space and let E be a UMD Banach
space with type p ∈ [1, 2]. If Φ : [0, T ]×Ω → L (H,E) is an H-strongly measurable

process and adapted process with trajectories in B
1
p
− 1

2
p,p (0, T ; γ(H,E)) almost surely,

then Φ is stochastically integrable with respect WH . Moreover, for all q ∈ (1,∞),

E sup
t∈[0,T ]

∥∥∥
∫ t

0

Φ(s) dWH(s)
∥∥∥

q

hp,E E‖Φ‖q

B
1
p
−

1
2

p,p (0,T ;γ(H,E))

.

A similar result can be given for processes with Hölder continuous trajectories.
In particular, invoking [9, Corollary 3.4] we see that Theorem 4.2 may be applied to
functions in Cα([0, 1]; γ(H,E)) and, if E is a UMD space, to processes with paths
almost surely in Cα([0, 1]; γ(H,E)), where α > 1

p − 1
2 . Since UMD spaces always

have non-trivial type, there exists an ε > 0 such that every H-strongly measurable

and adapted process with paths in C
1
2−ε([0, 1]; γ(H,E)) is stochastically integrable

with respect to WH . In the converse direction, [9, Theorem 3.5] implies that if E
is a Banach space failing type p ∈ (1, 2), then for any 0 < α < 1

p − 1
2 there exist

examples of functions in Cα([0, 1];E) which fail to be stochastically integrable with
respect to scalar Brownian motions.

5. Smoothness - II

In this section we give an alternative proof of Proposition 4.1 in the case D is
a finite interval. The argument uses the definition of the Besov space from [11]
instead of the Fourier analytic definition of Peetre.

For s ∈ (0, 1) and p, q ∈ [1,∞] we will recall the definition of the Besov space
Λs

p,q(0, T ;E) from [11]. Since it is not obvious that this space is equal to the Besov
space of Section 4 we use the notation Λs

p,q(0, T ;E) instead of Bs
p,q(0, T ;E).

Let I = (0, T ). For h ∈ R and a function φ : I → E we define the function
T (h)φ : I → E as the translate of φ by h, i.e.

(T (h)φ)(t) :=

{
φ(t+ h) if t+ h ∈ I,

0 otherwise.

For h ∈ R put

I[h] :=
{
r ∈ I : r + h ∈ I

}
.

For a strongly measurable function φ ∈ Lp(I;E) and t > 0 let

̺p(φ, t) := sup
|h|6t

(∫

I[h]

‖T (h)φ(r) − φ(r)‖p dr
) 1

p

.



STOCHASTIC INTEGRABILITY 13

We use the obvious modification if p = ∞.
Now define

Λs
p,q(I; L (E,F )) := {φ ∈ Lp(I;E) : ‖φ‖Λs

p,q(I;E) <∞},
where

(5.1) ‖φ‖Λs
p,q(I;E) =

(∫ T

0

‖φ(t)‖p dt
) 1

p

+
(∫ 1

0

(
t−s̺p(φ, t)

)q dt

t

) 1
q

with the obvious modification for q = ∞. Endowed with the norm ‖ · ‖Λs
p,q(I;E),

Λs
p,q(I;E) is a Banach space. The following continuous inclusions hold:

Λs
p,q1

(I;E) →֒ Λs
p,q2

(I;E), Λs1
p,q(I;E) →֒ Λs2

p,q(I;E),

and

Λs
p1,q(I;E) →֒ Λs

p2,q(I;E)

for all s, s1, s2 ∈ (0, 1), p, p1, p2, q, q1, q2 ∈ [1,∞] with 1 6 p2 6 p1 6 ∞, q1 6 q2,
s2 6 s1.

For all p ∈ [1,∞) we have

Λs
p,q(I;E) = Bs

p,q(I;E)

with equivalent norms. Here Bs
p,q(I;E) is the space defined in Section 4. Since

we could not find a reference for this, we include the short argument. If I = R

this follows from [16, Proposition 3.1] (also see [18, Theorem 4.3.3]). Therefore, for
general I the inclusion ”⊇” follows from the definitions. For the other inclusion
notice that by [11, Theorem 3.b.7] one has

Λs
p,q(I;E) = (Lp(I;E),W 1,p(I;E))s,q.

It is well-known that there is a common extension operator from the spaces Lp(I;E)
and W 1,p(I;E) into Lp(R;E) and W 1,p(R;E) for all p ∈ [1,∞]. Therefore, by
interpolation we obtain an extension operator from (Lp(I;E),W 1,p(I;E))s,q into
(Lp(R;E),W 1,p(R;E))s,q . Now the latter is again equal to Bs

p,q(R;E) and therefore
”⊆” holds as well.

We put, for t > 0,

ϕs
p(φ, t) := t−s̺p(φ, t)

and observe for later use the easy fact that there is a constant cq,s > 0 such that
for all φ ∈ Γs

p,q(I;E) we have

(5.2) c−1
q,s‖ϕs

p(φ, ·)‖Lq(0,1; dt
t

) 6
∥∥(
ϕs

p(φ, 2
−n)

)
n>0

∥∥
lq

6 cq,s‖ϕs
p(φ, ·)‖Lq(0,1; dt

t
).

Theorem 5.1. Let H be a separable Hilbert space, E a Banach space, and let p ∈
[1, 2). Then E has type p if and only if Λ

1
p
− 1

2
p,p (0, T ; γ(H,E)) →֒ γ(L2(0, T ;H), E)

continuously.

Proof. For the proof that E has type p if the inclusion holds we refer to [9, Theorem
3.3]. To prove the converse we may assume T = 1. Let (g00, gnk : n > 0, k =
1, . . . , 2n) be the L2-normalized Haar system on [0, 1], i.e. g00 ≡ 1 and for all other
n and k let

gnk =






2
n
2 on [(k − 1)2−n, (k − 1

2 )2−n)

−2
n
2 on [(k − 1

2 )2−n, k2−n)

0 otherwise.
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Let (hi)i>1 be an orthonormal basis for H . Then (gnk ⊗ hi)m,k,i is an orthonormal
basis for L2(0, 1;H). Let (γi)i, (γnki)n,k,i be Gaussian sequences and let (rnk)n,k be

an independent Rademacher sequence. Let Φ ∈ Λ
1
p
− 1

2
p,p (0, T ; γ(H,E)) be arbitrary.

Since E has type p, L2(Ω;E) has type p with Tp(L
2(Ω;E)) = Tp(E) (cf. [5]) and

we have

(
E

∥∥∥
∑

i>1

γnkiIΦg00 ⊗ hi +
∑

n>0

2n∑

k=1

∑

i>1

γnkiIΦgnk ⊗ hi

∥∥∥
2) 1

2

=
(

ErE

∥∥∥
∑

i>1

γnkiIΦg00 ⊗ hi +
∑

n>0

2n∑

k=1

∑

i>1

rnkγnkiIΦgnk ⊗ hi

∥∥∥
2) 1

2

6
∥∥∥

∑

i>1

γiIΦg00 ⊗ hi

∥∥∥
L2(Ω;E)

+ Tp(E)
( ∑

n>0

2n∑

k=1

∥∥∥
∑

i>1

γiIΦgnk ⊗ hi

∥∥∥
p

L2(Ω;E)

) 1
p

Now one easily checks that
∥∥∥

∑

i>1

γiIΦg00 ⊗ hi

∥∥∥
L2(Ω;E)

6 ‖Φ‖Lp(0,1;γ(H,E)).

For the other term note that

IΦgnk ⊗ hi = 2
n
2

∫ (k− 1
2 )2−n

(k−1)2−n

(Φ(s) − Φ(s+ 2−n−1))hi ds.

Therefore,

2n∑

k=1

∥∥∥
∑

i>1

γiIΦgnk ⊗ hi

∥∥∥
p

L2(Ω;E)

= 2
np
2

2n∑

k=1

∥∥∥
∫ (k− 1

2 )2−n

(k−1)2−n

Φ(s) − Φ(s+ 2−n−1) ds
∥∥∥

p

γ(H,E)

6 2
np
2 2(n+1)(1−p)

2n∑

k=1

∫ (k− 1
2 )2−n

(k−1)2−n

‖Φ(s) − Φ(s+ 2−n−1)‖p
γ(H,E) ds

6 2−p+12n(1−p
2 )

∫ 1−2−n−1

0

‖Φ(s) − Φ(s+ 2−n−1)‖p
γ(H,E) ds

We conclude that

( ∑

n>0

2n∑

k=1

E

∥∥∥
∑

i>1

γiIΦgnk ⊗ hi

∥∥∥
p) 1

p

6 2−1+ 1
p

( ∑

n>0

2n(1−p
2 )

∫ 1−2−n−1

0

‖Φ(s) − Φ(s+ 2−n−1)‖p
γ(H,E) ds

) 1
p

.p ‖Φ‖
Λ

1
p
−

1
2

p,p (0,T ;γ(H,E))
,

where the last inequality follows from (5.2). �

If (0, T ) is replaced with R, one can use the Haar basis on each interval (j, j+1)
to obtain the analogous embedding result for R. More generally, the proof can
be adjusted to the case of finite or infinite rectangles D ⊆ Rd. Furthermore,
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using extension operators one can extend the embedding result to bounded regular
domains.

As a consequence of Theorem 5.1 we recover a Hölder space embedding result
from [9]. Using [15, Theorem 2.3] this can be reformulated as follows.

Proposition 5.2. Let E be a Banach space and let p ∈ [1, 2). If E type p, then
for all α > 1

p − 1
2 it holds that φ ∈ Cα([0, 1];E) implies that φ is stochastically

integrable with respect to W . Moreover, there exists a constant C only depending
on the type p constant of E such that

E

∥∥∥
∫ 1

0

φdW
∥∥∥

2

6 C2‖φ‖2
Cα([0,1];E)

In [9] a converse to this result is obtained as well: if all functions in Cα([0, 1];E)
are stochastically integrable, then E has type p for all p ∈ [1, 2) satisfying α < 1

p− 1
2 .

However, the case that α = 1
p − 1

2 is left open there and will be considered in the

following theorem. For the definition of stable type p we refer to [12].

Theorem 5.3. Let E be a Banach space, let α ∈ (0, 1
2 ] and let p ∈ [1, 2) be such

that α = 1
p − 1

2 . If every function in Cα([0, 1];E) is stochastically integrable with

respect to W , then E has stable type p.

Since lp spaces for p ∈ [1, 2) do not have stable type p, it follows from Theorem
5.3 that there exists a ( 1

p − 1
2 )-Hölder continuous function φ : [0, 1] → lp that is not

stochastically integrable with respect to W . An explicit example can be obtained
from the construction below. This extends certain examples in [17, 21]

Proof. Step 1: Fix an integer N > 1. First we construct an certain function with
values in lpN . Let ϕ00, ϕnk for n > 0, k = 1, . . . , 2n be the Schauder functions on

[0, 1], i.e., ϕnk(x) =
∫ x

0
gnk(t) dt where gnk are the L2-normalized Haar functions.

Let (en)N
n=1 be the standard basis in lpN . Let ψ : [0, 1] → lp be defined as

ψ(t) =

N∑

n=0

2n∑

k=1

2
(p−1)n

p ϕnk(t)e2n+k.

Then ψ is stochastically integrable and

E

∥∥∥
∫ 1

0

ψ dW
∥∥∥

p

= E

∥∥∥
N∑

n=0

2n∑

k=1

2
(p−1)n

p

∫ 1

0

ϕnk dWe2n+k

∥∥∥
p

=
N∑

n=0

2n∑

k=1

2(p−1)nE

∣∣∣
∫ 1

0

ϕnk dW
∣∣∣
p

= mp
p

N∑

n=0

2n∑

k=1

2(p−1)n
(
E

∣∣∣
∫ 1

0

ϕnk dW
∣∣∣
2) p

2

= mp
p

N∑

n=0

2n∑

k=1

2(p−1)n
(∫ 1

0

ϕ2
nk(t) dt

) p
2

= mp
p

N∑

n=0

2n∑

k=1

2(p−1)n
(2−2n−2

3

) p
2

= mp
p

N

12
p
2

,
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where mp = (E|W (1)|p) 1
p . Therefore,

(5.3)
(

E

∥∥∥
∫ 1

0

ψ dW
∥∥∥

2) 1
2

>
(

E

∥∥∥
∫ 1

0

ψ dW
∥∥∥

p) 1
p

= KpN
1
p ,

with Kp = mp/
√

12.
On the other hand ψ is α-Hölder continuous with

(5.4) ‖ψ‖Cα([0,1];E) = sup
t∈[0,1]

‖ψ(t)‖ + sup
06s<t61

‖ψ(t) − ψ(s)‖
(t− s)α

6 Cp,

where Cp is a constant only depending on p. Indeed, for each t ∈ [0, 1], we have

‖ψ(t)‖ =
( N∑

n=0

2n∑

k=1

2(p−1)n|ϕnk(t)|p
) 1

p

6
( N∑

n=0

2(p−1)n2−
(n+2)p

2

) 1
p

=
( N∑

n=0

2−(1−p/2)n−p
) 1

p

6
1

2

( 21−p/2

21−p/2 − 1

) 1
p

.

Now fix 0 6 s < t 6 1. Let n0 be the largest integer such that there exists an
integer k with the property that s, t ∈ [(k − 1)2−n0 , (k + 1)2−n0 ]. Then1

(k − 1)2−n0 6 s 6 k2−n0 6 t 6 (k + 1)2−n0 .

Indeed, otherwise one can replace n0 with n0 + 1 using the point (k − 1/2)2−n0 =
(2k − 1)2−(n0+1) or (k + 1/2)2−n0 = (2k + 1)2−(n0+1) as the middle of the dyadic
interval with length 2−(n0+1). Moreover, 2−(n0+1) 6 (t− s) 6 2−n0+1. The upper
estimate is clear. For the lower estimate assume that (t− s) < 2−(n0+1). Then (t−
k2−n) < 2−(n0+1) and (k2−n − s) < 2−(n0+1). Therefore, t, s ∈ [(k− 1/2)2−n0, (k+
1/2)2−n0] = [(2k− 1)2−(n0+1), (2k+ 1)2−(n0+1)]. This contradicts the choice of n0.

Now for each 0 6 n 6 n0 let kn be the unique integer such that s ∈ [(kn −
1)2−n, kn2−n). Now two cases occur: (i) t ∈ [(kn − 1)2−n, kn2−n] or (ii) t ∈
[kn2−n, (kn + 1)2−n].

In case (i) it follows that

|ϕnkn
(t) − ϕnkn

(s)| 6 2
n
2 (t− s) 6 2

n
2 2(−n0+1)(1−α)(t− s)α.

In case (ii) it follows that

|ϕnkn
(t) − ϕnkn

(s)| = |ϕnkn
(kn2−n) − ϕnkn

(s)| 6 2
n
2 (kn2−n − s)

6 2
n
2 (t− s) 6 2

n
2 2(−n0+1)(1−α)(t− s)α

and in the same way

|ϕnkn+1(t)−ϕnkn+1(s)| = |ϕnkn+1(t)−ϕnkn+1(kn2−n)| 6 2
n
2 2(−n0+1)(1−α)(t−s)α.

For n0 < n 6 N let kn > ℓn be the unique integers such that t ∈ [(kn −
1)2−n, kn2−n] and s ∈ [(ℓn − 1)2−n, ℓn2−n]. Then

|ϕnkn
(t) − ϕnkn

(s)| = |ϕnkn
(t)| 6 2−

n
2 −1,

|ϕnℓn
(t) − ϕnℓn

(s)| = |ϕnℓn
(s)| 6 2−

n
2 −1.

1This argument corrects a minor mistake in the proof in the published version of the paper.
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We conclude that

‖ψ(t) − ψ(s)‖p

6
n0∑

n=0

2n∑

k=1

2(p−1)n|ϕnk(t) − ϕnk(s)|p +
N∑

n=n0+1

2n∑

k=1

2(p−1)n|ϕnk(t) − ϕnk(s)|p

6 2

n0∑

n=0

2(p−1)n2
np
2 2(−n0+1)(1−α)p(t− s)αp +

N∑

n=n0+1

2(p−1)n2−
np
2

6
22−α

2
3
2p−1 − 1

(t− s)αp +
2−(n0+1)(1− p

2 )

1 − 2−(1−p
2 )

Noting that 2−(n0+1) 6 (t− s) and (1 − p
2 ) = αp it follows that

‖ψ(t) − ψ(s)‖ 6
( 22−α

2
3
2 p−1 − 1

+
1

1 − 2−(1− p
2 )

) 1
p

(t− s)α.

Therefore, (5.4) follows.
Step 2: Assume that every function in Cα([0, 1];E) is stochastically integrable.

It follows from the closed graph theorem that there exists a constant C such that
for all φ ∈ Cα([0, 1];E) we have

(5.5)
(

E

∥∥∥
∫ 1

0

φdW
∥∥∥

2) 1
2

6 C‖φ‖Cα([0,1];E)

Now assume that E does not have stable type p. By the Maurey-Pisier theorem
[12, Theorem 9.6] it follows that lp is finitely representable in E. In particular
it follows that for each integer N there exists an operator TN : lpN → E such
that ‖x‖ 6 ‖TNx‖ 6 2‖x‖ for all x ∈ lpN . Now let φ : [0, 1] → E be defined as
φ(t) = TNψN (t), where ψN : [0, 1] → lpN is the function constructed in Step 1. Then
it follows from (5.3), (5.4) and (5.5) that

KpN
1
p 6

(
E

∥∥∥
∫ 1

0

ψ dW
∥∥∥

2) 1
2

6
(

E

∥∥∥
∫ 1

0

φdW
∥∥∥

2) 1
2

6 C‖φ‖Cα([0,1];E) 6 2C‖ψ‖Cα([0,1];lp
N

) 6 2CCp.

This cannot hold for N large and therefore E has stable type p. �

As a corollary we obtain that the set of all α ∈ (0, 1
2 ] such that every f ∈

Cα([0, 1];E) is stochastically integrable is relatively open.

Corollary 5.4. Let E be a Banach space and let α ∈ (0, 1
2 ] and let p ∈ [1, 2) be

such that α = 1
p − 1

2 . If every function in Cα([0, 1];E) is stochastically integrable

with respect to W , then E has (stable) type p1 for some p1 > p. In particular, there
exists an ε ∈ (0, α) such that every function in Cα−ε([0, 1];E) is stochastically
integrable.

Proof. The first part follows from Theorem 5.3 and [12, Corollary 9.7, Proposition
9.12]. The last statement is a consequence of this and Proposition 5.2, where ε > 0
may be taken such that α− ε = 1

p1
− 1

2 �
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6. Banach function spaces

In this section we prove a criterium (Theorem 6.2) for stochastic integrability of
a process in the case E is a UMD Banach function space which was stated without
proof in [14]. It applies to the spaces E = Lp(S), where p ∈ (1,∞) and (S,Σ, µ) is
a σ-finite measure space.

We start with the case where Φ is a function with values in L (H,E). The
following proposition extends [15, Corollary 2.10], where the case H = R was
considered.

Proposition 6.1. Let E be Banach function space with finite cotype over a σ-finite
measure space (S,Σ, µ). Let Φ : [0, T ] → L (H,E) be an H-strongly measurable
function and assume that there exists a strongly measurable function φ : [0, T ]×S →
H such that for all h ∈ H and t ∈ [0, T ],

(Φ(t)h)(·) = [φ(t, ·), h]H in E.

Then Φ is stochastically integrable if and only if

(6.1)
∥∥∥
(∫ T

0

‖φ(t, ·)‖2
H dt

) 1
2
∥∥∥

E
<∞.

In this case we have
(
E

∥∥∥
∫ T

0

Φ dWH

∥∥∥
2

E

) 1
2

hE

∥∥∥
( ∫ T

0

‖φ(t, ·)‖2
H dt

) 1
2
∥∥∥

E
.

Proof. First assume that Φ is stochastically integrable. Let N = {n ∈ N : 1 6
n < dim(H) + 1}, let (em)m∈N be the standard unit basis for L2(N , τ), where
τ denotes the counting measure on N . Choose orthonormal bases (fn)n>1 for
L2(0, T ) and (hn)n∈N for H . Define Ψ : [0, T ]×N → E by Ψ(t, n) := Φ(t)hn and
define the integral operator IΨ : L2([0, T ]× N , dt× τ) → E by

IΨf :=

∫

N

∫

[0,T ]

f(t, n)Ψ(t, n) dt dτ(n) =
∑

n∈N

∫ T

0

f(t, n)Φ(t)hn dt.

Note that the integral on the right-hand side is well defined as a Pettis integral.
Let IΦ ∈ γ(L2(0, T ;H), E) be the operator representing Φ as in Proposition 2.3
(the special case for functions). Then IΨ ∈ γ(L2([0, T ]× N , dt× τ), E) and

(
E

∥∥∥
∫ T

0

Φ dWH

∥∥∥
2

E

) 1
2

= ‖IΦ‖γ(L2(0,T ;H),E) = ‖IΨ‖γ(L2([0,T ]×N , dt×τ),E).

On the other hand, by a similar calculation as in [15, Corollary 2.10] one obtains,
with (rmn) denoting a doubly indexed sequence of Rademacher variables on a prob-
ability space (Ω′,F ′,P′),

‖IΨ‖γ(L2([0,T ]×N , dt×τ),E) hE

(
E′

∥∥∥
∑

m,n

rmn

∫ T

0

∑

k

Ψ(t, k)em(k)fn(t) dt
∥∥∥

2

E

) 1
2

hE

∥∥∥
( ∫ T

0

∑

k

∣∣Ψ(t, k)(·)
∣∣2 dt

) 1
2
∥∥∥

E

=
∥∥∥
( ∫ T

0

‖φ(t, ·)‖2
H dt

) 1
2
∥∥∥

E
.
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For the converse one can read all estimates backwards, but we have to show that
Φ belongs to L2(0, T ;H) scalarly if (6.1) holds. For all x∗ ∈ E∗ we have

‖Φ∗x∗‖2
L2(0,T ;H) =

( ∑

m,n

( ∫ T

0

[Φ∗(t)x∗, hm]Hfn(t) dt
)2) 1

2

=
( ∑

n,m

( ∫ T

0

∑

k

〈Ψ(t, k), x∗〉em(k)fn(t) dt
)2) 1

2

6
(

E′
∥∥∥

∑

n,m

rmn

∫ T

0

∑

k

Ψ(t, k)em(k)fn(t) dt
∥∥∥

2

E

) 1
2 ‖x∗‖.

�

By combining this proposition with Proposition 2.3 and recalling the fact that
UMD spaces have finite cotype, we obtain:

Theorem 6.2. Let E be UMD Banach function space over a σ-finite measure
space (S,Σ, µ) and let p ∈ (1,∞). Let Φ : [0, T ] × Ω → L (H,E) be an H-strongly
measurable and adapted process and assume that there exists a strongly measurable
function φ : [0, T ]× Ω × S → H such that for all h ∈ H and t ∈ [0, T ],

(Φ(t)h)(·) = [φ(t, ·), h]H in E.

Then Φ is stochastically integrable if and only if
∥∥∥
(∫ T

0

‖φ(t, ·)‖2
H dt

) 1
2
∥∥∥

E
<∞ almost surely.

In this case for all p ∈ (1,∞) we have

E sup
t∈[0,T ]

∥∥∥
∫ t

0

Φ(t) dWH(t)
∥∥∥

p

hp,E E

∥∥∥
( ∫ T

0

‖φ(t, ·)‖2
H dt

) 1
2
∥∥∥

p

E
.
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