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Abstract. In this paper we study the growth of mild solutions of abstract

Cauchy problems governed by a densely defined generator A of an α-times

integrated semigroup {Sα(t)}t≥0 . We prove the following results:

(i) If ‖Sα(t)‖ ≤ Meωt for some M > 0, ω ∈ R , and all t ≥ 0, then for

all ε > 0, σ > 0 and x0 ∈ D((−Aω+σ)α+ε) a unique mild solution exists.

Moreover, this solution is exponentially bounded, and its exponential type

is at most ω. If x0 ∈ D((−Aω+σ)1+α+ε), the solution is classical.

(ii) If ‖Sα(t)‖ ≤M(1+tγ ) for some constants M ≥ 1, γ ≥ 0, and all t ≥ 0,

then for all ε > 0, σ > 0 and all x0 ∈ D((−Aσ)α+ε) a unique mild solution

exists. Moreover, this solution is polynomially bounded, and its polynomial

type is at most max{α− 1 + ε, γ + ε, 2γ − α+ ε}. If x0 ∈ D((−Aσ)1+α+ε),

the solution is classical.

These results are applied to study the growth of mild solutions of the

Cauchy problem governed by a densely defined operator whose resolvent is

polynomially bounded in the open right half plane.

1. Introduction

In this paper we study the asymptotic behaviour of solutions of the abstract

Cauchy problem

(ACP) u′(t) = Au(t) (t ≥ 0), u(0) = x0,
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where A is a closed linear operator with domain D(A) in a complex Banach

space X . We will investigate this problem for densely defined operators A sat-

isfying certain resolvent estimates in a right half plane. We prove existence and

uniqueness of mild and classical solutions for initial values in optimal domains,

and give optimal estimates for the growth of these solutions.

In order to motivate our approach, let A be a linear operator whose resolvent

R(λ,A) := (λ − A)−1 exists and is polynomially bounded of order O(|λ|γ−1) for

some γ ≥ 0 and all Reλ > ω ≥ 0. By the general theory of Laplace transforms,

the operatorA generates an exponentially bounded, α-times integrated semigroup

Sα = (Sα(t))t≥0 for every α > γ given by

(1.1) Sα(t)x :=
1

2πi

∫

ω+σ+iR
eλtλ−αR(λ,A)x dλ

for all t ≥ 0 and x ∈ X (see, e.g., [3, Theorem 3.1]). If one takes α = n ∈ N
then it is well-known that (ACP) admits a unique mild solution u(·, x0) for every

x0 ∈ D(An), which is given explicitly by

(1.2) u(t, x0) =
dn

dtn
Sn(t)x0 =

n−1∑

k=0

tk

k!
Akx0 + Sn(t)Anx0, t ≥ 0.

In case x0 ∈ D(An+1), then u(·, x0) is a classical solution. Formula (1.2) shows

that the exponential type of u(·, x0) does not exceed that of the integrated semi-

group Sn. Also, if Sn is polynomially bounded of order β, then u(·, x0) is poly-

nomially bounded of order max{n− 1, β}.
Now, if the resolvent grows like O(|λ|γ−1), integer exponents n in (1.1) are

not optimal and should be replaced by exponents γ + ε. This leads us to study

fractionally integrated semigroups Sα. Formally, one expects that, in analogy to

the integer case, (ACP) has a mild solution u given by u(t) = dα

dtαS
α(t)x for every

x ∈ D((−A)α). Formal, but simple Laplace transform manipulations show that

this fractional derivative of Sα(·)x should be given by the singular integral

(1.3) u(t) = Γα

∫ ∞

0

1

s−1

(
s[α]−α d

[α]

dt[α]
Sα(t)− s−1 d

[α]

dt[α]
Sα(t/s)

)
(−A)α−[α]x0 ds.

Here, Γα = π−1 sin((α−[α])π) and [α] denotes the integer part of α. This integral,

however, has singularities in 0, 1, and ∞. Moreover, it is not clear whether the

fractional powers of −A exist. We overcome both problems by considering, for

β > α, the β-times integrated semigroup Sβω+σ generated by Aω+σ := A−ω− σ;

here ω is the exponential type of Sα and σ > 0 is arbitrary. The main results

show that, by doing so, we obtain mild solutions for more initial values x0 than
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by considering only the integer case, and that their behaviour is controlled by

that of the integrated semigroup as in the integer case.

Theorem 1.1. Let α ≥ 0 and A be the densely defined generator of an α-times

integrated semigroup Sα satisfying ‖Sα(t)‖ ≤ Meωt for some constants M ≥ 1,

ω ≥ 0, and all t ≥ 0. Then, for all ε > 0, σ > 0 and x0 ∈ D((−Aω+σ)α+ε),

the abstract Cauchy problem (ACP) has a unique mild solution. Moreover, this

solution is exponentially bounded, and its exponential type is at most ω. If x0 ∈
D((−Aω+σ)1+α+ε), the solution is classical.

Theorem 1.2. Let α ≥ 0, and let A be the densely defined generator of an α-times

integrated semigroup Sα satisfying ‖Sα(t)‖ ≤M(1 + tγ) for some constants M ≥
1, γ ≥ 0, and all t ≥ 0. Then, for all ε > 0, σ > 0 and all x0 ∈ D((−Aσ)α+ε),

the abstract Cauchy problem (ACP) has a unique mild solution. Moreover, this

solution is polynomially bounded, and its polynomial type is at most max{α− 1 +

ε, γ + ε, 2γ − α+ ε}. If x0 ∈ D((−Aσ)1+α+ε), the solution is classical.

In these results, we use fractional powers for operators whose resolvent exists

and is polynomially bounded in a sector {| argλ | ≤ ϕ}; cf. Section 5. However, we

would like to point out that this does not increase the difficulty of the argument.

Its complexity is caused by the generality of the setting and our efforts to obtain

the correct orders for the growth of the solutions. The fractional powers of −A in

Theorem 1.1 (resp. Theorem 1.2) exist in the classical sense if ‖Sα(t)‖ ≤Mtαeωt

for some ω ≥ 0 (resp. ω = 0). In that case, we obtain in Theorem 1.2 polynomially

bounded solutions of order α.

The results are optimal in the following sense. Suppose that A is a closed,

densely defined linear operator such that fractional powers of −A can be defined

and let α ≥ 0. Then A is the generator of an exponentially bounded β-times

integrated semigroup for every β > α if and only if the abstract Cauchy problem

(ACP) has a classical solution u(·, x) for every β > α and x ∈ D((−A)β+1) such

that u(·, x) and u′(·, x) are exponentially bounded (cf. [23]). If α ∈ N , then the

equivalence holds also for β = α (see, e.g., [5, Theorem 2.5], [16, Theorem 1] or

[19, Theorem 4.2]).

Let us briefly sketch the history of the Theorems 1.1 and 1.2. If 0 < α < 1

and ‖Sα(t)‖ ≤Mtαeωt, it was shown by M. Hieber [10] that the Cauchy problem

admits a unique classical solution for each x0 ∈ D((−Aω+1)1+α+ε), and that this

solution is exponentially bounded. He states without a proof that this result

is valid for all α ≥ 0. Although no bound for the exponential type is given,

his proof shows that it is at most 3ω. Hieber’s result was extended in [21] to
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α-times integrated semigroups, 0 < α < 1, satisfying ‖Sα(t)‖ ≤Mtβeωt for some

0 ≤ β ≤ α. The proof there also covers some cases where α and/or β are greater

than or equal to 1.

The paper is organized as follows. In Section 4, we show that for β > α and

x ∈ D((−Aω+σ)β) the integral

uω+σ(t) = Γβ

∫ ∞

0

1

s−1

(
s[β]−β d

[β]

dt[β]
Sβω+σ(t)− 1

s

d[β]

dt[β]
Sβω+σ(

t

s
)

)
(−Aω+σ)β−[β]x0 ds

converges absolutely and represents a continuous, polynomially bounded function.

Note that this is the equivalent to (1.3) for the β-times integrated semigroup Sβω+σ

generated by Aω+σ. In Section 6, we show that uω+σ(·) is a mild solution of the

problem

(ACPω+σ) u′(t) = Aω+σu(t) (t ≥ 0), u(0) = x0.

For the proof, we need detailed estimates on the behaviour of Sβω+σ and its [β]-th

derivative. We approach this problem in Section 3 by explicitly representing Sβω+σ

as a Stieltjes integral,

Sβω+σ(t)x =

∫ t

0

e−(ω+σ)(t−s)Sβ(t− s)x dgω+σ,β(s),

where gω+σ,β is the unique non-negative, non-decreasing, left-continuous function

whose Laplace-Stieltjes transform is λ−β(λ+ω+σ)β . This representation allows

us to reduce the problem of estimating Sα+ε
ω+σ to that of obtaining estimates for

certain Stieltjes integrals involving gω+σ,α+ε. These are collected in Section 2.

We return to operators A whose resolvent is polynomially bounded in the right

half plane in Section 7. Starting with different resolvent estimates we estimate

the (polynomial) growth of the integrated semigroups generated by A. This leads

to the following result.

Theorem 1.3. Let A be a densely defined linear operator on X whose resolvent

exists in the right half plane. Suppose there are α ≥ 0 and β ≥ 0, α− 1 ≤ β ≤ α,

such that

‖R(λ,A)‖ ≤M |λ|α−1(Reλ)−β , Reλ > 0.

Then, for all ε > 0, σ > 0, and x0 ∈ D((−Aσ)α+ε), the abstract Cauchy problem

(ACP) has a unique mild solution u(·, x0). Moreover, this solution is polynomially

bounded of order β + ε. If x0 ∈ D((−Aσ)1+α+ε), the solution is classical.

Note that the condition α − 1 ≤ β ≤ α is a consistency requirement which

is automatically satisfied whenever A is an operator satisfying the remaining

conditions.
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If α = β, the fractional powers are the classical ones, and we obtain polynomi-

ally bounded solutions of order α. In the special case that α = β = 1, this holds

even if D(A) is not dense in X (cf. [6, Theorem 4.10 and Remark 4.11]).

A similar result is obtained if ‖R(λ,A)‖ ≤M(1 + |λ|)α−1 for some α ≥ 0 and

all Reλ > 0, in which case we obtain solutions in D((−A)α+ε) of polynomial

order max{0, α− 1}+ ε.

In the final Section 8 we apply our results to certain differential operators on

Lp(R n) and C0(R n).

2. Preliminary estimates

In this section, we will derive estimates for certain Laplace-Stieltjes transforms

that will be useful in the sequel.

We start by recalling some basic facts concerning completely monotonic func-

tions. A C∞-function G : (0,∞) → R is said to be completely monotonic if

(−1)nG(n)(λ) ≥ 0 for all n ∈ N and λ > 0. Here G(n) denotes the nth derivative

of G. By Bernstein’s theorem [26, Theorem IV.12.b], G is completely monotonic if

and only if it is the Laplace-Stieltjes transform of a non-decreasing, non-negative,

left-continuous function g : [0,∞)→ R with g(0) = 0. The function g is uniquely

determined by G. Recall that the Laplace-Stieltjes transform G of g is defined as

G(λ) =

∫ ∞

0

e−λt dg(t), λ > 0,

where the integral is an improper Stieltjes integral. In the above situation
∫ ∞

0

e−λt dg(t) = lim
T→∞

∫ T

0

e−λt dg(t) = g(0+) + lim
ε↓0

T→∞

∫ T

ε

e−λt dg(t).

For µ ∈ C and β ≥ 0, we define the functions gµ,β : [0,∞)→ R by

gµ,β(s) = χ(0,∞)(s) +

∞∑

k=1

<β>k (µs)k

(k!)2
, s ≥ 0.

Here < β >k:= β(β − 1) . . . (β − k + 1), k = 1, 2, ..., and χ(0,∞) denotes the

characteristic function of (0,∞). For µ > 0, the following lemma identifies the

Laplace-Stieltjes transform of gµ,β.

Lemma 2.1. For each µ > 0 and β ≥ 0, the function Gµ,β(λ) = λ−β(λ + µ)β ,

λ > 0, is completely monotonic. Moreover, it is the Laplace-Stieltjes transform of

gµ,β. In particular, gµ,β is non-negative and non-decreasing.
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Proof. Fix µ > 0 and β ≥ 0. Observe that Gµ,β(λ) = F (H(λ)), where

F (λ) = λ−β and H(λ) = λ
λ+µ . It is easy to verify that F is completely monotonic.

The function H satisfies H(λ) > 0 for all λ > 0 and its derivative H ′ is completely

monotonic. By [8, Criterion XIII.4.2], it follows that Gµ,β is completely mono-

tonic.

By Bernstein’s theorem, there is a unique non-decreasing, non-negative, left-

continuous function g : [0,∞)→ R with g(0) = 0, the Laplace-Stieltjes transform

of which is Gµ,β . On the other hand, we note that for all λ > µ,

∫ ∞

0

e−λs d

(
χ(0,∞)(s) +

∞∑

k=1

<β>k (µs)k

(k!)2

)
= 1 +

∞∑

k=1

<β>k
k!

µk

λk

=
(

1 +
µ

λ

)β

= Gµ,β(λ).

The interchange of Stieltjes integral and summation is justified by [26, Theo-

rem I.16.4] applied to the partial sums. By the uniqueness theorem for the

Laplace-Stieltjes transform, it follows that g = gµ,β . �

We will need a number of estimates concerning gµ,β . Throughout the paper,

we adopt the convention that indices attached to a constant express on which

parameters the constant depends.

Lemma 2.2. For each 0 < β < 1 there is a constant Cβ such that for all ω > 0

and σ > 0 we have

∫ t

0

e−σ(t−s)dgω+σ,β(s) ≤ Cβ max

{
1,

1

ln(1 + σ
2ω )

}
σβ−1 tβ−1, t > 0.

Proof. The proof is a refinement of an argument in [21, Theorem 2.1]. Fix

0 < β < 1, ω > 0 and σ > 0. By [7, Formulas 4.1 (20), 4.3 (1), 5.4 (1) and 5.4 (8)],
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we have

∫ ∞

0

e−λt
∫ t

0

e−σ(t−s) dgω+σ,β(s) dt

=

∫ ∞

0

e−(λ+σ)t dt

∫ ∞

0

e−λt dgω+σ,β(t)

=
1

λ+ σ

(
λ+ ω + σ

λ

)β

=
1

Γ(β)

Γ(β)

λβ
(λ+ ω + σ)β

λ+ σ

=
1

Γ(β)

∫ ∞

0

e−λttβ−1dt
1

Γ(1− β)

∫ ∞

0

e−λtt−βe−(ω+σ)t

( ∞∑

k=0

k!

(1− β)k

(ωt)k

k!

)
dt

=
1

Γ(β)Γ(1− β)

∫ ∞

0

e−λt
∫ t

0

(t− s)β−1s−βe−(ω+σ)s

( ∞∑

k=0

(ωs)k

(1− β)k

)
ds dt,

where (u)0 = 1 and (u)k = u(u + 1) . . . (u + k − 1) if k ≥ 1. The uniqueness

theorem for Laplace transforms gives

∫ t

0

e−σ(t−s)dgω+σ,β(s)

=
1

Γ(β)Γ(1−β)

∫ t

0

(t− s)β−1s−βe−(ω+σ)s

( ∞∑

k=0

(ωs)k

(1− β)k

)
ds.

(2.1)

We are going to estimate the integral in (2.1). Since 0 < β < 1, we have (1−β)k ≥
(1− β)(k − 1)! for all k ≥ 1. Hence,

(2.2)

∞∑

k=0

(ωs)k

(1− β)k
≤ 1

1− β

(
1 +

∞∑

k=1

(ωs)k

(k − 1)!

)
.

Put δ := σ
2ω . The function ξ 7−→ ξ(1 + δ)−ξ, ξ > 0, attains its maximum at the

point ξ = (ln(1 + δ))−1, where it takes the value (e ln(1 + δ))−1. It follows that

k ≤ 1

e ln(1 + δ)
(1 + δ)k, k = 1, 2, ....
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Put cδ = (ln(1 + δ))−1. By this and the definition of δ,

1 +

∞∑

k=1

(ωs)k

(k − 1)!
= 1 +

∞∑

k=1

k(ωs)k

k!

≤ max{1, cδ}
∞∑

k=0

1

k!
((1 + δ)ωs)k

= max{1, cδ}e(ω+σ
2 )s.

(2.3)

Next, using that e−
ξ
4 ≤ Cθξ−θ for all ξ > 0 and some constant Cθ, we have

∫ t

0

(t− s)β−1

sβ
e−

σ
2 sds =

∫ t
2

0

(t− s)β−1

sβ
e−

σ
2 sds+

∫ t

t
2

(t− s)β−1

sβ
e−

σ
2 sds

≤
(
t

2

)β−1∫ ∞

0

s−βe−
σ
2 sds+

(
t

2

)−β
e−

σ
4 t

∫ t
2

0

sβ−1ds

=

(
t

2

)β−1(σ
2

)β−1

Γ(1− β) +
1

β
e−

σ
4 t

≤ kβ σ
β−1tβ−1

(2.4)

for every t > 0. Combining (2.1), (2.2), (2.3), and (2.4), we obtain

∫ t

0

e−σ(t−s)dgω+σ,β(s) ≤ Cβ

∫ t

0

(t− s)β−1s−βe−(ω+σ)s

(
1 +

∞∑

k=1

(ωs)k

(k − 1)!

)
ds

≤ C ′β

∫ t

0

(t− s)β−1s−βe−(ω+σ)s
(

max{1, cδ}e(ω+σ
2 )s
)
ds

≤ C ′′β max{1, cδ}σβ−1tβ−1.

�

Upon letting ω ↓ 0 we see that gω+σ → gσ pointwise. Since each of the

functions gω+σ, ω ≥ 0, is non-decreasing and non-negative, we can apply [26,

Theorem I.16.4] and obtain:

Corollary 2.3. For each 0 < β < 1 there is a constant Cβ such that for all σ > 0

and all t > 0 we have
∫ t

0

e−σ(t−s)dgσ,β(s) ≤ Cβσ
β−1tβ−1.

Next, we consider the case that there is also a polynomial term.
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Corollary 2.4. For each 0 < β < 1 and γ ≥ 0 there is a constant Cβ,γ such that

for all ω > 0, σ > 0, and t > 0 we have

∫ t

0

e−σ(t−s) (t− s)γ dgω+σ,β(s) ≤ Cβ,γ
σβ−γ−1

ln(1 + σ
4ω+2σ )

tβ−1.

Proof. Fix 0 < β < 1, γ ≥ 0, ω > 0, and σ > 0. The function ξ 7→ ξγe−
σ
2 ξ,

ξ > 0, takes its maximum in the point ξ = 2γσ−1, and the maximum value is

(2γσ−1)γe−γ . Therefore, there exists a constant Cγ such that

(2.5) ξγ ≤ Cγσ−γe
σ
2 ξ, ξ > 0.

By Lemma 2.2 (applied to ω 7→ ω + 1
2σ and σ 7→ 1

2σ) and (2.5),

∫ t

0

e−σ(t−s) (t− s)γ dgω+σ,β(s)

≤ Cγ σ
−γ
∫ t

0

e−
σ
2 (t−s) dgω+σ,β(s)

≤ Cγ σ
−γ Cβ max

{
1,

(
ln

(
1 +

1
2σ

2(ω + 1
2σ)

))−1
}
σβ−1 tβ−1.

Since the term containing the logarithm is always greater than 1, the proof of the

corollary is complete. �

Upon letting ω ↓ 0, we obtain:

Corollary 2.5. For each 0 < β < 1 and γ ≥ 0 there is a constant Cβ,γ such that

for all σ > 0 and t > 0 we have

∫ t

0

e−σ(t−s) (t− s)γ dgσ,β(s) ≤ Cβ,γ σ
β−γ−1 tβ−1.

3. α-Times integrated semigroups and perturbations with the

identity

The concept of n-times integrated semigroups, with n ∈ N , was introduced

by W. Arendt in 1987 ([1], see also [13] and [19]). A little later, M. Hieber [10]

introduced α-times integrated semigroups for all α ∈ R , α ≥ 0.

Let α ≥ 0. A closed linear operatorA is called the generator of an exponentially

bounded α-times integrated semigroup if and only if (ω,∞) ⊂ %(A) for some ω ≥ 0,
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and there exists a strongly continuous mapping Sα : [0,∞) → B(X) satisfying

‖Sα(t)‖ ≤Meωt for some M ≥ 1 and all t ≥ 0, such that

(3.1) R(λ,A)x = λα
∫ ∞

0

e−λtSα(t)x dt

for all x ∈ X and λ > ω. In this case, Sα = (Sα(t))t≥0 is called the exponentially

bounded α-times integrated semigroup generated by A.

Note that an exponentially bounded 0-times integrated semigroup is a C0-semi-

group and vice versa.

If A is the generator of an exponentially bounded α-times integrated semi-

group Sα, then A also generates an exponentially bounded β-times integrated

semigroup for each β > α, which is given by

(3.2) Sβ(t)x =
1

Γ(β−α)

∫ t

0

(t− s)β−α−1Sα(s)x ds.

For every x ∈ D(A) and t ≥ 0, we have

Sα(t)x ∈ D(A), ASα(t)x = Sα(t)Ax, and

Sα(t)x =
tα

Γ(α+1)
x +

∫ t

0

Sα(r)Axdr.
(3.3)

For details, we refer to [10].

Throughout the following, we assume that A is the generator of an exponen-

tially bounded α-times integrated semigroup Sα. By [α], we denote the integer

part of α, i.e. the unique integer such that [α] ≤ α < [α] + 1.

Lemma 3.1. Let 0 ≤ m ≤ [α] and x ∈ D(Am). Then Sα(·)x ∈ Cm([0,∞), X)

and

dm

dtm
Sα(t)x =

m∑

k=1

tα−k

Γ(α−k+1)
Am−kx + Sα(t)Amx

for all t ≥ 0.
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Proof. For m = 0, the assertion is trivial and for m = 1, it follows directly from

(3.3). If m ≥ 2, we obtain by (3.3) that

Sα(t)x =
tα

Γ(α+1)
x+

∫ t

0

( rα1
Γ(α+1)

Ax+

∫ r1

0

(
. . .+

∫ rm−2

0

( rαm−1

Γ(α+1)
Am−1x

+

∫ rm−1

0

Sα(rm)Amx drm

)
drm−1 . . .

)
dr2

)
dr1

=
tα

Γ(α+1)
x+

tα+1

Γ(α+2)
Ax+ . . .+

tα+m−1

Γ(α+m)
Am−1x

+

∫ t

0

∫ r1

0

. . .

∫ rm−1

0

Sα(rm)Amx drm . . . dr2 dr1

for all t ≥ 0. This yields the claim. �

In particular, it follows that the Laplace transform of (dm/dtm)Sα(·)x exists

for all λ > ω.

Lemma 3.2. Let 0 ≤ m ≤ [α] and x ∈ D(Am). For every λ > ω we have

∫ ∞

0

e−λt
dm

dtm
Sα(t)x dt =

R(λ,A)x

λα−m
.

Proof. By Lemma 3.1, the Laplace transforms of (dk/dtk)Sα(·)x (0 ≤ k ≤
m) exist for all λ > ω. Since Sα(0)x = 0, it follows from Lemma 3.1 that

(dk/dtk)Sα(t)x|t=0 = 0 for every 0 ≤ k ≤ m− 1. Integrating by parts, we obtain

∫ ∞

0

e−λt
dm

dtm
Sα(t)x dt = λm

∫ ∞

0

e−λtSα(t)x dt = λm
R(λ,A)x

λα
=

R(λ,A)x

λα−m

for every λ > ω. �

Lemma 3.2 and formula (3.1) motivate us to introduce the notation

Sα−m(t)x :=
dm

dtm
Sα(t)x, 0 ≤ m ≤ [α].

Whenever A generates an (α −m)-times integrated semigroup Sα−m, it is given

by (dm/dtm) Sα(·), in agreement with our notation. Later, we will mainly work

with Sα−[α](·) rather than with Sα(·) itself. In this way, what we essentially

achieve is a reduction to the case 0 < α < 1.

The following perturbation result explains the importance of the functions gµ,β
introduced in Section 2.
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Proposition 3.3. Let α ≥ 0 and let A be the generator of an exponentially

bounded α-times integrated semigroup Sα. Let µ ∈ C . Then Aµ := A − µ

generates an exponentially bounded α-times integrated semigroup Sαµ , and we have

the following relation between Sα and Sαµ . For all t ≥ 0 and x ∈ X,

Sαµ (t)x =

∫ t

0

e−µ(t−s)Sα(t− s)x dgµ,α(s).

Proof. By assumption, there exist constants M ≥ 1 and ω ≥ 0 such that

‖Sα(t)‖ ≤Meωt for all t ≥ 0. For λ ∈ C , Reλ > |µ|+ ω, we obtain

R(λ,Aµ)x

λα
=
(

1 +
µ

λ

)α R(λ+ µ,A)x

(λ+ µ)α

=

(
1 +

∞∑

k=1

<α>k µ
k

k!

1

λk

)
R(λ+ µ,A)x

(λ+ µ)α

=
R(λ+ µ,A)x

(λ+ µ)α
+ lim

n→∞
Rn(λ),

(3.4)

where

Rn(λ) :=

n∑

k=1

<α>k µ
k

k!

1

λk
R(λ+ µ,A)x

(λ + µ)α

=

n∑

k=1

<α>k µ
k

k!

∫ ∞

0

e−λtf [k](t) dt

=

∫ ∞

0

e−λtd

(
n∑

k=1

<α>k µ
k

k!
f [k+1](t)

)
,

and

f [j](t) :=

∫ t

0

(t− s)j−1

(j − 1)!
e−µsSα(s)x ds t ≥ 0, j ≥ 1,
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is the j-th antiderivative of f(t) := e−µtSα(t)x. Choose c > |µ| such that

‖f(t)‖ ≤M ′ect for all t ≥ 0. Then, for all k ≥ 1 and t, h ≥ 0,

‖f [k+1](t+ h)− f [k+1](t)‖ ≤
∫ t+h

t

‖f [k](s)‖ds

=

∫ t+h

t

∥∥∥∥
∫ s

0

(s− r)k−1

(k − 1)!
f(r) dr

∥∥∥∥ ds

≤
∫ t+h

t

∫ s

0

rk−1

(k − 1)!
M ′ec(s−r)dr ds

≤ M ′
∫ t+h

t

ecs
∫ ∞

0

rk−1

(k − 1)!
e−crdr ds

=
M ′

ck

∫ t+h

t

ecsds.

It follows that sn(t) :=
∑n
k=1(k!)−1 <α>k µ

k f [k+1](t) (n ≥ 1) satisfies sn(0) = 0

and

‖sn(t+ h)− sn(t)‖ ≤ M ′
n∑

k=1

| <α>k |
k!

( |µ|
c

)k ∫ t+h

t

ecsds

≤ M ′[α+ 1]!

(
1

1− |µ|c

)∫ t+h

t

ecsds

for all t, h ≥ 0. This estimate shows that the functions sn(·) are locally of uni-

formly bounded variation.

Since for λ > |µ| + ω, λ−1Rn(λ) =
∫∞

0 e−λtsn(t) dt converges as n → ∞
(by (3.4)), the Trotter-Kato theorem of Laplace transforms (see, e.g., [9, Corol-

lary 4.3]) yields that the functions sn(·) converge (uniformly on compacta) to

s(·) given by s(t) =
∑∞
k=1

<α>k
k! µk f [k+1](t). Further, s(·) satisfies s(0) = 0, and

limn→∞ Rn(λ) =
∫∞

0
e−λt ds(t) for λ > |µ|+ ω.

Similarly, we obtain that s′n(t) =
∑n
k=1

<α>k
k! µk f [k](t) converges (uniformly

on compacta). It follows that s(·) is differentiable and its derivative is given by

s′(t) =
∑∞

k=1
<α>k
k! µk f [k](t). Thus,

R(λ,Aµ)x

λα
=

∫ ∞

0

e−λt
(
f(t) +

∞∑

k=1

<α>k µ
k

k!
f [k](t)

)
dt, λ > |µ|+ ω

and

Sαµ (t)x = e−µtSα(t)x +

∞∑

k=1

<α>k µ
k

k!

∫ t

0

(t− s)k−1

(k − 1)!
e−µsSα(s)x ds, t ≥ 0.
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Next, we use that

lim
n→∞

n∑

k=1

<α>k µ
k

k!

(t− s)k−1

(k − 1)!
e−µsSα(s)x

=

∞∑

k=1

<α>k µ
k

k!

(t− s)k−1

(k − 1)!
e−µsSα(s)x

uniformly on compacta. Hence, we can interchange summation and integration.

A change of variables yields

Sαµ (t)x = e−µtSα(t)x +

∫ t

0

∞∑

k=1

<α>k µ
k

k!

sk−1

(k − 1)!
e−µ(t−s)Sα(t− s)x ds

=

∫ t

0

e−µ(t−s)Sα(t− s)x d
(
χ(0,∞)(s) +

∞∑

k=1

<α>k (µs)k

(k!)2

)

=

∫ t

0

e−µ(t−s)Sα(t− s)x dgµ,α(s).

By the definition of gµ,α, this completes the proof. �

Using the representation of Sαµ (t) given in Proposition 3.3, it follows that

‖Sαµ (t)‖ ≤ Kect, where c = max{ω−Reµ, |µ|}, for some K = Kα,µ ≥ 0 and

all t ≥ 0. By replacing the role of α by α − [α] in Proposition 3.3, the same

argument shows:

Proposition 3.4. Let x ∈ D(A[α]) and µ ∈ C . Then for every t ≥ 0,

Sα−[α]
µ (t)x =

∫ t

0

e−µ(t−s)Sα−[α](t− s)x dgµ,α−[α](s).

Note that if α− [α] = 0, that is if α is an integer, the function gµ,0 in Propo-

sition 3.4 is given by gµ,0(t) = χ(0,∞)(t), t ≥ 0. Hence, in this case for all

x ∈ D(A[α]) and t ≥ 0 we have S0
µ(t)x = e−µtS0(t)x.

4. A singular integral

In this section, we apply the results of Sections 2 and 3 to estimate the singular

integrals

(4.1) vρ(t, x) := Γα,ε

∫ ∞

0

1

s−1

(
s[α+ε]−α−εSα+ε−[α+ε]

ρ (t)− 1

s
Sα+ε−[α+ε]
ρ (

t

s
)

)
x ds,
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where Γα,ε := π−1sin(α + ε− [α+ ε])π. As we will see later, for certain initial

values the solutions of the abstract Cauchy problem can be represented by inte-

grals of this form.

We start by proving estimates for ‖Sα+ε−[α+ε]
ρ (t)x‖ (x ∈ D(A[α+ε])). Later,

it will be important to have such estimates in the cases that Sα satisfies either

‖Sα(t)‖ ≤M(1 + tγ) or ‖Sα(t)‖ ≤Meωt. For this reason, we assume throughout

that ‖Sα(t)‖ ≤ M(1 + tγ)eωt and specialize later to the cases γ = 0 and ω = 0.

By ‖x‖m :=
∑m
k=0 ‖Akx‖ we denote the graph norm on D(Am).

Lemma 4.1. Let α > 0, α 6∈ N , and A be the generator of an α-times integrated

semigroup Sα satisfying ‖Sα(t)‖ ≤M(1 + tγ)eωt for some M ≥ 1, γ ≥ 0, ω ≥ 0

and all t ≥ 0. Then there is a constant Cα,γ such that for all t > 0, 0 < σ ≤ 1

and x ∈ D(A[α]),

‖Sα−[α]
ω+σ (t)x‖ ≤ MCα,γ

σmin{−[α],α−[α]−γ−1}

ln(1 + σ
4ω+2σ )

tα−[α]−1 ‖x‖[α].

Proof. First, assume ω > 0. Put β := α − [α] and note that 0 < β < 1. By

Proposition 3.4, Lemma 3.1, Corollary 2.5, Lemma 2.2, and Corollary 2.4, and

the facts that gω+σ,β is non-negative and non-decreasing and that σ
2ω ≥ σ

4ω+2σ ,

we have

‖Sβω+σ(t)x‖

≤
∫ t

0

e−(ω+σ)(t−s)‖Sβ(t− s)x‖ dgω+σ,β(s)

≤
∫ t

0

e−(ω+σ)(t−s)




[α]∑

k=1

(t− s)α−k
Γ(α−k+1)

+M(1 + (t− s)γ)eω(t−s)


‖x‖[α] dgω+σ,β(s)

≤
[α]∑

k=1

Cα,k(ω + σ)β−α+k−1tβ−1‖x‖[α] +MCα,γ
σβ−1 + σβ−γ−1

ln(1 + σ
4ω+2σ )

tβ−1‖x‖[α].

We now estimate (ω+σ)β−α+k−1 by σβ−α+k−1 and use that 0 < σ ≤ 1. By taking

the most negative powers of σ in the resulting expression, the desired estimate is

obtained.

Upon letting ω ↓ 0, and using that Sαµ (t)x depends continuously on µ ≥ 0 by

Proposition 3.3, the result follows for ω = 0. �

This lemma will be used to derive certain Hölder-type continuity properties of

the map t 7−→ S
α−[α]
µ (t)x.
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Lemma 4.2. Let α ≥ 0 and let A be the generator of the α-times integrated

semigroup Sα satisfying ‖Sα(t)‖ ≤M(1 + tγ)eωt for some M ≥ 1, γ ≥ 0, ω ≥ 0

and all t ≥ 0. Let ε > 0 such that β := α + ε 6∈ N . Put δ := 1
2 min{ε, β − [β]}.

Then there exists a constant Cα,ε,γ such that

∥∥∥Sβ−[β]
ω+σ (t)x − Sβ−[β]

ω+σ (τ)x
∥∥∥ ≤MCα,ε,γ

eω+1σmin{−[β],β−[β]−γ−ε−1}

ln(1 + σ
4ω+2σ )

(t− τ)δ‖x‖[β]

for all 0 ≤ τ ≤ t, 0 < σ ≤ 1 and x ∈ D(A[β]).

Proof. Let ρ := ε− δ and η := α+ ρ = β− δ. Then η > α, η 6∈ N and [η] = [β].

By (3.2) we have

Sη(t)x =
1

Γ(ρ)

∫ t

0

(t− s)ρ−1Sα(s)x ds, x ∈ X, t ≥ 0.

Hence

(4.2) ‖Sη(t)‖ ≤ M

Γ(ρ+ 1)
tρ(1 + tγ)eωt ≤ MCρ(1 + tγ+ρ)eωt, t ≥ 0.

Let 0 < σ ≤ 1 and x ∈ D(A[η]). By (4.2) and Lemma 4.1, for t > 0 we have

(4.3) ‖Sη−[η]
ω+σ (t)x‖ ≤ MCη,γ,ρ

σmin{−[η],η−[η]−γ−ρ−1}

ln(1 + σ
4ω+2σ )

‖x‖[η].

We need a better estimate for 0 ≤ t ≤ 1, which we will produce next. By

Proposition 3.4 and Lemma 3.1, (4.2), (2.5), and the fact that gω+σ,η−[η] is non-

negative and non-decreasing, for all 0 ≤ t ≤ 1 we obtain

‖Sη−[η]
ω+σ (t)x‖

≤
∫ t

0

e−(ω+σ)(t−s)‖Sη−[η](t− s)x‖ dgω+σ,η−[η](s)

≤
∫ t

0

e−(ω+σ)(t−s)




[η]∑

k=1

(t− s)η−k
Γ(η−k+1)

+MCρ(1 + (t−s)γ+ρ)eω(t−s)


‖x‖[η]

dgω+σ,η−[η](s)

≤MC ′η,γ,ρ




[η]∑

k=1

σ−η+k + 1 + σ−γ−ρ


 ‖x‖[η] gω+σ,η−[η](t)

≤MC ′η,γ,ρ([η]σ−η+1 + 1 + σ−γ−ρ) ‖x‖[η] e
ω+1.

(4.4)

In the last estimate, we used the assumptions 0 < σ ≤ 1, 0 ≤ t ≤ 1, and the fact

that by the definition of gω+σ,η−[η] we have gω+σ,η−[η](t) ≤ e(ω+σ)t.
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Combining (4.3) and (4.4), we see that there exists a constant C ′′η,γ,ρ such that

(4.5) ‖Sη−[η]
ω+σ (t)x‖ ≤ MC ′′η,γ,ρ

eω+1σmin{−[η],η−[η]−γ−ρ−1}

ln(1 + σ
4ω+2σ )

‖x‖[η], t > 0.

Since [η] = [β] we have

S
β−[β]
ω+σ (t)x = S

η−[η]+δ
ω+σ (t)x =

1

Γ(δ)

∫ t

0

(t− s)δ−1S
η−[η]
ω+σ (s)x ds,

and, using (4.5), it follows that

‖Sβ−[β]
ω+σ (t)x− Sβ−[β]

ω+σ (τ)x‖

=
1

Γ(δ)

∥∥∥
∫ t

τ

(t−s)δ−1S
η−[η]
ω+σ (s)x ds +

∫ τ

0

(
(t−s)δ−1 − (τ−s)δ−1

)
S
η−[η]
ω+σ (s)x ds

∥∥∥

≤MCη,γ,δ,ρ

(∫ t

τ

(t−s)δ−1ds+

∫ τ

0

(
(τ−s)δ−1− (t−s)δ−1

)
ds

)

· e
ω+1σmin{−[η],η−[η]−γ−ρ−1}

ln(1 + σ
4ω+2σ )

‖x‖[η]

= MC ′η,γ,δ,ρ
(
(t−τ)δ + τ δ − (tδ − (t−τ)δ)

) eω+1σmin{−[η],η−[η]−γ−ρ−1}

ln(1 + σ
4ω+2σ )

‖x‖[η]

≤ 2MC ′η,γ,δ,ρ (t−τ)δ
eω+1 σmin{−[η],η−[η]−γ−ρ−1}

ln(1 + σ
4ω+2σ )

‖x‖[η]

for all 0 ≤ τ ≤ t. Since [η] = [β], and since η, ρ and δ depend only on α and ε,

the proof is complete. �

We are now in the position to give conditions under which the integral (4.1)

converges.

Lemma 4.3. Let α ≥ 0 and let Sα be an α-times integrated semigroup satisfying

‖Sα(t)‖ ≤ M(1 + tγ)eωt for some M ≥ 1, γ ≥ 0, ω ≥ 0 and all t ≥ 0. Let

ε > 0 such that α + ε 6∈ N . Then for all x ∈ D(A[α+ε]), 0 < σ ≤ 1, and t ≥ 0,

the integral vω+σ(t, x) converges absolutely. Moreover, the map t 7−→ vω+σ(t, x)

(t ≥ 0) is continuous and polynomially bounded.

Proof. The integral has singularities in 0, 1, and ∞. We split it accordingly

in three parts:
∫∞

0 =
∫ 1

2

0 +
∫ 2

1
2

+
∫∞

2 = (I) + (II) + (III) and estimate these

separately.
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Put β := α + ε and δ := 1
2 min{ε, β − [β]}. By Lemma 4.2, there exists a

constant C = Cα,γ,ε,ω,σ,M > 0 such that
∥∥∥Sβ−[β]

ω+σ (t)x − Sβ−[β]
ω+σ (τ)x

∥∥∥ ≤ C (t− τ)δ ‖x‖[β], 0 ≤ τ ≤ t.

Since S
β−[β]
ω+σ (0)x = 0, in particular we have

∥∥∥Sβ−[β]
ω+σ (t)x

∥∥∥ ≤ C tδ ‖x‖[β], t ≥ 0.

The β-times integrated semigroup Sβ satisfies ‖Sβ(t)‖ ≤ 2M
Γ(1+ε) (1 + tγ+ε)eωt

(t ≥ 0), cf. the proof of (4.2). Therefore, by Lemma 4.1, there exists a constant

K = Kα,γ,ε,ω,σ,M > 0 such that
∥∥∥Sβ−[β]

ω+σ (t)x
∥∥∥ ≤ K tβ−[β]−1 ‖x‖[β], t > 0.

Combining these facts, it follows that

‖(I)‖ ≤
∫ 1

2

0

2s−β+[β]Ctδ‖x‖[β] ds +

∫ ∞

2t

2

s

∥∥∥Sβ−[β]
ω+σ (s)x

∥∥∥ ds

≤ C1t
δ‖x‖[β] +

∫ 1

min{2t,1}

2

s
Csδ‖x‖[β] ds +

∫ ∞

1

2

s
Ksβ−[β]−1‖x‖[β] ds

= C2 (tδ + 1) ‖x‖[β];

‖(II)‖ ≤
∫ 2

1
2

1

|s−1|s
−β+[β]

∥∥∥Sβ−[β]
ω+σ (t)x − Sβ−[β]

ω+σ (
t

s
)x
∥∥∥ds

+

∫ 2

1
2

1

|s−1|
∣∣∣s−β+[β] − s−1

∣∣∣
∥∥∥∥S

β−[β]
ω+σ (

t

s
)x

∥∥∥∥ ds

≤
∫ 2

1
2

1

|s−1|s
−β+[β]C

∣∣∣∣t−
t

s

∣∣∣∣
δ

‖x‖[β] ds

+

∫ 2

1
2

1

|s−1|
∣∣∣s−β+[β] − s−1

∣∣∣C
( t
s

)δ‖x‖[β] ds

= C3 t
δ ‖x‖[β];

‖(III)‖ ≤
∫ ∞

2

1

s−1

(
s−β+[β]Ctδ‖x‖[β] + s−1C(

t

s
)δ‖x‖[β]

)
ds = C4t

δ‖x‖[β].

These estimates yield that vω+σ(t, x) converges absolutely for all x ∈ D(A[β]),

t ≥ 0 and 0 < σ ≤ 1. Moreover, the convergence is uniform for t in compact

subsets of [0,∞). Therefore, the map t 7−→ vω+σ(t, x) (t ≥ 0) is continuous.
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The polynomial boundedness of vω+σ(·, x) (t ≥ 0) is again a consequence of the

estimates above. �

We now turn to the case ω = 0 emphasizing the σ-dependence of the inte-

gral vσ(t, x). Such estimates are necessary to obtain polynomial bounds for our

solutions of the abstract Cauchy problem.

Lemma 4.4. Let α ≥ 0 and let Sα be an α-times integrated semigroup satisfying

‖Sα(t)‖ ≤ M(1 + tγ) for some M ≥ 1, γ ≥ 0 and all t ≥ 0. Let ε > 0 such that

α+ ε 6∈ N . Then there exists a constant Cα,γ,ε such that

‖vσ(t, x)‖ ≤ MCα,γ,ε σ
min{−[α+ε],α−[α+ε]−γ−1} tα+ε−[α+ε]−1 ‖x‖[α+ε]

for all t ≥ 2, 0 < σ ≤ 1, and x ∈ D(A[α+ε]).

Proof. Fix 0 < η ≤ η0 < 1 and split the integral in three parts as follows:∫∞
0

=
∫ 1−η

0
+
∫ 1+η

1−η +
∫∞

1+η
= (I) + (II) + (III). Later, we will make a judicious

choice for η0 and η depending on t.

Put β := α+ ε and δ := 1
2 min{ε, β − [β]}. By Lemma 4.2 we have

∥∥∥Sβ−[β]
σ (t)x− Sβ−[β]

σ (τ)x
∥∥∥ ≤ MCα,ε,γσ

min{−[β],β−[β]−γ−ε−1}(t− τ)δ‖x‖[β]

for some constant Cα,γ,ε > 0 and all 0 ≤ τ ≤ t, 0 < σ ≤ 1 and x ∈ D(A[β]).

The β-times integrated semigroup Sβ satisfies

‖Sβ(t)‖ ≤ MCε(1 + tγ+ε), t ≥ 0,

and hence by Lemma 4.1 we obtain

‖Sβ−[β]
σ (t)x‖ ≤ MKα,γ,ε σ

min{−[β],β−[β]−γ−ε−1}tβ−[β]−1‖x‖[β].

for some constant Kα,γ,ε > 0 and all t > 0, 0 < σ ≤ 1 and x ∈ D(A[β]). We will

now estimate (I), (II), and (III) separately.

First, for (I) we have

‖(I)‖ ≤MKα,γ,ε‖x‖[β]σ
min{−[β],β−[β]−γ−ε−1}

·
∫ 1−η

0

1

|s−1|
(
s−β+[β]tβ−[β]−1 + s−1(t/s)β−[β]−1

)
ds

= 2MKα,γ,ε‖x‖[β] σ
min{−[β],β−[β]−γ−ε−1} tβ−[β]−1

∫ 1−η

0

1

|s−1|s
−β+[β] ds.
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Next, for (II) we have

‖(II)‖ ≤
∫ 1+η

1−η

1

|s− 1|s
−β+[β]

∥∥∥Sβ−[β]
σ (t)x − Sβ−[β]

σ (
t

s
)x
∥∥∥ ds

+

∫ 1+η

1−η

1

|s− 1|
∣∣∣s−β+[β] − s−1

∣∣∣
∥∥∥∥Sβ−[β]

σ (
t

s
)x

∥∥∥∥ ds

≤ MCα,γ,ε‖x‖[β] σ
min{−[β],β−[β]−γ−ε−1} tδ

∫ 1+η

1−η

1

|s−1|1−δ s
−β+[β]−δ ds

+MKα,γ,ε‖x‖[β] σ
min{−[β],β−[β]−γ−ε−1} tβ−[β]−1

·
∫ 1+η

1−η

∣∣s−β+[β] − s−1
∣∣

|s− 1| s−β+[β]+1 ds.

Finally, we estimate (III):

‖(III)‖ ≤ 2MKα,γ,ε‖x‖[β] σ
min{−[β],β−[β]−γ−ε−1} tβ−[β]−1

∫ ∞

1+η

1

s− 1
s−β+[β] ds.

Now,
∫ 1−η

0

1

|s− 1|s
−β+[β] ds ≤ 2

∫ 1
2

0

s−β+[β] ds+

(
1− η

2

)−β+[β] ∫ 1−η

(1−η)/2

1

1− s ds

≤ 2β−[β]

1− β + [β]
+

(
1− η0

2

)−β+[β]

ln
1

η
;

∫ 1+η

1−η

1

|s− 1|1−δ s
−β+[β]−δds ≤ (1− η)−β+[β]−δ

∫ 1+η

1−η

1

|s− 1|1−δ ds

≤ (1− η0)−β+[β]−δ 2δ−1ηδ ;

∫ 1+η

1−η

∣∣s−β+[β] − s−1
∣∣

|s− 1| s−β+[β]+1ds ≤ (1− η)−β+[β]

∫ 1+η

1−η

∣∣s1−β+[β] − 1
∣∣

|s− 1| ds

≤ (1− η0)−β+[β]2η0(1− η0)−β+[β](1−β+[β])

≤ 2(1− η0)2(−β+[β]);

∫ ∞

1+η

1

s−1
s−β+[β] ds ≤

∫ 2

1+η

1

s− 1
ds+ 2

∫ ∞

2

s−β+[β]−1 ds = ln
1

η
+

21−β+[β]

β
.

In the estimate of the third integral we applied the mean value theorem and in

the estimate of the fourth integral we used that (s− 1)−1 ≤ 2s−1 for all s ≥ 2.
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Putting everything together, we obtain

‖vσ(t, x)‖ ≤MCα,γ,ε,η0‖x‖[β]σ
min{−[β],β−[β]−γ−ε−1}

(
tβ−[β]−1(1 + ln

1

η
) + tδηδ

)
.

So far, these estimates are valid for all t > 0 and 0 < η ≤ η0 < 1. We now fix

t ≥ 2, and take η = t(β−[β]−1−δ)/δ and η0 = 2(β−[β]−1−δ)/δ. This gives

‖vσ(t,x)‖ ≤MC ′α,γ,ε,η0
‖x‖[β]σ

min{−[β],β−[β]−γ−ε−1}
(
tβ−[β]−1(1+ ln t)+tβ−[β]−1

)
.

Finally, since δ and η0 depend only on α and ε, the proof of the lemma is complete.

�

5. Fractional powers

In this section, we introduce the fractional powers of the generator of an ex-

ponentially bounded α-times integrated semigroup.

Let A be a closed, densely defined linear operator on X and assume that

there are constants 0 < a < π
2 , M ≥ 1, and γ ≥ −1 such that the sector

Σa := {λ ∈ C : | argλ| ≤ a} ∪ {0} is contained in %(A) and

(5.1) ‖R(λ,A)‖ ≤ M(1 + |λ|)γ , λ ∈ Σa.

Since 0 ∈ %(A), it follows that in fact R(λ,A) exists and satisfies (6.1) on Σa∪Bδ
for some δ > 0 and Bδ := {λ ∈ C : |λ| ≤ δ} (with possibly a different constantM).

Following [22], fractional powers of −A can be defined as follows.

For every b ∈ R , we let ≺ b �:= max{0, [b]− [−γ] + 2}. Let Γ be the (upwards

oriented) boundary of Σa ∪ Bδ, where δ > 0 is as above. We define (−A)b as the

closure of the operator J b given on D(Jb) = D(A≺b�) by

Jbx =





1

2πi

∫

Γ

(−λ)bR(λ,A)x dλ if b < 0,

1

2πi

∫

Γ

(−λ)b−[b]−1R(λ,A)(−A)[b]+1x dλ if b ≥ 0.

The space D(A0) is understood to be X .

In the case that γ = −1, the definition is consistent with the usual definition

of fractional powers as given in [24].

The operators (−A)b satisfy the following properties. For the proofs of the

statements, we refer to [22] and [23].

(P1) The operators (−A)b are closed and densely defined; if b < −(γ+1), then

(−A)b ∈ B(X).



22 J.M.A.M. VAN NEERVEN AND B. STRAUB

(P2) If b is an integer, then (−A)b is the usual power of −A. If b is not an

integer, then for all x ∈ D(A≺b�),

(−A)bx =
sin([b] + 1− b)π

π

∫ ∞

0

tb−[b]−1R(t, A)(−A)[b]+1x dt.

If A is bounded, this holds for all x ∈ X .

(P3) The operators (−A)b are injective, and (−A)−b(−A)b = ID((−A)b).

(P4) For all b, c ∈ R , we have (−A)b+c ⊆ (−A)b(−A)c with equality if |b+c| >
γ + 1 or b+ c is an integer.

(P5) Let b ∈ R such that (−A)−b ∈ B(X) and let c ∈ R . Then D((−A)b) ⊆
D((−A)c) if and only if (−A)c−b ∈ B(X).

For every σ > 0, the operator Aσ = A − σ also satisfies condition (5.1) (with

possibly a different constantM). Concerning the domains of the fractional powers

of −A and of −Aσ = −(Aσ), we have the following results.

(P6) If b > γ + 1, then D((−Aσ)b) does not depend on σ ≥ 0, that is,

D((−Aσ)b) = D((−A)b) for all σ > 0.

(P7) For all b ∈ R and 0 < σ0 < σ1, we have

(−Aσ0)b(−Aσ1 )−b =
(
(−Aσ1)(−Aσ0 )−1

)−b
.

If A is the densely defined generator of α-times integrated semigroup Sα satis-

fying ‖Sα(t)‖ ≤ Mtβeωt for some constants M ≥ 1, ω ≥ 0, β ≥ 0, and all t ≥ 0,

it follows from (3.1) that {λ ∈ C : Reλ > ω} ⊂ %(A) and that

(5.2) ‖R(λ,A)‖ ≤ |λ|α
∫ ∞

0

e−ReλtMtβeωtdt = MΓ(β + 1)
|λ|α

(Reλ− ω)β+1

for all Reλ > ω. For σ > 0 consider the operator Aω+σ = A − ω − σ. Let

0 < a < π
2 and 0 < δ < σ. Then Σa ∪ Bδ ⊆ {λ ∈ C : Reλ > −σ} ⊆ %(Aω+σ).

Since Reλ ≥ |λ| cosa for all λ ∈ Σa, we obtain by (5.2) that

‖R(λ,Aω+σ)‖ = ‖R(λ+ ω + σ,A)‖

≤ MΓ(β + 1)

(cosa)β+1

(|λ|+ ω + σ)α

(|λ|+ σ
cos a )β+1

≤ MC(1 + |λ|)α−β−1

(5.3)

for some C = Cα,β,ω,σ,a > 0 and all λ ∈ Σa. By applying this to β = 0

and β = γ it follows that if ‖Sα(t)‖ ≤ M(1 + tγ)eωt, then ‖R(λ,Aω+σ)‖ ≤
MC

(
(1 + |λ|)α−1 + (1 + |λ|)α−γ−1

)
≤ 2MC(1 + |λ|)α−1. Together with (P6),

this leads to:
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Lemma 5.1. Let α ≥ 0 and A be the generator of an α-times integrated semigroup

Sα satisfying ‖Sα(t)‖ ≤ M(1 + tγ)eωt for some M ≥ 1, γ ≥ 0, ω ≥ 0, and all

t ≥ 0. Then, for all σ > 0 and b ∈ R the fractional powers (−Aω+σ)b are defined.

Moreover, if b > α, then the domain D((−Aω+σ)b) is independent of σ > 0.

In the next section, these fractional powers are used to show that for each

σ > 0 the solutions of the abstract Cauchy problem (ACP) are given by

u(t, x0) := e(ω+σ)t vω+σ(t, (−Aω+σ)α+ε−[α+ε]x0).

Here vω+σ(·, ·) is the singular integral studied in the previous section, ω is the

exponential type of the α-times integrated semigroup generated by A. Com-

paring this representation of u(t, x0) with the estimates in the previous section,

we see that we need an estimate for the graph norm with respect to A[α+ε] of

(−Aω+σ)α+ε−[α+ε]x0 that takes into account the σ-dependence. As it is a direct

consequence of the properties of fractional powers, we give the estimate at this

junction. The σ-dependence only plays a role in the case of polynomially bounded

integrated semigroups, so we restrict ourselves to the case ω = 0.

Lemma 5.2. Let A be the densely defined generator of an α-times integrated

semigroup Sα satisfying ‖Sα(t)‖ ≤ M(1 + tγ) for some M ≥ 1, γ ≥ 0, and

all t ≥ 0. Then for all b < α there is a constant Cγ,b,M > 0 such that for all

0 < σ ≤ 1 and x ∈ D((−A)b),

[b]∑

k=0

‖Ak(−Aσ)b−[b]x‖ ≤ Cγ,b,M σmin{0,α−γ}
[b]∑

k=0

‖Ak(−A1)b−[b]x‖.

Proof. The assertion follows immediately if b ∈ N . Then b − [b] = 0 and

(−Aσ)b−[b] = (−A1)b−[b] = IX . Thus assume b 6∈ N . By (P3), (P7), Lemma 5.1

and the obvious fact that Ak commutes with the fractional powers of −Aσ , we

have

[b]∑

k=0

‖Ak(−Aσ)b−[b]x‖ =

[b]∑

k=0

‖Ak(−Aσ)b−[b](−A1)−(b−[b])(−A1)b−[b]x‖

=

[b]∑

k=0

‖
(
−A1(−Aσ)−1

)−(b−[b])
Ak(−A1)b−[b]x‖

≤
∥∥(−A1(−Aσ)−1

)−(b−[b])∥∥
[b]∑

k=0

‖Ak(−A1)b−[b]x‖.

(5.4)
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We need to investigate the fractional powers of −B := −A1(−Aσ)−1 ∈ B(X).

The operator λ−B is given by

λ−B =
(
λ(σ −A) + (1−A)

)
(σ −A)−1 = (λ+ 1)

(
λσ + 1

λ+ 1
−A

)
(σ −A)−1.

Hence, the inverse

(λ− B)−1 =
1

λ+ 1
(σ −A)

(
λσ + 1

λ+ 1
−A

)−1

exists if λσ+1
λ+1 ∈ %(A), in particular for all λ ≥ 0. By (5.3), the estimate ‖Sα(t)‖ ≤

M(1 + tγ) implies ‖R(µ,A)‖ ≤ MCγ(µα−1 + µα−γ−1) for all µ > 0. It follows

that for λ ≥ 0, (λ− B)−1 satisfies

‖(λ−B)−1‖ =
1

λ+ 1

∥∥∥∥∥I +
σ − 1

λ+ 1

(
λσ + 1

λ+ 1
− A

)−1
∥∥∥∥∥

≤ 1

λ+ 1

(
1 +

1− σ
λ+ 1

MCγ

{(
λσ + 1

λ+ 1

)α−1

+

(
λσ + 1

λ+ 1

)α−γ−1
})

.

Since 1
λ+1 ≤ λσ+1

λ+1 ≤ 1 for all λ ≥ 0 and 0 < σ ≤ 1, we majorize (λσ+1
λ+1 )α−1

by ( 1
λ+1 )α−1 if the exponent α − 1 is negative and by 1 otherwise. Thus the

term 1−σ
λ+1 (λσ+1

λ+1 )α−1 is bounded by 1. To estimate the term 1−σ
λ+1 (λσ+1

λ+1 )α−γ−1 we

proceed similarly unless α < γ. Then, to avoid polynomial growth in λ, we have to

use that λσ+1
λ+1 ≥ σ for all λ ≥ 0 and 0 < σ ≤ 1. This yields that 1−σ

λ+1 (λσ+1
λ+1 )α−γ−1

is bounded by σα−γ . Summarizing, for all 0 < σ ≤ 1 and λ ≥ 0 we have

‖(λ−B)−1‖ ≤ 1

λ+ 1
(1 + 2σmin{0,α−γ}MCγ).

Now, by (P2) and the fact that B is bounded it follows that

(−B)−(b−[b]) =
sin(b− [b])π

π

∫ ∞

0

t[b]−b(t−B)−1dt.

Therefore, for all 0 < σ ≤ 1 we have

‖(−B)−(b−[b])‖ ≤
∣∣∣∣
sin(b− [b])π

π

∣∣∣∣
∫ ∞

0

t[b]−b
1

t+ 1
(1 + 2σmin{0,α−γ}MCγ)dt.

Combining this with (5.4) gives the desired result. �
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6. The abstract Cauchy problem

This section is devoted to the proofs of Theorems 1.1 and 1.2. As we already

mentioned in Section 5, we are going to show that the mild solutions u(·, x) of

(ACP) can be represented explicitly by the formula

(6.1) u(t, x0) := e(ω+σ)t vω+σ(t, (−Aω+σ)α+ε−[α+ε]x0).

The proof consists of a series of lemmas, in which we have the following standing

assumptions. The operator A is the densely defined generator of an α-times

integrated semigroup satisfying ‖Sα(t)‖ ≤M(1 + tγ)eωt for some M ≥ 1, γ ≥ 0,

ω ≥ 0 and all t ≥ 0. Further ε > 0 is such that α+ ε 6∈ N and we fix 0 < σ ≤ 1.

Lemma 6.1. Let x ∈ D(A[α+ε]). Then the Laplace transform of the function

vω+σ(·, x) converges absolutely for all λ > 0 and
∫ ∞

0

e−λtvω+σ(t, x) dt = (−Aω+σ)[α+ε]−α−εR(λ,Aω+σ)x, λ > 0.

Proof. The convergence of the Laplace transform follows from Lemma 4.3. For

λ > 0, we obtain, writing Γα,ε := π−1sin(α+ ε− [α+ ε])π and using (P2),
∫ ∞

0

e−λtvω+σ(t, x) dt

= Γα,ε

∫ ∞

0

e−λt
∫ ∞

0

1

s−1

(
s[α+ε]−α−εSα+ε−[α+ε]

ω+σ (t)x − 1

s
S
α+ε−[α+ε]
ω+σ (

t

s
)x
)
ds dt

= Γα,ε

∫ ∞

0

1

s−1

(
(λs)[α+ε]−α−εR(λ,Aω+σ)x− 1

s
s(λs)[α+ε]−α−εR(λs,Aω+σ)x

)
ds

= Γα,ε

∫ ∞

0

1

s−1
(λs)[α+ε]−α−ε(λs− λ)R(λ,Aω+σ)R(λs,Aω+σ)x ds

= Γα,ε

∫ ∞

0

t[α+ε]−α−εR(λ,Aω+σ)R(t, Aω+σ)x dt

= (−Aω+σ)[α+ε]−α−εR(λ,Aω+σ)x.

�

Lemma 6.2. For every x ∈ D((−Aω+σ)α+ε), (−Aω+σ)α+ε−[α+ε]x ∈ D(A[α+ε])

and ∫ ∞

0

e−λtvω+σ(t, (−Aω+σ)α+ε−[α+ε]x) dt = R(λ,Aω+σ)x, λ > 0.

Proof. Since x ∈ D((−Aω+σ)α+ε), by property (P3) we see that there exists a

y ∈ X such that x = (−Aω+σ)−α−εy. Then, by properties (P1), the first part
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of (P2), and (P4), we have (−Aω+σ)α+ε−[α+ε]x = (−Aω+σ)−[α+ε]y ∈ D(A[α+ε]).

Hence, vω+σ(·, (−Aω+σ)α+ε−[α+ε]x) is defined and by Lemma 6.1, it follows that

∫ ∞

0

e−λtvω+σ(t, (−Aω+σ)α+ε−[α+ε]x) dt

= (−Aω+σ)[α+ε]−α−εR(λ,Aω+σ)(−Aω+σ)α+ε−[α+ε]x

= R(λ,Aω+σ)x

for every λ > 0. �

Lemma 6.3. Let x ∈ D((−Aω+σ)1+α+ε). Then vω+σ(t, (−Aω+σ)α+ε−[α+ε]x) ∈
D(Aω+σ) for all t ≥ 0, and

Aω+σvω+σ(t, (−Aω+σ)α+ε−[α+ε]x) = vω+σ(t, (−Aω+σ)α+ε−[α+ε]Aω+σx).

Proof. First, note that the operators (−Aω+σ)α+ε−[α+ε] and Aω+σ commute

on D((−Aω+σ)1+α+ε). By assumption, there exists a y ∈ X such that x =

(−Aω+σ)−(1+α+ε)y. Then

z := (−Aω+σ)α+ε−[α+ε]x = (−Aω+σ)α+ε−[α+ε](−Aω+σ)−(1+α+ε)y

= (−Aω+σ)−([α+ε]+1)y ∈ D(A
[α+ε]+1
ω+σ ).

By (3.3) and Lemma 3.1 we obtain S
α+ε−[α+ε]
ω+σ (t)Aω+σz = Aω+σS

α+ε−[α+ε]
ω+σ (t)z

for every t ≥ 0. Since Aω+σ is closed, this gives vω+σ(t, Aω+σz) = Aω+σvω+σ(t, z)

for all t ≥ 0. �

Lemma 6.4. If x0 ∈ D((−Aω+σ)α+ε), then the map u(·, x0) given by u(t, x0) :=

vω+σ(t, (−Aω+σ)α+ε−[α+ε]x0) for t ≥ 0, is the unique mild solution of the abstract

Cauchy problem

(ACPω+σ) u′(t) = Aω+σu(t) (t ≥ 0), u(0) = x0.

If x0 ∈ D((−Aω+σ)1+α+ε), then this solution is a classical solution of (ACPω+σ).

Proof. Assume that x0 ∈ D((−Aω+σ)α+ε). Then by Lemma 6.2 and [12, The-

orem 2.1] the function u(·, x0) = vω+σ(·, (−Aω+σ)α+ε−[α+ε]x0) is a mild solution

of (ACPω+σ). Uniqueness is proved as follows. Suppose there is another mild

solution ũ(·, x0) of (ACPω+σ). Then w(t) :=
∫ t

0 u(s, x0) − ũ(s, x0) ds is a classi-

cal solution of (ACPω+σ) with initial value 0. By a theorem of Lyubič (see [20,

Theorem 4.1.2]), w(·) = 0.
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If x0 ∈ D((−Aω+σ)1+α+ε), then also x0 ∈ D((−Aω+σ)α+ε) and therefore the

map u(t) := vω+σ(t, (−Aω+σ)α+ε−[α+ε]x0) solves the equation

u(t) = Aω+σ

∫ t

0

u(s) ds + x0, t ≥ 0.

By Lemma 6.3 and the closedness of Aω+σ , we obtain

vω+σ(t, (−Aω+σ)α+ε−[α+ε]x0) =

∫ t

0

Aω+σvω+σ(s, (−Aω+σ)α+ε−[α+ε]x0) ds + x0

for all t ≥ 0. Hence, vω+σ(·, (−Aω+σ)α+ε−[α+ε]x0) is continuously differentiable

and

v′ω+σ(t, (−Aω+σ)α+ε−[α+ε]x0) = Aω+σvω+σ(t, (−Aω+σ)α+ε−[α+ε]x0),

vω+σ(0, (−Aω+σ)α+ε−[α+ε]x0) = x0.

The uniqueness follows by the above-mentioned theorem of Lyubič. �

Now we are in a position to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1: If α + ε = n ∈ N , the theorem is an obvious conse-

quence of (1.2). Therefore, we may assume that α + ε 6∈ N . By Lemma 6.4, for

each x0 ∈ D((−Aω+σ)α+ε) there exists a unique mild solution of (ACP), which

is given by

u(t, x0) = e(ω+σ)tvω+σ(t, (−Aω+σ)α+ε−[α+ε]x0), t ≥ 0,

and it is a classical solution if x0 ∈ D((−Aω+σ)1+α+ε). By Lemma 4.3, there is

a δ > 0 such that

‖u(t, x0)‖ ≤ MCα,ε,δ,γ,ω,σ ‖(−Aω+σ)α+ε−[α+ε]x0‖[α+ε] e
(ω+σ)t(1 + tδ).

Since σ > 0 is arbitrary and D((−Aω+σ)α+ε) and D((−Aω+σ)1+α+ε) are inde-

pendent of σ, this estimate shows that the solution has exponential type ω. �

Proof of Theorem 1.2: First assume α+ ε = n ∈ N . The n-times integrated

semigroup generated by A is of polynomial type γ + ε. The desired result then

follows from (1.2).

Therefore, we may assume α + ε 6∈ N . As in the proof of Theorem 1.1, for

0 < σ ≤ 1 the solution of (ACP) is given by

u(t, x0) = eσt vσ(t, (−Aσ)α+ε−[α+ε]x0), t ≥ 0.
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Lemmas 4.4 and 5.2 yield that

‖u(t, x0)‖ ≤ MCα,ε,δ,γ‖(−Aσ)α+ε−[α+ε]x0‖[α+ε]

· tα+ε−[α+ε]−1eσtσmin{−[α+ε],α−[α+ε]−γ−1}

≤ Cα,ε,δ,γ,M‖(−A1)α+ε−[α+ε]x0‖[α+ε]

· tα+ε−[α+ε]−1eσtσmin{−[α+ε],α−[α+ε]−γ−1}+min{0,α−γ}

for all t ≥ 2 and 0 < σ ≤ 1. For t ≥ 2 fixed, we now take σ = t−1. This leads to

‖u(t, x0)‖ ≤ K ′α,ε,δ,γ,M e ‖(−A1)α+ε−[α+ε]x0‖[α+ε] t
max{α−1+ε,γ+ε,2γ−α+ε}

for all t ≥ 2. This concludes the proof of Theorem 1.2. �

Remark.

(i) Suppose that A is the densely defined generator of an α-times integrated

semigroup for some α ≥ 0, α 6∈ N . Since A also generates an ([α] + 1)-

times integrated semigroup, it was known that (ACP) has a unique mild

solution for every x ∈ D(A[α]+1). The Theorems 1.1 and 1.2 improve this

result. In fact, take any 0 < ε < [α] + 1 − α. If the fractional powers

are the classical ones then clearly D((−Aω+σ)α+ε) is a larger set than

D(A[α]+1). In the case that the fractional powers are not defined in the

classical way, it follows by (P5) that D((−Aω+σ)α+ε) is not contained

in D(A[α]+1). Hence,
⋃

0<ε≤1 D((−Aω+σ)α+ε), the maximal set of initial

values for which we obtain mild solutions, is larger than D(A[α]+1).

(ii) If the fractional powers of −Aσ exist in the classical sense, then the esti-

mates for the polynomial growth bounds in Theorem 1.2 can be improved

slightly. Indeed, since we have the inclusions D((−Aσ)ν) ⊂ D((−Aσ)µ)

whenever ν > µ, the solution u(·, x0) satisfies an estimate

‖u(t, x0)‖ ≤ Cα,ε,δ,γ,M,x0 t
max{α−1+ε,γ+ε,2γ−α+ε}, t ≥ 2,

for every ε > 0. Its polynomial growth bound is therefore given by

max{α − 1, γ, 2γ − α}, i.e. the ε’s can be dropped. For example, if

‖Sα(t)‖ ≤ Mtα (t ≥ 0), the solutions are at most of polynomial type

α.

7. Unbounded operators with polynomially bounded resolvent

IfA is the generator of an α-times integrated semigroup Sα satisfying ‖Sα(t)‖ ≤
Mtβeωt, then by (5.2) there is a constant M ≥ 1 such that

(7.1) ‖R(λ,Aω)‖ ≤ M |λ|α (Reλ)−β−1, Reλ > ω.
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In this section, we apply our results to arbitrary densely defined operators

whose resolvent satisfies (7.1). We start with a general fact about Laplace trans-

forms.

Lemma 7.1. Let ω > 0 and let q : {Reλ > ω} −→ X be a bounded analytic

function. Let b > 0 and σ > ω. Then, the function f : [0,∞) −→ X given by

f(t) =
1

2πi

∫

σ+iR
eλt λ−b−1 q(λ) dλ, t ≥ 0,

is continuous, its Laplace transform converges absolutely on {Reλ > ω}, and

satisfies q(λ) = λb+1
∫∞

0 e−λtf(t) dt there.

The straightforward proof is omitted. It can be found in [2, Theorem 2.7.1].

The following result is closely related to [3, Theorem 3.1].

Lemma 7.2. Let A be a (not necessarily densely defined) linear operator on X

whose resolvent exists in the right half plane. Suppose there are α ≥ 0 and β ≥ 0

such that for each σ > 0 there is a constant Mσ such that

‖R(λ,A)‖ ≤ Mσ |λ|α−1 (Reλ)−β , Reλ > σ.

Then, for every ε > 0, A generates an exponentially bounded (α + ε)-times inte-

grated semigroup. Moreover, there is a constant Cε such that for each σ > 0,

‖Sα+ε(t)‖ ≤ CεMσ σ
−β−ε eσt, t ≥ 0.

Proof. Fix ε > 0 and σ > 0. For x ∈ X , define qx(λ) := λ1−αR(λ,A)x. Then

qx is uniformly bounded in {Reλ > 1
2σ}. By Lemma 7.1, applied to ω 7→ σ

2 and

b 7→ ε, we obtain a continuous function fx such that for every t ≥ 0,

fx(t) =
1

2πi

∫

σ+iR
eλt

R(λ,A)x

λα+ε
dλ.

Define Sα+ε(t)x := fx(t), t ≥ 0. Then (7.1) holds and

λα+ε

∫ ∞

0

e−λtSα+ε(t)x dt = λα+ε

∫ ∞

0

e−λtfx(t) dt = R(λ,A)x

for all λ > 0. Next we estimate ‖Sα+ε(t)‖:

‖Sα+ε(t)x‖ =

∥∥∥∥
1

2πi

∫

σ+iR
eλt

R(λ,A)x

λα+ε
dλ

∥∥∥∥

≤ 1

2π
Mσ σ

−βeσt‖x‖
∫ ∞

−∞
|σ + is|−1−ε ds

= CεMσ σ
−β−εeσt‖x‖.
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It follows that the family Sα+ε is an exponentially bounded (α + ε)-times inte-

grated semigroup generated by A, and that the desired estimate is satisfied. �

The proof actually shows that it is enough to assume that |λ|1−α‖R(λ,A)‖ is

bounded in each right half plane {Reλ > σ} and |λ|1−α‖R(λ,A)‖ = O(Re λ)−β

for Reλ ↓ 0.

Proof of Theorem 1.3: We apply Lemma 7.2 with Mσ 7→M for all σ > 0 and

ε 7→ 1
2ε. Fix t > 0. Taking σ = t−1, we see that A generates an (α + ε

2 )-times

integrated semigroup of polynomial order β + ε
2 . Therefore, by Theorem 1.2, the

unique mild solutions corresponding to initial values x0 ∈ D((−Aσ)α+ε) are of

polynomial order (β + ε
2 ) + ε

2 . �

The restriction α−1 ≤ β ≤ α in the statement of Theorem 1.3 was necessary for

reasons of consistency. Indeed, if β < α−1, then as λ→ 0 in a sector of angle less

than π/2 we have ‖R(λ,A)‖ → 0. This implies 0 ∈ %(A) and ‖A−1‖ = 0, which is

impossible. If β > α, then limλ→∞ λ‖R(λ,A)‖ = 0. This is also impossible, as it

yields x = 0 for all x ∈ D(A) since for such x we have x = λR(λ,A)x−R(λ,A)Ax

for all λ > 0.

Lemma 7.2 also allows us to deal with operators whose resolvent is of a slightly

different type of polynomial growth.

Corollary 7.3. Let A be a densely defined linear operator on X whose resolvent

exists in the right half plane. Suppose there are M ≥ 1 and α ≥ 0 such that

‖R(λ,A)‖ ≤M(1 + |λ|)α−1, Reλ > 0.

Then, for all ε > 0 and x0 ∈ D((−A)α+ε), (ACP) has a unique mild so-

lution u(·, x0) which is polynomially bounded of order max{0, α − 1} + ε. If

x0 ∈ D((−A)1+α+ε), the solution is classical.

Proof. If 0 ≤ α ≤ 1, then (1 + |λ|)α−1 ≤ |λ|α−1 for all Reλ > 0 and the

assumptions of Lemma 7.2 are satisfied with β 7→ 0 and Mσ 7→ M for all σ > 0.

Fix t > 0 and take σ = t−1. It follows that A generates an (α+ ε
2 )-times integrated

semigroup of polynomial order ε
2 .

If α ≥ 1, for all σ > 0 and Reλ > σ we have (1+ |λ|)α−1 ≤ (1+σ−1)α−1|λ|α−1.

Therefore, with Mσ 7→ M(1 + σ−1)α−1, β 7→ 0, and σ = t−1, we obtain that A

generates an (α+ ε
2 )-times integrated semigroup of polynomial order (α− 1) + ε

2 .

As in Theorem 1.3, the desired conclusion now follows from Theorem 1.2,

noting that since 0 ∈ %(A) the fractional powers of −A are defined. �
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Remark.

(i) Let A satisfy the condition of Theorem 1.3 with α = β = 0. Then A− δ
is invertible for all δ > 0 and

‖R(λ,Aδ)‖ ≤Mδ−1(1 + |λ|)−1, Reλ > 0.

Therefore, by [20, Theorem 2.5.2] Aδ generates a bounded holomorphic

semigroup Tδ ; the bound is proportional to δ−1. Hence, mild solu-

tions of (ACP) exist trivially for all x0 ∈ X , and they are given by

u(t, x0) = eδtTδ(t)x0. Taking δ = t−1, it follows that u(·, x0) is polyno-

mially bounded of order 1. Note that by Theorem 1.3, the mild solutions

in D((−A)ε) are polynomially bounded of order ε.

(ii) If A is a linear operator such that ‖R(λ,A)‖ ≤ M(1 + |λ|)α−1 for all

Reλ > 0 and some α ≥ 0, it is shown in [15] that (ACP) has a classical

solution for each x0 ∈ D(A2+[α]). The proof is based on a resolvent

expansion formula

−R(λ,A)x0 = − R(λ,A)y

(λ− λ0)1+[α]
−

1+[α]∑

k=1

(−R(λ0, A))2+[α]−ky
(λ− λ0)k

where x0 = (−R(λ0, A))1+[α]y, and Laplace inversion (this explains the

occurrence of the term [α]). Corollary 7.3 can be viewed as an improve-

ment of this result for the densely defined case.

(iii) Whenever the fractional powers of −A exist in the classical sense, then,

as before (see Remark (ii) at the end of Section 6), the ε’s occurring in

the estimates for the polynomial growth bounds can be dropped. For

example, if α = β in Theorem 1.3, the solutions are of polynomial type α.

Let us work out in more detail the case α = 1.

Theorem 7.4. Let A be a densely defined linear operator on X whose resolvent

exists and is uniformly bounded in the right half plane. Then, for all ε > 0 and

x0 ∈ D((−A)1+ε), (ACP) has a unique mild solution u(·, x0). Moreover, this

solution is exponentially stable. If x0 ∈ D((−A)2+ε), the solution is classical.

Proof. By a standard argument, one sees that the resolvent is uniformly bounded

in a half plane {Reλ > −δ} for some δ > 0. Therefore, we can apply Theorem 1.3

for α = 1 and β = 0 or Corollary 7.3 for α = 1 to the operator A+ δ
2 . �

As another application of Lemma 7.2, we obtain an improvement of our re-

sults in Section 6 as far as the exponential growth of classical solutions is con-

cerned. Noting that if A generates an α-times integrated semigroup Sα satisfying
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‖Sα(t)‖ ≤Mtβeωt, then by (3.1) for each σ > 0 there is a constant Mσ ≥ 1 such

that

‖R(λ,Aω)‖ ≤ Mσ |λ|α, Reλ > σ.

We will show that this inequality is in fact sufficient for the classical solutions

to have exponential type of at most ω. In order to formulate the precise result,

let sα(A) denote the supremum of all ω ∈ R such that ‖R(λ,A)‖ = O(|λ|α) for

|λ| → ∞ in the right half plane {Reλ > ω}.

Theorem 7.5. Let A be the densely defined generator of an exponentially boun-

ded α-times integrated semigroup Sα. Then, for every ω > sα(A) and all x0 ∈
D((−Aω)1+α+ε), the abstract Cauchy problem (ACP) admits a unique classical

solution, and the exponential type of this solution does not exceed sα(A).

Proof. Since for each σ > 0 the resolvent of Aω+σ satisfies ‖R(λ,Aω+σ)‖ ≤
Mσ(1 + |λ|)α for some Mσ and all Reλ > 0, Corollary 7.3 shows that for each

x0 ∈ D((−Aω+σ)1+α+ε), (ACPω+σ) has a unique mild solution uω+σ(·, x0), which

is of polynomial growth. But by the results of Section 6, there is also an exponen-

tially bounded classical solution. Since classical solutions are mild solutions, the

uniqueness of mild solutions implies that uω+σ(·, x0) is a classical solution. But

then u(t, x0) := e(ω+σ)tuω+σ(t, x0) is the unique classical solution of (ACP), and

this grows exponentially of type ω+ σ. Since ω > sα(A) and σ > 0 are arbitrary

and D((−Aω)1+α+ε) is independent of ω, the theorem is proved. �

This result can be concisely formulated as saying that ω1+α+ε(A) ≤ sα(A).

For generators A of C0-semigroups (i.e. the case α = 0), Weis and Wrobel [25]

recently proved that ω1(A) ≤ s0(A) holds. Earlier, Wrobel [27] had shown that

this is true in B-convex spaces, and in [18] it was shown that ω1+ε(A) ≤ s0(A)

holds in arbitrary Banach spaces. An elementary proof of the Weis-Wrobel result

was obtained in [17].

8. Application to elliptic differential operators

In this final section, we list some concrete examples of differential operators

to which our results can be applied. For more details and proofs, we refer to the

paper of Hieber [11].

Proposition 8.1. Let A be a differential operator with constant coefficients on

one of the spaces X = Lp(R n), 1 ≤ p ≤ ∞, or X = C0(R n), and let ξ be its

symbol. Assume that ξ(·) = iq(·), with the polynomial q(·) either real homogeneous
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such that q(x) = 0 implies x = 0, or real elliptic. Then for all α > n| 12 − 1
p |, A is

the generator of an α-times integrated semigroup Sα on X which satisfies

‖Sα(t)‖ ≤ M(1 + tα), t ≥ 0.

If p is homogeneous, then ‖Sα(t)‖ ≤ Mtα, t ≥ 0.

In the above result, if X = C0(R n) we take p =∞.

Examples. The following operators generate α-times integrated semigroups.

(i) The Schrödinger operator A = i∆, where ∆ is the Laplacian, generates an

α-times integrated semigroup Sα on the spaces X = Lp(R n), 1 ≤ p ≤ ∞,

or X = C0(R n), for all α > n| 12 − 1
p |. Moreover,

‖Sα(t)‖ ≤Mtα, t ≥ 0.

The space D((−i∆)β) can be calculated explicitly: it coincides with the

Sobolev space W 2β,p.

(ii) The Korteweg-De Vries operator A = ∂3

∂x3 + ∂
∂x generates an α-times

integrated semigroup Sα on the spaces X = Lp(R ), 1 ≤ p ≤ ∞, for all

α > | 12 − 1
p |. Moreover,

‖Sα(t)‖ ≤M(1 + tα), t ≥ 0.

For x0 ∈ D((−A)α+ε), in the above examples we obtain mild solutions of

polynomial type α and α + ε, respectively. By using more direct methods, the

bound for the Schrödinger operator can be established more easily. Indeed, it

follows from the results in [4] that in this case the mild solutions are of polynomial

growth O(tn|
1
2− 1

p |). More generally, Zheng and Lei [28] recently showed that if

A is a constant coefficient differential operator of degree m whose symbol has

range in the closed left half plane, then the abstract Cauchy problem for A has

O(tn|
1
2− 1

p |) mild solutions for all initial values in D((−∆)β), β > mn
2 | 12 − 1

p |. At

least for integer α and X = Lp(R n), the domain D((−∆)
mα
2 ) equals D((−A)α).

Both [4] and [28] use the technique of regularized semigroups. Thus, up to an ε

in the polynomial bounds, our results seem to be optimal. At present, we do not

know whether, in our abstract setting, this extra ε can be removed.
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