MEAN SQUARE CONTINUITY OF ORNSTEIN-UHLENBECK
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ABSTRACT. Let X (¢, zo) denote the weak solution of the stochastic ab-
stract Cauchy problem

dX(t) = AX(t)dt + BdWg(t), t>0,
Here A generates a Cy—semigroup on a separable real Banach space E,
{Wg (t)}>0 is a cylindrical Wiener process with Cameron-Martin space

H, B € L(H, E) is a bounded linear operator, and z¢ € F is a given
intitial value. We prove that for all p € [1,00) and t > 0,

lim E (|| X (¢, 20) — X (s, 20) ") = 0.

We consider the following stochastic abstract Cauchy problem:
dX(t) = AX(t)dt + BdWg(t), t>0,
X(O) = Xo,

where A is the generator of a Cy—semigroup S = {S(¢) };> on a separable
real Banach space E, B is a bounded linear operator from a separable real
Hilbert space H into E, and {Wg(t)};>0 is a cylindrical Wiener process
with Cameron-Martin space H. For the precise definition of this concept
we refer to [3].

It has been shown in [3] that the problem (1.1) admits a weak solution
{X(t,z0) }+>0 if and only if for each ¢ > 0 the operator Q); € L(E*, E)
defined by

(1.1)

t
Qix” ::/ S(s)BB*S*(s)x* ds, x* e B,
0

is the covariance of a centred Gaussian measure y; on E. In this case, p;
is the distribution of the random variable X (¢,0), and the solution can be
represented as a stochastic convolution as follows:

(X (t, o), ") = (S(t)zg, z") —i—/o (S(t—s)BdWg(s),z"), " e B
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We will prove that the process {X (¢, z¢)}+>0 is mean continuous in all
moments. In particular this solves the problem, left open in [3], whether
{X(t, z0) }+>0 is mean square continuous.

Let C,(E) denote the space of all bounded continuous real functions on
E.

Lemma 1. Let (t,) be a sequence of nonnegative real numbers in the in-
terval [0,T] with lim t, = t. Let g : [0,00) — R be nondecreasing and

convex with (|| - ||) € L*(E, pr). Then for all f € Cy(E) we have

hm/f (lz]]) dpew, (x /f ([[z]) dpe ().
Proof. For r > 0 let
B, ={zeE: g(lz]) <r}.

This set is symmetric and convex. Symmetry is obvious, and convexity
follows from

g(llaz+ (1 =a)yl)) < glallz[ + (1 =a)llyl]) < ag(llz]) + (1 =a)g(llylD),

where « € [0, 1]. In view of
(Qr,a",2") < (Qra*,z%), 2" € EY,
we may apply Anderson’s inequality [2, Theorem 3.3.6] to obtain
pe, (Br) > pir(B;).

In combination with the identity
/ |h(z)|dv(z) = / v{z € E: |h(z)| > s}ds,
E 0

we find, with M = sup,. | f(z)],
(1.2)

[F @)l g(llll) dpa, () <M/ glll) dp, ()

:M/ o dz € E: g(llzll) > s} ds
g(r)

SM/ prlz € B+ gllzl]) > s} ds
g(r)

=M i g(lz[l) dpr ().
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The same argument gives

(1.3) /E\B|<>|g<uasu>dut< )< M / g(lz]) dpur ().

It now follows easily that the family f(X (¢,,0))g(|| X (t,,0)]|) is uniformly
integrable. Since p;, — p; weakly [6], the lemma follows from [1, Theo-
rem 5.4]. Alternatively, the weak convergence i, — p; implies

Tim Ef(l‘)( g(llzll) A g(r)) dp, (2 /f gllzll) A g(r)) dpw(x)

for all » > 0. Choosing r so large that fE\B,« g(llz|) dur(z) < /M, by
(1.2) and (1.3) both truncation errors are at most €, and again the lemma
follows. [ |

If f: E — Ris abounded Borel function, then for all ¢ > 0 we have

E (f(X(t,0))) = /E £ () dply)

By an easy approximation argument, for ¢ > 0 fixed this identity extends to
all functions f € L*(E, ;).

Theorem 2. Let g : [0,00) — R be a nondecreasing convex function with
9(0) = 0 such that

glell 1) € LNE, pr)
for some ¢ > M + 2, where M = limsup,, |, ||S(u)|. Then forall x € E
andt € [0,T] we have

m E g([[X (¢, 2) — X(s,2)[|) =

Proof. The assumption ¢ > M + 2 enables us to choose o, 3,y € (0,1)
with a 4+ 3 4+ v = 1 subject to the following two conditions:

e fc>M+1;
e vc> 1.

Step 1 - First we note that for all 7 € [0,7] and 0 < ¢/ < ¢,

[l = [ neta e B g(clal) > 5)ds
< [Tmtee B: g@lal) > s)as
= [ st durto)
< [ atell) den(s) < .
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Hence by the condition 1/ < ¢ and the remark preceding the theorem,

E (X0l = [ ol du (),

and therefore by Lemma 1,

. 1 BERT 1 o
i E g(21X(r.0)1) =t | oHlylD dine(s) = 0.
Step 2 - Right continuity. Fix ¢t € [0, T]. We have, fort < s < T,
<X(S,$),£E*> - <X(t,3§),$*>

= (S(s)x,x") + /:(S(s —u)BdWy(u), x*)

— (S(t)z, 2*) /t<S(t —W)BdWy(u), 2%)
= (S(s)x — S(t)x, :U*>O+ (S(s—t)X(t,0) — X(t,0),z")
+ (Yo, 27),
where .
Y., = / S(s — u)B AW (u).
Hence, t
(1.4) X(s,2)—X(t,x) = S(s)x—S(t)x+S(s—t) X (t,0)—X(¢,0)+Ys,.
The convexity of g implies
g(IX(s.2) — X(t,2)])
< ag(;[IS(s)z — S(t)z|]) + Bg(5/15(s — )X (¢, 0) — X(t,0)]])
+ 791 Yeel)-
Noting that ¢ is continuous with ¢(0) = 0, it follows that
i E g(2115(s)z — S(0)el)) = im g (L1S(s)x — S(e)al]) = 0.

Arguing as in Step 1 and using the condition (M + 1)/ < ¢ we see that
for s — t sufficiently small,

E g(3115(s = 0X(0,0) = X(.0)1) = [ a(15(s = = ol ()
Hence by dominated convergence,

lE g(51(s — )X (¢,0) = X(1,0)])

= lim g(%HS(S-t)y—yH)dﬂt(y) = 0.
slt E
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Finally, noting that Y; ; and X (s — ¢, 0) have the same distribution, by Step
1 we have

. 1 1 1 —
l;glE g(;HYstH) = EglE 9(;||X(5 —1,0)]) =0.

Step 3 - Left continuity. Fix ¢ € [0,7]. For 0 < s < ¢ we have, using (1.4)
with the rdles of s and ¢ reversed,

g([| X (¢, x) — X (s, z)|])
< ag(; 1Stz = S(s)z) + Bg (51t — 5)X(s,0) — X(s,0)]])
+yg(N1Yesll)-

As in Step 2, the expectation of the first term on the right hand side tends to
0 as s T t by continuity, and the expectation of the third term tends to 0 by
Step 1. It remains to prove that

lim E g (515t = 5)X(s,0) = X(s,0)]])

= lim Eg(%HS(t —s)y — yll) dps(y) = 0.

By Lemma 1, for all s € [0, T'] the measure g(c||z||) dus(z) is a finite Radon
measure and the family

{g(cllzll) dus(z) = s € [5t,1]}

is tight. Fix € > 0 arbitrary and use Prokhorov’s theorem to choose a
compact set K such that

/E\Kg(cHa:H) dus(z) <e,  se it

Choose 0 < 7 < 1t so small that
IS +1) <c and g[[S(u)y —y| <e, uel0,7], y € K.

It follows that for s € [t — 7, 1],
[ a1t = sy =yl du)
< / g (ISt = s)y — yll) dus(y)
K

[ 9ISt = s - ul) o)
BE\K
<gl(e)+e.
Since lim, | g(¢) = 0, this completes the proof. | |
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Under a slightly stronger assumption on g, we can rephrase this result in
terms of Orlicz norms.

If g : [0,00) — R is a nondecreasing convex function with g(0) = 0,
then for a strongly measurable function £ : (2, P) — E we define

1€llz, (k) := inf {c> 0: Eg <”ic||) < 1},

The set Ly(E) of all £ for which ||{||1,(x) is finite is a Banach space; cf.
[5].
Corollary 3. Let g : [0,00) — R be a nondecreasing convex function with

g(0) = 0 such that g(c|| - ||) € L*(E, pur) for all ¢ > 0. Then forall v € E
andt € [0,T] we have

lim X (s,x) = X(t,z) in Ly(E).

s—t

Proof. Let ¢ > 0 be fixed and define ¢.(7) := g(¢~'7). According to
Theorem 2, for |t — s| sufficiently small we have

Eg.(]|X(t,z) — X(s,2)[]) < 1.

Hence,
X(t,z)— X(s,x
Bg (D ZEEIN) g ixn o) - X0 <1,
which means that | X (¢, z) — X(s,2)||r,m) <e. [

By Fernique’s theorem, this result applies, e.g., to the functions
g(r) =exp(t") -1, 1<p<2,

and g(7) = 77, 1 < p < oo. In the latter case we can apply Theorem 2
directly and obtain:

Corollary 4. Forall x € E andt > 0 we have
lim | (X (¢, z) — X(s,2)|]") =0, p € [1,00).
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