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Abstract. We investigate existence and permanence properties of invariant
measures for abstract stochastic Cauchy problems of the form

dU(t) = (AU(t) + f) dt + B dWH(t), t > 0,

governed by the generator A of an asymptotically unstable C0-semigroup on
a Banach space E. Here f ∈ E is fixed, WH is a cylindrical Brownian motion
over a separable real Hilbert space H, and B : H → E is a bounded operator.
We show that if c0 6⊆ E, such invariant measures fail to exist generically, but
that they may exist for a dense set of operators B. It turns out that many
results on invariant measures which hold under the assumption of uniform
exponential stability of S break down without this assumption.

1. Introduction

Let A be the infinitesimal generator of a C0-semigroup S = {S(t)}t>0 on a real
Banach space E and let WH = {WH(t)}t>0 be a cylindrical Brownian motion over
a separable real Hilbert space H . In this note we study invariant measures for the
stochastic abstract Cauchy problem of the form

(1.1) dU(t) = (AU(t) + f) dt + B dWH(t), t > 0,

where f ∈ E is a fixed vector and B ∈ L (H, E) is a bounded operator. We are
interested in the situation where the semigroup S fails to be uniformly exponentially
stable and intend to answer such questions as for ‘how many’ operators B an
invariant measure exists and what can be said about its properties.

If the problem (1.1) with initial condition U(0) = x has a weak solution U = Ux,
then this solution is unique up to modification and it is given explicitly by the
stochastic convolution integral

(1.2) Ux(t) = S(t)x +

∫ t

0

S(t − s)f ds +

∫ t

0

S(t − s)B dWH(s), t > 0.

We refer to [11] for more details and unexplained terminology. A Radon probability
measure µ on E is called an invariant measure for the problem (1.1) if for all t > 0
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and all bounded real-valued Borel functions ϕ ∈ Cb(E) we have
∫

E

P (t)ϕdµ =

∫

E

ϕdµ,

where P (t)ϕ ∈ Cb(E) is given as

P (t)ϕ(x) = Eϕ(Ux(t)), x ∈ E.

As is well known [3, 4, 11] a unique invariant measure µ exists if a weak solution
Ux exists for some (all) x ∈ E and the semigroup generated by A is uniformly
exponentially stable. It is obtained as the weak limit µ = limt→∞ µ(t), where µ(t)
is the distribution of U(t) := U0(t) as given by (1.2) with initial value x = 0.

If the operators S(t) are compact for all t > 0, the existence of a nondegenerate
invariant measure for the problem (1.1) with f = 0 implies that the semigroup S is
uniformly exponentially stable [8, Theorem 2.6]. Recall that an invariant measure
µ is said to be nondegenerate if µ(O) > 0 for every nonempty open set O ⊆ E.
The following example, adapted from [4, Chapter 7], shows that in general the
uniform exponential stability is by no means a necessary condition for the existence
of a nondegenerate invariant measure, even if E is a Hilbert space. Although
more refined examples will be presented below, this one is included because of its
particular simplicity.

Example 1. Let H = E = L2(R+) and let S be the rescaled left translation semi-
group defined by

S(t)f(x) = etf(x + t), x ∈ R+, t > 0.

Define, for n = 1, 2, . . . , the functions fn ∈ E by fn(x) := pn(x)e−x2

, where the
polynomials pn are chosen in such a way that (fn)n>1 is an orthonormal basis for E.
The fact that such polynomials exist can be deduced, e.g., from [7, Theorem 9.1].
Choose constants λn > 0 such that

∑

n>1 λ2
n < ∞. The operator B :=

∑

n>1 λnBn,

where Bnf := [f, fn]Efn, is well defined, Hilbert-Schmidt, and has dense range.
For t > 0 define the operators Qt ∈ L (E) by

Qtf :=

∫ t

0

S(s)BB∗S∗(s)f ds, f ∈ E.

A simple computation using the orthonormality of the fn gives

tr(Qt) =
∑

m>1

[Qtfm, fm]E =
∑

m>1

∑

n>1

λ2
n

∫ t

0

[fm, S(s)fn]2E ds

=
∑

n>1

λ2
n

∫ t

0

‖S(s)fn‖
2
E ds 6

∑

n>1

λ2
n

∫

∞

0

∫

∞

0

pn(x + s)2e2s−2(x+s)2 dx ds.

If we let λn → 0 fast enough the right hand side is finite and we infer that

sup
t>0

tr(Qt) < ∞.

By [3, Theorem 11.7] this implies that the stochastic Cauchy problem

dU(t) = AU(t) dt + B dWH(t), t > 0,

admits an invariant measure µ∞ whose covariance operator is given by the strong
operator limit Q∞ = limt→∞ Qt. Since B (and therefore also BB∗) has dense range,
it follows from [6, Lemma 5.2] that the operator Q∞ has dense range as well. By
standard results on Gaussian measures this implies that µ∞ is nondegenerate.
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2. Linear equations with additive noise

In this section we consider the problem (1.1) for f = 0, that is, we study the
linear stochastic Cauchy problem

(2.1) dU(t) = AU(t) dt + B dWH(t), t > 0.

We begin our discussion with recalling some definitions from the theory of C0-
semigroups. Our notations are standard and may be looked up in e.g. [5]. The
spectral bound and growth bound of A are denoted by s(A) and ω0(A), respectively.
The abscissa of uniform boundedness of the resolvent of A is defined as

s0(A) := inf
{

ω ∈ R : {Reλ > ω} ⊆ ̺(A), sup
Re λ>ω

‖R(λ, A)‖ < ∞
}

.

One has s(A) 6 s0(A) 6 ω0(A), and both inequalities may be strict. As a con-
sequence of the Pringsheim-Landau theorem one has s(A) = s0(A) for positive
C0-semigroups on Banach lattices E. The celebrated Gearhart-Herbst-Prüss theo-
rem asserts that for C0-semigroups on Hilbert spaces E one has s0(A) = ω0(A).

Let H be a separable real Hilbert space with orthonormal basis (hn)n>1. In
the applications below, H will be either H or L2(R+; H). Let (γn)n>1 be a se-
quence of independent standard Gaussian random variables on a probability space
(Ω, P). A bounded operator R ∈ L (H , E) is called γ-radonifying if the sum
∑

n>1 γn Rhn converges in L2(Ω; E). The space γ(H , E) of all γ-radonifying op-

erators in L (H , E) is a Banach space with respect to the norm

‖R‖γ(H ,E) :=
(

E

∥

∥

∥

∑

n>1

γn Rhn

∥

∥

∥

2)1/2

.

Moreover, γ(H, E) is an operator ideal in L (H, E), i.e., as a Banach space it is con-
tinuously embedded into L (H, E), it contains all finite rank operators in L (H, E),

and for every separable real Hilbert space H̃, every real Banach space Ẽ, and all
operators R ∈ γ(H, E), T ∈ L (H̃, H), and S ∈ L (E, Ẽ) we have SRT ∈ γ(H̃, Ẽ)
and

‖SRT ‖γ(H̃,Ẽ) 6 ‖S‖
L (H̃,H)‖R‖γ(H,E)‖T ‖

L (E,Ẽ).

For Hilbert spaces E one has γ(H , E) = L2(H , E) with identical norms, where
L2(H , E) denotes the operator ideal of Hilbert-Schmidt operators from H to E.

The following necessary and sufficient condition for the existence of an invariant
measure was noted in [11, Proposition 4.4]:

Proposition 2. For an operator B ∈ L (H, E) the following assertions are equiv-
alent:

(i) The problem (2.1) admits an invariant measure;
(ii) The operator IB : Cc(R+; H) → E defined by

IBf :=

∫

∞

0

S(t)Bf(t) dt

extends to a bounded operator IB ∈ γ(L2(R+; H), E).

Concerning uniqueness, in [11] it was shown that if there exists a weak∗-sequent-
ially dense subspace F of E∗ such that weak∗-limt→∞ S∗(t)x∗ = 0 for all x∗ ∈ F ,
then the problem (2.1) admits at most one invariant measure. In passing we mention
the following application of this result:
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Proposition 3. Let B be a subset of L (H, E) such that
⋃

B∈B

ran(B) = E.

If for all B ∈ B the problem (2.1) admits an invariant measure, then for all B ∈
L (H, E) the problem (2.1) admits at most one invariant measure. In particular,
for all B ∈ B the problem (2.1) then admits a unique invariant measure.

Proof. Let x∗ ∈ D(A∗) be arbitrary. By the result quoted above it suffices to prove
that weak∗-limt→∞ S∗(t)x∗ = 0. Let x ∈ E be arbitrary. Choose B ∈ B and
h ∈ H such that Bh = x. We claim that limt→∞〈x, S∗(t)x∗〉 = 0. For y∗ ∈ E∗

let fy∗ : R+ → H be defined as fy∗(t) = 〈x, S∗(t)y∗〉. By the assumptions and
Proposition 2 we have that for all y∗ ∈ E∗, fy∗ ∈ L2(R+) and

‖fy∗‖L2(R+) 6 ‖S(·)B‖γ(R+;H,E)‖h‖‖x
∗‖.

Since x∗ ∈ D(A∗), g(t) := |fx∗(t)|
2 is continuously differentiable on R+ with g′(t) =

2fx∗(t)fA∗x∗(t). Hence by the Cauchy-Schwartz inequality, g′ ∈ L1(R+). From

lim
t,s→∞

|g(t) − g(s)| 6 lim
t,s→∞

∫ t

s

|g′(u)| du = 0

it follows that the limit L = limt→∞ g(t) exists. If L > 0, there exist ε > 0 and
T > 0 such that for all t > T we have g(t) > ε, which contradicts the fact that
g ∈ L1(R+). We conclude that

lim
t→∞

|〈x, S∗(t)x∗〉|2 = lim
t→∞

g(t) = L = 0.

Since x ∈ E was arbitrary, this proves that weak∗-limt→∞ S∗(t)x∗ = 0. �

A subset of a topological space is called residual if it is the intersection of a
countable family of open dense sets. By the Baire category theorem, every residual
set in a complete metric space is dense.

Theorem 4. Let E be a Banach space not containing a closed subspace isomorphic
to c0 and let I be an operator ideal in L (H, E). Let A be the generator of a C0-
semigroup on E. If s0(A) > 0, then the set J of all B ∈ I such that the problem
(2.1) does not admit an invariant measure is residual in I . If, moreover, the finite
rank operators are dense in I , then the finite rank operators of J are dense in
I .

Proof. For k = 1, 2, . . . let

Gk :=
{

B ∈ I : ‖IB‖γ(L2(R+;H),E) > k
}

where we put ‖IB‖γ(L2(R+;H),E) = ∞ in case IB 6∈ γ(L2(R+; H), E). We shall prove
that each Gk is open and dense in I . The residual set G :=

⋂

k>1 Gk is precisely

the set of all B ∈ I for which IB 6∈ γ(L2(R+; H), E), or equivalently, for which
the problem (2.1) has no invariant measure.

Fix k > 1. First we check that Gk is open in I , or equivalently, that the
complement ∁Gk is closed. Suppose limn→∞ Bn = B in I with each Bn ∈ ∁Gk.
Then ‖IBn

‖γ(L2(R+;H,E)) 6 k for all n. Since for all t > 0 we have limn→∞ S(t)Bn =
S(t)B in L (H, E), from [10, Theorem 4.1] (here we use that c0 6⊆ E) we infer that
IB ∈ γ(L2(R+; H), E) and ‖IB‖γ(L2(R+;H),E) 6 k. Hence, B ∈ ∁Gk.
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Next we check that Gk is dense in I . Suppose the contrary. Then there exist
B0 ∈ I and r > 0 such that B(B0, r) ⊆ ∁Gk, where B(B0, r) is the open ball in
I of radius r centred at B0. Fix a real number 0 < δ < s0(A). By [11, Theorem
1.2], for all B ∈ B(B0, r) the L (H, E)-valued function λ 7→ R(λ, A)B admits a
uniformly bounded analytic extension to the half-plane {Reλ > δ}, and by linearity
this conclusion holds for all B ∈ I . Fixing an arbitrary norm one vector h0 ∈ H

and taking for B the rank one operators of the form h 7→ [h, h0]Hx with x ∈ E, we
see that the E-valued functions λ 7→ R(λ, A)x admits a uniformly bounded analytic
extension to the half-plane {Re λ > δ}. From the uniform boundedness theorem we
conclude that {Re λ > δ} ⊆ ̺(A) and supRe λ>δ ‖R(λ, A)‖ < ∞. But this implies
that s0(A) 6 δ, a contradiction.

Suppose next that the finite rank operators are dense in I . Let B ∈ I , fix
ε > 0 arbitrary, and let B̃ ∈ I be a finite rank operator satisfying ‖B̃ −B‖I < ε

2 .

If the problem (2.1), with B replaced by B̃, does not admit an invariant measure we

are done. Otherwise, write B̃h =
∑N

n=1 cn[h, hn]Hxn with h1, . . . , hN orthonormal
in H . Let HN be the linear span in H of the vectors h1, . . . , hN and let WHN

be the restriction of WH to HN . Denote by IN the space of all linear operators
from HN to E endowed with the norm inherited from I . We now apply the
first part of the theorem, with H , WH , I replaced by HN , WHN

, IN . This

results in an operator ˜̃
B ∈ IN with ‖ ˜̃

B − B̃‖IN
< ε

2 for which the problem

dU(t) = AU(t) dt + ˜̃
B dWHN

(t) has no invariant measure. Extending ˜̃
B identically

zero on the orthogonal complement of HN , we obtain an operator in I with the
desired properties. �

As an immediate consequence we see that if s0(A) > 0, the presence of an
invariant measure can be destroyed by an arbitrary small perturbation of B in I .

An obvious example of an operator ideal for which the first part of the theorem
applies is I = L (H, E). In the special case H = R

N (in which case WH is a
standard R

N -valued Brownian motion W ) we have I = L (RN , E) = EN and
problem (2.1) may be written in the form

dU(t) = AU(t) dt + d[W (t), x], t > 0,

where [W (t), x] =
∑N

n=1 Wn(t)xn.
Both parts of the theorem apply to the operator ideal I = γ(H, E). The

interest of this particular example is explained by the fact that roughly speaking
there is a correspondence between operators B ∈ γ(H, E) on the one hand and E-
valued Brownian motions on the other. To be more precise let WH be a cylindrical
Brownian motion on a probability space (Ω, P). If (hn)n>1 is an orthonormal basis
for H , then for each B ∈ γ(H, E) and t > 0 the sum WB(t) :=

∑

n>1 WH(t)hn Bhn

converges in L2(Ω; E) and the resulting process WB is an E-valued Brownian motion
on (Ω, P) which is independent of the choice of (hn)n>1. Conversely, every E-
valued Brownian motion W arises in such a way by taking for H the so-called
reproducing kernel Hilbert space associated with W and for B the (γ-radonifying)
inclusion mapping from H into E. Although in general the problem (1.1) may fail
to have a solution even if B ∈ γ(H, E) (an example is presented in [9]), a solution
always exists if in addition to B ∈ γ(H, E) we assume that either E has type 2 (in
particular, if E is a Hilbert space or if E = Lp for 2 6 p < ∞) or the semigroup
generated by A is analytic. See [9, 10, 11] for more details.
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Our next aim is to exhibit an example of a C0-semigroup generator A on a
Hilbert space E with the following properties:

(a) The spectral bound and growth bound of A satisfy s(A) = ω0(A) > 0;
(b) The set of all B ∈ γ(H, E) = L2(H, E) for which (2.1) has an invariant

measure is dense.

Its construction is based on [11, Example 4] which we recall first.

Example 5. For 2 < p < ∞ consider the space F = L2(1,∞) ∩ Lp(1,∞) endowed
with the norm ‖f‖ := max{‖f‖2, ‖f‖p}. On F we define the C0-semigroup SF by

(SF (t)f)(x) = f(xet), x > 1, t > 0.

It was shown by Arendt [1] that its generator AF satisfies s0(A
F ) = − 1

2 and

ω0(A
F ) = − 1

p . Put SF
β (t) := eβtSF (t), where 1

p < β < 1
2 is an arbitrary but fixed

number. As is shown in [11], for every B ∈ γ(H, F ) the stochastic Cauchy problem
(2.1) associated with the operator AF

β := AF +β admits a unique invariant measure.

Note that ω0(A
F
β ) = − 1

p + β, which is strictly positive by the choice of β.

Example 6. We construct a Hilbert space semigroup with the properties (a) and (b)
announced above. The idea is to embed the space F of Example 5 into a suitable
weighted L2-space in such a way that the relevant properties of the semigroup SF

β

are preserved.
We have contractive and dense embeddings

F = L2(1,∞) ∩ Lp(1,∞) →֒ L2(1,∞) →֒ L2(1,∞; dx
x ) =: E.

The semigroup SF
β on F defined in Example 5 extends to a C0-semigroup S on E.

To see this, note that for f ∈ F and t > 0 we have
∫

∞

1

|SF
β (t)f(x)|2

dx

x
= e2βt

∫

∞

et

|f(ξ)|2
dξ

ξ
6 e2βt

∫

∞

1

|f(ξ)|2
dξ

ξ
.

Thus SF
β (t) extends to a bounded operator S(t) on E of norm ‖S(t)‖ 6 eβt. In

combination with the strong continuity of S on the dense subspace F of E it follows
that S is a C0-semigroup on E. For the function fc := 1(et,cet) with c > 1 we have

‖fc‖
2
E =

∫ cet

et

dx

x
= ln c

and

‖S(t)fc‖
2
E = e2βt

∫ cet

et

dx

x
= e2βt ln c.

Hence ‖S(t)‖ > eβt, and we conclude that ‖S(t)‖ = eβt. Stated differently, the
generator A of S satisfies ω0(A) = β. Since S is positive and E is a Hilbert space,
we have s(A) = s0(A) = ω0(A) and property (a) holds.

To prove that property (b) holds we make the simple observation that the dense
embedding j : F →֒ E induces a dense embedding

j : γ(H, F ) →֒ γ(H, E) = L2(H, E).

The density of this embedding follows from the fact that the finite rank operators
with values in F are dense in both spaces. Now if B ∈ γ(H, F ) is given, let µF

β

denote an invariant measure of the linear stochastic Cauchy problem in F associated
with AF

β and B. Then the image measure µ := j(µF
β ) is an invariant measure for

the linear stochastic Cauchy problem in E associated with A and jB.
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Notice that in the previous example the invariant measure µ is nondegenerate
whenever B has dense range.

It was shown in [8] that the existence of a nondegenerate invariant measure for
the problem (2.1) implies that the adjoint operator A∗ has no point spectrum in
the closed right half-plane {Reλ > 0}. If in addition we assume that the semigroup
generated by A is uniformly bounded, then one has

σp(A) ∩ iR ⊆ σp(A∗) ∩ iR

and the existence of a nondegenerate invariant measure for the problem (2.1) implies
that A has no point spectrum in {Re λ > 0}. As was shown in [8, Theorem 4.4] this
implies that there is at most one nondegenerate invariant measure for (2.1). The
following example shows that for semigroups with linear growth and 0 ∈ σp(A), a
continuum of nondegenerate invariant measures may exist.

Example 7. Let 2 < p < ∞ and fix 1
p < β < 1

2 . Put

w(x) :=
x2β−1

1 + log2 x
, x > 1,

and let Ew := L2(1,∞; w(x) dx). The space F of Example 5 is continuously and
densely embedded in Ew , and the semigroup SF

β extends to a C0-semigroup Sw on
Ew. We check that

‖Sw(t)‖ =
(

1
2 t2 + 1 + 1

2 t
√

t2 + 4
)1/2

, t > 0,

so Sw grows linearly. Indeed, for f ∈ Ew and t > 0,
∫

∞

1

|Sw(t)f(x)|2w(x) dx =

∫

∞

et

f(ξ)2
ξ2β−1

1 + log2(ξe−t)
dξ

=

∫

∞

et

f(ξ)2w(ξ)
1 + log2 ξ

1 + (log ξ − t)2
dξ.

It is easy to compute that the function ξ 7→
1 + log2 ξ

1 + (log ξ − t)2
attains its maximal

value on (et,∞) at the point

ξt = exp( t
2 + 1

2

√

t2 + 4)

and that the maximum equals

αt = 1
2 t2 + 1 + 1

2 t
√

t2 + 4.

Hence ‖Sw(t)f‖2 6 αt‖f‖
2. For t > 0 and ε > 0, let ft,ε := 1(ξt,ξt+ε). A straight-

forward computation shows that

‖Sw(t)ft,ε‖
2

‖ft,ε‖2
→

1 + log2 ξt

1 + (log ξt − t)2
= αt as ε ↓ 0.

Thus ‖Sw(t)‖ = α
1/2
t as claimed.

Let

(2.2) b(x) := x−β , x > 1.

An elementary computation shows that b ∈ Ew and that Sw(t)b = b. It follows
that b ∈ D(Aw) and Awb = 0. Since b is nonzero, this shows that 0 ∈ σp(Aw).
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As in Example 6, in Ew the problem (2.1) admits an invariant measure for
every operator B ∈ γ(H, F ), where we identify γ(H, F ) with a dense subspace of
γ(H, Ew) = L2(H, Ew), and a nondegenerate invariant measure exists whenever B

has dense range. If µ is such a measure, then for all c ∈ R the translated measure
µc(C) := µ(C + cb) is a nondegenerate invariant measure for (2.1); here b is the
function defined in (2.2). Thus, a continuum of such measures exists.

3. The inhomogeneous problem with additive noise

Next we consider the inhomogeneous problem (1.1),

dU(t) = (AU(t) + f)dt + B dWH(t), t > 0,

where f ∈ E is a fixed vector. Following the arguments of [3, Propositions 11.2 and
11.5] one sees that a Radon probability measure µ on E is invariant if and only if
there exists a stationary solution V of (1.1) (on a possibly larger probability space)
such that µ is the distribution of V (t) for all t > 0. If µ has a first moment, i.e., if
there exists an element m(µ) ∈ E such that for all x∗ ∈ E∗ we have x∗ ∈ L1(E, µ)
and

〈m(µ), x∗〉 =

∫

E

〈x, x∗〉 dµ(x),

then by applying x∗ on both sides of the identity

V (t) = S(t)V (0) +

∫ t

0

S(t − s)f ds +

∫ t

0

S(t − s)B dWH(s),

and taking expectations, the Hahn-Banach theorem shows that m(µ) satisfies the
identity

(3.1) m(µ) = S(t)m(µ) +

∫ t

0

S(t − s)f ds = S(t)m(µ) +

∫ t

0

S(s)f ds, t > 0.

The following proposition relates invariant measures with first moments of the
problem (1.1) to the invariant measure of the homogeneous problem (2.1) with
f = 0. Its proof follows readily from the identity on [3, p. 122], which extends
without change to the present Banach space setting.

Proposition 8. The inhomogeneous equation (1.1) admits an invariant measure
with first moment if and only if f ∈ ran (A) and the homogeneous equation (2.1)
admits an invariant measure (and then also a Gaussian one, which has first mo-
ment). Moreover, if f ∈ ran (A), then V is a stationary solution of (1.1) if and
only if V = U + a for some a ∈ D(A) with −Aa = f and some stationary solution
U of (2.1).

We proceed with a Hilbert space example which shows that even if s(A) > 0 it
may happen that the inhomogeneous problem (1.1) has an invariant measure for
all choices of f ∈ E.

Example 9. We show that Example 6 displays the stated properties. For the proof
we fix B ∈ γ(H, F ), where F is the space of Example 5. Let U be a stationary
solution of the problem (2.1) in E, which exists according to the facts proved in
Example 6 and the observations made above. Let f ∈ E be arbitrary and define
for c ∈ R,

(3.2) ac(x) := cx−β − x−β

∫ x

1

ξβ−1f(ξ) dξ, x > 1.
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Observe that

|a0(x)| 6 x−β

(
∫ x

1

ξβ−1dξ

)1/2 (
∫ x

1

ξβ−1f(ξ)2 dξ

)1/2

6 β−1/2x−β/2

(
∫ x

1

ξβ−1f(ξ)2 dξ

)1/2

, x > 1,

so that, by integration by parts, for all T > 1 we obtain

∫ T

1

a0(x)2x−1 dx 6 β−1T−β(−β)−1

∫ T

1

ξβ−1f(ξ)2 dξ + β−2

∫ T

1

x−βxβ−1f(x)2 dx

6 β−2

∫

∞

1

x−1f(x)2 dx.

Since b(x) := x−β belongs to E it follows that ac = cb + a0 ∈ E for all c ∈ R. By
an elementary computation we check that

S(t)ac +

∫ t

0

S(s)f ds = ac.

We infer that ac ∈ D(A) and −Aac = f . This shows that f ∈ ran (A). Thus by
Proposition 8, the inhomogeneous problem admits a stationary solution and hence
an invariant measure.

More can be said in the above example. If µ is an invariant measure for the
inhomogeneous problem with first moment m(µ), then necessarily m(µ) is given by
the right hand-side of (3.2) for some c ∈ R. Indeed, since m(µ) satisfies (3.1) it
suffices to show that the only elements b ∈ E satisfying b − S(t)b = 0 for all t > 0
are given by b(x) = cx−β for some c ∈ R. Since by assumption for all t > 0 we
have eβtb(xet) = b(x) for almost all x > 1, it follows that for all τ > 1 we have
τβb(xτ) = b(x) for almost all x > 1. Since (x, τ) 7→ τβb(xτ) is measurable, Fubini’s
theorem yields that for almost all x > 1 the equality τβb(xτ) = b(x) holds for
almost all τ > 1. Consider a fixed x = x0 with this property. Then, with θ := x0τ ,

we obtain b(θ) = cθ−β for almost all θ > x0, where c = b(x0)x
β
0 . By letting x0 ↓ 1

we infer that c is independent of x0 and that b(x) = cx−β for almost all x > 1.
Summarizing what we proved so far, we see that for every f ∈ E the set of

means of all invariant measures having a first moment is a one-parameter family
parametrized by the real parameter c. Note that even for the homogeneous problem
(2.1), invariant measures may exist whose first moment does not exist. Indeed,
any weak limit of convex combinations of invariant measures is invariant as well.
Returning to Example 6, if µ is an invariant measure of the homogeneous problem
with mean zero and if we put µn(C) := µ(C + 2nb) and ν :=

∑

n>1 2−nµn, where

b ∈ E is defined by (2.2), then ν is an invariant measure and
∫

E

∣

∣[x, b]E
∣

∣ dν(x) >
∑

n>1

2−n
∣

∣

∣

∫

E

[x, b]E dµn(x)
∣

∣

∣
=

∑

n>1

2−n
∣

∣[2nb, b]E
∣

∣ = ∞.

Let U denote the solution of (1.1) with initial condition U(0) = 0; thus

(3.3) U(t) =

∫ t

0

S(s)f ds +

∫ t

0

S(t − s) dW (s).
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For each t > 0 we denote by µ(t) the distribution of U(t). The following result is
a consequence of a standard result on weak convergence of Gaussian measures [2,
Theorem 3.8.9]:

Proposition 10. The weak limit µ := limt→∞ µ(t) exists if and only if the limit

limt→∞

∫ t

0 S(s)f ds exists in E and the homogeneous problem (2.1) admits an in-
variant measure. In this situation, µ is an invariant measure for the problem (1.1)
and we have

m(µ) =

∫

∞

0

S(s)f ds.

If ω0(A) < 0, then this proposition shows that the measures µ(t) converge weakly
to an invariant measure µ of (1.1). We will show next that, even in the presence of
invariant measures, this convergence may fail if the semigroup has linear growth.

Example 11. We continue with Example 7 and show that for certain functions f

an invariant measure for (1.1) exists, although the integrals
∫ t

0
Sw(s)f ds fail to

converge in Ew as t → ∞. An appeal to Proposition 10 then shows that the
measures µ(t) fail to converge weakly.

Consider the function

f(x) :=















x−β

(log log x) log x
for x > ee

0 for 1 < x 6 ee.

Then |f(x)| 6 x−β , so f ∈ Ew. The function

x−β

∫ x

1

ξβ−1f(ξ) dξ =

{

x−β log log log x for x > ee

0 for 1 < x 6 ee

is a member of Ew and in the same way as in Example 9 we infer that f ∈ ran (Aw).
Due to Proposition 8 and the existence of an invariant measure with first moment
for the homogeneous problem, there exists an invariant measure for (1.1) with A

replaced by Aw.
For all t > e and x > 1,

∫ t

0

Sw(s)f(x) ds =

∫ t

(e−log x)+

x−β

(log(s + log x))(s + log x)
ds

= x−β log
( log(t + log x)

log((e − log x)+ + log x)

)

.

From this we infer that the integrals
∫ t

0
Sw(s)f ds diverge in Ew as t → ∞.

Acknowledgment – Proposition 3 was obtained in a discussion with Mark Veraar.
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