
A maximal inequality for stochastic convolutions in 2-smooth
Banach spaces

Jan van Neerven and Jiahui Zhu

Abstract. Let (etA)t>0 be a C0-contraction semigroup on a 2-smooth Banach space E, let (Wt)t>0 be a
cylindrical Brownian motion in a Hilbert space H, and let (gt)t>0 be a progressively measurable process
with values in the space γ(H,E) of all γ-radonifying operators from H to E. We prove that for all
0 < p <∞ there exists a constant C, depending only on p and E, such that for all T > 0 we have

E sup
06t6T

‚‚‚ Z t

0

e(t−s)Ags dWs

‚‚‚p

6 CE
“ Z T

0

‖gt‖2γ(H,E) dt
” p

2
.

For p > 2 the proof is based on the observation that ψ(x) = ‖x‖p is Fréchet differentiable and its derivative
satisfies the Lipschitz estimate ‖ψ′(x) − ψ′(y)‖ 6 C(‖x‖ + ‖y‖)p−2‖x − y‖; the extension to 0 < p < 2
proceeds via Lenglart’s inequality.
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1. Introduction

Let (etA)t>0 be a C0-contraction semigroup on a 2-smooth Banach space E and let (Wt)t>0 be a cylindrical
Brownian motion in a Hilbert space H. Let (gt)t>0 be a progressively measurable process with values in the
space γ(H,E) of all γ-radonifying operators from H to E satisfying∫ T

0

‖gt‖2
γ(H,E) dt <∞ P-almost surely

for all T > 0. As is well known (see [6, 15, 16]), under these assumptions the stochastic convolution process

Xt =
∫ t

0

e(t−s)Ags dWs, t > 0,

is well-defined in E and provides the unique mild solution of the stochastic initial value problem

dXt = AXt dt+ gt dWt, X0 = 0.

In order to obtain the existence of a continuous version of this process, one usually proves a maximal estimate
of the form

E sup
06t6T

‖Xt‖p 6 CpE
( ∫ T

0

‖gt‖2
γ(H,E) dt

) p
2
. (1.1)

The first such estimate was obtained by Kotelenez [11, 12] for C0-contraction semigroups on Hilbert spaces
E and exponent p = 2. Tubaro [19] extended this result to exponents p > 2 by a different method of proof
which applies Itô’s formula to the C2-mapping x 7→ ‖x‖p. The case p ∈ (0, 2) was covered subsequently by
Ichikawa [10]. A very simple proof, still for C0-contraction semigroups on Hilbert spaces, which works for all
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p ∈ (0,∞), was obtained recently by Hausenblas and Seidler [9]. It is based on the Sz.-Nagy dilation theorem,
which is used to reduce the problem to the corresponding problem for C0-contraction groups. Then, by using
the group property, the maximal estimate follows from Burkholder’s inequality. This proof shows, moreover,
that the constant C in (1.1) may be taken equal to the constant appearing in Burkholder’s inequality. In
particular, this constant depends only on p.

The maximal inequality (1.1) has been extended by Brzeźniak and Peszat [4] to C0-contraction semi-
groups on Banach spaces E with the property that, for some p ∈ [2,∞), x 7→ ‖x‖p is twice continuously
Fréchet differentiable and the first and second Fréchet derivatives are bounded by constant multiples of
‖x‖p−1 and ‖x‖p−2, respectively. Examples of spaces with this property, which we shall call (C2

p), are the
spaces Lq(µ) for q ∈ [p,∞). Any (C2

p) space is 2-smooth (the definition is recalled in Section 2), but the
converse doesn’t hold:

Example 1.1. Let F be a Banach space. The space `2(F ) is 2-smooth whenever F is 2-smooth [8, Proposition
17]. On the other hand, the norm of `2(F ) is twice continuously Fréchet differentiable away from the origin if
and only if F is a Hilbert space [14, Theorem 3.9]. Thus, for q ∈ (2,∞), `2(`q) and `2(Lq(0, 1)) are examples
of 2-smooth Banach spaces which fail property (C2

p) for all p ∈ [2,∞).

To the best of our knowledge, the general problem of proving the maximal estimate (1.1) for C0-
contraction semigroups on 2-smooth Banach space remains open. The present paper aims to fill this gap:

Theorem 1.2. Let (etA)t>0 be a C0-contraction semigroup on a 2-smooth Banach space E, let (Wt)t>0 be a
cylindrical Brownian motion in a Hilbert space H, and let (gt)t>0 be a progressively measurable process in
γ(H,E). If ∫ T

0

‖gt‖2
γ(H,E) dt <∞ P-almost surely,

then the stochastic convolution process Xt =
∫ t
0
e(t−s)Ags dWs is well-defined and has a continuous version.

Moreover, for all 0 < p <∞ there exists a constant C, depending only on p and E, such that

E sup
06t6T

‖Xt‖p 6 CpE
( ∫ T

0

‖gt‖2
γ(H,E) dt

) p
2
.

For p > 2, the proof of Theorem 1.2 is based on a version of Itô’s formula (Theorem 3.1) which
exploits the fact (proved in Lemma 2.1) that in 2-smooth Banach spaces the function ψ(x) = ‖x‖p is Fréchet
differentiable and satisfies the Lipschitz estimate

‖ψ′(x)− ψ′(y)‖ 6 C(‖x‖+ ‖y‖)p−2‖x− y‖.
The extension to exponents 0 < p < 2 is obtained by applying Lenglart’s inequality (see (4.1)).

We conclude this introduction with a brief discussion of some developments of the inequality (1.1)
into different directions in the literature. Seidler [18] has proved the inequality (1.1) with optimal constant
C = O(

√
p) as p→∞ for positive C0-contraction semigroups on the (2-smooth) space E = Lq(µ), q > 2. He

also proved that the same result holds if the assumption ‘etA is a positive contraction semigroup’ is replaced
by ‘−A has a bounded H∞-calculus of angle strictly less than 1

2π’. The latter result was subsequently
extended by Veraar and Weis [20] to arbitrary UMD spaces E with type 2. In the same paper, still under
the assumption that −A has a bounded H∞-calculus of angle strictly less than 1

2π, the following stronger
estimate is obtained for UMD spaces E with Pisier’s property (α):

E sup
06t6T

‖Xt‖p 6 CpE‖g‖pγ(L2(0,T ;H),E) (1.2)

with a constant C depending only on p and E. If, in addition, E has type 2, then the mapping f ⊗ (h⊗x) 7→
(f⊗h)⊗x extends to a continuous embedding L2(0, T ; γ(H,E)) ↪→ γ(L2(0, T ;H), E) and (1.2) implies (1.1).

Let us finally mention that, for p > 2, a weaker version of (1.1) for arbitrary C0-semigroups on Hilbert
spaces has been obtained by Da Prato and Zabczyk [5]. Using the factorisation method they proved that

E sup
06t6T

‖Xt‖p 6 CpE
∫ T

0

‖gt‖pγ(H,E) dt
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with a constant C depending on p, E, and T . The proof extends verbatim to C0-semigroups on martingale
type 2 spaces. This relates to the above results for 2-smooth spaces through a theorem of Pisier [17, Theorem
3.1], which states that a Banach space has martingale type p if and only if it is p-smooth.

2. The Fréchet derivative of ‖ · ‖p

Let 1 < q 6 2. A Banach space E is q-smooth if the modulus of smoothness

ρ‖·‖(t) = sup
{

1
2 (‖x+ ty‖+ ‖x− ty‖)− 1 : ‖x‖ = ‖y‖ = 1

}
satisfies ρ‖·‖(t) 6 Ctq for all t > 0.

It is known (see [17, Theorem 3.1]) that E is q-smooth if and only if there exists a constant K > 1 such
that for all x, y ∈ E,

‖x+ y‖q + ‖x− y‖q 6 2‖x‖q +K‖y‖q. (2.1)

Lemma 2.1. Let E be a Banach space and let 1 < q 6 2 be given. For p > q set ψp(x) := ‖x‖p.
1. E is q-smooth if and only if the Fréchet derivative of ψq is globally (q − 1)-Hölder continuous on E.
2. If E is q-smooth, then for p > q the Fréchet derivative of ψp is locally (q− 1)-Hölder continuous on E.

Moreover, for all p > q and x, y ∈ E we have

‖ψ′p(x)− ψ′p(y)‖ 6 C(‖x‖+ ‖y‖)p−q‖x− y‖q−1, (2.2)

where C depends only on p, q and E.

Proof. If the Fréchet derivative of ψq is (q− 1)-Hölder continuous on E, then by the mean value theorem we
can find 0 6 θ, ρ 6 1 such that for all x, y ∈ E,

‖x+ y‖q + ‖x− y‖q − 2‖x‖q = (‖x+ y‖q − ‖x‖q) + (‖x− y‖q − ‖x‖q)
6 ‖ψ′q(x+ θy)− ψ′q(x− ρy)‖ ‖y‖
6 L‖(x+ θy)− (x− ρy)‖q−1‖y‖ 6 2q−1L‖y‖q.

Hence the Banach space E is q-smooth.
Suppose now that the norm of E is q-smooth. Then for all x, y ∈ E with ‖x‖, ‖y‖ = 1 and all t > 0 we

have

‖x+ ty‖+ ‖x− ty‖ − 2‖x‖ 6 K‖ty‖q. (2.3)

Thus

lim
t→0

‖x+ ty‖+ ‖x− ty‖ − 2‖x‖
‖ty‖

= 0,

which by [7, Lemma I.1.3] means that ‖·‖ is Fréchet differentiable on the unit sphere. Hence, by homogeneity,
‖ · ‖ is Fréchet differentiable on E\{0}. Let us denote by fx its Fréchet derivative at the point x 6= 0.

We begin by showing the (q − 1)-Hölder continuity of x 7→ fx on the unit sphere of E, following the
argument of [7, Lemma V.3.5]. We fix x 6= y ∈ E such that ‖x‖, ‖y‖ = 1 and h ∈ E with ‖h‖ = ‖x− y‖ and
x− y + h 6= 0. Since the norm ‖ · ‖ is a convex function,

fy(x− y) 6 ‖x‖ − ‖y‖.
Similarly, we have

fx(h) 6 ‖x+ h‖ − ‖x‖, fy(y − x− h) 6 ‖2y − x− h‖ − ‖y‖.
By using above inequalities and the linearity of the function fx, we have

fx(h)− fy(h) 6 ‖x+ h‖ − ‖x‖ − fy(h) = ‖x+ h‖ − ‖y‖ − fy(x+ h− y) + ‖y‖ − ‖x‖+ fy(x− y)

6 ‖x+ h‖ − ‖y‖ − fy(x+ h− y)

= ‖x+ h‖ − ‖y‖+ fy(y − x− h)

6 ‖x+ h‖+ ‖2y − x− h‖ − 2‖y‖
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=
∥∥∥y + ‖x+ h− y‖ · x+ h− y

‖x+ h− y‖

∥∥∥
+

∥∥∥y − ‖x+ h− y‖ · x+ h− y

‖x+ h− y‖

∥∥∥− 2‖y‖

6 K‖x+ h− y‖q 6 K(‖x− y‖+ ‖h‖)q = 2qK‖x− y‖q,

where we also used (2.3). Since the roles of x and y may be reversed in this inequality, this implies

‖fx − fy‖ = sup
‖h‖=‖x−y‖

|fx(h)− fy(h)|
‖x− y‖

6 2qK‖x− y‖q−1

This proves the (q − 1)-Hölder continuity of the norm ‖ · ‖ on the unit sphere.
We proceed with the proof of (2.2); the (q−1)-Hölder continuity of ψq as well as the local (p−1)-Hölder

continuity of ψp follow from it. For all x, y ∈ E with x 6= 0 and y 6= 0 we have ψ′p(x) = p‖x‖p−1fx.
It is easy to check that fx = f x

‖x‖
and ‖fx‖ = 1. Following once more the argument of [7, Lemma

V.3.5], this gives

‖ψ′p(x)− ψ′p(y)‖ = p
∥∥‖x‖p−1fx − ‖y‖p−1fy

∥∥
6 p

∥∥∥‖x‖p−1(f x
‖x‖

− f y
‖y‖

)
∥∥∥ + p

∥∥∥(‖x‖p−1 − ‖y‖p−1)f y
‖y‖

∥∥∥
6 p2qK‖x‖p−1

∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥q−1

+ p
∣∣∣‖x‖p−1 − ‖y‖p−1

∣∣∣
6 p2qK‖x‖p−q‖y‖1−q

∥∥∥x‖y‖ − y‖x‖
∥∥∥q−1

+ p
∣∣∣‖x‖p−1 − ‖y‖p−1

∣∣∣
= p2qK‖x‖p−q‖y‖1−q

∥∥∥‖y‖(x− y) + y(‖y‖ − ‖x‖)
∥∥∥q−1

+ p
∣∣∣‖x‖p−1 − ‖y‖p−1

∣∣∣
6 p2qK‖x‖p−q‖y‖1−q(2‖y‖‖x− y‖)q−1 + p

∣∣∣‖x‖p−1 − ‖y‖p−1
∣∣∣

= p22q−1K‖x‖p−q‖x− y‖q−1 + p
∣∣∣‖x‖p−1 − ‖y‖p−1

∣∣∣.

(2.4)

If q 6 p 6 2, then by the inequality |tr − sr| 6 |t− s|r, valid for 0 < r 6 1 and s, t ∈ [0,∞), we have∣∣‖x‖p−1 − ‖y‖p−1
∣∣ 6

∣∣‖x‖ − ‖y‖
∣∣p−1

6 ‖x− y‖p−1 6 (‖x‖+ ‖y‖)p−q‖x− y‖q−1.

If p > 2, by applying the mean value theorem, for some θ ∈ [0, 1] we have∣∣‖x‖p−1 − ‖y‖p−1
∣∣ = (p− 1)

∥∥∥‖θx+ (1− θ)y‖p−2fθx+(1−θ)y(x− y)
∥∥∥

6 (p− 1)(‖x‖+ ‖y‖)p−2‖x− y‖
6 (p− 1)(‖x‖+ ‖y‖)p−2(‖x‖+ ‖y‖)2−q‖x− y‖q−1

= (p− 1)(‖x‖+ ‖y‖)p−q‖x− y‖q−1.

Also, since ψ′p(0) = 0, for y 6= 0 we have

‖ψ′p(0)− ψ′p(y)‖ = p‖y‖p−1 = p‖y‖p−1
∥∥∥ y

‖y‖

∥∥∥p−1

6 p‖y‖p−1
∥∥∥ y

‖y‖

∥∥∥q−1

= p‖y‖p−q‖y‖q−1.

�

The above lemma will be combined with the next one, which gives a first order Taylor formula with a
remainder term involving the first derivative only.

Lemma 2.2. Let E and F be Banach spaces, let 0 < α 6 1, and let ψ : E → F be a Fréchet differentiable
function whose Fréchet derivative ψ′ : E → L (E,F ) is locally α-Hölder continuous. Then for all x, y ∈ E
we have

ψ(y) = ψ(x) + ψ′(x)(y − x) +R(x, y),
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where

R(x, y) =
∫ 1

0

(ψ′(x+ r(y − x))(y − x)− ψ′(x)(y − x)) dr. (2.5)

Proof. Pick w ∈ E such that ‖w‖ 6 1 and consider the function f : R → F by

f(θ) := ψ(x+ θw).

For all x∗ ∈ F ∗, 〈f ′, x∗〉 is locally α-Hölder continuous. To see this, note that for |θ1|, |θ2| 6 R and ‖x‖ 6 R
we have ‖x+ θ1w‖, ‖x+ θ2w‖ 6 2R, so by assumption there exists a constant C2R such that

|〈f ′(θ1)− f ′(θ2), x∗〉| = |〈ψ′(x+ θ1w)w, x∗〉 − 〈ψ′(x+ θ2w)w, x∗〉|
6 ‖ψ′(x+ θ1w)− ψ′(x+ θ2w)‖ ‖x∗‖ 6 C2R|θ1 − θ2|α‖x∗‖.

Applying Taylor’s formula and [1, Lemma 1, Theorem 3] to the function 〈f, x∗〉 we obtain

〈f(t)− f(0), x∗〉 = t〈f ′(0), x∗〉+ 〈Rf (0, t), x∗〉,

where Rf (0, t) =
∫ 1

0
t(f ′(rt)− f ′(0)) dr. Now let x, y ∈ E be given and set t = ‖y−x‖ and w = y−x

‖y−x‖ . With
these choices we obtain

〈ψ(y), x∗〉 − 〈ψ(x), x∗〉 − 〈ψ′(x)(y − x), x∗〉 = 〈ψ(x+ tw), x∗〉 − 〈ψ(x), x∗〉 − t〈ψ(′x)w, x∗〉
= 〈f(t)− f(0)− tf ′(0), x∗〉

=
∫ 1

0

t〈f ′(rt)− f ′(0), x∗〉dr

=
∫ 1

0

〈ψ′(x+ r(y − x))(y − x)− ψ′(x)(y − x), x∗〉dr.

Since x∗ ∈ F ∗ was arbitrary, this proves the lemma. �

3. An Itô formula for ‖ · ‖p

From now on we shall always assume that E is a 2-smooth Banach space. We fix T > 0 and let (Ω,F ,P) be
a probability space with a filtration (Ft)t∈[0,T ]. Let H be a real Hilbert space, and denote by γ(H,E) the
Banach space of all γ-radonifying operators from H to E. We denote by M([0, T ]; γ(H,E)) the space of all
progressively measurable processes ξ : [0, T ]× Ω → γ(H,E) such that∫ T

0

‖ξt‖2
γ(H,E) dt <∞ P-almost surely.

The space of all such ξ which satisfy

E
( ∫ T

0

‖ξt‖2
γ(H,E) dt

) p
2
<∞

is denoted by Mp([0, T ]; γ(H,E)), 0 < p <∞.
On (Ω,F ,P), let (Wt)t∈[0,T ] be an (Ft)t∈[0,T ]-cylindrical Brownian motion in H. For adapted simple

processes ξ ∈M([0, T ]; γ(H,E)) of the form

ξt =
n−1∑
i=0

1(ti,ti+1](t)⊗Ai,

where Π = {0 = t0 < t1 < · · · < tn = T} is a partition of the interval [0, T ] and the random variables Ai are
Fti-measurable and take values in the space of all finite rank operators from H to E, we define the random
variable I(ξ) ∈ L0(Ω,FT ;E) by

I(ξ) :=
n−1∑
i=0

Ai(Wti+1 −Wti)
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where (h⊗ x)Wt := (Wth)⊗ x. It is well known that

E‖I(ξ)‖2 6 C2E
∫ T

0

‖ξt‖2
γ(H,E) dt,

where C depends on p and E only. It follows that I has a unique extension to a bounded linear opera-
tor M2([0, T ]; γ(H,E)) to L2(Ω,FT ;E). By a standard localisation argument, I extends continuous linear
operator from M([0, T ]; γ(H,E)) to L0(Ω,FT ;E). In what follows we write∫ t

0

ξs dWs := I(1(0,t]ξ), t ∈ [0, T ].

This stochastic integral has the following properties:

1. For all ξ ∈ M([0, T ]; γ(H,E)) the process t →
∫ t
0
ξs dWs is an E-valued continuous local martingale,

which is a martingale if ξ ∈M2([0, T ]; γ(H,E)).
2. For all ξ ∈M([0, T ]; γ(H,E)) and stopping times τ with values in [0, T ],∫ τ

0

ξt dWt =
∫ T

0

1[0,τ ](t)ξt dWt P-almost surely. (3.1)

3. For all ξ ∈M2([0, T ]; γ(H,E)) and 0 6 u < t 6 T ,

E
(∥∥∥∫ t

u

ξs dWs

∥∥∥2

|Fu

)
6 CE

( ∫ t

u

‖ξs‖2
γ(H,E) ds |Fu

)
. (3.2)

4. (Burkholder’s inequality [2, 6]) For all 0 < p <∞ there exists a constant C, depending only on p and
E, such that for all ξ ∈Mp([0, T ]; γ(H,E)) and t ∈ [0, T ],

E sup
s∈[0,t]

∥∥∥∫ s

0

ξu dWu

∥∥∥p 6 CE
( ∫ t

0

‖ξs‖2
γ(H,E) ds

) p
2
. (3.3)

An excellent survey of the theory of stochastic integration in 2-smooth Banach spaces with complete
proofs is given in Ondreját’s thesis [16], where also further references to the literature can be found.

In what follows we fix p > 2 and set ψ(x) := ψp(x) = ‖x‖p. Since we assume that E is 2-smooth, this
function is Fréchet differentiable. Following the notation of Lemma 2.2 we set

Rψ(x, y) :=
∫ 1

0

(ψ′(x+ r(y − x))(y − x)− ψ′(x)(y − x)) dr.

We have the following version of Itô’s formula.

Theorem 3.1 (Itô formula). Let E be a 2-smooth Banach space and let 2 6 p < ∞. Let (at)t∈[0,T ] be an
E-valued progressively measurable process such that

E
( ∫ T

0

‖at‖dt
)p

<∞

and let (gt)t∈[0,T ] be a process in Mp([0, T ]; γ(H,E)). Fix x ∈ E and let (Xt)t∈[0,T ] be given by

Xt = x+
∫ t

0

as ds+
∫ t

0

gs dWs.

The process s 7→ ψ′(Xs)gs is progressively measurable and belongs to M1([0, T ];H), and for all t ∈ [0, T ] we
have

ψ(Xt) = ψ(x) +
∫ t

0

ψ′(Xs)(as) ds+
∫ t

0

ψ′(Xs)(gs) dWs + lim
n→∞

m(n)−1∑
i=0

Rψ(Xtni ∧t, Xtni+1∧t) (3.4)
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with convergence in probability, for any sequence of partitions Πn = {0 = tn0 < tn1 < · · · < tnm(n) = T} whose
meshes ‖Πn‖ := max06i6m(n)−1 |tni+1 − tni | tend to 0 as n → ∞. Moreover, there exists a constant C and,
for each ε > 0, a constant Cε, both independent of a and g, such that

E lim inf
n→∞

m(n)−1∑
i=0

|Rψ(Xtni ∧t, Xtni+1∧t)| 6 εCE sup
s∈[0,t]

‖Xs‖p + CεE
( ∫ t

0

‖gs‖2
γ(H,E) ds

) p
2
. (3.5)

The proof shows that we may take Cε = C ′(ε1−
2
p +1) for some constant C ′ independent of a, g, and ε.

Before we start the proof of the theorem we state some lemmas. The first is an immediate consequence
of Burkholder’s inequality (3.3).

Lemma 3.2. Under the assumptions of Theorem 3.1 we have

E sup
06t6T

‖Xt‖p 6 CE
( ∫ T

0

‖as‖ds
)p

+ CE
( ∫ T

0

‖gs‖2
γ(H,E) ds

) p
2
.

Lemma 3.3. Under the assumptions of Theorem 3.1, the process t 7→ ψ′(Xt)(gt) is progressively measurable
and belongs to M1([0, T ];H).

Proof. By the identity ‖ψ′(x)‖ = p‖x‖p−1 and Hölder’s inequality,

E
( ∫ T

0

‖ψ′(Xt)(gt)‖2
H dt

) 1
2

6 E
( ∫ T

0

‖ψ′(Xt)‖2‖gt‖2
γ(H,E) dt

) 1
2

6 E sup
t∈[0,T ]

‖Xt‖p−1
( ∫ T

0

‖gt‖2
γ(H,E) ds

) 1
2

6 C
(
E sup
t∈[0,T ]

‖Xt‖p
) p−1

p
(
E

( ∫ T

0

‖gt‖2
γ(H,E) ds

) p
2
) 1

p

,

and the right-hand side is finite by the previous lemma. The progressively measurability is clear. �

This lemma implies that the stochastic integral in (3.4) is well-defined.

Lemma 3.4. Let 0 6 u 6 t 6 T be arbitrary and fixed. Under the assumptions of Theorem 3.1, the process
s 7→ ψ′(Xu)(gs) is progressively measurable and belongs to M1([0, T ];H). Moreover, P-almost surely,

ψ′(Xu)
∫ t

u

gs dWs =
∫ t

u

ψ′(Xu)(gs) dWs.

Proof. By similar estimates as in the previous lemma,

E
( ∫ t

u

‖ψ′(Xu)(gs)‖2
H ds

) 1
2

6 C(E‖Xu‖p)
p−1

p

(
E

( ∫ t

u

‖gs‖2
γ(H,E) ds

) p
2
) 1

p

.

The progressively measurability is again clear. To prove the identity we first assume that g is a simple
adapted process of the form

gs =
n−1∑
i=0

1(ti,ti+1](s)Ai,

where Π = {u = t0 < t1 < · · · < tn = t} is a partition of the interval [0, T ] and the random variables are
Fti-measurable and take values in the space of all finite rank operators from H to E. Then,

ψ′(Xu)
∫ t

u

gs dWs = ψ′(Xu)
( n−1∑
i=0

Ai(Wti+1 −Wti)
)

=
n−1∑
i=0

ψ′(Xu)(Ai(Wti+1 −Wti)) =
∫ t

u

ψ′(Xu)(gs) dWs.

For general progressively measurable g ∈ Lp(Ω;L2([0, T ]; γ(H,E))), the identity follows by a routine approx-
imation argument. �



8 Jan van Neerven and Jiahui Zhu

Proof of Theorem 3.1. The proof of the theorem proceeds in two steps. All constants occurring in the proof
may depend on E and p, even where this is not indicated explicitly, but not on T . The numerical value of
the constants may change from line to line.

Step 1 – Applying Lemma 2.2 to the function ψ(x) = ‖x‖p and the process X, we have, for every
t ∈ [0, T ],

ψ(Xt)− ψ(x) =
m(n)−1∑
i=0

(
ψ(Xtni+1∧t)− ψ(Xtni ∧t)

)

=
m(n)−1∑
i=0

ψ′(Xtni ∧t)(Xtni+1∧t −Xtni ∧t) +
m(n)−1∑
i=0

Rψ(Xtni ∧t, Xtni+1∧t).

We shall prove the identity (3.4) by showing that

lim
n→∞

m(n)−1∑
i=0

ψ′(Xtni ∧t)(Xtni+1∧t −Xtni
) =

∫ t

0

ψ′(Xs)(as) ds+
∫ t

0

ψ′(Xs)(gs) dWs

with convergence in probability. In view of the definition of Xt, it is enough to show that

lim
n→∞

∣∣∣m(n)−1∑
i=0

ψ′(Xtni ∧t)
( ∫ tni+1∧t

tni ∧t
as ds

)
−

∫ t

0

ψ′(Xs)(as) ds
∣∣∣ = 0 P-almost surely

and

lim
n→∞

m(n)−1∑
i=0

ψ′(Xtni ∧t)
( ∫ tni+1∧t

tni ∧t
gs dWs

)
−

∫ t

0

ψ′(Xs)(gs) dWs = 0 in probability. (3.6)

By (2.2), P-almost surely we have

lim sup
n→∞

∣∣∣m(n)−1∑
i=0

ψ′(Xtni ∧t)
( ∫ tni+1∧t

tni ∧t
as

)
−

∫ t

0

ψ′(Xs)(as) ds
∣∣∣

6 lim sup
n→∞

m(n)−1∑
i=0

∣∣∣ ∫ tni+1∧t

tni ∧t
(ψ′(Xtni ∧t)− ψ′(Xs))(as) ds

∣∣∣
6 C sup

s∈[0,T ]

‖Xs‖p−2 × lim sup
n→∞

m(n)−1∑
i=0

∫ tni+1∧t

tni ∧t
‖Xtni ∧t −Xs‖ ‖as‖ds

6 C sup
s∈[0,T ]

‖Xs‖p−2 × lim sup
n→∞

(
sup

06i6m(n)−1

sup
s∈[tni ∧t,tni+1∧t]

‖Xtni ∧t −Xs‖
)
×

(m(n)−1∑
i=0

∫ tni+1∧t

tni ∧t
‖as‖ds

)
= 0,

where we used the continuity of the process X in the last line.
Next, by Lemma 3.4 and the inequalities (3.2) and (2.2),

m(n)−1∑
i=0

ψ′(Xtni ∧t)
( ∫ tni+1∧t

tni ∧t
gs dWs

)
−

∫ t

0

ψ′(Xs)(gs) dWs

=
m(n)−1∑
i=0

∫ tni+1∧t

tni ∧t
ψ′(Xtni ∧t)(gs) dWs −

∫ t

0

ψ′(Xs)(gs) dWs

=
∫ t

0

m(n)−1∑
i=0

1(tni ,t
n
i+1]

(s)(ψ′(Xtni ∧t)− ψ′(Xs))(gs) dWs.
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Recall that the localized stochastic integral is continuous from M([0, t]; γ(H,E))) into L0(Ω,Ft;E). Hence,
in order to prove that the right-hand side converges to 0 in probability, it suffices to prove that

lim
n→∞

∥∥∥s 7→ m(n)−1∑
i=0

1(tni ,t
n
i+1]

(s)(ψ′(Xtni ∧t)− ψ′(Xs))(gs)
∥∥∥
L2([0,t];H)

= 0 in probability.

For this, in turn, it suffices to observe that P-almost surely

lim
n→∞

∥∥∥m(n)−1∑
i=0

1(tni ,t
n
i+1]

(s)(ψ′(Xtni ∧t)− ψ′(Xs))
∥∥∥
L∞([0,t];E∗)

= lim
n→∞

sup
06i6n−1

sup
s∈[tni ∧t,tni+1∧t]

‖ψ′(Xtni ∧t)− ψ′(Xs)‖ = 0

by the path continuity of X.
Step 2 – In this step we prove the estimate (3.5). By (2.2), for all x, y ∈ E and r ∈ [0, 1] we have

|ψ′(x+ r(y − x))− ψ′(x)| 6 (‖x‖p−2‖x− y‖+ ‖x− y‖p−1).

Combining this with (2.5) we obtain

|Rψ(Xtni ∧t, Xtni+1∧t)| 6 C‖Xtni ∧t‖
p−2‖Xtni+1∧t −Xtni ∧t‖

2 + C‖Xtni+1∧t −Xtni ∧t‖
p. (3.7)

We shall estimate the two terms on the right hand of (3.7) side separately.
For the first term, using the inequality |a+ b|2 6 2|a|2 + 2|b|2 we obtain
m(n)−1∑
i=0

‖Xtni ∧t‖
p−2‖Xtni+1∧t −Xtni ∧t‖

2

6 2
m(n)−1∑
i=0

‖Xtni ∧t‖
p−2

∥∥∥∫ tni+1∧t

tni ∧t
as ds

∥∥∥2

+ 2
m(n)−1∑
i=0

‖Xtni ∧t‖
p−2

∥∥∥∫ tni+1∧t

tni ∧t
gs dWs

∥∥∥2

=: In1 + In2 .

For the first term we have

In1 6 2C sup
s∈[0,t]

‖Xs‖p−2 × sup
i

∥∥∥∫ tni+1∧t

tni ∧t
as ds

∥∥∥× m(n)−1∑
i=0

∥∥∥∫ tni+1∧t

tni ∧t
as ds

∥∥∥
6 2C sup

s∈[0,t]

‖Xs‖p−2 × sup
i

∥∥∥∫ tni+1∧t

tni ∧t
as ds

∥∥∥× ∫ t

0

‖as‖ds.

By letting n→∞ we have max06i6m(n)−1(tni+1 − tni ) → 0, so

sup
06i6m(n)−1

∥∥∥∫ tni+1∧t

tni ∧t
as ds

∥∥∥ → 0

as n→∞. Therefore,

lim
n→∞

In1 = 0, P-almost surely.

To estimate I2 we use (3.2) and Young’s inequality with ε > 0 to infer

E lim inf
n

In2 6 lim inf
n

EIn2 = lim inf
n

E
m(n)−1∑
i=0

‖Xtni ∧t‖
p−2

∥∥∥∫ tni+1∧t

tni ∧t
gs dWs

∥∥∥2

= lim inf
n

m(n)−1∑
i=0

E
(
‖Xtni ∧t‖

p−2E
(∥∥∥∫ tni+1∧t

tni ∧t
gs dWs

∥∥∥2∣∣Ftni ∧t

))

6 C lim inf
n

m(n)−1∑
i=0

E
(
‖Xtni ∧t‖

p−2E
( ∫ tni+1∧t

tni ∧t
‖gs‖2

γ(H,E) ds
∣∣Ftni ∧t

))
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6 C lim inf
n

m(n)−1∑
i=0

E
(
‖Xtni ∧t‖

p−2

∫ tni+1∧t

tni ∧t
‖gs‖2

γ(H,E) ds
)

6 C lim inf
n

E
(

sup
s∈[0,t]

‖Xs‖p−2

m(n)−1∑
i=0

∫ tni+1∧t

tni ∧t
‖gs‖2

γ(H,E) ds
)

= CE
(

sup
s∈[0,t]

‖Xs‖p−2

∫ t

0

‖gs‖2
γ(H,E) ds

)
6 CεE

(
sup
s∈[0,t]

‖Xs‖p
)

+ Cε1−
p
2 E

( ∫ t

0

‖gs‖2
γ(H,E) ds

) p
2
.

Next we estimate the second term in (3.7). We have
m(n)−1∑
i=0

‖Xtni+1∧t −Xtni ∧t‖
p 6 C

m(n)−1∑
i=0

∥∥∥∫ tni+1∧t

tni ∧t
as ds

∥∥∥p + C

m(n)−1∑
i=0

∥∥∥∫ tni+1∧t

tni ∧t
gs dWs

∥∥∥p =: In3 + In4 .

A similar consideration as before yields

lim
n→∞

In3 6 C lim
n→∞

sup
06i6m(n)−1

∥∥∥∫ tni+1∧t

tni ∧t
as ds

∥∥∥p−1

×
∫ t

0

‖as‖ds = 0.

Moreover, by Burkholder’s inequality (3.3),

E lim inf
n

In4 6 lim inf
n

EIn4 = C lim inf
n

m(n)−1∑
i=0

E
∥∥∥∫ tni+1∧t

tni ∧t
gs dWs

∥∥∥p
6 C lim inf

n

m(n)−1∑
i=0

E
( ∫ tni+1∧t

tni ∧t
‖gs‖2

γ(H,E) ds
) p

2

6 C lim inf
n

E
(m(n)−1∑

i=0

∫ tni+1∧t

tni ∧t
‖gs‖2

γ(H,E) ds
) p

2

= CE
( ∫ t

0

‖gs‖2
γ(H,E) ds

) p
2
.

Collecting terms, for any ε > 0 we obtain the estimate

E lim inf
n→∞

m(n)−1∑
i=0

|Rψ(Xtni ∧t, Xtni+1∧t)| 6 CεE
(

sup
s∈[0,t]

‖Xs‖p
)

+ C(ε1−
p
2 + 1)E

( ∫ t

0

‖gs‖2
γ(H,E) ds

) p
2
.

�

In the proof of Theorem 1.2 we will also need the following simple observation.

Lemma 3.5. P-Almost surely we have

lim inf
n→∞

sup
t∈[0,T ]

m(n)−1∑
i=0

|Rψ(Xtni ∧t, Xtni+1∧t)| 6 lim inf
n→∞

m(n)−1∑
i=0

|Rψ(Xtni
, Xtni+1

)|. (3.8)

Proof. Fix t ∈ (0, T ] and let k(n) be the unique index such that t ∈ (tnk(n), t
n
k(n)+1]. Then

m(n)−1∑
i=0

|Rψ(Xtni ∧t, Xtni+1∧t)| =
k(n)−1∑
i=0

|Rψ(Xtni
, Xtni+1

)|+ |Rψ(Xtn
k(n)

, Xt)|

6
m(n)−1∑
i=0

|Rψ(Xtni
, Xtni+1

)|+ |Rψ(Xtn
k(n)

, Xt)|
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6
m(n)−1∑
i=0

|Rψ(Xtni
, Xtni+1

)|+ C‖Xtn
k(n)

‖p−2‖Xt −Xtn
k(n)

‖2 + C‖Xt −Xtn
k(n)

‖p

6
m(n)−1∑
i=0

|Rψ(Xtni
, Xtni+1

)|+ C sup
s∈[0,T ]

‖Xs‖p−2‖Xt −Xtn
k(n)

‖2 + C‖Xt −Xtn
k(n)

‖p.

Now (3.8) follows by taking the limes inferior for n→∞ and using path continuity. �

4. Proof of Theorem 1.2

We proceed in four steps. In Steps 1 and 2 we establish the estimate in the theorem for g ∈Mp([0, T ]; γ(H,E))
with 2 6 p < ∞. In order to be able to cover exponents 0 < p < 2 in Step 3, we need a stopped version of
the inequalities proved in Steps 1 and 2. For reasons of economy of presentations, we therefore build in a
stopping time τ from the start. In Step 4 we finally consider the case where g ∈M([0, T ]; γ(H,E)).

We shall apply (a special case of) Lenglart’s inequality [13, Corollaire II] which states that if (ξt)t∈[0,T ]

and (at)t∈[0,T ] are continuous non-negative adapted processes, the latter non-decreasing, such that Eξτ 6 Eaτ
for all stopping times τ with values in [0, T ], then for all 0 < r < 1 one has

E sup
06t6T

ξrt 6
2− r

1− r
EarT . (4.1)

Step 1 – Fix p > 2 and suppose first that g ∈Mp([0, T ]; γ(H,D(A)). As is well known (see [16]), under
this condition the process Xt =

∫ t
0
e(t−s)Ags dWs is a strong solution to the equation

dXt = AXt dt+ gt dWt, t > 0; X0 = 0.

In other words, X satisfies

Xt =
∫ t

0

AXs ds+
∫ t

0

gs dWs ∀t ∈ [0, T ] P-almost surely.

Hence if τ is a stopping time with values in [0, T ], then by (3.1),

Xt∧τ =
∫ t

0

1[0,τ ](s)AXs ds+
∫ t

0

1[0,τ ](s)gs dWs ∀t ∈ [0, T ], P-almost surely.

Let us check next that at := 1[0,τ ](t)AXt satisfies the assumptions of Theorem 3.1. Indeed, with ht :=
1[0,τ ](t)Agt we have, using the contractivity of the semigroup S and Burkholder’s inequality (3.3),

E
( ∫ T

0

‖at‖dt
)p

6 E
( ∫ T

0

∥∥∥∫ t

0

e(t−s)Ahs dWs

∥∥∥dt
)p

6 CT p−1E
∫ T

0

∥∥∥∫ t

0

e(t−s)Ahs dWs

∥∥∥p dt

6 CT p−1E
∫ T

0

( ∫ t

0

‖e(t−s)Ahs‖2
γ(H,E) ds

) p
2

dt

6 CT pE
( ∫ T

0

‖hs‖2
γ(H,E) ds

) p
2
<∞.

Hence we may apply Theorem 3.1 and infer that

‖Xt∧τ‖p =
∫ t

0

1[0,τ ](s)ψ′(Xs)(AXs) ds

+
∫ t

0

1[0,τ ](s)ψ′(Xs)(gs) dWs + lim
n→∞

m(n)−1∑
i=0

Rψ(Xtni ∧t∧τ , Xtni+1∧t∧τ )
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6
∫ t

0

1[0,τ ](s)ψ′(Xs)(gs) dWs + lim
n→∞

m(n)−1∑
i=0

Rψ(Xtni ∧t∧τ , Xtni+1∧t∧τ )

since ψ′(x)(Ax) 6 0 for all x ∈ D(A) by the contractivity of etA (see, e.g., [3, Lemma 4.2]). Hence, by Lemma
3.5,

E sup
t∈[0,T ]

‖Xt∧τ‖p 6 E sup
t∈[0,T ]

∫ t

0

1[0,τ ](s)ψ′(Xs)(gs) dWs + E sup
t∈[0,T ]

lim inf
n→∞

m(n)−1∑
i=0

|Rψ(Xtni ∧t∧τ , Xtni+1∧t∧τ )|

6 E sup
t∈[0,T ]

∫ t

0

1[0,τ ](s)ψ′(Xs)(gs) dWs + E lim inf
n→∞

m(n)−1∑
i=0

|Rψ(Xtni ∧τ , Xtni+1∧τ )|

6 CE sup
t∈[0,T ]

∫ t

0

1[0,τ ](s)ψ′(Xs)(gs) dWs

+ εCE sup
s∈[0,T ]

‖Xs∧τ‖p + CεE
( ∫ T

0

1[0,τ ](s)‖gs‖2
γ(H,E) ds

) p
2
.

By Burkholder’s inequality (3.3) and the identity ‖ψ′(y)‖ = p‖y‖p−1,

E sup
t∈[0,T ]

∣∣∣ ∫ t

0

1[0,τ ](s)ψ′(Xs)(gs) dWs

∣∣∣ 6 CE
( ∫ T

0

1[0,τ ](s)
∥∥ψ′(Xs)

∥∥2‖gs‖2
γ(H,E) ds

) 1
2

= CE
( ∫ T

0

1[0,τ ](s)
∥∥Xs

∥∥2(p−1)‖gs‖2
γ(H,E) ds

) 1
2

6 CE
(

sup
t∈[0,T ]

‖Xt∧τ‖p−1
( ∫ T

0

1[0,τ ](s)‖gs‖2
γ(H,E) ds

) 1
2
)

6 Cpp
(
E sup
t∈[0,T ]

‖Xt∧τ‖p
) p−1

p
(
E

( ∫ T

0

1[0,τ ](s)‖gs‖2
γ(H,E) ds

) p
2
) 1

p

6 CεE sup
t∈[0,T ]

‖Xt∧τ‖p + CεE
( ∫ T

0

1[0,τ ](s)‖gs‖2
γ(H,E) ds

) p
2
,

where we also used the Hölder’s inequality and Young’s inequality.
Combining these estimates and taking ε > 0 small enough, we infer that

E sup
t∈[0,T ]

‖Xt∧τ‖p 6 CE
( ∫ T

0

1[0,τ ](s)‖gs‖2
γ(H,E) ds

) p
2
.

Step 2 – Now let g ∈Mp([0, T ]; γ(H,E) be arbitrary. Set gn = n(nI−A)−1g, n > 1. These processes sat-
isfy the assumptions of Step 1 and we have ‖gn‖γ(H,E) 6 ‖g‖γ(H,E) pointwise. Define Xn

t =
∫ t
0
e(t−s)Agns ds.

From Step 1 we know that for any stopping time τ in [0, T ] we have

E sup
t∈[0,T ]

‖Xn
t∧τ‖p 6 CE

( ∫ T

0

1[0,τ ](s)‖gns ‖2
γ(H,E) ds

) p
2
.

In particular, as n,m→∞,

E sup
t∈[0,T ]

‖Xn
t −Xm

t ‖p → 0.

In these circumstances there is a process X̄ such that limn→∞ E supt∈[0,T ] ‖X̄n
t −Xt‖p = 0 and

E sup
t∈[0,T ]

‖X̄t∧τ‖p 6 CE
( ∫ T

0

1[0,τ ](s)‖gs‖2
γ(H,E) ds

) p
2
. (4.2)
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Also, notice that for every t ∈ [0, T ], we have

E‖Xn
t −Xt‖p = E

∥∥∥∫ t

0

e(t−s)Agns ds−
∫ t

0

e(t−s)Ags ds
∥∥∥p 6 C

(
E

∫ t

0

‖gns − gs‖2
γ(H,E) ds

)p
.

Hence Xn
t → Xt in Lp(Ω;E). Therefore, X̄ is a modification of X. This concludes the proof for p > 2.

Step 3 – In this step we extend the result to exponents 0 < p < 2. First consider the case where
g ∈M2([0, T ]; γ(H,E)). By (4.2), for all stopping times τ in [0, T ] we have

E‖Xτ‖2 6 CE
∫ τ

0

‖gs‖2
γ(H,E) ds.

It then follows from Lenglart’s inequality (4.1) that for all 0 < p < 2,

E sup
t∈[0,T ]

‖Xt‖p 6 CE
( ∫ T

0

‖gs‖2
γ(H,E) ds

) p
2
.

For g ∈Mp([0, T ]; γ(H,E)) the result follows by approximation.
Step 4 – Finally, the existence of a continuous version for the process X under the assumption g ∈

M([0, T ]; γ(H,E)) follows by a standard localisation argument.
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