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ABSTRACT. Let X(t, x0) denote the weak solution of the stochastic ab-
stract Cauchy problem

dX(t) = AX(t) dt+B dWH (t), t ≥ 0,

X(0) = x0.

Here A generates a C0−semigroup on a separable real Banach space E,
{WH(t)}t≥0 is a cylindrical Wiener process with Cameron-Martin space
H , B ∈ L(H,E) is a bounded linear operator, and x0 ∈ E is a given
intitial value. We prove that for all p ∈ [1,∞) and t ≥ 0,

lim
s→t

E
(
‖X(t, x0)−X(s, x0)‖p

)
= 0.

We consider the following stochastic abstract Cauchy problem:

(1.1)
dX(t) = AX(t) dt+B dWH(t), t ≥ 0,

X(0) = x0,

where A is the generator of a C0−semigroup S = {S(t)}t≥0 on a separable
real Banach space E, B is a bounded linear operator from a separable real
Hilbert space H into E, and {WH(t)}t≥0 is a cylindrical Wiener process
with Cameron-Martin space H . For the precise definition of this concept
we refer to [3].

It has been shown in [3] that the problem (1.1) admits a weak solution
{X(t, x0)}t≥0 if and only if for each t > 0 the operator Qt ∈ L(E∗, E)
defined by

Qtx
∗ :=

∫ t

0

S(s)BB∗S∗(s)x∗ ds, x∗ ∈ E∗,

is the covariance of a centred Gaussian measure µt on E. In this case, µt
is the distribution of the random variable X(t, 0), and the solution can be
represented as a stochastic convolution as follows:

〈X(t, x0), x∗〉 = 〈S(t)x0, x
∗〉+

∫ t

0

〈S(t− s)B dWH(s), x∗〉, x∗ ∈ E∗.
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2 Z. BRZEŹNIAK, B. GOLDYS, AND J.M.A.M. VAN NEERVEN

We will prove that the process {X(t, x0)}t≥0 is mean continuous in all
moments. In particular this solves the problem, left open in [3], whether
{X(t, x0)}t≥0 is mean square continuous.

Let Cb(E) denote the space of all bounded continuous real functions on
E.

Lemma 1. Let (tn) be a sequence of nonnegative real numbers in the in-
terval [0, T ] with lim

n→∞
tn = t. Let g : [0,∞) → R be nondecreasing and

convex with g(‖ · ‖) ∈ L1(E, µT ). Then for all f ∈ Cb(E) we have

lim
n→∞

∫

E

f(x) g(‖x‖) dµtn(x) =

∫

E

f(x) g(‖x‖) dµt(x).

Proof. For r > 0 let

Br = {x ∈ E : g(‖x‖) ≤ r}.
This set is symmetric and convex. Symmetry is obvious, and convexity
follows from

g(‖αx+ (1−α)y‖)≤ g(α‖x‖+ (1−α)‖y‖)≤ αg(‖x‖) + (1−α)g(‖y‖),
where α ∈ [0, 1]. In view of

〈Qtnx
∗, x∗〉 ≤ 〈QTx

∗, x∗〉, x∗ ∈ E∗,
we may apply Anderson’s inequality [2, Theorem 3.3.6] to obtain

µtn(Br) ≥ µT (Br).

In combination with the identity
∫

E

|h(x)| dν(x) =

∫ ∞

0

ν{x ∈ E : |h(x)| > s} ds,

we find, with M = supx∈E |f(x)|,
(1.2)∫

E\Br
|f(x)| g(‖x‖) dµtn(x) ≤M

∫

E\Br
g(‖x‖) dµtn(x)

= M

∫ ∞

g(r)

µtn{x ∈ E : g(‖x‖) > s} ds

≤M

∫ ∞

g(r)

µT{x ∈ E : g(‖x‖) > s} ds

= M

∫

E\Br
g(‖x‖) dµT (x).
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The same argument gives

(1.3)
∫

E\Br
|f(x)| g(‖x‖) dµt(x) ≤M

∫

E\Br
g(‖x‖) dµT (x).

It now follows easily that the family f(X(tn, 0))g(‖X(tn, 0)‖) is uniformly
integrable. Since µtn → µt weakly [6], the lemma follows from [1, Theo-
rem 5.4]. Alternatively, the weak convergence µtn → µt implies

lim
n→∞

∫

E

f(x) (g(‖x‖) ∧ g(r)) dµtn(x) =

∫

E

f(x) (g(‖x‖) ∧ g(r)) dµt(x)

for all r > 0. Choosing r so large that
∫
E\Br g(‖x‖) dµT (x) < ε/M, by

(1.2) and (1.3) both truncation errors are at most ε, and again the lemma
follows.

If f : E → R is a bounded Borel function, then for all t ≥ 0 we have

E
(
f(X(t, 0))

)
=

∫

E

f(y) dµt(y).

By an easy approximation argument, for t ≥ 0 fixed this identity extends to
all functions f ∈ L1(E, µt).

Theorem 2. Let g : [0,∞) → R be a nondecreasing convex function with
g(0) = 0 such that

g(c‖ · ‖) ∈ L1(E, µT )

for some c > M + 2, where M = lim supu↓0 ‖S(u)‖. Then for all x ∈ E
and t ∈ [0, T ] we have

lim
s→t
E g(‖X(t, x)−X(s, x)‖) = 0.

Proof. The assumption c > M + 2 enables us to choose α, β, γ ∈ (0, 1)
with α+ β + γ = 1 subject to the following two conditions:

• βc > M + 1;
• γc ≥ 1.

Step 1 - First we note that for all τ ∈ [0, T ] and 0 ≤ c′ ≤ c,
∫

E

g(c′‖y‖) dµτ(y) =

∫ ∞

0

µτ{x ∈ E : g(c′‖x‖) > s} ds

≤
∫ ∞

0

µT{x ∈ E : g(c′‖x‖) > s} ds

=

∫

E

g(c′‖y‖) dµT (y)

≤
∫

E

g(c‖y‖) dµT(y) <∞.
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Hence by the condition 1/γ ≤ c and the remark preceding the theorem,

E g
(

1
γ
‖X(τ, 0)‖

)
=

∫

E

g( 1
γ
‖y‖) dµτ(y),

and therefore by Lemma 1,

lim
τ↓0
E g
(

1
γ
‖X(τ, 0)‖

)
= lim

τ↓0

∫

E

g( 1
γ
‖y‖) dµτ(y) = 0.

Step 2 - Right continuity. Fix t ∈ [0, T ]. We have, for t ≤ s ≤ T ,

〈X(s, x),x∗〉 − 〈X(t, x), x∗〉

= 〈S(s)x, x∗〉+

∫ s

0

〈S(s− u)B dWH(u), x∗〉

− 〈S(t)x, x∗〉 −
∫ t

0

〈S(t− u)B dWH(u), x∗〉

= 〈S(s)x− S(t)x, x∗〉+ 〈S(s− t)X(t, 0)−X(t, 0), x∗〉
+ 〈Ys,t, x∗〉,

where

Ys,t =

∫ s

t

S(s− u)B dWH(u).

Hence,

(1.4) X(s, x)−X(t, x) = S(s)x−S(t)x+S(s−t)X(t, 0)−X(t, 0)+Ys,t.

The convexity of g implies

g
(
‖X(s, x)−X(t, x)‖

)

≤ αg
(

1
α
‖S(s)x− S(t)x‖

)
+ βg

(
1
β
‖S(s− t)X(t, 0)−X(t, 0)‖

)

+ γg
(

1
γ
‖Ys,t‖

)
.

Noting that g is continuous with g(0) = 0, it follows that

lim
s↓t
E g
(

1
α
‖S(s)x− S(t)x‖

)
= lim

s↓t
g
(

1
α
‖S(s)x− S(t)x‖

)
= 0.

Arguing as in Step 1 and using the condition (M + 1)/β < c we see that
for s− t sufficiently small,

E g
(

1
β
‖S(s− t)X(t, 0)−X(t, 0)‖

)
=

∫

E

g
(

1
β
‖S(s− t)y − y‖

)
dµt(y).

Hence by dominated convergence,

lim
s↓t
E g( 1

β
‖S(s− t)X(t, 0)−X(t, 0)‖)

= lim
s↓t

∫

E

g( 1
β
‖S(s− t)y − y‖) dµt(y) = 0.
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Finally, noting that Ys,t and X(s− t, 0) have the same distribution, by Step
1 we have

lim
s↓t
E g( 1

γ
‖Ys,t‖) = lim

s↓t
E g( 1

γ
‖X(s− t, 0)‖) = 0.

Step 3 - Left continuity. Fix t ∈ [0, T ]. For 0 ≤ s ≤ t we have, using (1.4)
with the rôles of s and t reversed,

g(‖X(t, x)−X(s, x)‖)
≤ αg

(
1
α
‖S(t)x− S(s)x‖

)
+ βg

(
1
β
‖S(t− s)X(s, 0)−X(s, 0)‖

)

+ γg
(

1
γ
‖Yt,s‖

)
.

As in Step 2, the expectation of the first term on the right hand side tends to
0 as s ↑ t by continuity, and the expectation of the third term tends to 0 by
Step 1. It remains to prove that

lim
s↑t

E g
(

1
β
‖S(t− s)X(s, 0)−X(s, 0)‖

)

= lim
s↑t

∫

E

g( 1
β
‖S(t− s)y − y‖) dµs(y) = 0.

By Lemma 1, for all s ∈ [0, T ] the measure g(c‖x‖) dµs(x) is a finite Radon
measure and the family

{
g(c‖x‖) dµs(x) : s ∈ [1

2
t, t]
}

is tight. Fix ε > 0 arbitrary and use Prokhorov’s theorem to choose a
compact set K such that

∫

E\K
g(c‖x‖) dµs(x) < ε, s ∈ [1

2
t, t].

Choose 0 < τ ≤ 1
2
t so small that

1
β
(‖S(u)‖+ 1) ≤ c and 1

β
‖S(u)y − y‖ < ε, u ∈ [0, τ ], y ∈ K.

It follows that for s ∈ [t− τ, t],
∫

E

g( 1
β
‖S(t− s)y − y‖) dµs(y)

≤
∫

K

g
(

1
β
‖S(t− s)y − y‖

)
dµs(y)

+

∫

E\K
g
(

1
β
‖S(t− s)y − y‖

)
dµs(y).

≤ g(ε) + ε.

Since limε↓0 g(ε) = 0, this completes the proof.
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Under a slightly stronger assumption on g, we can rephrase this result in
terms of Orlicz norms.

If g : [0,∞) → R is a nondecreasing convex function with g(0) = 0,
then for a strongly measurable function ξ : (Ω,P)→ E we define

‖ξ‖Lg(E) := inf

{
c > 0 : E g

(‖ξ‖
c

)
≤ 1

}
.

The set Lg(E) of all ξ for which ‖ξ‖Lg(E) is finite is a Banach space; cf.
[5].

Corollary 3. Let g : [0,∞)→ R be a nondecreasing convex function with
g(0) = 0 such that g(c‖ · ‖) ∈ L1(E, µT ) for all c > 0. Then for all x ∈ E
and t ∈ [0, T ] we have

lim
s→t

X(s, x) = X(t, x) in Lg(E).

Proof. Let ε > 0 be fixed and define gε(τ) := g(ε−1τ). According to
Theorem 2, for |t− s| sufficiently small we have

E gε
(
‖X(t, x)−X(s, x)‖

)
≤ 1.

Hence,

E g
(‖X(t, x)−X(s, x)‖

ε

)
= E gε

(
‖X(t, x)−X(s, x)‖

)
≤ 1,

which means that ‖X(t, x)−X(s, x)‖Lg(E) ≤ ε.

By Fernique’s theorem, this result applies, e.g., to the functions

g(τ) = exp(τ p)− 1, 1 ≤ p < 2,

and g(τ) = τ p, 1 ≤ p < ∞. In the latter case we can apply Theorem 2
directly and obtain:

Corollary 4. For all x ∈ E and t ≥ 0 we have

lim
s→t
E
(
‖X(t, x)−X(s, x)‖p

)
= 0, p ∈ [1,∞).
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