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Let T = {T (t)}t≥0 be a positive C0-semigroup on a Banach lattice E, let E� denote the maximal

subspace of the dual space E∗ on which the adjoint semigroup T∗ acts in a strongly continuous

way, and let (E�)dd denote the band g enerated by E�. Assuming Martin’s Axiom, we prove

the followig result. If, for some x∗ ∈ E∗, the map t 7→ T ∗(t)x∗ is weakly measurable, then

T ∗(t)x ∈ (E�)dd for all t > 0. If moreover T∗ is a lattice semigroup, then x ∈ (E�)dd. As a

consequen ce, translation of a finite Borel measure µ on IR is weakly measurable if and only if µ is

absolutely continuous with respect to the Lebesgue measure.

0. INTRODUCTION

Let T = {T (t)}t≥0 be a C0-semigroup on a Banach space X. As usual, we de-
note by T∗ = {T ∗(t)}t≥0 the adjoint semigroup on the dual space X∗, defined by
T ∗(t) := (T (t))∗, and by X� the maximal subspace of X∗ on which T∗ ac ts in a
strongly continuous way.

Let Y be a Banach space. We say that a map f : IR+ → Y is weakly measurable
if for each y∗ ∈ Y ∗ the map fy∗(t) := 〈y∗, f(t)〉 is Lebesgue measurable. The purpose of
this paper is to prove the following result, assuming Martin’s Axiom (MA).

1 Appeared in: “Evolution equations” (Baton Rouge, LA, 1992), 327-336, Lecture
Notes in Pure and Appl. Math., Vol. 168, Marcel Dekker, New York, 1995.

2 I would like to thank the Netherlands Organization for Scientific Research (NWO)
for financial support.



Theorem 0.1 (MA). Let T = {T (t)}t≥0 be a positive C0-semigroup on a Banach
lattice E. If, for some x∗ ∈ E∗, the map t 7→ T ∗(t)x∗ is weakly measurable, then
T ∗(t)x ∈ (E�)dd for all t > 0.

Here (E�)dd denotes the band generated by E�. This theorem implies for example
that translating a finite Borel measure µ on IR is weakly measurable if and only if µ is
absolutely continuous with respect to the Lebesgue measure; cf. Cor ollary 3.7 below.

In order to motivate our result, we will briefly sketch its history. Let us agree to
call T∗ weakly measurable if each of its orbits t 7→ T ∗(t)x∗ is. In Feller (1953) it is proved
that the adjoint of the translation group T on C0(IR) fa ils to be weakly measurable.
Explicitly, he shows that the map t 7→ T ∗(t)δ0 = δt, the Dirac measure at t, is not
weakly measurable. The proof of this is very short and is reproduced at the beginning
of Section 3, for it is essentially t his argument that we will generalize. In Van Neerven
(1992) the following is shown: if T is a positive C0-semigroup on a space E = C(K),
K compact Hausdorff, then T∗ is weakly Borel measurable if and only if T∗ is strongly
continuous for t > 0. Moreover, in this setting it is known that E� = (E�)dd. Thus,
apart from the subtlety concerning Borel measurability, this result is implied by our
Theorem 0.1. Both the proofs in Feller and Van Neerven avoid the use of set-theoretical
axioms. Finally, Talagrand (1982) shows, assuming Martin’s Axiom, that translation of
a function f ∈ L∞(G), where G is a compact abelian group, is weakly measurable if and
only if f is equal a.e. to a Riemann measurable function. In fact, it was this result which
motivated us to use Martin’s Axiom. Of course, his conclusion for the concrete case of
translation in L∞(G) is much stronger than what is implied by our general result.

1. PRELIMINARIES

In this section we recall some of the basic facts about adjoint semigroups which
will be used in the sequel. Proofs of these facts can be found in Van Neerven (1992).

Let T be a C0-semigroup (i.e., a strongly continuous semigroup) on a Banach
space X. Its generator will be denoted by A with domain D(A). Considering the adjoint
semigroup T∗ on the dual space X∗, we define

X� = {x∗ ∈ X∗ : lim
t↓0
‖T ∗(t)x∗ − x∗‖ = 0},

the domain of strong continuity of T∗. Then X� is a T∗-invariant, norm closed, weak∗-
dense subspace of X∗ (hence X� = X∗ if X is reflexive). The space X� is precisely the
norm closure of D(A∗), the domain of the adjoint of A. In particular, for λ ∈ %(A) =
%(A∗) we haveR(λ,A∗)x∗ ∈ X� for all x∗ ∈ X∗, where R(λ,A∗) = R(λ,A)∗ = (λ−A∗)−1

is the resolvent.
If T extends to a C0-group, then the space X� with respect to the semigroup

{T (t)}t≥0 is equal to the domain of strong continuity of the group {T ∗(t)}t∈IR. In
particular we mention that if T is the translation group on X = C0(IR), then X� is
precisely the subspace of all finite regular Borel measures on IR which are absolutely
continuous with respect to the Lebesgue measure. In this way X� can be identified
canonically with L1(IR). This classical result is due to Plessner ( 1929).



Now let E be a Banach lattice and T a positive C0-semigroup on E. Choose M,ω
such that ‖T (t)‖ ≤ Meωt for all t ≥ 0. If λ ∈ IR is such that λ > ω, then λ ∈ %(A) and
R(λ,A) ≥ 0 (for the general theory of positive semigroups we refer to Nagel (1986)). We
denote by (E�)d the disjoint complement of E� in E∗, i.e.,

(E�)d = {x∗ ∈ E∗ : x∗ ⊥ y� for all y� ∈ E�}.

Here x∗ ⊥ y� means that |x∗|∧|y�| = 0. Then (E�)dd, the disjoint complement of (E�)d,
is equal to the band generated by E�. We will need the following results concerning the
adjoint of a positive C0-semigroups (Van Neerven and De Pagter, to appear). Let T be
a positive C0-semigroup on a Banach lattice E, let ω be as above and fix λ > ω.

Lemma 1.1 (Van Neerven and De Pagter, Section 1). The band (E�)dd generated
by E� is T∗-invariant. If, moreover, T∗ is a lattice semigroup, then also (E�)d is T∗-
invariant.

Lemma 1.2 (Van Neerven and De Pagter, Lemma 3.1). Let 0 ≤ x ∈ E and 0 ≤
x∗, y∗ ∈ E∗. If 〈R(λ,A∗)x∗ ∧ y∗, x〉 = 0, then 〈T ∗(t)x∗ ∧ y∗, x〉 = 0 for almost all t ≥ 0.

Lemma 1.3 (Van Neerven and De Pagter, Theorem 3.5). For any 0 ≤ x∗ ∈ E∗ we
have x∗ ⊥ E� if and only if x∗ ⊥ R(λ,A∗)x∗.

We assume the reader to be familiar with the elementary theory of Banach lattices,
and refer to Aliprantis and Burkinshaw (1985) or Meyer-Nieberg (1991) for more details.
Our results are valid both for real and complex Banach lattices.

2. SOME CONSEQUENCES OF MARTIN’S AXIOM

In this section we collect some useful consequences of Martin’s Axiom (MA). We
let m and m∗ denote the Lebesgue measure and outer Lebesgue measure, respectively.
The following result can be found in Fremlin (1984), Exercise 32P(d).

Lemma 2.1 (MA). Let S ⊂ [0, 1]× [0, 1] be Lebesgue measurable, m(S) = 1. Then
there is a subset H ⊂ [0, 1], m∗(H) = 1, such that for all t, s ∈ H, t 6= s, we have
(t, s) ∈ S.

In other words, (H ×H)\∆ ⊂ S, where ∆ is the diagonal. The set H need not be
Lebesgue measurable in general.

The next result is implicit in Talagrand (1984), p. 99-102. (actually, this reference
contains an extension of a combination of Lemmas 2.1 and 2.2).

Lemma 2.2 (MA). Let H ⊂ [0, 1], m∗(H) = 1. Then H = H0 ∪H1 with H0 ∩H1 = ∅
and m∗(H0) = m∗(H1) = 1.

Under assumption of the Continuum Hypothesis, Lemma 2.2 had been proved
earlier by Sierpinski (1950). If H is Lebesgue measurable, then the lemma can be proved
without set-theoretical axioms. This is not very relevant for our purposes, however, since
we will be interested in the case where H is non-measurable.



Lemma 2.3 (MA). Let H ⊂ [0, 1], m∗(H) = 1. Then there exists a function f :
H → [0, 1] with the following property: whenever g : [0, 1] → C is a function such that
g|H = f , then g is not Lebesgue measurable.

Proof: Let H = H0 ∪H1 as in Lemma 2.2 and let f be the characteristic function of H0.
Let g : [0, 1]→ C be any function such that g|H = f , and consider the set G = {|g| ≤ 1

2
}.

Then H1 ⊂ G, so m∗(G) = 1. Also, H0 ⊂ [0, 1]\G, so m∗([0, 1]\G) = 1. Therefore, G
cannot be Lebesgue measurable.

3. PROOF OF THE MAIN THEOREM

We start with Feller’s proof that translation of a Dirac measure is not weakly
measurable in M(IR), the space of finite Borel measures on IR. Denote by T = {T (t)}t∈IR

the translation group defined by T (t)f(ω) = f(ω+t) in the space C0(IR) of all continuous
functions on IR vanishing at infinity. Let g : IR→ [0, 1] be any non Lebesgue measurable
function. Let Z = span{δt : t ∈ IR} and define a linear form Φ on Z by Φ(δt) := g(t).
Because ∣∣∣Φ

( n∑

j=1

αjδtj

)∣∣∣ =
∣∣∣
n∑

j=1

αjg(tj)
∣∣∣ ≤

n∑

j=1

|αj| =
∥∥∥
n∑

j=1

αjδtj

∥∥∥,

it follows that Φ extends to a bounded linear functional on the closure of Z. Letting
x∗∗ ∈ (M(IR))∗ be any Hahn-Banach extension of Φ, we have

〈x∗∗, T ∗(t)δ0〉 = Φ(T ∗(t)δ0) = Φ(δt) = g(t).

This shows that t 7→ T ∗(t)δ0 is not weakly Lebesgue measurable.
Inspection of the proof shows that it depends on three facts:

(i) For any two t 6= s, we have δt ⊥ δs;
(ii) For any two t, s we have ‖δt‖ = ‖δs‖;
(iii) M(IR) is an AL-space, and therefore

∥∥∥
∑n
j=1 αjδtj

∥∥∥ =
∑n
j=1 |αj |.

By (i), it is possible to define the form Φ and by (ii) and (iii), it is bounded. Our
proof of Theorem 0.1 will be a generalization of the above argument. However, we run
into a number of obstructions. The first problem is to find an analogue of (i). This is
done in Lemma 3.3 below. There we obtain a certain subset of IR+ × IR+. In order to
get from this something similar to (i), this subset should contain a sufficiently large set
of the form (H × H)\∆, where H ⊂ IR+ and ∆ is the diagonal of IR+ × IR+. At this
point we use Lemma 2.1 and Martins Axiom comes in. Secondly, in general T need not
be isometric. In Lemma 3.4 we establish a substitute for (ii), which at the same time
takes care of the fact that in general (E�)d need not be T∗-invariant. Finally, not every
dual Banach lattice is an AL-space. This leads to the difficulty of proving that the linear
form Φ is bounded. We overcome this problem by identifying an isomorphic copy of the
AL-space l1(H) in the closed span of any orbit which does not lie in (E�)dd for all t > 0.
For this we use a variant of the lattice identity |φ + ψ| = |φ| + |ψ|, φ ⊥ ψ; see Lemma
3.5.



We will work out these heuristics in a series of lemmas, which eventually culminates
in a proof of Theorem 0.1. Throughout the rest of this section, T is a positive C0-
semigroup with generator A on a Banach lattice E. We fix constants M and ω such that
‖T (t)‖ ≤ Meωt and fix some λ > ω. By P we will denote the band projection onto the
band (E�)d, the disjoint complement of E�.

Lemma 3.1. Let 0 ≤ x∗ ∈ E∗ and let Q denote the band projection onto the band
generated by R(λ,A∗)x∗. Then for all t ≥ 0 we have (I − P )T ∗(t)x∗ = QT ∗(t)x∗.

Proof: Clearly {R(λ,A∗)x∗}dd ⊂ (E�)dd, so Q ≤ I−P and QT ∗(t)x∗ ≤ (I−P )T ∗(t)x∗.
To prove the reverse inequality, fix t ≥ 0 and put y∗ := (I − Q)(I − P )T ∗(t)x∗.

Then y∗ ⊥ R(λ,A∗)x∗. Also, from 0 ≤ y∗ ≤ T ∗(t)x∗ we infer that

0 ≤ R(λ,A∗)y∗ ≤ R(λ,A∗)T ∗(t)x∗ = eλt
∫ ∞

t

e−λsT ∗(s)x∗ds ≤ eλtR(λ,A∗)x∗,

th e integral being in the weak∗ sense. It follows that y∗ ⊥ R(λ,A∗)y∗. By Lemma
1.3, y∗ ⊥ E�. But by its definition, we also have y∗ ∈ (E�)dd, so y∗ = 0. Hence,
(I − P )T ∗(t)x∗ = Q(I − P )T ∗(t)x∗ ≤ QT ∗(t)x∗.

Lemma 3.2. Let 0 ≤ x∗ ∈ E∗, 0 ≤ y∗ ∈ E∗ and 0 ≤ x ∈ E. Then the map
(t, s) 7→ 〈T ∗(t)x∗ ∧ PT ∗(s)t∗, x〉 is Borel measurable on IR+ × IR+.

Proof: First,

〈T ∗(t)x∗ ∧ T ∗(s)y∗, x〉 = inf{〈T ∗(t)x∗, u〉+ 〈T ∗(s)y∗, v〉 : u, v ∈ [0, x];u+ v = x},

so the map (t, s) 7→ 〈T ∗(t)x∗ ∧ T ∗(s)y∗, x〉 is Borel measurable, being the pointwise
infimum of continuous functions. Therefore it remains to show that the map

(t, s) 7→ 〈T ∗(t)x∗ ∧ (I − P )T ∗(s)y∗, x〉

is Borel. Let Q be the band projection onto the band generated by R(λ,A∗)y∗. By
Lemma 3.1 and general vector lattice theory,

(I − P )T ∗(s)y∗ = QT ∗(s)y∗ = sup
n
{T ∗(s)y∗ ∧ nR(λ,A∗)y∗}.

Hence,

〈T ∗(t)x∗ ∧ (I − P )T ∗(s)t∗, x〉 = sup
n
{〈T ∗(t)x∗ ∧ T ∗(s)y∗ ∧ nR(λ,A∗)y∗, x〉}

and

〈T ∗(t)x∗ ∧ T ∗(s)y∗ ∧ nR(λ,A∗)y∗, x〉 =

inf{〈T ∗(t)x∗, u〉+ 〈T ∗(s)y∗, v〉+ 〈nR(λ,A∗)y∗, w〉 : u, v, w ∈ [0, x];u+ v + w = x}.

Since the latter is clearly a Borel function, the lemma follows.



Lemma 3.3. Let x∗ ∈ E∗ and 0 ≤ x ∈ E. The set

N := {(t, s) ∈ IR+ × IR+ : 〈|T ∗(t)x∗| ∧ |PT ∗(s)x∗|, x〉 > 0}

is a Lebesgue measurable set of measure zero.

Proof: Put M := {(t, s) ∈ IR+×IR+ : 〈T ∗(t)|x∗|∧PT ∗(s)|x∗|, x〉 > 0}. Then N ⊂M , so
it suffices to show that M is a Borel set of measure zero. By Lemma 3.2, M is a Borel set.
Fix s ≥ 0. We have PT ∗(s)|x∗| ∈ (E�)d, hence c ertainly PT ∗(s)|x∗| ∧R(λ,A∗)|x∗| = 0.
Therefore, by Lemma 1.2 we see that 〈T ∗(t)|x∗|∧PT ∗(s)|x∗|, x〉 = 0 for almost all t ≥ 0.
Hence, for all s ≥ 0, the set {t ≥ 0 : (t, s) ∈M} is a zero set. Therefore M is a zero set
by the Fubini theorem.

The next lemma describes a certain weak∗-continuity property of orbits which do
not lie in (E�)dd for all t > 0.

Lemma 3.4. Let x∗ ∈ E∗, 0 ≤ x ∈ E and s0 > 0 be such that 〈|PT ∗(s0)x∗|, x〉 > 0.
Then there exists 0 < ε < s0 such that

〈|PT ∗(s)x∗|, x〉 ≥ 1

2
〈|PT ∗(s0)x∗|, x〉, ∀s ∈ [s0 − ε, s0].

Proof: Let C > 0 be such that ‖PT ∗(s)x∗‖ ≤ C for all s ∈ [0, s0]. For s ∈ [0, s0] we
write

T ∗(s0)x∗ = T ∗(s0 − s)T ∗(s)x∗
= T ∗(s0 − s)PT ∗(s0)x∗ + T ∗(s0 − s)(I − P )T ∗(s)x∗,

so
PT ∗(s0)x∗ = PT ∗(s0 − s)PT ∗(s)x∗ + PT ∗(s0 − s)(I − P )T ∗(s)x∗

= PT ∗(s0 − s)PT ∗(s)x∗.
In the last identity we used the fact that (E�)dd is T∗-invariant (Lemma 1.1). It follows
that |PT ∗(s0)x∗| ≤ T ∗(s0 − s)|PT ∗(s)x∗|. Hence,

〈|PT ∗(s0)x∗|, x〉 ≤ 〈|PT ∗(s)x∗|, T (s0 − s)x〉
= 〈|PT ∗(s)x∗|, x〉+ 〈|PT ∗(s)x∗|, T (s0 − s)x− x〉
≤ 〈|PT ∗(s)x∗|, x〉+ C‖T (s0 − s)x− x‖.

By taking ε > 0 so small that ‖T (s0 − s)x − x‖ ≤ (2C)−1〈|PT ∗(s0)x∗|, x〉 for all 0 ≤
s0 − s ≤ ε, the lemma now follows.

Finally we need the following substitute for the norm additivity of disjoint vectors.

Lemma 3.5. Suppose φ1, ...φn ∈ E∗ and 0 ≤ x ∈ E are such that 〈|φj | ∧ |φk|, x〉 = 0
for all j 6= k. Then

〈∣∣∣
n∑

j=1

φj

∣∣∣, x
〉

=

n∑

j=1

〈|φj |, x〉.

Proof: Let φ, ψ ∈ E∗ such that 〈|φ| ∧ |ψ|, x〉 = 0. Because of the lattice identity 2
(
|φ| ∧

|ψ|
)

= |φ|+ |ψ|−
∣∣|φ|− |ψ|

∣∣ we have 〈
∣∣|φ|− |ψ|

∣∣, x〉 = 〈|φ|, x〉+ 〈|ψ|, x〉. Since
∣∣|φ|− |ψ|

∣∣ ≤
|φ + ψ| ≤ |φ| + |ψ| it follows that 〈|φ + ψ|, x〉 = 〈|φ|, x〉 + 〈|ψ|, x〉. Now proceed by
induction on n.



Proof of Theorem 0.1: Suppose x∗ ∈ E∗ and s0 > 0 are such that T ∗(s0)x∗ 6∈
(E�)dd, or equivalently PT ∗(s0)x∗ 6= 0. We will prove that the orbit t 7→ T ∗(t)x∗ fails
to be weakly measurable.

Choose 0 ≤ x ∈ E, ‖x‖ = 1, such that 〈|PT ∗(s0)x∗|, x〉 > 0. Let ε > 0 be as in
Lemma 3.4 and put

S := {(t, s) ∈ [s0 − ε, s0]× [s0 − ε, s0] : 〈|T ∗(t)x∗| ∧ |PT ∗(s)x∗|, x〉 = 0}.

By Lemma 3.3 we know that m(S) = ε2. Hence by Lemma 2.1, there is a subset
H ⊂ [s0 − ε, s0] with m∗(H) = ε such that for all t, s ∈ H, t 6= s, we have 〈|T ∗(t)x∗| ∧
|PT ∗(s)x∗|, x〉 = 0.

We claim that there exists a constant K > 0 such that for all n ∈ IN, scalars
α1, ..., αn and s1, ..., sn ∈ H we have

∥∥∥
n∑

j=1

αjT
∗(sj)x

∗
∥∥∥ ≥ K

n∑

j=1

|αj|.

To see this, first observe that for all t, s ≥ 0 we have |T ∗(t)x∗| ∧ |PT ∗(s)x∗| ∈ (E�)d.
Therefore, for any two sj , sk ∈ H, sj 6= sk, we have

〈|PT ∗(sj)x∗| ∧ |PT ∗(sk)x∗|, x〉 =
〈
P
(
|T ∗(sj)x∗| ∧ |PT ∗(sk)x∗|

)
, x
〉

= 〈|T ∗(sj)x∗| ∧ |PT ∗(sk)x∗|, x〉 = 0.

Hence Lemma 3.5 applies, and by using it in tandem with the choice of ε we have

∥∥∥
n∑

j=1

αjT
∗(sj)x

∗
∥∥∥ ≥

∥∥∥
n∑

j=1

αjPT
∗(sj)x

∗
∥∥∥ ≥

〈∣∣∣
n∑

j=1

αjPT
∗(sj)x

∗
∣∣∣, x
〉

=

n∑

j=1

|αj| 〈|PT ∗(sj)x∗|, x〉 ≥
1

2
〈|PT ∗(s0)x∗|, x〉 ·

n∑

j=1

|αj |.

This proves the claim.
Let f : H → [0, 1] be a function as Lemma 2.3. Define

Z := span{T ∗(s)x∗ : s ∈ H}.

It follows in particular from the above that the set {T ∗(s)x∗ : s ∈ H} is linearly
independent, so it makes sense to define a linear form Φ on Z by

Φ
(
T ∗(s)x∗

)
:= f(s).

We show that Φ is bounded. Indeed, by the claim we have

∣∣∣Φ
( n∑

j=1

αjT
∗(sj)x

∗
)∣∣∣ =

∣∣∣
n∑

j=1

αjf(sj)
∣∣∣ ≤

n∑

j=1

|αj | ≤
1

K

∥∥∥
n∑

j=1

αjT
∗(sj)x

∗
∥∥∥.

Therefore, Φ extends to a bounded linear functional on the closure of Z in E∗. Let
x∗∗ ∈ E∗∗ be any Hahn-Banach extension of Φ and let the function g be defined by
g(t) = 〈x∗∗, T ∗(t)x∗〉. Clearly g|H = f , so g|[s0−ε,s0] is not Lebesgue measurable by
Lemma 2.3.



Theorem 0.1 can be improved if the adjoint semigroup T∗ is a lattice semigroup.
For example, this is the case if T extends to a positive group.

Corollary 3.6 (MA). Suppose T is a positive C0-semigroup on E such that T∗ is a
lattice semigroup. If for some x∗ ∈ E∗ the map t 7→ T ∗(t)x∗ is weakly measurable, then
x∗ ∈ (E�)dd.

Proof: Write x∗ = x∗0 + x∗1 with x∗0 ∈ (E�)d, x∗1 ∈ (E�)dd. By Lemma 1.1, we have
for any t ≥ 0 that T ∗(t)x∗0 ∈ (E�)d and T ∗(t)x∗1 ∈ (E�)dd. Also, by Theorem 0.1,
T ∗(t)x∗ ∈ (E�)dd for t > 0. Therefore we must have T ∗(t)x∗0 = 0 for all t > 0. From the
weak∗-continuity of t 7→ T ∗(t)x∗0, we conclude that x∗0 = 0.

If the dual space E∗ has order continuous norm, then E� = (E�)dd holds for any
positive C0-semigroup on E (see Van Neerven and De Pagter (to appear), Theorem 2.1
or De Pagter (1992), Theorem 2.1). This holds in particular if E = C0(Ω) , Ω locally
compact Hausdorff. In combination with the above results, this yields the following
corollary.

Corollary 3.7 (MA). Suppose that T is a positive C0-semigroup on a Banach lattice
E whose dual E∗ has order continuous norm. If, for some x∗ ∈ E∗, the map t 7→ T ∗(t)x∗

is weakly measurable, then t 7→ T ∗(t)x∗ is strongly continuous for t > 0. If moreover, T∗

is a lattice semigroup, then t 7→ T ∗(t)x∗ is strongly continuous for t ≥ 0, i.e. x∗ ∈ E�.

For the translation group in E = C0(IR) we know that E� = (E�)dd = L1(IR) (cf.
Section 1), which gives the following result.

Corollary 3.8 (MA). Let µ be a finite Borel measure on IR. Then translation of µ is
weakly measurable in M(IR) if and only if µ is absolutely continuous with respect to the
Lebesgue measure.

Finally, we mention one more consequence of Corollary 3.6.

Corollary 3.9 (MA). Let T be a positive C0-group with unbounded generator on a
space C0(Ω), Ω locally compact Hausdorff. Then T∗ is not weakly measurable.

Proof: From Van Neerven and De Pagter (to appear), Corollary 3.18, we know that
E� = (E�)dd 6= E∗, so the result follows from Corollary 3.6.
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