APPROXIMATING BOCHNER INTEGRALS BY RIEMANN SUMS

J.M.A.M. VAN NEERVEN

ABSTRACT. Let μ be a tight Borel measure on a metric space Ω , let X be a Banach space, and let $f : (\Omega, \mu) \to X$ be Bochner integrable. We show that for every sequence of partitions $P^{(n)} = \{\Omega_1^{(n)}, \ldots, \Omega_{N^{(n)}}^{(n)}\}$ of Ω satisfying $\lim_{n\to\infty} \operatorname{mesh} \left(P^{(n)}\right) = 0$ there exists a sequence of sample point sets $S^{(n)} = \{s_1^{(n)}, \ldots, s_{N^{(n)}}^{(n)}\}$ such that

$$\lim_{n \to \infty} \left\| \sum_{j=1}^{N^{(n)}} \mu(\Omega_j^{(n)}) f(s_j^{(n)}) - \int_{\Omega} f \, d\mu \right\| = 0.$$

It is an old result of H. Lebesgue [5, pp. 30 ff.] that if $f:[0,1] \to \mathbb{R}$ is Lebesgue integrable, then there exist numbers $s_i^{(n)} \in \left[\frac{j-1}{n}, \frac{j}{n}\right]$ such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^n f\left(s_j^{(n)}\right) = \int_a^b f(t) \, dt.$$

In this paper we will extend this result to Bochner integrable functions defined on an arbitrary metric space.

Let Ω be a metric space and let μ be a tight Borel measure on Ω ; by definition, this is a finite Borel measure with the property that for every $\varepsilon > 0$ there exists a compact set $K \subseteq \Omega$ with $\mu(\Omega \setminus K) < \varepsilon$. A partition of (Ω, μ) is a finite collection $P = \{\Omega_1, \ldots, \Omega_N\}$ of μ -measurable subsets of Ω with the following properties:

- (1) $\mu(\Omega_i) > 0$ for all j;
- (2) $\mu(\Omega_j \cap \Omega_k) = 0$ for all $j \neq k$;
- (3) $\mu(\Omega \setminus \cup_j \Omega_j) = 0.$

The numbers $\max_j (\mu(\Omega_j))$ and $\max_j (\operatorname{diam} (\Omega_j))$ (whenever this is finite) will be called the *measure* of P and the *mesh* of P, respectively. A finite subset $\{s_1, \ldots, s_N\} \subseteq \Omega$ with $s_j \in \Omega_j$ for each j is called a set of *sample points* associated with the partition P.

Let X be a Banach space. For a μ -measurable function $f: \Omega \to X$ we define the *Riemann sum* of f relative to the partition $P = \{\Omega_1, \ldots, \Omega_N\}$ and the associated sample point set $S = \{s_1, \ldots, s_N\}$ by

$$\mathscr{R}(f; P, S) := \sum_{j=1}^{N} \mu(\Omega_j) f(s_j).$$

Our main result reads as follows.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 28B05; Secondary: 26A42, 46G10. Key words and phrases. Riemann sum, Bochner integral.

Theorem 1. Let μ be a tight Borel measure on a metric space Ω . Let X be a Banach space and let $f : (\Omega, \mu) \to X$ be a Bochner integrable function. Then for every sequence of partitions $(P^{(n)})$ of Ω satisfying $\lim_{n\to\infty} \operatorname{mesh}(P^{(n)}) = 0$ there exists a sequence of associated sample point sets $(S^{(n)})$ such that

$$\lim_{n \to \infty} \mathscr{R}(f; P^{(n)}, S^{(n)}) = \int_{\Omega} f \, d\mu$$

strongly in X.

Before starting with the proof we isolate some lemmas. The first is concerned with a topological property of tight measures on metric space.

Lemma 2. Let μ be a tight Borel measure on a metric space Ω and let X be a Banach space. Let $f : \Omega \to X$ be μ -measurable. Then there exists a sequence (f_n) of bounded uniformly continuous functions on Ω such that $\lim_{k\to\infty} f_n = f \mu$ -almost everywhere.

Proof. By definition of μ -measurability there exists a sequence of simple μ -measurable functions (ϕ_n) converging to f μ -almost everywhere. In particular for every $m \ge 1$ there is an index N_m such that

$$\mu\{\phi_{N_m} \neq f\} < \frac{1}{m}.$$

Let us write $\phi_{N_m} = \sum_{j=1}^{K_m} \mathbf{1}_{\Omega_{j,m}} \otimes x_{j,m}$ with $x_{j,m} \in X$ and with the sets $\Omega_{j,m}$ pairwise disjoint and μ -measurable. Suppose for the moment that we are able to find scalar-valued bounded uniformly continuous functions $\psi_{j,m}$ such that

$$\mu\{\psi_{j,m}\neq\mathbf{1}_{\Omega_{j,m}}\}<\frac{1}{mK_m},\qquad j=1,\ldots,K_m.$$

Then the functions $\psi_m = \sum_{j=1}^{K_m} \psi_{j,m} \otimes x_{j,m}$ are bounded and uniformly continuous, and we have

$$\mu\{\psi_m \neq f\} \leqslant \frac{1}{m} + K_m \cdot \frac{1}{mK_m} = \frac{2}{m}.$$

Hence $\lim_{m\to\infty} \psi_m = f$ in μ -measure, and the lemma follows by passing to a μ -almost everywhere convergent subsequence. This argument shows that it suffices to prove the following:

For every μ -measurable set $B \subseteq \Omega$ there exists a sequence (ψ_n) of bounded uniformly continuous functions on Ω such that $\lim_{n\to\infty} \psi_n = \mathbf{1}_B$ in μ -measure.

Choose a Borel subset $C \subseteq \Omega$ such that its symmetric difference with B satisfies $\mu(B \triangle C) = 0$. Then $\mathbf{1}_B = \mathbf{1}_C \mu$ -almost everywhere. For each $n \ge 1$, by [6, Theorem 3.1] there is a compact subset $C_n \subseteq C$ such that $\mu(C \setminus C_n) < \frac{1}{n}$ and a compact set $\Omega_n \subseteq \Omega \setminus C$ with $\mu((\Omega \setminus C) \setminus \Omega_n) < \frac{1}{n}$. Define $\psi_n : \Omega \to [0, 1]$ by

$$\psi_n(\omega) := \frac{d(\omega, \Omega_n)}{d(\omega, \Omega_n) + d(\omega, C_n)}.$$

Then ψ_n is bounded and uniformly continuous, and we have $\psi_n|_{C_n \cup \Omega_n} = \mathbf{1}_C|_{C_n \cup \Omega_n}$. Hence $\psi_n|_{C_n \cup \Omega_n} = \mathbf{1}_B|_{C_n \cup \Omega_n}$ μ -almost everywhere. It follows that

$$\mu\{\psi_n \neq \mathbf{1}_B\} \leqslant \mu(\Omega \setminus (C_n \cup \Omega_n)) < \frac{2}{n}$$

and we conclude that $\lim_{n\to\infty} \psi_n = \mathbf{1}_B$ in μ -measure.

Without loss of generality we will assume from this point onwards that $\mu(\Omega) = 1$.

Lemma 3. Let $f : (\Omega, \mu) \to X$ be Bochner integrable. Let $F \subseteq G \subseteq \Omega$ be μ -measurable sets such that $\mu(F) > \theta\mu(G)$ for some $\theta \in (0, 1)$. Then there exists a point $\omega \in F$ such that

$$\mu(G) \| f(\omega) \| \leq \frac{1}{\theta} \int_G \| f \| \, d\mu.$$

Proof. Suppose the contrary. Then for all $\omega \in F$ we have

$$\mu(G) \| f(\omega) \| > \frac{1}{\theta} \int_G \| f \| \, d\mu.$$

Integrating over the set F gives

$$\mu(G) \int_{F} \|f\| \, d\mu \ \geqslant \ \frac{1}{\theta} \, \mu(F) \int_{G} \|f\| \, d\mu > \mu(G) \int_{G} \|f\| \, d\mu,$$

a contradiction.

Lemma 4. Let $f : (\Omega, \mu) \to X$ be Bochner integrable and let $P = \{\Omega_1, \ldots, \Omega_N\}$ be a partition of Ω . Suppose A and B are μ -measurable subsets of Ω . Then there exists a set of sample points $S = \{s_1, \ldots, s_N\}$ with the following properties:

$$\begin{array}{ll} (\mathrm{i}) & \mu \left(\bigcup_{s_j \in S \cap A} \Omega_j \right) \leqslant 3\mu(A); \\ (\mathrm{ii}) & \mu \left(\bigcup_{s_j \in S \cap B} \Omega_j \right) \leqslant 3\mu(B); \\ (\mathrm{iii}) & \textit{For all } s_j \in S \cap (A \cup B) \textit{ we have } \end{array}$$

(1)
$$\mu(\Omega_j) \| f(s_j) \| \leq 3 \int_{\Omega_j} \| f \| \, d\mu$$

Proof. We choose the sample points s_j as follows.

Case 1 - If there exists $s \in \Omega_j \setminus (A \cup B)$, then pick such an s and put $s_j := s$.

Suppose now such an s does not exist. Then we have $\Omega_i \subset A \cup B$.

Case 2 - If $\mu(\Omega_j \cap (A \cap B)) > \frac{1}{3}\mu(\Omega_j)$, then by Lemma 3 there exists an $s \in \Omega_j \cap (A \cap B)$ for which (1) holds. We take such an s and put $s_j := s$.

Suppose now that $\mu(\Omega_j \cap (A \cap B)) \leq \frac{1}{3}\mu(\Omega_j)$.

Case 3 - If there exists an $s \in \Omega_j \cap (B \setminus A)$ for which (1) holds, then we pick such an s and put $s_j := s$.

Case 4 - If there exists no $s \in \Omega_j \cap (B \setminus A)$ verifying (1), then by Lemma 3 we necessarily have $\mu(\Omega_j \cap (B \setminus A)) \leq \frac{1}{3}\mu(\Omega_j)$. This implies $\mu(\Omega_j \cap A) > \frac{2}{3}\mu(\Omega_j)$. Since we also have $\mu(\Omega_j \cap (A \cap B)) \leq \frac{1}{3}\mu(\Omega_j)$ it follows that $\mu(\Omega_j \cap (A \setminus B)) > \frac{1}{3}\mu(\Omega_j)$. By Lemma 3 there exists an $s \in \Omega_j \cap (A \setminus B)$ satisfying (1). We choose such an sand put $s_j := s$.

This rule defines a set of sample points $S = \{s_1, \ldots, s_N\}$.

We can have $s_j \in A$ only in the cases 2 and 4. In both cases we have $\mu(\Omega_j \cap A) > \frac{1}{3}\mu(\Omega_j)$. Hence,

$$\mu\left(\bigcup_{s_j\in S\cap A}\Omega_j\right)=\sum_{s_j\in S\cap A}\mu(\Omega_j)\leqslant 3\sum_{s_j\in S\cap A}\mu(\Omega_j\cap A)\leqslant 3\mu(A).$$

Moreover, in both cases we have chosen s_j in such a way that (1) holds.

We can have $s_j \in B$ only in the cases 2 and 3. In both cases we have $\mu(\Omega_j \cap B) > \frac{1}{3}\mu(\Omega_j)$. Hence,

$$\mu\left(\bigcup_{s_j\in S\cap B}\Omega_j\right)=\sum_{s_j\in S\cap B}\mu(\Omega_j)\leqslant 3\sum_{s_j\in S\cap B}\mu(\Omega_j\cap B)\leqslant 3\mu(B).$$

Moreover, in both cases we have chosen s_j in such a way that (1) holds.

We now turn to the proof of Theorem 1.

Step 1 - First we prove: For every $\varepsilon > 0$ there exists an index N with the following property: for every $n \ge N$ there exists a sample point set $S^{(n)}$ associated with $P^{(n)}$ such that

(2)
$$\left\|\mathscr{R}(f;P^{(n)},S^{(n)}) - \int_{\Omega} f \, d\mu\right\| < \varepsilon.$$

By absolute continuity, we can choose $\eta > 0$ so small that for all μ -measurable sets $A \subseteq \Omega$ with $\mu(A) < \eta$ we have

(3)
$$\int_{A} \|f\| \, d\mu < \frac{1}{15}\varepsilon.$$

For $K \ge 1$ define $f_K : \Omega \to X$ by

$$f_K(\omega) := \begin{cases} f(\omega), & \text{if } ||f(\omega)|| \leq K; \\ 0, & \text{else.} \end{cases}$$

Define $A_K = \{ ||f|| > K \}$. By dominated convergence there exists $K_0 \ge 1$ large enough such that

(4)
$$\int_{\Omega} \|f - f_{K_0}\| \, d\mu < \frac{1}{5}\varepsilon$$

and

$$(5) \qquad \qquad 3\mu(A_{K_0}) < \eta.$$

For notational convenience we put $g := f_{K_0}$ and $A := A_{K_0}$.

By Lemma 2 there exists a sequence (g_k) of bounded uniformly continuous functions such that $\lim_{k\to\infty} g_k = g \mu$ -almost everywhere. Replacing each g_k by its truncation between $-K_0$ and K_0 , we may assume that

$$\sup_{k} \sup_{\omega \in \Omega} \|g_k(\omega)\| \leqslant K_0.$$

Define $B_k = \{ \|g - g_k\| > \frac{1}{10} \varepsilon \}$. By dominated convergence there exists an index $k_0 \ge 1$ large enough such that

(6)
$$\int_{\Omega} \|g - g_{k_0}\| \, d\mu < \frac{1}{5}\varepsilon$$

and

(7)
$$\mu(B_{k_0}) < \frac{1}{60K_0}\varepsilon.$$

Again for notational convenience we put $B := B_{k_0}$ and $h := g_{k_0}$. Choose $\delta > 0$ small enough such that

(8)
$$\left\|\mathscr{R}(h;P,S) - \int_{\Omega} h \, d\mu\right\| < \frac{1}{5}\varepsilon.$$

whenever P is a partition of Ω with mesh $(P) < \delta$ and S is an associated sample point set. Such δ exists by the uniform continuity of h. From $\lim_{n\to\infty} \operatorname{mesh}(P^{(n)}) = 0$ we may choose N so large that mesh $(P^{(n)}) < \delta$ for all $n \ge N$.

For $n \ge N$ we apply Lemma 4 to the partitions $P^{(n)}$ and the sets A and B and obtain sample point sets $S^{(n)}$ verifying the conditions of the lemma. We fix $n \ge N$ and estimate:

$$\begin{split} & \left\| \mathscr{R}(f; P^{(n)}, S^{(n)}) - \int_{\Omega} f \, d\mu \right\| \\ & \leq \left\| \mathscr{R}(f; P^{(n)}, S^{(n)}) - \mathscr{R}(g; P^{(n)}, S^{(n)}) \right\| + \left\| \mathscr{R}(g; P^{(n)}, S^{(n)}) - \mathscr{R}(h; P^{(n)}, S^{(n)}) \right\| \\ & + \left\| \mathscr{R}(h; P^{(n)}, S^{(n)}) - \int_{\Omega} h \, d\mu \right\| + \left\| \int_{\Omega} h \, d\mu - \int_{\Omega} g \, d\mu \right\| + \left\| \int_{\Omega} h \, d\mu - \int_{\Omega} g \, d\mu \right\| \\ & =: (\mathbf{I}) + (\mathbf{II}) + (\mathbf{III}) + (\mathbf{IV}) + (\mathbf{V}). \end{split}$$

We will prove (2) by showing that each of these five terms is smaller than $\frac{1}{5}\varepsilon$.

Distinguishing between points in A and $\Omega \setminus A$ respectively, noting that $g(s_j^{(n)}) = f(s_j^{(n)})$ when $s_j^{(n)} \notin A$ and $g(s_j^{(n)}) = 0$ when $s_j^{(n)} \in A$, and using (1) we have

$$(\mathbf{I}) \leq \sum_{\substack{s_j^{(n)} \in S^{(n)} \cap A \\ s_j^{(n)} \in S^{(n)} \cap A}} \mu(\Omega_j^{(n)}) \cdot \| f(s_j^{(n)}) - g(s_j^{(n)}) \|$$

$$= \sum_{\substack{s_j^{(n)} \in S^{(n)} \cap A \\ s_j^{(n)} \in S^{(n)} \cap A}} \mu(\Omega_j^{(n)}) \cdot \| f(s_j^{(n)}) \| \leq 3 \int_{\bigcup_{s_j^{(n)} \in S^{(n)} \cap A} \Omega_j^{(n)}} \| f \| d\mu.$$

Thanks to (5) we have $\mu\left(\bigcup_{s_j^{(n)} \in S^{(n)} \cap A} \Omega_j^{(n)}\right) \leq 3\mu(A) < \eta$ and hence by (3) the integral on the right hand side is less than $\frac{1}{15}\varepsilon$. It follows that (I) $\leq 3 \cdot \frac{1}{15}\varepsilon = \frac{1}{5}\varepsilon$. Next, distinguishing between points $s_j^{(n)} \in S^{(n)}$ belonging to B and $\Omega \setminus B$ remeatively ratios that ||| < ||| < K.

Next, distinguishing between points $s_j^{(n)} \in S^{(n)}$ belonging to B and $\Omega \setminus B$ respectively, noting that $||g(\omega)|| \leq K_0$ and $||h(\omega)|| \leq K_0$ for all $\omega \in \Omega$, and using (7) we have

$$\begin{aligned} \text{(II)} &\leqslant \sum_{s_j^{(n)} \in S^{(n)} \cap B} \mu(\Omega_j) \cdot \left\| g\left(s_j^{(n)}\right) - h\left(s_j^{(n)}\right) \right\| + \sum_{s_j^{(n)} \notin S^{(n)} \cap B} \mu(\Omega_j) \cdot \left\| g\left(s_j^{(n)}\right) - h\left(s_j^{(n)}\right) \right\| \\ &\leqslant 2K_0 \cdot \mu\left(\bigcup_{s_j^{(n)} \in S^{(n)} \cap B} \Omega_j\right) + \frac{1}{10}\varepsilon \cdot \mu\left(\bigcup_{s_j^{(n)} \notin S^{(n)} \cap B} \Omega_j\right) \\ &\leqslant 2K_0 \cdot 3\mu(B) + \frac{1}{10}\varepsilon \cdot 1 < 2K_0 \cdot \frac{3}{60K_0}\varepsilon + \frac{1}{10}\varepsilon = \frac{1}{5}\varepsilon. \end{aligned}$$

The mesh of $P^{(n)}$ being smaller than δ , by (8) we have (III) $<\frac{1}{5}\varepsilon$. By (6) we have (IV) $<\frac{1}{5}\varepsilon$, and finally by (4) we have (V) $<\frac{1}{5}\varepsilon$.

Step 2 - By Step 1, for every $m \ge 1$ there exists an index N_m with the following property: for every $n \ge N_m$ there exists a sample set $S_m^{(n)}$ associated with $P^{(n)}$ such that

$$\left\|\mathscr{R}(f; P^{(n)}, S_m^{(n)}) - \int_{\Omega} f \, d\mu \right\| < \frac{1}{m}, \qquad n \ge N_m.$$

We may replace the numbers N_m by larger ones and thereby assume that $N_1 < N_2 < N_3 < \ldots$ For $n \ge N_1$ we define

$$S^{(n)} := S_m^{(n)}, \qquad N_m \leqslant n < N_{m+1} \qquad (m = 1, 2, ...)$$

an for $n < N_1$ we choose the sets $S^{(n)}$ in an arbitrary way. The resulting sequence $(S^{(n)})$ has the desired properties. This concludes the proof of Theorem 1.

With little extra effort we obtain the following stronger version of Theorem 1:

Theorem 5. Let μ be a tight Borel measure on a metric space Ω . Let X_i be Banach spaces and let $f_i : (\Omega, \mu) \to X_i$ be Bochner integrable functions (i = 1, 2...). Then for every sequence of partitions $(P^{(n)})$ of Ω satisfying $\lim_{n\to\infty} \operatorname{mesh}(P^{(n)}) = 0$ there exists a sequence of associated sample point sets $(S^{(n)})$ such that

$$\lim_{n \to \infty} \mathscr{R}(f_i; P^{(n)}, S^{(n)}) = \int_{\Omega} f_i \, d\mu \qquad (i = 1, 2, \dots)$$

strongly in X.

Proof. By Theorem 1 applied to the Banach space $X_1 \oplus \cdots \oplus X_m$ and the function $F_m := (f_1, \ldots, f_m)$, there exists an index $N_m \ge 1$ with the following property: for every $n \ge N_m$ there is a sample point set $S_m^{(n)}$ such that

$$\left\|\mathscr{R}(F_m; P^{(n)}, S_m^{(n)}) - \int_{\Omega} F_m \, d\mu \right\| < \frac{1}{m}, \qquad n \ge N_m.$$

This immediately implies

$$\left\|\mathscr{R}(f_i; P^{(n)}, S_m^{(n)}) - \int_{\Omega} f_i \, d\mu\right\| < \frac{1}{m}, \qquad n \ge N_m \quad (i = 1, \dots, m).$$

The desired sequence of sample point sets $(S^{(n)})$ is finally obtained as in Step 2 of the proof of Theorem 1.

Definition 6. Let $f: \Omega \to X$ be an arbitrary function. We call a vector $I \in X$ a *Riemann sum limit* of f if the following holds: for every sequence of partitions $(P^{(n)})$ with $\lim_{n\to\infty} \operatorname{mesh}(P^{(n)}) = 0$ there exists a sequence of sample point sets $(S^{(n)})$ such that

$$\lim_{n \to \infty} \left\| \sum_{j=1}^{N^{(n)}} \mu(\Omega_j^{(n)}) f(s_j^{(n)}) - I \right\| = 0.$$

Using this terminology, Theorem 1 states that if $f : (\Omega, \mu) \to X$ is Bochner integrable, then $\int_{\Omega} f d\mu$ is a Riemann sum limit of f. If Ω is totally bounded and $f : (\Omega, \mu)$ is essentially bounded, then $\int_{\Omega} f d\mu$ is the *unique* Riemann sum limit of f; this follows from the following theorem. **Theorem 7.** Let Ω be totally bounded and let $f : (\Omega, \mu) \to X$ be an arbitrary function. Suppose $x^* \in X^*$ is such that $\langle f, x^* \rangle$ is μ -integrable and μ -essentially bounded. If I is a Riemann sum limit of f, then

$$\langle I, x^* \rangle = \int_{\Omega} \langle f, x^* \rangle \, d\mu.$$

Proof. Let K > 0 be a constant such that the set $N = \{|\langle f, x^* \rangle| > K\}$ is μ -null. Fix $n \ge 1$ and divide the interval [-K, K] into disjoint subintervals J_1, \ldots, J_M of diameter at most $\frac{1}{n}$. For $m = 1, \ldots, M$ let $V_m := \{\omega \in \Omega : f(\omega) \in J_m\}$. Since Ω is assumed to be totally bounded it is possible to subdivide each V_m of positive μ -measure into finitely many disjoint subsets having positive μ -measure and diameter $\le \frac{1}{n}$. In this way we obtain a partition $P^{(n)} = \{\Omega_1^{(n)}, \ldots, \Omega_{N^{(n)}}^{(n)}\}$ of Ω of mesh $\le \frac{1}{n}$. Note that

$$\left|\langle f(s), x^* \rangle - \langle f(t), x^* \rangle\right| \leq \frac{1}{n}$$

for all $s, t \in \Omega_j^{(n)}; j = 1, ..., N^{(n)}$.

By assumption, associated to the resulting sequence $(P^{(n)})$ there exists a sequence of sample point sets $(T^{(n)})$ such that

$$\lim_{n \to \infty} \mathscr{R}(f; P^{(n)}, T^{(n)}) = I.$$

Then,

$$\lim_{n \to \infty} \mathscr{R}(\langle f, x^* \rangle; P^{(n)}, T^{(n)}) = \langle I, x^* \rangle$$

On the other hand, since $\langle f, x^* \rangle$ is μ -integrable, by Theorem 1 there exists a sequence of sample point sets $(S^{(n)})$ such that

$$\lim_{n \to \infty} \mathscr{R}(\langle f, x^* \rangle; P^{(n)}, S^{(n)}) = \int_{\Omega} \langle f, x^* \rangle \, d\mu$$

We estimate:

$$\begin{split} \left| \int_{\Omega} \langle f, x^* \rangle \, d\mu - \langle I, x^* \rangle \right| &\leq \left| \int_{\Omega} \langle f, x^* \rangle \, d\mu - \mathscr{R} \big(\langle f, x^* \rangle; P^{(n)}, S^{(n)} \big) \right| \\ &+ \sum_{j=1}^{N^{(n)}} \mu \big(\Omega_j^{(n)} \big) \cdot \big| \langle f(s_j^{(n)}), x^* \rangle - \langle f(t_j^{(n)}), x^* \rangle \big| \\ &+ \big| \mathscr{R} \big(\langle f, x^* \rangle; P^{(n)}, T^{(n)} \big) - \langle I, x^* \rangle \big| \\ &\leq \left| \int_{\Omega} \langle f, x^* \rangle \, d\mu - \mathscr{R} \big(\langle f, x^* \rangle; P^{(n)}, S^{(n)} \big) \right| \\ &+ \frac{1}{n} + \left| \mathscr{R} \big(\langle f, x^* \rangle; P^{(n)}, T^{(n)} \big) - \langle I, x^* \rangle \big| \,. \end{split}$$

Passing to the limit $n \to \infty$ in the right hand side gives the desired result.

The following example shows that the converse of Theorem 1 does not hold: a strongly measurable function with a Riemann sum limit need not be Bochner integrable, even if this limit is unique.

Example 8. Let $(e_k)_{k=1}^{\infty}$ denote the standard unit basis of the Hilbert space ℓ^2 and define $f: (0,1] \to \ell^2$ by

$$f(t) := \frac{1}{k} 2^k e_k, \qquad t \in I_k := (2^{-k}, 2^{-k+1}].$$

Clearly f is strongly measurable and

$$\int_{(0,1]} \|f(t)\| \, dt = \sum_{k=1}^{\infty} |I_k| \cdot \frac{2^k}{k} = \sum_{k=1}^{\infty} \frac{1}{k} = \infty.$$

Thus f fails to be Bochner integrable. Next we will show that

$$I := \sum_{k=1}^{\infty} \frac{1}{k} e_k$$

is a Riemann sum limit integral of f.

To this end let $(P^{(n)})$ be an arbitrary sequence of partitions of (0,1] satisfying $\lim_{n\to\infty} \operatorname{mesh}\left(P^{(n)}\right) = 0. \quad \text{Fix } \varepsilon > 0 \text{ arbitrary and fix an integer } K \text{ such that } 2^{-K} < \frac{1}{2}\varepsilon \text{ and } \sum_{k=K+1}^{\infty} \frac{1}{k^2} < \frac{1}{4}\varepsilon^2. \text{ Choose } n_0 \text{ so large that } \operatorname{mesh}\left(P^{(n)}\right) \leq 2^{-K} \text{ for } k \geq 0.$ all $n \ge n_0$.

Fix an index $n \ge n_0$ and write $P^{(n)} =: P = \{\Omega_1, \dots, \Omega_N\}$. We define a sample point set $S^{(n)} =: S = \{s_1, \ldots, s_N\}$ by the following rule: for $j = 1, \ldots, N$ let

$$k(j) = \min\{k \ge 1 : \ \Omega_j \cap I_k \neq \emptyset\}$$

and let s_j be an arbitrary point in $\Omega_j \cap I_{k(j)}$. For $k \ge 1$ let J_k be the set of all $j \in \{1, \ldots, N\}$ for which we have $s_j \in I_k$. From diam $(\Omega_j) < 2^{-K}$ and $\Omega_j \cap I_m = \emptyset$ $(m = 1, \ldots, k - 1)$ we have, for all $k = 1, \ldots, K$,

$$(2^{-k}, 2^{-k+1} - 2^{-K}] \subseteq \bigcup_{j \in J_k} \Omega_j \subseteq (2^{-k} - 2^{-K}, 2^{-k+1}].$$

For these k it follows that

$$2^{-k} - 2^{-K} \leq \sum_{j \in J_k} |\Omega_j| \leq 2^{-k} + 2^{-K}.$$

Hence,

$$\left\| \sum_{j \in J_k} |\Omega_j| f(s_j) - \frac{1}{k} e_k \right\|_{\ell^2} = \left\| \sum_{j \in J_k} |\Omega_j| \frac{1}{k} 2^k e_k - \frac{1}{k} e_k \right\|_{\ell^2}$$
$$= \frac{1}{k} \left| 2^k \sum_{j \in J_k} |\Omega_j| - 1 \right| \leqslant \frac{1}{k} 2^{-K+k}.$$

Summing over $k = 1, \ldots, K$ we obtain

$$\left\| \sum_{k=1}^{K} \sum_{j \in J_k} |\Omega_j| f(s_j) - \sum_{k=1}^{K} \frac{1}{k} e_k \right\|_{\ell^2} \leqslant \sum_{k=1}^{K} \frac{1}{k} 2^{-K+k} \leqslant 2^{-K}$$

Next fix $k \ge K + 1$. If $s_j \in I_k$, then $\Omega_j \cap I_m = \emptyset$ $(m = 1, \dots, k - 1)$ and therefore

$$\bigcup_{j\in J_k}\Omega_j\subseteq (0,2^{-k+1}].$$

Put

$$\beta_k := \frac{1}{k} 2^k \sum_{j \in J_k} |\Omega_j|.$$

Noting that

$$0 \leqslant 2^k \sum_{j \in J_k} |\Omega_j| \leqslant 2$$

we have

$$|\beta_m - \frac{1}{k}| = \frac{1}{k} \left| 2^k \sum_{j \in J_k} |\Omega_j| - 1 \right| \leqslant \frac{1}{k}.$$

Hence,

$$\left\|\sum_{k=K+1}^{\infty}\sum_{j\in J_k} |\Omega_j| f(s_j) - \sum_{k=K+1}^{\infty} \frac{1}{k} e_k\right\|_{\ell^2}^2 = \left\|\sum_{k=K+1}^{\infty} (\beta_k - \frac{1}{k}) e_k\right\|_{\ell^2}^2 \leqslant \sum_{k=K+1}^{\infty} \frac{1}{k^2}.$$

Note that in the double sum on the left hand side only finitely many terms are non-zero. Putting everything toghether we obtain

$$\begin{split} \left\| \sum_{j=1}^{N} |\Omega_{j}| f(s_{j}) - I \right\|_{\ell^{2}} &= \left\| \sum_{j=1}^{N} |\Omega_{j}| f(s_{j}) - \sum_{k=1}^{\infty} \frac{1}{k} e_{k} \right\|_{\ell^{2}} \\ &\leqslant \left\| \sum_{k=1}^{K} \sum_{j \in J_{k}} |\Omega_{j}| f(s_{j}) - \sum_{k=K+1}^{\infty} \frac{1}{k} e_{k} \right\|_{\ell^{2}} + \left\| \sum_{k=K+1}^{\infty} \sum_{j \in J_{k}} |\Omega_{j}| f(s_{j}) - \sum_{k=K+1}^{\infty} \frac{1}{k} e_{k} \right\|_{\ell^{2}} \\ &\leqslant 2^{-K} + \left(\sum_{k=K+1}^{\infty} \frac{1}{k^{2}} \right)^{\frac{1}{2}} < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon. \end{split}$$

This shows that $I = \sum_{k=1}^{\infty} \frac{1}{k} e_k$ is a Riemann sum limit of f. The uniqueness of I as Riemann sum limit of f follows from Theorem 7 applied to the coordinate functionals e_k .

To conclude we compare our results with two theories of generalized Riemann integration: the theories of McShane integration and Henstock-Kurzweil integration. For simplicity we confine the discussion to the case where Ω is the unit interval [0,1]. For more details we refer to the book [4] and the papers [1], [3].

Let P be a partition of [0,1] and let S be a finite subset of [0,1]. Let us call a pair (P,S) a *McShane pair* if P is of the form $P = \{[p_{j-1}, p_j] : j = 1, ..., N\}$ with $0 = p_0 < \ldots p_N = 1$ and if $S = \{s_1, \ldots, s_N\} \subseteq [0,1]$.

A gauge is a strictly positive function δ on [0, 1]. We call the McShane pair (P, S) subordinate to the gauge δ if

$$[p_{j-1}, p_j] \subseteq (s_j - \delta(s_j), s_j + \delta(s_j)), \qquad j = 1, \dots N.$$

A function $f : [0,1] \to X$ is called *McShane-integrable*, with integral $I \in X$, if for every $\varepsilon > 0$ there exists a gauge δ such that

$$\|\mathscr{R}(f; P, S) - I\| < \varepsilon$$

for every McShane pair (P, S) subordinate to δ . Here, of course,

$$\mathscr{R}(f; P, S) := \sum_{j=1}^{N} (p_j - p_{j-1}) \cdot f(s_j).$$

By a Henstock-Kurzweil pair we mean a McShane pair (P, S) with the property that S is a sample point set for P, i.e. we have $s_j \in [p_{j-1}, p_j]$ for all j. A function

 $f:[0,1] \to X$ is called *Henstock-Kurzweil-integrable*, with integral $I \in X$, if for every $\varepsilon > 0$ there exists a gauge δ such that

(9)
$$\|\mathscr{R}(f; P, S) - I\| < \varepsilon$$

for every Henstock-Kurzweil pair (P, S) subordinate to δ . Clearly every McShane integrable function is Henstock-Kurzweil integrable, with the same integral I.

The following is proved in [3, Theorem 16]:

Theorem 9. Every Bochner integrable function $f : [a,b] \to X$ is McShane integrable, and therefore Henstock-Kurzweil integrable, and the integrals coincide.

Let us compare this result with Theorem 1 in the case $\Omega = [a, b]$. By taking $\varepsilon = \frac{1}{n}$ in (9), from Theorem 9 it follows immediately that the integral of a Bochner integrable $f : [a, b] \to \mathbb{R}$ can be realized as the limit of *certain* Riemann sums. The point of Theorem 1, however, is that partitions allowed there need not be subordinate to the gauges used in (9).

In the converse direction, the existence of a Riemann sum limit for f in the sense of Definition 6 does not produce a sequence of gauges in any obvious way, which leaves open the possibility that such a function fails to be Henstock-Kurzweil integrable. Let us point out in this connection that by [3, Theorem 15], the function f in Example 8 is indeed McShane integrable, and hence Henstock-Kurzweil integrable; cf. [1, Example 3E].

Finally we mention the paper [2], where McShane- and Henstock-Kurzweil integrability of vector-valued functions on metric spaces Ω is studied. In contract to the approach just described, in this paper the partitions of Ω consist of countably many sets.

Acknowlegdement - The author is indebted to Anton Schep for pointing out the references [1] and [2].

References

- D.H. FREMLIN AND J MENDOZA, On the integration of vector-valued functions, Illinois J. Math. 38 (1994), 127–147.
- [2] D.H. FREMLIN, The generalized McShane integral, Illinois J. Math. 39 (1995), 39-67.
- [3] R.A. GORDON, The McShane integral of Banach-valued functions, Illinois J. Math. 34 (1990), 557–567.
- [4] R. HENSTOCK, "Theory of Integration", Butterworths, London, 1963.
- [5] H. LEBESGUE, Sur les integrales singulières, Ann. Fac. Sci. Univ. Toulouse 1 (1909), 25-117.
- [6] K.R. PARTHASARATHY, "Probability Measures on Metric Spaces", Academic Press, 1967.

DEPARTMENT OF APPLIED MATHEMATICAL ANALYSIS, TECHNICAL UNIVERSITY OF DELFT, P.O. Box 5031, 2600 GA DELFT, THE NETHERLANDS

E-mail address: J.vanNeerven@its.tudelft.nl