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Abstract. Let H be a separable real Hilbert space and let F = (Ft)t∈[0,T ]

be the augmented filtration generated by an H-cylindrical Brownian motion
(WH(t))t∈[0,T ] on a probability space (Ω, F , P). We prove that if E is a UMD

Banach space, 1 ≤ p <∞, and F ∈ D1,p(Ω; E) is FT -measurable, then

F = E(F ) +

Z T

0
PF(DF ) dWH ,

where D is the Malliavin derivative of F and PF is the projection onto the

F-adapted elements in a suitable Banach space of Lp-stochastically integrable
L (H, E)-valued processes.

1. Introduction

A classical result of Clark [5] and Ocone [17] asserts that if F = (Ft)t∈[0,T ] is the
augmented filtration generated by a Brownian motion (W (t))t∈[0,T ] on a probability
space (Ω,F ,P), then every FT -measurable random variable F ∈ D1,p(Ω), 1 < p <
∞, admits a representation

F = E(F ) +
∫ T

0

E(DtF |Ft) dWt,

where Dt is the Malliavin derivative of F at time t. An extension to FT -measurable
random variables F ∈ D1,1(Ω) was subsequently given by Karatzas, Ocone, and Li
[10]. The Clark-Ocone formula is used in mathematical finance to obtain explicit
expressions for hedging strategies.

The aim of this note is to extend the above results to the infinite-dimensional
setting using the theory of stochastic integration of L (H , E)-valued processes with
respect to H -cylindrical Brownian motions, developed recently by Veraar, Weis,
and the second named author [15]. Here, H is a separable Hilbert space and E is
a UMD Banach space (the definition is recalled below).

For this purpose we study the properties of the Malliavin derivative D of smooth
E-valued random variables with respect to an isonormal process W on a separa-
ble Hilbert space H. As it turns out, D can be naturally defined as a closed
operator acting from Lp(Ω;E) to Lp(Ω; γ(H,E)), where γ(H,E) is the operator
ideal of γ-radonifying operators from a Hilbert space H to E. Via trace duality,
the dual object is the divergence operator, which is a closed operator acting from
Lp(Ω; γ(H,E)) to Lp(Ω;E). In the special case where H = L2(0, T ;H ) for an-
other Hilbert space H , the divergence operator turns out to be an extension of the
UMD-valued stochastic integral of [15].
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The first two main results, Theorems 6.6 and 6.7, generalize the Clark-Ocone
formula for Hilbert spaces E and exponent p = 2 as presented in Carmona and
Tehranchi [4, Theorem 5.3] to UMD Banach spaces and exponents 1 < p <∞. The
extension to p = 1 is contained in our Theorem 7.1.

Extensions of the Clark-Ocone formula to infinite-dimensional settings different
from the one considered here have been obtained by various authors, among them
Mayer-Wolf and Zakai [13, 14], Osswald [18] in the setting of abstract Wiener
spaces and de Faria, Oliveira, Streit [7] and Aase, Øksendal, Privault, Ubøe [1] in
the setting of white noise analysis. Let us also mention the related papers [11, 12].

Acknowledgment – Part of this work was done while the authors visited the
University of New South Wales (JM) and the Australian National University (JvN).
They thank Ben Goldys at UNSW and Alan McIntosh at ANU for their kind
hospitality.

2. Preliminaries

We begin by recalling some well-known facts concerning γ-radonifying operators
and UMD Banach spaces.

Let (γn)n≥1 be sequence of independent standard Gaussian random variables
on a probability space (Ω,F ,P) and let H be a separable real Hilbert space. A
bounded linear operator R : H → E is called γ-radonifying if for some (equivalently,
for every) orthonormal basis (hn)n≥1 the Gaussian sum

∑
n≥1 γnRhn converges in

L2(Ω;E). Here, (γn)n≥1 is a sequence of independent standard Gaussian random
variables on (Ω,F ,P). Endowed with the norm

‖R‖γ(H,E) :=
(
E

∥∥∥ ∑
n≥1

γnRhn

∥∥2
) 1

2
,

the space γ(H,E) is a Banach space. Clearly H ⊗E ⊆ γ(H,E), and this inclusion
is dense. We have natural identifications γ(H,R) = H and γ(R, E) = E.

For all finite rank operators T : H → E and S : H → E∗ we have

|tr(S∗T )| ≤ ‖T‖γ(H,E)‖S‖γ(H,E∗).

Since the finite rank operators are dense in γ(H,E) and γ(H,E∗), we obtain a
natural contractive injection

(1) γ(H,E∗) ↪→ (γ(H,E))∗.

Let 1 < p < ∞. A Banach space E is called a UMD(p)-space if there exists a
constant βp,E such that for every finite Lp-martingale difference sequence (dj)n

j=1

with values in E and every {−1, 1}-valued sequence (εj)n
j=1 we have(

E
∥∥∥ n∑

j=1

εjdj

∥∥∥p) 1
p ≤ βp,E

(
E

∥∥∥ n∑
j=1

dj

∥∥∥p) 1
p

.

Using, for instance, Burkholder’s good λ-inequalities, it can be shown that if E is a
UMD(p) space for some 1 < p <∞, then it is a UMD(p)-space for all 1 < p <∞,
and henceforth a space with this property will simply be called a UMD space.

Examples of UMD spaces are all Hilbert spaces and the spaces Lp(S) for 1 <
p < ∞ and σ-finite measure spaces (S,Σ, µ). If E is a UMD space, then Lp(S;E)
is a UMD space for 1 < p < ∞. For an overview of the theory of UMD spaces
and its applications in vector-valued stochastic analysis and harmonic analysis we
recommend Burkholder’s review article [3].
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Below we shall need the fact that if E is a UMD space, then trace duality
establishes an isomorphism of Banach spaces

γ(H,E∗) ' (γ(H,E))∗.

As we shall briefly explain, this is a consequence of the fact that every UMD is
K-convex.

Let (γn)n≥1 be sequence of independent standard Gaussian random variables on
a probability space (Ω,F ,P). For a random variable X ∈ L2(Ω;E) we define

πE
NX :=

N∑
n=1

γnE(γnX).

Each πE
N is a projection on L2(Ω;E). The Banach space E is called K-convex if

K(E) := sup
N≥1

‖πE
N‖ <∞.

In this situation, πEf := limN→∞ πE
N defines a projection on L2(Ω;E) of norm

‖πE‖ = K(E). It is easy to see that E is K-convex if and only its dual E∗ is
K-convex, in which case one has K(E) = K(E∗). For more information we refer
to the book of Diestel, Jarchow, Tonge [8].

The next result from [19] (see also [9]) shows that if E is K-convex, the inclusion
(1) is actually an isomorphism:

Proposition 2.1. If E is K-convex, then trace duality establishes an isomorphism
of Banach spaces

γ(H,E∗) ' (γ(H,E))∗.

The main step is to realize that K-convexity implies that the ranges of πE and
πE∗ are canonically isomorphic as Banach spaces. This isomorphism is then used
to represent elements of (γ(H,E))∗ by elements of γ(H,E∗).

Remark 2.2. Let us comment on the role of the UMD property in this paper. The
UMD property is crucial for two reasons. First, it implies the Lp-boundedness of
the vector-valued stochastic integral. This fact is used at various places (Lemma
5.2, Theorem 5.4). Second, the UMD property is used to obtain the boundedness
of the adapted projection (Lemma 6.5). The results in Sections 3 and 4 are valid
for arbitrary Banach spaces.

3. The Malliavin derivative

Throughout this note, (Ω,F ,P) is a complete probability space, H is a separable
real Hilbert space, and W : H → L2(Ω) is an isonormal Gaussian process, i.e., W is
a bounded linear operator from H to L2(Ω) such that the random variables W (h)
are centred Gaussian and satisfy

E(W (h1)W (h2)) = [h1, h2]H , h1, h2 ∈ H.

A smooth random variable is a function F : Ω → R of the form

F = f(W (h1), . . . ,W (hn))

with f ∈ C∞b (Rn) and h1, . . . , hn ∈ H. Here, C∞b (Rn) denotes the vector space
of all bounded real-valued C∞-functions on Rn having bounded derivatives of all
orders. We say that F is compactly supported if f is compactly supported. The
collections of all smooth random variables and compactly supported smooth random
variables are denoted by S (Ω) and Sc(Ω), respectively.

Let E be an arbitrary real Banach space and let 1 ≤ p <∞. Noting that Sc(Ω)
is dense in Lp(Ω) and that Lp(Ω)⊗ E is dense in Lp(Ω;E), we see:
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Lemma 3.1. Sc(Ω)⊗ E is dense in Lp(Ω;E).

The Malliavin derivative of an E-valued smooth random variable of the form

F = f(W (h1), . . . ,W (hn))⊗ x

with f ∈ C∞b (Rn), h1, . . . , hn ∈ H and x ∈ E, is the random variable DF : Ω →
γ(H,E) defined by

DF =
n∑

j=1

∂jf(W (h1), . . . ,W (hn))⊗ (hj ⊗ x).

Here, ∂j denotes the j-th partial derivative. The definition extends to S (Ω) ⊗ E
by linearity.

For h ∈ H we define DF (h) : Ω → E by (DF (h))(ω) := (DF (ω))h. The
following result is the simplest case of the integration by parts formula. We omit
the proof, which is the same as in the scalar-valued case [16, Lemma 1.2.1].

Lemma 3.2. For all F ∈ S (Ω)⊗E and h ∈ H we have E(DF (h)) = E(W (h)F ).

A straightforward calculation shows that the following product rule holds for
F ∈ S (Ω)⊗ E and G ∈ S (Ω)⊗ E∗:

D〈F,G〉 = 〈DF,G〉+ 〈F,DG〉.(2)

On the left hand side 〈·, ·〉 denotes the duality between E and E∗, which is evaluated
pointwise on Ω. In the first term on the right hand side, the H-valued pairing 〈·, ·〉
between γ(H,E) and E∗ is defined by 〈R, x∗〉 := R∗x∗. Similarly, the second
term contains the H-valued pairing between E and γ(H,E∗), which is defined by
〈x, S〉 := S∗x, thereby considering x as an element of E∗∗.

For scalar-valued functions F ∈ S (Ω) we may identify DF ∈ L2(Ω; γ(H,R))
with the classical Malliavin derivative DF ∈ L2(Ω;H). Using this identification we
obtain the following product rule for F ∈ S (Ω) and G ∈ S (Ω)⊗ E:

D(FG) = F DG+DF ⊗G.(3)

An application of Lemma 3.2 to the product 〈F,G〉 yields the following integration
by parts formula for F ∈ S (Ω)⊗ E and G ∈ S (Ω)⊗ E∗:

E〈DF (h), G〉 = E(W (h)〈F,G〉)− E〈F,DG(h)〉.(4)

From the identity (4) we obtain the following proposition.

Proposition 3.3. For all 1 ≤ p <∞, the Malliavin derivative D is closable as an
operator from Lp(Ω;E) into Lp(Ω; γ(H,E)).

Proof. Let (Fn) be a sequence in S (Ω)⊗ E be such that Fn → 0 in Lp(Ω;E) and
DFn → X in Lp(Ω; γ(H,E)) as n→∞. We must prove that X = 0.

Fix h ∈ H and define

Vh := {G ∈ S (Ω)⊗ E∗ : W (h)G ∈ S (Ω)⊗ E∗}.
We claim that Vh is weak∗-dense in (Lp(Ω;E))∗. Let 1

p + 1
q = 1. To prove this it

suffices to note that the subspace {G ∈ S (Ω) : W (h)G ∈ S (Ω)} is weak∗-dense in
Lq(Ω) and that Lq(Ω)⊗ E∗ is weak∗-dense in (Lp(Ω;E))∗.

Fix G ∈ Vh. Using (4) and the fact that the mapping Y 7→ E〈Y (h), G〉 defines a
bounded linear functional on Lp(Ω; γ(H,E)) we obtain

E〈X(h), G〉 = lim
n→∞

E〈DFn(h), G〉 = lim
n→∞

E(W (h)〈Fn, G〉)− E〈Fn, DG(h)〉.

Since W (h)G and DG(h) are bounded it follows that this limit equals zero. Since
Vh is weak∗-dense in (Lp(Ω;E))∗, we obtain that X(h) vanishes almost surely. Now
we choose an orthonormal basis (hj)j≥1 of H. It follows that almost surely we have
X(hj) = 0 for all j ≥ 1. Hence, X = 0 almost surely. �
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With a slight abuse of notation we will denote the closure of D again by D. The
domain of this closure in Lp(Ω;E) is denoted by D1,p(Ω;E). This is a Banach space
endowed with the norm

‖F‖D1,p(Ω;E) := (‖F‖p
Lp(Ω;E) + ‖DF‖p

Lp(Ω;γ(H,E)))
1
p .

We write D1,p(Ω) := D1,p(Ω; R).
As an immediate consequence of the closability of the Malliavin derivative we

note that the identities (2), (3), (4) extend to larger classes of functions. This fact
will not be used in the sequel.

Proposition 3.4. Let 1 ≤ p, q, r <∞ such that 1
p + 1

q = 1
r .

(i) For all F ∈ D1,p(Ω;E) and G ∈ D1,q(Ω;E∗) we have 〈F,G〉 ∈ D1,r(Ω) and

D〈F,G〉 = 〈DF,G〉+ 〈F,DG〉.

(ii) For all F ∈ D1,p(Ω) and G ∈ D1,q(Ω;E) we have FG ∈ D1,r(Ω;E) and

D(FG) = F DG+DF ⊗G.

(iii) For all F ∈ D1,p(Ω;E), G ∈ D1,q(Ω;E∗) and h ∈ H we have 〈DF (h), G〉 ∈
Lr(Ω) and

E〈DF (h), G〉 = E(W (h)〈F,G〉)− E〈F,DG(h)〉.

4. The divergence operator

In this section we construct a vector-valued divergence operator. The trace
inequality (1) implies that we have a contractive inclusion γ(H,E) ↪→ (γ(H,E∗))∗.
Hence for 1 < p <∞ and 1

p + 1
q = 1, we obtain a natural embedding

Lp(Ω; γ(H,E)) ↪→ (Lq(Ω; γ(H,E∗)))∗.

For the moment let D denote the Malliavin derivative on Lq(Ω;E∗), which is
a densely defined closed operator with domain D1,q(Ω;E∗) and taking values in
Lq(Ω; γ(H,E∗)). The divergence operator δ is the part of the adjoint operator D∗

in Lp(Ω; γ(H,E)) mapping into Lp(Ω;E). Explicitly, the domain domp(δ) consists
of those X ∈ Lp(Ω; γ(H,E)) for which there exists an FX ∈ Lp(Ω;E) such that

E〈X,DG〉 = E〈FX , G〉 for all G ∈ D1,q(Ω;E∗).

The function FX , if it exists, is uniquely determined, and we define

δ(X) := FX , X ∈ domp(δ).

The divergence operator δ is easily seen to be closed, and the next lemma shows
that it is also densely defined.

Lemma 4.1. We have S (Ω)⊗ γ(H,E) ⊆ domp(δ) and

δ(f ⊗R) =
∑
j≥1

W (hj)f ⊗Rhj −R(Df), f ∈ S (Ω), R ∈ γ(H,E).

Here (hj)j≥1 denotes an arbitrary orthonormal basis of H.
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Proof. For f ∈ S (Ω), R ∈ γ(H,E), and G ∈ S (Ω) ⊗ E∗ we obtain, using the
integration by parts formula (4) (or Proposition 3.4(iii)),

E〈f ⊗R,DG〉 =
∑
j≥1

E〈f ⊗Rhj , DG(hj)〉

=
∑
j≥1

E(W (hj)〈f ⊗Rhj , G〉)− E〈[Df, hj ]H ⊗Rhj , G〉

= E
〈∑

j≥1

W (hj)f ⊗Rhj −
∑
j≥1

[Df, hj ]H ⊗Rhj , G

〉

= E
〈∑

j≥1

W (hj)f ⊗Rhj −R(Df), G
〉
.

The sum
∑

j≥1W (hj)f⊗Rhj converges in Lp(Ω;E). This follows from the Kahane-
Khintchine inequalities and the fact that (W (hj))j≥1 is a sequence of independent
standard Gaussian variables; note that the function f is bounded. �

Using an extension of Meyer’s inequalities, for UMD spaces E and 1 < p < ∞
it can be shown that δ extends to a bounded operator from D1,p(Ω; γ(H,E)) to
Lp(Ω;E). For details we refer to [11].

5. The Skorokhod integral

We shall now assume that H = L2(0, T ;H ), where T is a fixed positive real
number and H is a separable real Hilbert space. We will show that if the Banach
space E is a UMD space, the divergence operator δ is an extension of the stochastic
integral for adapted L (H , E)-valued processes constructed recently in [15]. Let
us start with a summary of its construction.

Let WH = (WH (t))t∈[0,T ] be an H -cylindrical Brownian motion on (Ω,F ,P),
adapted to a filtration F = (Ft)t∈[0,T ] satisfying the usual conditions. The Itô
isometry defines an isonormal process W : L2(0, T ;H ) → L2(Ω) by

W (φ) :=
∫ T

0

φdWH , φ ∈ L2(0, T ;H ).

Following [15] we say that a process X : (0, T )×Ω → γ(H , E) is an elementary
adapted process with respect to the filtration F if it is of the form

X(t, ω) =
m∑

i=1

n∑
j=1

1(ti−1,ti](t)1Aij (ω)
l∑

k=1

hk ⊗ xijk,(5)

where 0 ≤ t0 < · · · < tn ≤ T , the sets Aij ∈ Fti−1 are disjoint for each j, and
hk, . . . , hk ∈ H are orthonormal. The stochastic integral with respect to WH of
such a process is defined by

I(X) :=
∫ T

0

X dWH :=
m∑

i=1

n∑
j=1

l∑
k=1

1Aij (WH (ti)hk −WH (ti−1)hk)⊗ xijk,

Elementary adapted processes define elements of Lp(Ω; γ(L2(0, T ;H ), E)) in a
natural way. The closure of these elements in Lp(Ω; γ(L2(0, T ;H ), E)) is denoted
by Lp

F(Ω; γ(L2(0, T ;H ), E)).

Proposition 5.1 ([15, Theorem 3.5]). Let E be a UMD space and let 1 < p <∞.
The stochastic integral uniquely extends to a bounded operator

I : Lp
F(Ω; γ(L2(0, T ;H ), E)) → Lp(Ω;E).
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Moreover, for all X ∈ Lp
F(Ω; γ(L2(0, T ;H ), E)) we have the two-sided estimate

‖I(X)‖Lp(Ω;E) h ‖X‖Lp(Ω;γ(L2(0,T ;H ),E)),

with constants only depending on p and E.

A consequence of this result is the following lemma, which will be useful in the
proof of Theorem 6.6.

Lemma 5.2. Let E be a UMD space and let 1 < p, q <∞ satisfy 1
p + 1

q = 1. For
all X ∈ Lp

F(Ω; γ(L2(0, T ;H ), E)) and Y ∈ Lq
F(Ω; γ(L2(0, T ;H ), E∗)) we have

E〈I(X), I(Y )〉 = E〈X,Y 〉.

Proof. When X and Y are elementary adapted the result follows by direct compu-
tation. The general case follows from Proposition 5.1 applied to E and E∗, noting
that E∗ is a UMD space as well. �

In the next approximation result we identify L2(0, t;H ) with a closed subspace
of L2(0, T ;H ). The simple proof is left to the reader.

Lemma 5.3. Let 1 ≤ p < ∞, let 0 < t ≤ T, and let (ψn)n≥1 be an orthonormal
basis of L2(0, t;H ). The linear span of the functions f(W (ψ1), . . . ,W (ψn))⊗ (h⊗
x), with f ∈ S (Ω), h ∈ H, x ∈ E, is dense in Lp(Ω,Ft; γ(H , E)).

The next result shows that the divergence operator δ is an extension of the
stochastic integral I. This means that δ is a vector-valued Skorokhod integral.

Theorem 5.4. Let E be a UMD space and let 1 < p < ∞ be fixed. The space
Lp

F(Ω; γ(L2(0, T ;H ), E)) is contained in domp(δ) and

δ(X) = I(X) for all X ∈ Lp
F(Ω; γ(L2(0, T ;H ), E)).

Proof. Fix 0 < t ≤ T , let (hk)k≥1 be an orthonormal basis of H , and put X :=
1A

∑n
k=1 hk ⊗ xk with A ∈ Ft and xk ∈ E for k = 1, . . . , n. Let (ψj)j≥1 be

an orthonormal basis of L2(0, t;H ). By Lemma 5.3 we can approximate X in
Lp(Ω,Ft; γ(H , E)) with a sequence (Xl)l≥1 in S (Ω, γ(H , E)) of the form

Xl :=
Ml∑

m=1

flm(W (ψ1), . . . ,W (ψn))⊗ (hm ⊗ xlm)

with xlm ∈ E.
Now let 0 < t < u ≤ T . From ψm ⊥ 1(t,u] ⊗ h in L2(0, T ;H ) it follows that

DXl(1(t,u] ⊗ h) = 0 for all h ∈ H . By Lemma 4.1,

1(t,u] ⊗Xl =
Ml∑

m=1

flm(W (ψ1), . . . ,W (ψn))⊗ ((1(t,u] ⊗ hm)⊗ xlm)

belongs to domp(δ) and

δ(1(t,u]⊗Xl) =
Ml∑

m=1

W (1(t,u]⊗ hm)flm(W (ψ1), . . . ,W (ψn))⊗ xlm = I(1(t,u]⊗Xl).

Noting that 1(t,u] ⊗ Xl → 1(t,u] ⊗ X in Lp(Ω; γ(L2(0, T ;H ), E)) as l → ∞, the
closedness of δ implies that 1(t,u] ⊗X ∈ domp(δ) and

δ(1(t,u] ⊗Xl) = I(1(t,u] ⊗Xl).

By linearity, it follows that the elementary adapted processes of the form (5) with
t0 > 0 are contained in domp(δ) and that I and δ coincide for such processes.

To show that this equality extends to all X ∈ Lp
F(Ω; γ(L2(0, T ;H ), E)) we take

a sequence Xn of elementary adapted processes of the above form converging to



8 JAN MAAS AND JAN VAN NEERVEN

X. Since I is a bounded operator from Lp
F(Ω; γ(L2(0, T ;H ), E)) into Lp(Ω;E), it

follows that δ(Xn) = I(Xn) → I(X) as n → ∞. The fact that δ is closed implies
that X ∈ domp(δ) and δ(X) = I(X). �

6. A Clark-Ocone formula

Our next aim is to prove that the space Lp
F(Ω; γ(L2(0, T ;H ), E)), which has been

introduced in the previous section, is complemented in Lp(Ω; γ(L2(0, T ;H ), E)).
For this we need a number of auxiliary results. Before we can state these we need
to introduce some terminology.

Let (γj)j≥1 be a sequence of independent standard Gaussian random variables.
Recall that a collection T ⊆ L (E,F ) of bounded linear operators between Banach
spaces E and F is said to be γ-bounded if there exists a constant C > 0 such that

E
∥∥∥ n∑

j=1

γjTjxj

∥∥∥2

F
≤ C2E

∥∥∥ n∑
j=1

γjxj

∥∥∥2

E

for all n ≥ 1 and all choices of T1, . . . , Tn ∈ T and x1, . . . , xn ∈ E. The least
admissible constant C is called the γ-bound of T , notation γ(T ).

Proposition 6.1. Let T be a γ-bounded subset of L (E,F ) and let H be a separable
real Hilbert space. For each T ∈ T let T̃ ∈ L (γ(H,E), γ(H,F )) be defined by
T̃R := T ◦R. The collection T̃ = {T̃ : T ∈ T } is γ-bounded, with γ(T̃ ) = γ(T ).

Proof. Let (γj)j≥1 and (γ̃j)j≥1 be two sequences of independent standard Gaussian
random variables, on probability spaces (Ω,F ,P) and (Ω̃, F̃ , P̃) respectively. By
the Fubini theorem,

E
∥∥∥ n∑

j=1

γj T̃jRj

∥∥∥2

γ(H,F )
= EẼ

∥∥∥ ∞∑
i=1

γ̃i

n∑
j=1

γjTjRjhi

∥∥∥2

F

= ẼE
∥∥∥ n∑

j=1

γjTj

∞∑
i=1

γ̃iRjhi

∥∥∥2

F

≤ γ2(T )ẼE
∥∥∥ n∑

j=1

γj

∞∑
i=1

γ̃iRjhi

∥∥∥2

E

= γ2(T )EẼ
∥∥∥ ∞∑

i=1

γ̃i

n∑
j=1

γjRjhi

∥∥∥2

E

= γ2(T )E
∥∥∥ n∑

j=1

γjRj

∥∥∥2

γ(H,E)
.

This proves the inequality γ(T̃ ) ≤ γ(T ). The reverse inequality holds trivially. �

The next proposition is a result by Bourgain [2], known as the vector-valued
Stein inequality. We refer to [6, Proposition 3.8] for a detailed proof.

Proposition 6.2. Let E be a UMD space and let (Ft)t∈[0,T ] be a filtration on
(Ω,F ,P). For all 1 < p < ∞ the conditional expectations {E(·|Ft) : t ∈ [0, T ]}
define a γ-bounded set in L (Lp(Ω;E)).

We continue with a multiplier result due to Kalton and Weis [9]. In its formula-
tion we make the observation that every step function f : (0, T ) → γ(H , E) defines
an element Rg ∈ γ(L2(0, T ;H ), E) by the formula

Rfφ :=
∫ T

0

f(t)φ(t) dt.
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Since Rf determines f uniquely almost everywhere, in what follows we shall always
identify Rf and f .

Proposition 6.3. Let E and F be real Banach spaces and let M : (0, T ) →
L (E,F ) have γ-bounded range {M(t) : t ∈ (0, T )} =: M . Assume that for all x ∈
E, t 7→ M(t)x is strongly measurable. Then the mapping M : f 7→ [t 7→ M(t)f(t)]
extends to a bounded operator from γ(L2(0, T ;H ), E) to γ(L2(0, T ;H ), F ) of norm
‖M‖ ≤ γ(M ).

Here we identified M(t) ∈ L (E,F ) with M̃(t) ∈ L (γ(H , E), γ(H , F )) as in
Proposition 6.1.

The next result is taken from [15].

Proposition 6.4. Let H be a separable real Hilbert space and let 1 ≤ p <∞. Then
f 7→ [h 7→ f(·)h] defines an isomorphism of Banach spaces

Lp(Ω; γ(H,E)) ' γ(H,Lp(Ω;E)).

After these preparations we are ready to state the result announced above.
We fix a filtration F = (Ft)t∈[0,T ] and define, for step functions f : (0, T ) →
γ(H , Lp(Ω;E)),

(6) (PFf)(t) := E(f(t)|Ft),

where E(·|Ft) is considered as a bounded operator acting on γ(H , Lp(Ω;E)) as in
Proposition 6.1.

Lemma 6.5. Let E be a UMD space, and let 1 < p, q <∞ satisfy 1
p + 1

q = 1.

(i) The mapping PF extends to a bounded operator on γ(L2(0, T ;H ), Lp(Ω;E)).
(ii) As a bounded operator on Lp(Ω; γ(L2(0, T ;H ), E)), PF is a projection onto

the subspace Lp
F(Ω; γ(L2(0, T ;H ), E)).

(iii) For all X ∈ Lp(Ω; γ(L2(0, T ;H ), E)) and Y ∈ Lq(Ω; γ(L2(0, T ;H ), E∗)) we
have

E〈X,PFY 〉 = E〈PFX,Y 〉.
(iv) For all X ∈ Lp(Ω; γ(L2(0, T ;H ), E)) we have EPFX = EX.

Proof. (i): From Propositions 6.1 and 6.2 we infer that the collection of condi-
tional expectations {E(·|Ft) : t ∈ [0, T ]} is γ-bounded in L (γ(H , Lp(Ω;E))).
The boundedness of PF then follows from Proposition 6.3. For step functions
f : (0, T ) → γ(H , Lp(Ω;E)) it is clear from (6) that P 2

F f = PFf , which means
that PF is a projection.

(ii): By the identification of Proposition 6.4, PF acts as a bounded projection
in the space Lp(Ω; γ(L2(0, T ;H ), E)). For elementary adapted processes X ∈
Lp(Ω; γ(L2(0, T ;H ), E)) we have PFX = X, which implies that the range of PF
contains Lp

F(Ω; γ(L2(0, T ;H ), E)). To prove the converse inclusion we fix a step
function X : (0, T ) → γ(H , Lp(Ω;E)) and observe that PFX is adapted in the
sense that (PFX)(t) is strongly Ft-measurable for every t ∈ [0, T ]. As is shown
in [15, Proposition 2.12], this implies that PFX ∈ Lp

F(Ω; γ(L2(0, T ;H ), E)). By
density it follows that the range of PF is contained in Lp

F(Ω; γ(L2(0, T ;H ), E)).

(iii): Keeping in mind the identification of Proposition 6.4, for step functions
with values in the finite rank operators from H to E this follows from (6) by
elementary computation. The result then follows from a density argument.
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(iv): Identifying a step function f : (0, T ) → γ(H , Lp(Ω;E)) with the associated
operator in γ(L2(0, T ;H ), Lp(Ω;E)) and viewing E as a bounded operator from
γ(L2(0, T ;H ), Lp(Ω;E)) to γ(L2(0, T ;H ), E), by (6) we have

EPFf(t) = EE(f(t)|Ft) = Ef(t).

Thus EPFf = Ef for all step functions f : (0, T ) → γ(H , Lp(Ω;E)), and hence
for all f ∈ γ(L2(0, T ;H ), Lp(Ω;E)) by density. The result now follows by an
application of Proposition 6.4. �

Now let F = (Ft)t∈[0,T ] be the augmented filtration generated by WH . It
has been proved in [15, Theorem 4.7] that if E is a UMD space and 1 < p <
∞, and if F ∈ Lp(Ω;E) is FT -measurable, then there exists a unique X ∈
Lp

F(Ω; γ(L2(0, T ;H ), E)) such that

F = E(F ) + I(X).

The following two results give an explicit expression forX. They extend the classical
Clark-Ocone formula and its Hilbert space extension to UMD spaces.

Theorem 6.6 (Clark-Ocone representation, first Lp-version). Let E be a UMD
space and let 1 < p <∞. If F ∈ D1,p(Ω;E) is FT -measurable, then

F = E(F ) + I(PF(DF )).

Moreover, PF(DF ) is the unique Y ∈ Lp
F(Ω; γ(L2(0, T ;H ), E)) satisfying F =

E(F ) + I(Y ).

Proof. We may assume that E(F ) = 0. Let X ∈ Lp
F(Ω; γ(L2(0, T ;H ), E)) be such

that F = I(X) = δ(X). Let 1
p + 1

q = 1, and let Y ∈ Lq(Ω; γ(L2(0, T ;H ), E∗)) be
arbitrary. By Lemma 6.5, Theorem 5.4, and Lemma 5.2 we obtain

E〈PF(DF ), Y 〉 = E〈DF,PFY 〉 = E〈F, δ(PFY )〉
= E〈δ(X), δ(PFY )〉 = E〈I(X), I(PFY )〉
= E〈X,PFY 〉 = E〈PFX,Y 〉 = E〈X,Y 〉.

Since this holds for all Y ∈ Lq(Ω; γ(L2(0, T ;H ), E∗)), it follows that X = PF(DF ).
The uniqueness of PF(DF ) follows from the injectivity of I as a bounded linear
operator from Lp

F(Ω; γ(L2(0, T ;H ), E)) to Lp(Ω,FT ). �

With a little extra effort we can prove a bit more:

Theorem 6.7 (Clark-Ocone representation, second Lp-version). Let E be a UMD
space and let 1 < p < ∞. The operator PF ◦ D has a unique extension to a
bounded operator from Lp(Ω,FT ;E) to Lp

F(Ω; γ(L2(0, T ;H ), E)), and for all F ∈
Lp(Ω,FT ;E) we have the representation

F = E(F ) + I((PF ◦D)F ).

Moreover, (PF ◦ D)F is the unique Y ∈ Lp
F(Ω; γ(L2(0, T ;H ), E)) satisfying F =

E(F ) + I(Y ).

Proof. It follows from Theorem 6.6 that F 7→ I((PF ◦D)F ) extends uniquely to a
bounded operator on Lp(Ω,FT ;E), since it equals F 7→ F − E(F ) on the dense
subspace D1,p(Ω,FT ;E). The proof is finished by recalling that I is an isomorphism
from Lp

F(Ω; γ(L2(0, T ;H ), E)) onto its range in Lp(Ω,FT ). �

Remark 6.8. An extension of the Clark-Ocone formula to a class of adapted pro-
cesses taking values in an arbitrary Banach space B has been obtained by Mayer-
Wolf and Zakai [13, Theorem 3.4]. The setting of [13] is slightly different from ours
in that the starting point is an arbitrary abstract Wiener space (W,H, µ), where
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µ is a centred Gaussian Radon measure on the Banach space W and H is its re-
producing kernel Hilbert space. The filtration is defined in terms of an increasing
resolution of the identity on H, and a somewhat weaker notion of adaptedness is
used. However, the construction of the predictable projection in [13, Section 3] as
well as the proofs of [14, Corollary 3.5 and Proposition 3.14] contain gaps. As a
consequence, the Clark-Ocone formula of [13] only holds in a suitable ‘scalar’ sense.
We refer to the errata [13, 14] for more details.

7. Extension to L1

We continue with an extension of Theorem 6.7 to random variables in the space
L1(Ω,FT ;E). As before, F = (Ft)t∈[0,T ] is the augmented filtration generated by
the H -cylindrical Brownian motion WH .

We denote by L0(Ω;F ) the vector space of all strongly measurable random vari-
ables with values in the Banach space F , identifying random variables that are
equal almost surely. Endowed with the metric

d(X,Y ) = E(‖X − Y ‖ ∧ 1),

L0(Ω;F ) is a complete metric space, and we have limn→∞Xn = X in L0(Ω;F ) if
and only if limn→∞Xn = X in measure in F .

The closure of the elementary adapted processes in L0(Ω; γ(L2(0, T ;H ), E)) is
denoted by L0

F(Ω; γ(L2(0, T ;H ), E)). By the results of [15], the stochastic integral
I has a unique extension to a linear homeomorphism from L0

F(Ω; γ(L2(0, T ;H ), E))
onto its image in L0(Ω,FT ;E).

Theorem 7.1 (Clark-Ocone representation, L1-version). Let E be a UMD space.
The operator PF ◦ D has a unique extension to a continuous linear operator from
L1(Ω,FT ;E) to L0

F(Ω; γ(L2(0, T ;H ), E)), and for all F ∈ L1(Ω,FT ;E) we have
the representation

F = E(F ) + I((PF ◦D)F ).

Moreover, (PF◦D)F is the unique element Y ∈ L0
F(Ω; γ(L2(0, T ;H ), E)) satisfying

F = E(F ) + I(Y ).

Proof. We shall employ the process ξX : (0, T )×Ω → γ(L2(0, T ;H ), E) associated
with a strongly measurable random variable X : Ω → γ(L2(0, T ;H ), E), defined
by

(ξX(t, ω))f := (X(ω))(1[0,t]f), f ∈ L2(0, T ;H ).

Some properties of this process have been studied in [15, Section 4].
Let (Fn)n≥1 be a sequence of FT -measurable random variables in S (Ω) ⊗ E

which is Cauchy in L1(Ω,FT ;E). By [15, Lemma 5.4] there exists a constant
C ≥ 0, depending only on E, such that for all δ > 0 and ε > 0 and all m,n ≥ 1,

P
(
‖PF(DFn −DFm)‖γ(L2(0,T ;H ),E) > ε

)
≤ Cδ2

ε2
+ P

(
sup

t∈[0,T ]

‖I(ξPF(DFn−DFm)(t))‖ ≥ δ
)

(∗)
=

Cδ2

ε2
+ P

(
sup

t∈[0,T ]

‖E(Fn − Fm|Ft)− E(Fn − Fm)‖ ≥ δ
)

(∗∗)
≤ Cδ2

ε2
+

1
δ

E‖Fn − Fm − E(Fn − Fm)‖.

In this computation, (∗) follows from Theorem 6.6 which gives

E(F |Ft)− E(F ) = E
(
I(PFDF )

∣∣Ft

)
= E

(
I(ξPFDF (T ))

∣∣Ft

)
= I(ξPFDF (t)).
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The estimate (∗∗) follows from Doob’s maximal inequality. Since the right-hand
side in the above computation can be made arbitrarily small, this proves that
(PF(DFn))n≥1 is Cauchy in measure in γ(L2(0, T ;H ), E).

For F ∈ L1(Ω,FT ;E) this permits us to define

(PF ◦D)F := lim
n→∞

PF(DFn),

where (Fn)n≥1 is any sequence of FT -measurable random variables in S (Ω) ⊗ E
satisfying limn→∞ Fn = F in L1(Ω,FT ;E). It is easily checked that this definition
is independent of the approximation sequence. The resulting linear operator PF ◦D
has the stated properties. This time we use the fact that I is a homeomorphism
from L0

F(Ω; γ(L2(0, T ;H ), E)) onto its image in L0(Ω,FT ;E); this also gives the
uniqueness of (PF ◦D)F . �

References

[1] K. Aase, B. Øksendal, N. Privault, and J. Ubøe, White noise generalizations of the Clark-

Haussmann-Ocone theorem with application to mathematical finance, Finance Stoch. 4

(2000), no. 4, 465–496.
[2] J. Bourgain, Vector-valued singular integrals and the H1-BMO duality, Probability theory

and harmonic analysis (Cleveland, Ohio, 1983), Monogr. Textbooks Pure Appl. Math., vol. 98,

Dekker, New York, 1986, pp. 1–19.
[3] D.L. Burkholder, Martingales and singular integrals in Banach spaces, in: “Handbook of the

Geometry of Banach Spaces”, Vol. I, North-Holland, Amsterdam, 2001, pp. 233–269.
[4] R. A. Carmona and M. R. Tehranchi, Interest rate models: an infinite dimensional stochastic

analysis perspective, Springer Finance, Springer-Verlag, Berlin, 2006.

[5] J.M.C. Clark, The representation of functionals of Brownian motion by stochastic integrals,
Ann. Math. Statist. 41 (1970), 1282–1295.

[6] P. Clément, B. de Pagter, F. A. Sukochev, and H. Witvliet, Schauder decompositions and

multiplier theorems, Studia Math. 138 (2000), no. 2, 135–163.
[7] M. de Faria, M.J. Oliveira, and L. Streit, A generalized Clark-Ocone formula, Random Oper.

Stochastic Equations 8 (2000), no. 2, 163–174.

[8] J. Diestel, H. Jarchow, and A. Tonge, Absolutely summing operators, Cambridge Studies in
Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.

[9] N.J. Kalton and L. Weis, The H∞-functional calculus and square function estimates, in

preparation.
[10] I. Karatzas, D.L. Ocone, and J. Li, An extension of Clark’s formula, Stochastics Stochastics

Rep. 37 (1991), no. 3, 127–131.
[11] J. Maas, Malliavin calculus and decoupling inequalities in Banach spaces, arXiv: 0801.2899v2

[math.FA], sumitted for publication.

[12] P. Malliavin and D. Nualart, Quasi-sure analysis and Stratonovich anticipative stochastic
differential equations, Probab. Theory Related Fields 96 (1993), no. 1, 45–55.

[13] E. Mayer-Wolf and M. Zakai, The Clark-Ocone formula for vector valued Wiener functionals,

J. Funct. Anal. 229 (2005), no. 1, 143–154, Corrigendum: J. Funct. Anal. 254 (2008), no. 7,
2020-2021.

[14] , The divergence of Banach space valued random variables on Wiener space, Probab.
Theory Related Fields 132 (2005), no. 2, 291–320, Erratum: Probab. Theory Related Fields

140 (2008), no. 3-4, 631–633.
[15] J. M. A. M. van Neerven, M. C. Veraar, and L. Weis, Stochastic integration in UMD Banach

spaces, Ann. Probab. 35 (2007), no. 4, 1438–1478.
[16] D. Nualart, The Malliavin calculus and related topics, second ed., Probability and its Appli-

cations, Springer-Verlag, Berlin, 2006.
[17] D. Ocone, Malliavin’s calculus and stochastic integral representations of functionals of dif-

fusion processes, Stochastics 12 (1984), no. 3-4, 161–185.
[18] H. Osswald, On the Clark Ocone formula for the abstract Wiener space, Adv. Math. 176

(2003), no. 1, 38–52.
[19] G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in

Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989.



A CLARK-OCONE FORMULA IN UMD BANACH SPACES 13

Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box

5031, 2600 GA Delft, The Netherlands

E-mail address: J.Maas@tudelft.nl

Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box

5031, 2600 GA Delft, The Netherlands
E-mail address: J.M.A.M.vanNeerven@tudelft.nl


	1. Introduction
	2. Preliminaries
	3. The Malliavin derivative
	4. The divergence operator
	5. The Skorokhod integral
	6. A Clark-Ocone formula
	7. Extension to L1
	References

