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Let T = {T (t)}t>0 be a C0-semigroup on a Banach space X. In this paper, we study
the relations between the abscissa ωLp(T) of weak p-integrability of T (1 6 p <∞), the
abscissa ωpR(A) of p-boundedness of the resolvent of the generator A of T (1 6 p 6∞),
and the growth bounds ωβ(T), β > 0, of T. Our main results are as follows.

(i) Let T be a C0-semigroup on a B-convex Banach space such that the resolvent of
its generator is uniformly bounded in the right half plane. Then ω1−ε(T) < 0 for
some ε > 0.

(ii) Let T be a C0-semigroup on Lp whose resolvent is uniformly bounded in the right
half plane. Then ωβ(T) < 0 for all β > | 1p − 1

p′ |, 1
p + 1

p′ = 1 .

(iii) Let 1 6 p 6 2 and let T be a weakly Lp-stable C0-semigroup on a Banach space
X. Then for all β > 1

p we have ωβ(T) 6 0.

Further, we give sufficient conditions in terms of ωqR(A) for the existence of Lp-solutions
and W 1,p-solutions (1 6 p 6 ∞) of the abstract Cauchy problem for a general class of
operators A on X.
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0. Introduction

In this paper, we study the asymptotic behaviour of a C0-semigroup T = {T (t)}t>0 on a complex
Banach space X. For x ∈ X and n ∈ N , the growth bounds ω(x) and ωn(T) are defined by

ω(x) := inf{ω ∈ R : ‖T (t)x‖ 6Meωt for some M = Mx and all t > 0};
ωn(T) := sup{ω(x) : x ∈ D(An)}.
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Here, A is the generator of T and D(A0) is understood to be X. More generally, if the fractional
powers of −A are defined, for β > 0 we put

ωβ(T) := sup{ω(x) : x ∈ D((−A)β)}.

Of particular interest are the uniform growth bound of T, that is ω0(T), and the growth bound
ω1(T) which characterizes the growth of the classical solutions of the corresponding abstract Cauchy
problem. The growth bound ω1(T) equals the abscissa of improper convergence of the Laplace
transform of T [Ne]:

ω1(T) = inf
{
ω ∈ R : lim

t→∞

∫ t

0

e−ωsT (s)x ds exists for all x ∈ X
}
.

Similarly, ω0(T) is equal to the abscissa of absolute convergence of the Laplace transform of T;
this is a special case of the Datko-Pazy theorem [Pa, Thm. 4.4.1].

The spectral bound s(A) is defined by

s(A) = sup{Reλ : λ ∈ σ(A)}.

We always have s(A) 6 ω1(T) 6 ω0(T) [Na, Cor. A.IV.1.5]; for positive C0-semigroups on a
Banach lattice there is the equality s(A) = ω1(T) [Na, Thm. C.IV.1.3]. In general, however, both
inequalities may be strict; see e.g. [Na, Ex. A.IV.1.6] or [Ne]. Therefore, in order to be able to
say something about the asymptotic behaviour of T, it is not enough to know the location of the
spectrum of A. For this reason, several other quantities have been studied.

The abscissa ωLp(T) (1 6 p <∞) of weak p-integrability of T is defined as

ωLp(T) := inf
{
ω ∈ R :

∫ ∞

0

e−ωt|〈x∗, T (t)x〉|p dt <∞ for all x ∈ X and x∗ ∈ X∗
}
.

The abscissa ωpR(A) (1 6 p 6∞) of p-boundedness of the resolvent R(λ,A) = (λ−A)−1 of A
denotes the infimum of all ω ∈ R for which R(λ,A)x ∈ Hp({Reλ > ω}, X) for all x ∈ X, that is,

ωpR(A) := inf
{
ω ∈ R : sup

{∫ ∞

−∞
‖R(t+ is, A)x‖p ds : t > ω

}
<∞ for all x ∈ X

}
;

for p =∞ we take the sup-norm along the lines t+ iR . We denote the resulting abscissa of uniform
boundedness of R(λ,A) by ωR(A) rather than ω∞R (A).

Similarly, the abscissa weak-ωpR(A) (1 6 p 6∞) of weak p-boundedness of the resolvent denotes
the infimum of all ω ∈ R for which 〈x∗, R(λ,A)x〉 ∈ Hp({Reλ > ω}) for all x ∈ X and x∗ ∈ X∗.

It is well-known that for a C0-semigroup on a Hilbert space we have ωR(A) = ω0(T) = ωLp(T)
for all 1 6 p < ∞. The first equality is due to Gearhart [Ge]; an elegant short proof is given in
[We]. The second equality is due to Huang and Kangsheng [HK] and, independently, Weiss [We].
In the Banach space case, several results are known about the relations between ωR(A) and ωL1(T)
on the one hand and the growth bounds ωn(T) on the other hand:

(i) ω2(T) 6 ωR(A) [Sl]; see also [Na, Thm. A.IV.1.9];
(ii) ω1(T) 6 ωL1(T); this follows from [GVW, Prop. 1.1] in combination with [Na, Thm. A.IV.1.4];
(iii) If X is B-convex, in particular if X is uniformly convex, then ω1(T) 6 ωR(A) [Wr];
(iv) If X is a Banach lattice and T is positive, then s(A) = ω1(T) = ωR(A) [Na, p. 107].

It can happen that ω1(T) < ωR(A); an example can be found in [Wr]. Huang [Hu2] claimed
that ω1(T) 6 ωR(A) = ωL1(T) holds for every C0-semigroup on a Banach space X. His proofs,
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however, depend on a lemma on the extension of H2-functions, to which we present a counterex-
ample below. Therefore it remains an open question whether the relations ω1(T) 6 ωR(A) and/or
ωR(A) = ωL1(T) hold in general.

In Section 1, we show that the inequalities ω1(T) 6 ωLp(T) and ωR(A) 6 ωLp(T) hold for
each 1 6 p <∞.

Section 2 gives some basic definitions concerning fractional powers of unbounded operators.
Section 3 is devoted to some Paley-Wiener type lemmas concerning ωpR(A) and weak-ωpR(A).
The main result in Section 4 is as follows. If the resolvent of a C0-semigroup T on X is

uniformly bounded in the right half plane, then ωβ(T) < 0 for all β > 1
p − 1

p′ ( 1
p + 1

p′ = 1); here p is
the so-called Fourier type of the Banach space X. In particular, we somewhat improve Slemrod’s
theorem (statement (i) above) by showing that ω1+ε(T) < 0 if the resolvent is uniformly bounded
in the right half plane. Also, if T is a C0-semigroup on Lp, 1 6 p < ∞, with uniformly bounded
resolvent in the right half plane, we obtain that ωβ(T) < 0 for all β > | 1p − 1

p′ |, ( 1
p + 1

p′ = 1). It T

is a positive C0-semigroup on Lp and the spectral bound s(A) of its generator is negative, then the
resolvent is automatically bounded in the right half plane. For this case, the third named author
has recently proved [W] that s(A) = ω0(T).

In Section 5 we study the abscissa weak-ωpR(A). It is shown that ω1(A) 6 weak-ωpR(A) for all
1 6 p <∞. Also, if the resolvent is uniformly bounded in the right half plane, then 〈x∗, T (·)x〉 ∈
Lp(R+) for all x ∈ D(A) and x∗ ∈ X∗ and all 2 6 p <∞. Note that the cases p =∞ in these two
results would imply one of the claims of Huang.

In the final Section 6, we extend some of the techniques of Section 3 in order to study the
abstract Cauchy problem u′(t) = Au(t) (t > 0), u(0) = x, for a general class of operators A.
Extending definitions of types of solutions given by Beals [Be] and Pazy [Pa], we discuss the
existence of unique Lp-solutions and W 1,p-solutions in relation to the abscissae ωqR(A).

We conclude this introduction with a counterexample to Huang’s lemma. We need the following
terminology. For w ∈ R and 1 6 p 6∞, let Hp(w) denote the Banach space of analytic functions
in the open halfplane {Reλ > w} such that

sup
t>w

(∫ ∞

−∞
|f(t+ is)|p ds

)
<∞.

We will write Hp for Hp(0). Huang’s lemma can be formulated as follows. Suppose δ > 0 and f is
an analytic function in the halfplane {Reλ > −δ}. If moreover f ∈ H 2(w) for some w > 0 and

lim
r→∞

(
sup
|θ|6π2

|f(reiθ)|
)

= 0, (0.1)

then f ∈ H2. The counterexample below was constructed by A. Poltoratski and I. Binder.

Example 0.1. For t > 0, let

f0(t) =

{
en, if t ∈ [n, n+ e−2n]; n = 1, 2, ...;
0, otherwise.

Then e(1−ε)tf0(t) ∈ L1(R+) and e−εtf0(t) ∈ L2(R+) for each ε > 0, but f0 6∈ L2(R+). Let f be
the Laplace transform of f0,

f(s) =

∫ ∞

0

e−stf0(t) dt.
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Then f exists and is analytic in {Res > −1}, and, by the Paley-Wiener theorem, f ∈ H 2(ε) for all
ε > 0 but f 6∈ H2. We claim that (0.1) holds. To this end, let η > 0. Then we use that

lim
r→∞

(
sup
{
|f(reiθ)| : |θ| 6 π

2
, Re(reiθ) > η

})
= 0

by the general theory of H2 functions (e.g., [Ho, Ch. 8]); also,

lim
r→∞

(
sup
{
|f(reiθ)| : |θ| 6 π

2
, 0 6 Re(reiθ) 6 η

})
= 0

by the Riemann-Lebesgue lemma.

1. The abscissae ωLp(T)

Let T be a C0-semigroup on a Banach space X and let 1 6 p < ∞. We say that T is weakly Lp-
stable if for each x ∈ X and x∗ ∈ X∗ we have 〈x∗, T (·)x〉 ∈ Lp(R+). We start with the observation
that for a weakly Lp-stable semigroup on a Banach space X, there exists a constant M such that

(∫ ∞

0

|〈x∗, T (t)x〉|p dt
) 1
p 6M‖x‖ ‖x∗‖, for all x ∈ X,x∗ ∈ X∗, (1.1)

cf. [We]. In fact, we have the following more general situation. Let X, Y , and Z be Banach spaces
and let S : X × Y → Z be a separately continuous bilinear map. For x ∈ X define Sx : Y → Z,
Sxy := S(x, y). Then each Sx is bounded by the continuity in the Y -variable. Using the continuity
in the X-variable, it is easy to see that the map x 7→ Sx is closed, and hence bounded by the closed
graph theorem. It follows that

‖S(x, y)‖ 6 ‖Sx‖ ‖y‖ 6 K‖x‖ ‖y‖.

Now let µ be a positive σ-finite Borel measure on a locally compact Hausdorff space Ω, let E be a
Banach function space over (Ω, µ), and let X be a Banach space. Assume that S : Ω→ L(X) is a
mapping such that for each x ∈ X and x∗ ∈ X∗, the function

Sx,x∗(ω) := 〈x∗, S(ω)x〉, ω ∈ Ω,

belongs to E. Consider the map S : X ×X∗ → E, defined by S(x, x∗) := Sx,x∗ . We claim that
this bilinear map is separately continuous. Indeed, fix x∗ ∈ X∗. We will show that Sx∗ : X → E,
defined by Sx∗x := S(x, x∗), is closed. To this end, let xn → x in X and Sx∗xn → f in E. Since
Cauchy sequences in Banach function spaces have pointwise a.e. convergent subsequences [Za], and
since (Sx∗xn)(ω) → (Sx∗x)(ω) for all ω, it follows that Sx∗x = f , proving closedness. Therefore,
each operator Sx∗ is bounded. Similarly, each operator Sx : X∗ → E, Sxx

∗ := S(x, x∗), is bounded.
Therefore, S is separately continuous as claimed.

From the above discussion we see that there is a constant K such that for all x ∈ X and
x∗ ∈ X∗,

‖〈x∗, S(·)x〉‖E 6 K‖x‖ ‖x∗‖. (1.2)

Applied to E = Lp(R+), we obtain (1.1).

The following lemma is an easy generalization of [GVW, Prop. 1.1] and [We, Prop. 2.2].
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Lemma 1.1. Let 1 6 p <∞ and suppose T is a weakly Lp-stable C0-semigroup on X.
(i) Let 1 < p <∞. If R+ = ∪nEn, where (En) ⊂ R+ is a sequence of disjoint sets each of which

is bounded, and if f ∈ Lp′(R+) ( 1
p

+ 1
p′ = 1), then for all x ∈ X the improper integral

∫ ∞

0

f(t)T (t)x dt := lim
n→∞

∫

∪n
k=1

Ek

f(t)T (t)x dt

exists and is independent of the choice of (En). Moreover, for all x∗ ∈ X∗ we have

〈x∗,
∫ ∞

0

f(t)T (t)x dt〉 =

∫ ∞

0

f(t)〈x∗, T (t)x〉 dt,

the second integral being in the Lebesgue sense.
(ii) Let p = 1. If f ∈ L∞(R+) and limt→∞ |f(t)| = 0, then for all x ∈ X the improper integral∫∞

0
f(t)T (t)x dt := limτ→∞

∫ τ
0
f(t)T (t)x dt exists.

(iii) Let 1 6 p <∞. For all x ∈ X and Reλ > 0 we have λ ∈ %(A) and

R(λ,A)x =

∫ ∞

0

e−λtT (t)x dt.

Proof: (i) For bounded sets E ⊂ R + define µ(E) :=
∫
E
f(t)T (t)x dt, the integral being Bochner.

For m > n define Enm := ∪mk=nEk and let αnm :=
∫
Enm
|f(t)|p′ dt. Then we have limn,m→∞ αnm =

0. Therefore, for x∗ ∈ X∗ be arbitrary, we have

|〈x∗,
m∑

k=n

µ(Ek)〉| = |〈x∗, µ(Enm)〉| =
∣∣∣
∫

Enm

f(t)〈x∗, T (t)x〉 dt
∣∣∣

6
(∫

Enm

|〈x∗, T (t)x〉|p dt
) 1
p
(∫

Enm

|f(t)|p′ dt
) 1
p′ 6M‖x‖ ‖x∗‖ · α

1
p′
n,m.

Hence,
∥∥∥
m∑

k=n

µ(Ek)
∥∥∥ 6M‖x‖ · α

1
p′
nm.

This proves that the series
∑
n µ(En) is convergent. Denoting the limit by µ(R +), by the dominated

convergence theorem we have

〈x∗, µ(R+)〉 =
∑

n

〈x∗, µ(En)〉 =

∫ ∞

0

f(t)〈x∗, T (t)x〉 dt.

This proves the second formula and shows that µ(R +) is independent of the particular choice of
the (En).

(ii) In this case we have the estimate

∥∥∥
∫ τ1

τ0

f(t)T (t)x dt
∥∥∥ 6 sup

‖x∗‖61

∣∣∣
∫ τ1

τ0

f(t)〈x∗, T (t)x〉 dt
∣∣∣ 6M‖x‖ ·

(
sup

τ06t6τ1
|f(t)|

)
.

(iii) This can be proved either directly or by an analytic continuation argument: for each x, the
map λ 7→

∫∞
0
e−λtT (t)x dt is analytic for Reλ > 0 and coincides with R(λ,A)x for Reλ > ω0(T).

////
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By arguing exactly as in [We], it follows from Lemma 1.1 (iii) that ωR(A) < 0. Also, we
noted in the introduction that the abscissa of improper convergence of the Laplace transform of T
coincides with ω1(T). We thus recover the following result due to Weiss [We]:

Theorem 1.2. Let T be a C0-semigroup on a Banach space X and let 1 6 p <∞.

(i) ωR(A) 6 ωLp(T);

(ii) ω1(T) 6 ωLp(T).

For certain values of p, part (ii) will be improved later on (Theorem 5.5).

Recall that a map f : (Ω, µ)→ X is Pettis integrable if 〈x∗, f(·)〉 ∈ L1(µ) for all x∗ ∈ X∗ and
for each measurable H ⊂ Ω there is an element xH ∈ X such that

〈x∗, xH〉 =

∫

H

〈x∗, f(ω)〉 dµ(ω), for all x∗ ∈ X∗.

If in Lemma 1.1 (i) and (ii) we replace R + by an arbitrary measurable subset of R +, the argument
shows that in fact the function f(t)T (t)x is Pettis integrable. We have ω0(T) < 0 if and only if the
maps t 7→ f(t)T (t)x are Bochner integrable:

Proposition 1.3. Let T be weakly Lp-stable for some 1 6 p <∞. Then ω0(T) < 0 if and only
if f(t)T (t)x is Bochner integrable for all x ∈ X and f ∈ Lp′(R+) ( 1

p
+ 1

p′ = 1).

Proof: We only have to prove the ‘if’ part. Let x ∈ X be arbitrary and fixed and assume that
f(t)T (t)x is Bochner integrable for all f ∈ Lp′(R+). We claim that t 7→ T (t)x is in Lp(R+;X).
If not, then

∫∞
0
‖T (t)x‖p dt = ∞. Define gn(t) := ‖T (t)x‖ · χ[0,n](t). Then (gn) is an unbounded

sequence in Lp(R+). By the uniform boundedness theorem, there is a φ ∈ Lp′(R+) such that the
scalar sequence

(〈φ, gn〉)n =
(∫ n

0

φ(t)‖T (t)x‖ dt
)
n

is unbounded. This contradicts the Bochner integrability of t 7→ φ(t)‖T (t)x‖. The proposition now
follows from the Datko-Pazy theorem. ////

We already observed that the growth bound ω1(T) coincides with the abscissa of improper
convergence of the Laplace transform of T, and that ω0(T) coincides with the abscissa of absolute
convergence of the Laplace transform of T. Therefore it is of some interest to consider the abscissa
of Pettis integrability. For an arbitrary C0-semigroup T on a Banach space X and 1 6 p <∞ we
always have

ω1(T) 6 ωPettis(T) 6 ωLp(T) 6 ω0(T);

the second inequality follows by applying Lemma 1.1 to the function f(t) = e−λt, λ > 0, and the
first follows from the countable additivity of the indefinite Pettis integral, cf. [DU, Ch. 2].

Theorem 1.4. Let T be a positive C0-semigroup on a Banach lattice E. Then the following
assertions are equivalent:

(i) s(A) < 0;

(ii) ω1(T) < 0;

(iii) T is weakly L1-stable;

(iv) T is Pettis integrable;

(v) ωR(A) < 0.
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Proof: The equivalence of (i), (ii) and (v) was already mentioned in the introduction.
Assume (i). By [Na, Thm. A.IV.1.4 and Thm. C.IV.1.3], for each x ∈ X there exists a

R(x) ∈ X such that

lim
τ→∞

∫ τ

0

T (t)x dt = R(x).

In particular, the integrals on the left hand are uniformly bounded with respect to τ , say by a
constant M(x). Then for any τ > 0, 0 6 x ∈ X and 0 6 x∗ ∈ X∗ we have

∫ τ

0

|〈x∗, T (t)x〉| dt =
∣∣∣
∫ τ

0

〈x∗, T (t)x〉 dt
∣∣∣ 6 ‖x∗‖

∥∥∥
∫ τ

0

T (t)x dt
∥∥∥ 6 ‖x∗‖ ·M(x).

Since τ is arbitrary, it follows that T is weakly L1-stable.
The implication (iii)⇒(v) follows from Theorem 1.2.
If T is Pettis integrable, by definition T is weakly L1-stable. This gives (iv)⇒(iii).
Finally, suppose T is weakly L1-stable. Because of the equivalence (i)⇔(iii), also the semigroup

defined by U(t) := eεtT (t) is weakly L1-stable for some small ε > 0. Therefore, t 7→ T (t)x =
e−εtU(t)x is Pettis integrable by the observation preceding this theorem. ////

If T is bounded and one of the equivalent hypotheses in the theorem is fulfilled, then obviously
T is weakly Lp-stable for all 1 6 p <∞.

The following example shows that a weakly L1-stable semigroup can have strictly positive
growth bound ω0(T). In particular, T need not be bounded. This partially answers a question
raised in [We]; note the contrast with the Hilbert space case. Also, the example shows that a
bounded weakly Lp-stable semigroup can have growth bound zero.

Example 1.5. Let 1 < p < ∞ and let X = Lp(R+) ∩ L1(R+, e
tdt). With the norm ‖f‖ :=

‖f‖Lp(R+) + ‖f‖L1(R+,etdt), X is a Banach lattice. Define T (t)f(s) := f(t + s). Then T is a
positive C0-semigroup with ‖T (t)‖ = 1 for all t and s(A) = −1; this is proved in [GVW]. Put

S(t) := e
1
2 tT (t). Then ω(T) = 0, ω(S) = 1

2 , and by Theorem 1.4 and the remark after it, T is
weakly Lp-stable for all 1 6 p <∞ and S is weakly L1-stable.

As in [GVW], this example can be modified to give a counterexample on a reflexive Banach
lattice.

2. Fractional powers of closed operators

In this section we state some basic facts and definitions which we will use in the sequel. The
two lemmas below are probably not new, but in view of the many different definitions of fractional
powers in the literature and the difficulty to find references for the lemmas, we include their proofs.

A closed, densely defined linear operator A on a Banach space X is called sectorial if (0,∞) ⊂
%(A) and there is a constant K such that

||R(λ,A)|| 6 K

(λ+ 1)
for all λ > 0. (2.1)

For a sectorial operator A, fractional powers of −A are defined. If β = 1 we define (−A)−β as usual
and for 0 < β < 1 we use the (real) representation of the bounded operator (−A)−β given by

(−A)−βx :=
sinβπ

π

∫ ∞

0

r−βR(r,A)x dr (x ∈ X).
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For any n ∈ Z , the fractional power (−A)n−β is then defined by

(−A)n−βx = (−A)n(−A)−βx for x ∈ D((−A)n−β) = {x ∈ X : (−A)−βx ∈ D(An)}.
The operators (−A)β (β ∈ R ) are closed, injective, and satisfy the semigroup property

(−A)α(−A)β = (−A)α+β if α > 0 > β or α, β > 0 or α, β 6 0.

In particular, we have that (−A)−β(−A)βx = x for every β ∈ R and x ∈ D((−A)β); in other
words, (−A)−β is the inverse of the operator (−A)β . We have inclusions

D((−A)β) ⊂ D((−A)α) if β > α.
For details, we refer to [Ko].

If the resolvent satisfies (2.1), then there exist constants d > 0, C > 0 and 0 < ϕ < π such
that ‖R(λ,A)‖ 6 C(1 + |λ|)−1 for all λ in the sector {λ ∈ C : | arg λ| 6 ϕ} ∪ {λ ∈ C : |λ| 6 d};
this follows from an easy resolvent expansion argument. Hence, for every β > 0 and x ∈ X, the
integral

1

2πi

∫

Γ

(−λ)−βR(λ,A)x dλ, (2.2)

where µ−β is defined in terms of the principal branch of the logarithm, exists as a Bochner integral.
Here, Γ = Γ(ϕ, d) = Γ(1)(ϕ, d) ∪ Γ(2)(ϕ, d) ∪ Γ(3)(ϕ, d) denotes the upwards oriented curve defined
by

Γ(1)(ϕ, d) = {λ ∈ C : |λ| > d, arg λ = −ϕ};
Γ(2)(ϕ, d) = {λ ∈ C : |λ| = d, | arg λ| > ϕ};
Γ(3)(ϕ, d) = {λ ∈ C : |λ| > d, arg λ = ϕ}.

Note that we use the argument function with values in (−π, π]. By Cauchy’s theorem, the integral
(2.2) is equal to the curve integral over Γ(ϕ̃, d̃) for any 0 < ϕ̃ 6 ϕ and 0 < d̃ 6 d. Letting the curve
Γ collaps into the real line, we obtain the following.

Lemma 2.1. For every β > 0 and x ∈ X, the integral (2.2) equals (−A)−βx.

Proof: If β ∈ N , the statement follows by Cauchy’s integral formula applied to the right half plane.
In the case that 0 < β < 1, consider for 0 < |θ| 6 ϕ the curve Γ(θ) = {reiθ : r > 0}. Using that

lim
d↓0

∫

Γ(2)(θ,d)

(−λ)−βR(λ,A)x dλ = 0,

it follows from Cauchy’s theorem that

1

2πi

∫

Γ

(−λ)−βR(λ,A)x dλ =
1

2πi

∫

Γ(θ)

(−λ)−βR(λ,A)x dλ

− 1

2πi

∫

Γ(−θ)
(−λ)−βR(λ,A)x dλ

=
1

2πi

∫ ∞

0

(rei(θ−π))−βR(reiθ, A)x eiθdr

− 1

2πi

∫ ∞

0

(rei(−θ+π))−βR(re−iθ, A)x e−iθdr

→ 1

2πi

∫ ∞

0

r−β(eiπβ − e−iπβ)R(r,A)x dr as θ → 0

=
sinβπ

π

∫ ∞

0

r−βR(r,A)x dr = (−A)−βx.

(2.3)
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The convergence is a consequence of Lebesgue’s convergence theorem, the integrands in the integrals
being dominated by the function r 7→ Cr−β(1 + r)−1. For β > 1, β 6∈ N , we use that

R(λ,A)x

(−λ)[β]
= R(λ,A)(−A)−[β]x +

[β]−1∑

k=0

(−A)−k−1x

(−λ)[β]−k ,

where [β] denotes the unique integer such that [β] 6 β < [β] + 1. The integrals in

1

2πi

∫

Γ

(−λ)−βR(λ,A)x dλ

=
1

2πi

∫

Γ

(−λ)−β+[β]R(λ,A)(−A)−[β]x dλ +

[β]−1∑

k=0

1

2πi

∫

Γ

(−λ)−β+k dλ (−A)−k−1x

exist as Bochner integrals. Cauchy’s theorem applied to the left half plane yields that
∫

Γ

(−λ)−β+k dλ = 0 for every 0 6 k 6 [β]− 1.

Since 0 < β − [β] < 1, it follows by (2.3) that

1

2πi

∫

Γ

(−λ)−βR(λ,A)x dλ = (−A)−[β](−A)−β+[β]x = (−A)−βx.

////

Under certain conditions, the complex representation (2.2) of (−A)−βx can be changed to a
curve integral over a line.

Lemma 2.2. Let a < 0 and let A be a sectorial operator. Assume that the resolvent of A is
uniformly bounded in {λ ∈ C : Reλ > a}. Then for all β > 0 and x ∈ D(A) we have

(−A)−βx =
1

2πi

∫

Reλ=a

(−λ)−βR(λ,A)x dλ.

Proof: For all λ ∈ {Reλ > a}, λ 6= 0, we have

‖R(λ,A)x‖ =
∥∥∥ 1

λ
[R(λ,A)(λ −A)x+R(λ,A)Ax]

∥∥∥ 6 1

|λ|
(
||x|| +M ||Ax||

)
, (2.4)

where M = sup{‖R(λ,A)‖ : Reλ > a}. Hence the lemma follows from Lemma 2.1 and Cauchy’s
theorem. ////

3. The abscissae ωpR(A) and Paley-Wiener type lemmas for semigroups

Let A be a closed linear operator on a Banach space X, let 1 6 p 6∞ and let w ∈ R . We say that
the resolvent of A belongs to Hp(w) if {Reλ > w} ⊂ %(A) and for each x ∈ X we have

sup
{∫ ∞

−∞
‖R(t+ is, A)x‖p ds : t > w

}
<∞;
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in case p =∞, as usual, we take the sup-norm along the lines t+ iR . It is not hard to see, cf. the
argument at the beginning of Section 1, that for each t > w there exists a constant Mt such that

(∫ ∞

−∞
‖R(t+ is, A)x‖p ds

) 1
p 6Mt‖x‖, for all x ∈ X. (3.1)

Moreover, for all t > w,

Bt := sup{‖R(λ,A)‖ : Reλ > t} <∞. (3.2)

In fact, for functions f ∈ Hp(w,X) and t > w we have the estimate

sup
s∈R
‖f(t+ is)‖ 6 1

(π(t− w′)) 1
p

‖f‖Hp(w′,X), w < w′ < t (3.3)

cf. [HP, Thm. 6.4.2]. Applying this to f(λ) = R(λ,A)x, by the uniform boundedness theorem we
obtain (3.2). We define ωpR(A) to be the abscissa

ωpR(A) = inf{w ∈ R : A has Hp(w)-resolvent}.

If the resolvent fails to be in Hp(w) for all w ∈ R , we put ωpR(A) = ∞. As before, we write
ωR(A) instead of ω∞R (A) for the abscissa of uniform boundedness of the resolvent of A. By (3.2),
ωR(A) 6 ωpR(A) for all 1 6 p 6∞.

We say that the resolvent of A belongs to Hp(w) weakly if for all x ∈ X and x∗ ∈ X∗ the
function λ 7→ 〈x∗, R(λ,A)x〉 belongs to Hp(w). We denote by weak-ωpR(A) the corresponding
abscissa, i.e. the infimum of all w such that R(λ,A) belongs to H p(w) weakly.

If R(λ,A) belongs to Hp(w) weakly and t > w, there is a constant Mt such that

(∫ ∞

−∞
|〈x∗, R(t+ is, A)x〉|p ds

) 1
p 6Mt‖x‖ ‖x∗‖, for all x ∈ X,x∗ ∈ X∗. (3.4)

This follows from the observations at the beginning of Section 1. Moreover, for all t > w we have

Bt := sup{‖R(λ,A)‖ : Reλ > t} <∞.

In particular, ωR(A) = weak-ωR(A) 6 weak-ωpR(A) for all 1 6 p 6∞.
Our next aim is to prove that the functions ωpR(A) and weak-ωpR(A) are non-increasing in p.

Let L∞0 (R , X) denote the closure in L∞(R , X) of the set of all X-valued step functions of the form∑N
n=1 xnχFn , where xn ∈ X and Fn ⊂ R is measurable and has finite Lebesgue measure. Clearly,

C0(R , X) ⊂ L∞0 (R , X). Also, it is well-known [HP] that the restriction of an f ∈ H p(w,X) to
each line t+ iR belongs to L∞0 (R , X) (1 6 p <∞, t > w).

The basic fact we will use is that for all 1 6 p <∞ and 0 < θ < 1, the complex interpolation
method gives (

Lp(R , X), L∞0 (R , X)
)

[θ]
= Lq(R , X), (3.5)

where 1/q = (1− θ)/p [BL, Thm. 5.1.2].

Proposition 3.1. The functions ωpR(A) and weak-ωpR(A) are non-increasing in p. Moreover, for
all 1 6 p 6∞ we have either ωpR(A) =∞ or ωpR(A) = ωR(A).
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Proof: Fix 1 6 p 6 q 6∞. We claim that Hp(w,X) ⊂ Hq(w + ε,X) for all ε > 0.
By (3.2), Hp(w,X) ⊂ H∞(w + ε,X) for all ε > 0, so we may assume that p < q < ∞.

Let δ > ε > 0 be arbitrary and let 0 < θ < 1 be such that 1/q = (1 − θ)/p. Define the linear

operators T
(p)
δ : Hp(w,X) → Lp(R , X) and T

(∞)
δ : Hp(w,X) → L∞0 (R , X) by f 7→ f |w+δ+iR .

Then ‖T (p)
δ ‖ 6 1 and ‖T (∞)

δ ‖ 6 (πδ)−
1
p by (3.3). By complex interpolation, it follows that

‖f |w+δ+iR ‖Lq(R ,X) 6 (πδ)−
θ
p ‖f‖Hp(R ,X) 6 (πε)−

q−p
pq ‖f‖Hp(R ,X).

This proves that Hp(w,X) ⊂ Hq(w + ε;X).
Applying this to the functions λ 7→ R(λ,A)x shows that ωqR(A) 6 ωpR(A).
So far, we have proved that p → ωpR(A) is non-increasing. Now suppose that for some fixed

p we have ωpR(A) < ∞. By (3.2), we see that ωR(A) 6 ωpR(A); we will prove that the converse
inequality also holds. Let b > ωpR(A), let ωR(A) 6 t0 6 b and let t0 6 t 6 b be arbitrary and fixed.
Let Bt0 be defined by (3.2). By the resolvent equation, for all s ∈ R we have

‖R(t+ is, A)‖ = ‖[I + (b− t)R(t+ is, A)]R(b+ is, A)‖ 6 (1 +Bt0(b− t))‖R(b + is, A)‖.
Consequently,

(∫ ∞

−∞
||R(t+ is, A)x||p ds

) 1
p

6 (1 +Bt0(b− t))
(∫ ∞

−∞
||R(b+ is, A)x||p ds

) 1
p

.

Since t0 6 t 6 b is arbitrary and the resolvent is in Hp(b), this shows that the resolvent is in Hp(t0).
Finally, we have to prove the inequality weak-ωqR(A) 6 weak-ωpR(A). This is done similarly as

in the strong case, using the spaces Hp(w) and the functions λ 7→ 〈x∗, R(λ,A)x〉. ////

Recall that a Banach space X has Fourier type p for some 1 6 p 6 2, if the Fourier transform
F extends to a bounded operator

F : Lp(R , X)→ Lp
′
(R , X),

1
p + 1

p′ = 1, between the Lebesgue-Bochner spaces Lp(R , X) and Lp
′
(R , X). In other words, it is

assumed that the vector-valued Hausdorff-Young theorem holds for the exponent p.
Every Banach space has Fourier type 1 but only a Hilbert space has Fourier type 2 [Kw].

The Banach space Lr(Ω, µ) has Fourier type min{r, r′} [Pe]. Every B-convex (in particular every
uniformly convex) space has a Fourier type for some p with 1 < p 6 2 [Bo]. Recall that a complex
Banach space is B-convex if it does not contain the spaces l1n uniformly, or equivalently, if it is of
type p for some 1 < p 6 2. For more information we refer to [Pi].

From (3.5) and the Riemann-Lebesgue Lemma one sees that if a Banach space has Fourier
type p for some 1 6 p 6 2, then it has Fourier type q for all 1 6 q 6 p.

Now let A be a sectorial operator on X with ωR(A) < 0, and fix ωR(A) < a < 0 and x ∈ D(A).
By (2.4), for all β > 0 the integral

(Sx)(t) :=
1

2πi

∫

Reλ=a

eλt(−λ)−βR(λ,A)x dλ, (3.6)

where µ−β is defined in terms of the principle branch of the logarithm, exists as a Bochner integral.
By Cauchy’s theorem, the integral does not depend on the value of a. Moreover, (2.4) shows that
there is a constant Ca, which only depends on A and a, such that

‖(Sx)(t)‖ 6 Caeat‖x‖D(A). (3.7)

We also define
(Sax)(t) := e−at(Sx)(t). (3.8)

Lemma 3.2. Assume X has Fourier type p for some 1 6 p 6 2 and assume A is a sectorial
operator with ωqR(A) < 0 for some p 6 q 6 ∞. Then ωR(A) < 0, and for all β > 1

p − 1
q and

a > ωqR(A), formula (3.8) extends to a bounded linear operator Sa : X → Lp
′
(R+, X).
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Proof: Fix x ∈ D(A). Since ωR(A) 6 ωqR(A) < 0, the definition of (Sx)(t) makes sense. Without
loss of generality, we may assume ωqR(A) < a < 0. Then

(Sx)(t) =
eat

2π

∫ ∞

−∞
e−istg(s) ds =

eat

2π
F(g)(t)

where g(s) = (−a+ is)−βR(a− is, A)x. Since 1
r

:= 1
p
− 1

q
< β, we have by (3.1),

(∫ ∞

−∞
||g(s)||pds

) 1
p

6
(∫ ∞

−∞
|a− is|−βrds

) 1
r
(∫ ∞

−∞
||R(a− is, A)x||qds

) 1
q

6 C||x||.

Since X has Fourier type p, for all x ∈ D(A) we get

||e−a(·)(Sx)(·)||Lp′ (R+,X) 6 C1||x||.

Therefore, Sa extends to a bounded linear operator Sa : X → Lp
′
(R+, X). ////

It is easy to see that a generator whose resolvent is uniformly bounded in the open right half
plane (or equivalently, ωR(A) < 0; cf. Lemma 4.1) is sectorial. In that case, the integral (3.6) can
be expressed in terms of T:

Lemma 3.3. Let A be the generator of a C0-semigroup T with ωR(A) < 0. Then for all β > 0,
ωR(A) < a < 0 and x ∈ D(A) we have (Sx)(t) = T (t)(−A)−βx for all t > 0.

Proof: First let x ∈ D(A2). By Cauchy’s theorem,

1

2πi

∫

Reλ=a

eλt(−λ)−β−1 dλ = 0. (3.9)

Using this and the equation 1
λAR(λ,A)x = R(λ,A)x− x

λ , we see that

(Sx)(t) =
1

2πi

∫

Reλ=a

eλt(−λ)−β−1R(λ,A)(−Ax) dλ.

Since −Ax ∈ D(A), we may differentiate under the integral sign and obtain

d

dt
(Sx)(t) =

1

2πi

∫

Reλ=a

λeλt(−λ)−β−1R(λ,A)(−Ax) dλ

= A
( 1

2πi

∫

Reλ=a

eλt(−λ)−β−1R(λ,A)(−Ax) dλ
)

= A((Sx)(t)).

To obtain the second identity, we used λ = (λ − A) + A, (3.9), and the closedness of A. Also,
(Sx)(0) = (−A)−βx by Lemma 2.2. We have shown that (Sx)(·) is the solution to the abstract
Cauchy problem

d

dt
u(t) = Au(t)

u(0) = (−A)−βx.

By the uniqueness of classical solutions, we must have (Sx)(t) = T (t)(−A)−βx.
Next, let x ∈ D(A) and choose a sequence (xn) ⊂ D(A2) such that xn → x in the graph norm

of D(A). Let t > 0 be fixed. By (3.7), (Sxn)(t) → (Sx)(t) in X. The boundedness of (−A)−β

implies that also (Sxn)(t) = T (t)(−A)−βxn → T (t)(−A)−βx, and the lemma follows. ////
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The above two lemmas will now be used to derive two Paley-Wiener type results, giving Lp-
stability of certain orbits of a semigroup in terms of H r-abscissae of its Laplace transform, i.e. of
the resolvent.

Lemma 3.4. Suppose X has Fourier type p for some 1 6 p 6 2 and let p 6 q 6∞. Furthermore,
assume A is the generator of a C0-semigroup T satisfying ωqR(A) < 0. Then for all β > 1

p
− 1

q
,

a > ωqR(A), and x ∈ D((−A)β), the map t 7→ e−atT (t)x belongs to Lp
′
(R+, X).

Proof: Without loss of generality, assume ωqR(A) < a < 0.
Let y ∈ D((−A)β) be arbitrary and put x := (−A)βy. Choose a sequence xn → x with

xn ∈ D(A) for each n. By Lemma 3.2, Saxn → Sax in Lp
′
(R+, X). By taking a subsequence

if necessary, we may assume that (Saxn)(t) → (Sax)(t) for almost all t > 0. For any such t, by
Lemma 3.3 we have

e−atT (t)(−A)−βx = lim
n→∞

e−atT (t)(−A)−βxn = lim
n→∞

(Saxn)(t) = (Sax)(t).

Therefore, e−atT (·)y is equal a.e. to the function (Sax)(·) ∈ Lp′(R+, X). ////

We will now give the ‘weak’ analogue of Lemma 3.4.

Lemma 3.5. Let 1 6 p 6 2 and p 6 q 6 ∞. Furthermore, let A be the generator of a C0-
semigroup T satisfying weak-ωqR(A) < 0. Then for all β > 1

p − 1
q , a > weak-ωqR(A), x ∈ D((−A)β)

and x∗ ∈ X∗, the map t 7→ e−at〈x∗, T (t)x〉 belongs to Lp
′
(R+).

Proof: Without loss of generality, assume weak-ωqR(A) < a < 0.
Using (3.4) and the Hausdorff-Young theorem, the argument of Lemma 3.2 can be modified to

show that
‖e−a(·)〈x∗, (Sx)(·)〉‖Lp′ (R+) 6 C‖x‖ ‖x∗‖, ∀x ∈ D(A), x∗ ∈ X∗. (3.10)

Now fix x∗ ∈ X∗. Define Sa,x∗ : D(A)→ Lp
′
(R+) by (Sa,x∗x)(t) := 〈x∗, (Sax)(t)〉. It follows from

(3.10) that Sa,x∗ extends to a bounded operator Sa,x∗ : X → Lp
′
(R+).

Let y ∈ D((−A)β) and x∗ ∈ X∗ be arbitrary and put x := (−A)βy. Choose a sequence
xn → x with xn ∈ D(A) for each n. Then Sa,x∗xn → Sa,x∗x in Lp

′
(R+). By taking a subsequence

if necessary, we may assume that (Sa,x∗xn)(t) → (Sa,x∗x)(t) for almost all t > 0. For any such t,
we have

e−at〈x∗, T (t)(−A)−βx〉 = lim
n→∞

e−at〈x∗, T (t)(−A)−βxn〉 = lim
n→∞

〈x∗, (Saxn)(t)〉

= lim
n→∞

(Sa,x∗xn)(t) = (Sa,x∗x)(t).

Therefore, the function e−a(·)〈x∗, T (·)y〉 is equal a.e. to the function Sa,x∗x ∈ Lp
′
(R+). ////

4. The abscissae ωpR(A) and stability

In this section, we will apply Lemma 3.4 to obtain stability results for C0-semigroups. The first
lemma, along with its proof, is taken from [Hu1].

Lemma 4.1. Let A be a closed operator on a Banach space X. If the resolvent of A is uniformly
bounded in the open right half plane, then ωR(A) < 0.
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Proof: Let ‖R(λ,A)‖ 6 M for all Reλ > 0. Put σ := (2M)−1. Then for all ν ∈ R and µ 6 0 < λ
such that λ− µ < σ, the series

Rµ+iν :=

∞∑

n=0

(λ− µ)nR(λ+ iν, A)n+1 (4.1)

converges absolutely. Therefore the function z 7→ Rz is a analytic operator valued function for
Rez > −σ, and it coincides with R(z,A) whenever z ∈ %(A). We claim that actually Rz = R(z,A)
for all Rez > −σ. Suppose the contrary. Then there is a z ∈ ∂σ(A) ∩ {Rez > −σ}. But if we
let zn → z inside %(A) ∩ {Rez > −σ}, we see that ‖R(zn, A)‖, hence also ‖Rzn‖, tends to ∞, a
contradicition to the analyticity of z 7→ Rz. Finally, the uniform boundedness of the resolvent on
the half plane Reλ > −σ follows immediately from (4.1). ////

The next lemma gives a sufficient condition in order that ωqR(A) < 0 for certain values of q.

Lemma 4.2. Suppose X has Fourier type p for some 1 6 p 6 2, and suppose A is the generator
of a C0-semigroup T on X. If the resolvent of A is uniformly bounded in the open right half plane,

then ωp
′

R (A) = ωR(A) < 0 ( 1
p + 1

p′ = 1).

Proof: First we note that by Lemma 4.1, ωR(A) < 0. Choose b > 0 so that ||T (t)|| 6 Ce
b
2 t for

some C <∞ and all t > 0. Fix t > b. Since X has Fourier type p and

R(t+ is, A)x =

∫ ∞

0

e−isξ
(
e−tξT (ξ)x

)
dξ,

we get

(∫ ∞

−∞
||R(t+ is, A)x||p′ ds

) 1
p′

6 ||F||Lp(R ,X)→Lp′ (R ,X)

(∫ ∞

0

||e−tξT (ξ)x||p dξ
) 1
p

6 ||F||Lp(R ,X)→Lp′ (R ,X)

(∫ ∞

0

e−
1
2 bpξ dξ

) 1
p

‖x‖.
(4.2)

This shows that ωp
′

R (A) 6 b, and therefore ωp
′

R (A) = ωR(A) by Proposition 3.1. ////

Before proceeding with the main result of this section, let us observe the following simple
consequence of this lemma and Proposition 3.1.

Corollary 4.3. If A generates a C0-semigroup on a Banach space with Fourier type p for some

1 6 p 6 2, then for all p′ 6 q 6 ∞ one has ωp
′

R (A) = weak−ωp
′

R (A) = ωqR(A) = weak−ωqR(A) =
ωR(A).

If T is a C0-semigroup with generator A on a Banach space X whose resolvent R(λ,A) is
uniformly bounded in the open right half plane, then by the Hille-Yosida theorem A is a densely
defined sectorial operator. Consequently, the fractional powers of −A are defined. Recall from the
introduction the notation ωβ(T) = sup{ω(x) : x ∈ D((−A)β)}.

Theorem 4.4. Assume that X has Fourier type p for some 1 6 p 6 2, and that A generates a C0-
semigroup T whose resolvent is uniformly bounded in the right half plane. Then for all β > 1

p
− 1

p′

one has ωβ(T) < 0.
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Proof: By Lemma 4.1, ωR(A) < 0. Lemma 4.2 yields that ωp
′

R (A) = ωR(A) < 0. Now fix an
arbitrary x ∈ D((−A)β). Applying Lemma 3.4 with q = p′, for β > 1

p − 1
p′ and a > ωR(A) we get

that e−atT (·)x is equal a.e. to (Sa((−A)βx))(·) ∈ Lp′(R+, X). By a standard argument (cf. [Pa,
Thm. 4.4.1]), this implies that e−a(·)T (·)x is bounded. Hence, ω(x) 6 a. ////

Corollary 4.5. Let A be the generator of a C0-semigroup on a Banach space X. If the resolvent
of A is uniformly bounded in the right half plane, then ω1+ε(T) < 0 for every ε > 0.

Indeed, this follows from Lemma 4.1, Theorem 4.4 and the fact that every Banach space has
Fourier type 1. In fact, the corollary is an immediate consequence of (3.7) and Lemmas 3.3 and
4.1. This result can be generalized considerably, cf. [NS].

As we observed after Lemma 1.1, a weakly Lp-stable semigroup has uniformly bounded re-
solvent in a right half plane {Re λ > −ε}. Combining this with Corollary 4.5 it follows that
ω1+ε(T) < 0 for all ε > 0 if T is a weakly Lp-stable C0-semigroup for some 1 6 p <∞.

Theorem 4.4 implies a refinement of a stability result of Wrobel [Wr]. He proved that ω1(T) <
0 for C0-semigroups on B-convex Banach spaces whose generators A have uniformly bounded
resolvents in the right half plane.

Theorem 4.6. Let A be the generator of a C0-semigroups on a B-convex Banach space X. If
the resolvent of A is uniformly bounded in the right half plane, then there exists an ε > 0 such
that ω1−ε(T) < 0.

This follows from the fact that X has Fourier type p for some 1 < p 6 2 and Theorem 4.4.

Theorem 4.7. Let A be the generator of a positive C0-semigroup on a space Lp, 1 6 p < ∞.
Then s(A) = ωqR(A) for all max{p, p′} 6 q 6 ∞. If s(A) < 0, then for all β > | 1p − 1

p′ | we have

ωβ(T) < 0.

This follows from the facts that Lp is of Fourier type min{p, p′} and that for positive semigroups
one knows that s(A) = ωR(A). Of course, Theorem 4.7 is true for non-positive semigroups as well,
provided we replace s(A) by ωR(A).

5. Stability of weakly Lp-stable semigroups

In this section we will apply Lemma 3.5 to obtain stability results for C0-semigroups.

Theorem 5.1. Let T be a C0-semigroup on a Banach space X.
(i) If weak-ωqR(A) < 0 for some 1 6 q 6 ∞, then for all β > 1 − 1

q we have ωβ(T) 6 weak-

ωqR(A) < 0. In particular, ω1(T) 6 weak-ωqR(A) for all 1 6 q <∞.
(ii) If the resolvent is uniformly bounded in the open right half plane and if 2 6 q <∞, then for all

β > 1− 1
q , x ∈ D((−A)β) and x∗ ∈ X∗, the map 〈x∗, T (·)x〉 belongs to Lq(R+). In particular,

if x ∈ D(A), then for all x∗ ∈ X∗ we have 〈x∗, T (·)x〉 ∈ Lq(R+) for all 2 6 q <∞.

Proof: (i) For all weak-ωqR(A) < a < 0, Lemma 3.5 (with p = 1) shows that the function
〈x∗, e−a(·)T (·)x〉 is bounded for all x ∈ D((−A)β) and x∗ ∈ X∗. Therefore, ωβ(A) 6 a by the
uniform boundedness theorem.

(ii) Apply Lemma 3.5 (with q =∞). ////

We will now prepare some lemmas for a somewhat less trivial application of Lemma 3.5.
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Lemma 5.2. Let 1 6 p 6 2 and let T be a weakly Lp-stable C0-semigroup on X. Then the
resolvent belongs to Hp′ weakly.

Proof: Let t > 0 and s ∈ R be arbitrary. Let x ∈ X and x∗ ∈ X∗ be arbitrary. By Lemma 1.1 (iii)
we have

〈x∗, R(t+ is, A)x〉 =

∫ ∞

0

e−isξ
(
e−tξ〈x∗, T (ξ)x〉

)
dξ = (Fg)(s), (5.1)

where F is the Fourier transform and

g(ξ) = χR+
(ξ)e−tξ〈x∗, T (ξ)x〉.

Note that a priori we obtain the integral in (5.1) as an improper integral, but the conditions on T
and t ensure that the integral is actually a Lebesgue integral.

Let K = Kx,x∗ := ‖〈x∗, T (·)x〉‖Lp(R+). By the Hausdorff-Young theorem, there is a constant
Cp such that

‖〈x∗, R(t+ i(·), A)x〉‖Lp′ (R ) 6 Cp‖g(·)‖Lp′ (R ) 6 CpK.

Since t > 0 is arbitrary, the lemma follows. ////

Lemma 5.3. [Ko, Thm. 6.4] Let A be a sectorial operator. For all ω > 0 and β ∈ R we have
D((−A)β) = D((−(A− ω))β).

For our purposes, it is in fact sufficient to know that for all ε > 0, D((−A)β+ε) ⊂ D((−(A −
ω))β).

Lemma 5.4. Let 1 6 p 6 2, and let A be the generator of a weakly Lq-stable C0-semigroup T
for some 1 6 q 6 2. Then for all β > 1

p − 1
q′ , ( 1

q + 1
q′ = 1), x ∈ D((−A)β), x∗ ∈ X∗, and ε > 0, the

map t 7→ e−εt〈x∗, T (t)x〉 belongs to Lp
′
(R+).

Proof: Let x ∈ D((−A)β). By Lemma 5.2, the resolvent R(λ,A) belongs to H q′ weakly, so R(λ,A−
2ε) belongs to Hq′(−2ε) weakly. By Lemma 5.3, x ∈ D((−(A − 2ε))β . Therefore we can apply
Lemma 3.5 to the semigroup T2ε(t) := e−2εtT (t) and a = −ε and find that t 7→ e−εt〈x∗, T (t)x〉
belongs to Lp

′
(R+). ////

Now we are in a position to prove the main result of this section.

Theorem 5.5. Let T be a C0-semigroup which is weakly Lq-stable for some 1 6 q 6 2. Then for
all β > 1

q we have ωβ(T) 6 0.

Proof: An application of Lemma 5.4, with p = 1, shows that t 7→ e−εt〈x∗, T (t)x〉 is bounded for
all x ∈ D((−A)β), x∗ ∈ X∗, and ε > 0. The theorem follows from the uniform boundedness
theorem. ////

6. Existence of Lp-solutions

In this section we apply the ideas of Section 3 to the abstract Cauchy problem. Let A be a sectorial
operator on a Banach space X of Fourier type p for some 1 6 p 6 2. Assume that there is a q with
p 6 q 6∞ such that ωqR(A) < 0. Let β > 1

p − 1
q and ωqR(A) < a < 0, and consider the map Sa of

Lemma 3.2.
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Lemma 6.1. For all x ∈ X
∫ t

0

eas(Sax)(s) ds ∈ D(A) for almost all t > 0, (6.1)

and

eat(Sax)(t) = A

(∫ t

0

eas(Sax)(s) ds

)
+ (−A)−βx for almost all t > 0. (6.2)

Proof: Fix x ∈ D(A). We have

yt :=

∫ t

0

eas(Sax)(s) ds =

∫ t

0

(Sx)(s) ds =
1

2πi

∫

Reλ=a

1

λ
(eλt − 1) (−λ)−βR(λ,A)x dλ.

Since 1
λAR(λ,A)x = R(λ,A)x− x

λ , the integrals in

zt :=
1

2πi

∫

Reλ=a

1

λ
(eλt − 1) (−λ)−βAR(λ,A)x dλ

=
1

2πi

∫

Reλ=a

eλt(−λ)−βR(λ,A)x dλ − 1

2πi

∫

Reλ=a

(−λ)−βR(λ,A)x dλ

+
1

2πi

∫

Reλ=a

(eλt − 1)(−λ)−β−1xdλ

(6.3)

exist as Bochner integrals. The closedness of A implies that yt ∈ D(A) and Ayt = zt.
The last integral in (6.3) is zero by Cauchy’s theorem. Then (6.3) and Lemma 2.2 yield that

(Sx)(t) = A

(∫ t

0

(Sx)(s) ds

)
+

1

2πi

∫

Reλ=a

(−λ)−βR(λ,A)x dλ

= A

(∫ t

0

eas(Sax)(s) ds

)
+ (−A)−βx.

This proves the lemma in case x ∈ D(A).
For an arbitrary x ∈ X, choose xn ∈ D(A) with xn → x in X. Using Lemma 3.2, we see that

that (Saxn)→ (Sax) in the norm of Lp
′
(R+, X) and therefore, for all t > 0,

∫ t

0

eas(Saxn)(s) ds→
∫ t

0

eas(Sax)(s) ds.

By taking a subsequence if necessary, we may assume that (Saxn)(t)→ (Sax)(t) almost everywhere.
Hence, for almost all t,

eat(Saxn)(t)− (−A)−βxn → eat(Sax)(t)− (−A)−βx.

Since (6.1) and (6.2) hold for all xn and A is closed, we see that (6.1) and (6.2) hold for x. ////

Consider the abstract Cauchy problem

(ACP ) u′(t) = Au(t) (t > 0), u(0) = x.

(a) A function u : R+ → X is called a Lpw-solution of (ACP ) if e−w(·)u(·) ∈ Lp(R+, X) and

u(t) = A

(∫ t

0

u(s) ds

)
+ x for almost all t > 0 and u(0) = x.
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We say that u is a Lp-solution if it is a Lpw-solution for some w ∈ R .
(b) The function u : R+ → X is called a W 1,p

w -solution of (ACP ) if e−w(·)u(·) ∈ W 1,p(R+, X)
and

u′(t) = Au(t) for almost all t > 0 and u(0) = x.

By a W 1,p-solution, we mean a W 1,p
w -solution for some w ∈ R .

Definition (a) says essentially that a Lp-solution is a mild solution, but a Lp-solution is not
necessarily continuous. By part (b), it follows in particular that a W 1,p-solution is a strong solution
in the sense of Pazy, see [Pa, p. 109]. The name Lp-solution is motivated by the following notion
of Beals [Be].

(c) u : R+ → X is a L2-solution in the sense of Beals if ‖u(·)‖ is locally L2, and for each
y∗ ∈ D(A∗) the function 〈y∗, u(·)〉 is equal a.e. to a locally absolutely continuous function
uy∗(t) with uy∗(0) = 〈y∗, x〉, d

dt
uy∗(t) = 〈A∗y∗, uy∗ (t)〉.

Proposition 6.2. For each q > 2, a Lq-solution u of (ACP ) is a L2-solution in the sense of Beals.

Proof: Let u be a Lq-solution of (ACP ). Clearly, ‖u(·)‖ is locally L2. Let y∗ ∈ D(A∗) and define

uy∗(t) := 〈A∗y∗,
∫ t

0

u(s) ds〉+ 〈y∗, x〉.

Then uy∗(0) = 〈y∗, x〉, uy∗(·) is locally absolutely continuous with d
dt
uy∗(t) = 〈A∗y∗, u(t)〉, and

uy∗(t) = 〈y∗, u(t)〉 a.e. ////

Theorem 6.3. Let A be a sectorial operator on a Banach space X of Fourier type p for some
1 6 p 6 2. Let p 6 q 6 ∞ and assume that ωqR(A) < ∞. Then for all w > ωqR(A) and β > 1

p − 1
q

the following assertions hold.
(a) (ACP ) has a Lp

′
w -solution for every x ∈ D((−A)β).

(b) (ACP ) has a W 1,p′
w -solution for every x ∈ D((−A)β+1).

Proof: (a) Fix x ∈ D((−A)β). By scaling A, we may assume that ωqR(A) < w < 0; after doing so,
Lemma 5.3 guarantees that still x ∈ D((−A)β). Put y = (−A)βx and u(t) = ewt(Swy)(t) where
Sw is the map of Lemma 3.2. Then e−w(·)u(·) ∈ Lp′(R+, X) and

u(t) = ewt(Swy)(t) = A

(∫ t

0

ews(Swy)(s) ds

)
+ (−A)−βy = A

(∫ t

0

u(s) ds

)
+ x a.e.

(b) Fix x ∈ D((−A)β+1). After rescaling A as in (i) we have x ∈ D((−A)β+1). Put y = −(−A)β+1x

and u(t) =
∫ t

0
ews(Swy)(s) ds + x. Then e−wt d

dt
u(t) = (Swy)(t) belongs to Lp

′
(R+, X). It follows

easily from (3.6) that A−1Sw = SwA
−1. Also, since x = A−1(−A)−βy, it follows from (6.2) that

e−wtu(t) = A−1(Swy)(t) = (Sw(A−1y))(t) belongs to Lp
′
(R+, X). It follows that also d

dt

(
e−wtu(t)

)

belongs to Lp
′
(R+, X). Furthermore, u(0) = x and, since (−A)−βy = Ax,

d

dt
u(t) = e−wt(Swy)(t) = A

(∫ t

0

e−ws(Swy)(s) ds

)
+ (−A)−βy

= A

(∫ t

0

e−ws(Swy)(s) ds+ x

)
= Au(t) a.e.

////
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If X has Fourier type p, then ωp
′

R (A) 6 ω0(T), where 1
p + 1

p′ = 1. Therefore, the condition

ωqR(A) <∞ is automatically satisfied for all p′ 6 q 6∞.
Beals [Be] proves the following. If A is a densely defined closed operator on a Hilbert space

H, such that the resolvent is uniformly bounded in some right half plane, then for each x ∈ D(A),
the problem (ACP ) has a unique L2-solution in the sense of Beals. If in addition we assume that
A is sectorial we can improve this as follows:

Corollary 6.4. Let A be a sectorial operator on a B-convex Banach space X. Then there exists
an ε > 0 such that for each x ∈ D((−A)1−ε), the problem (ACP ) has a unique L2-solution in the
sense of Beals.

Proof: As we observed at the beginning of this section, X is of Fourier type p for some 1 < p 6 2.
Therefore the existence assertions follow by combining the previous two results. Uniqueness of
L2-solutions is proved in [Be]. ////

Corollary 6.5. Let A be a sectorial operator on a Hilbert space H. Then for each β > 1
2 and

x ∈ D((−A)β), the problem (ACP ) has a unique L2-solution in the sense of Beals. Moreover, if
ωqR < 0 for some q > 2, then this solution is globally L2.

Proof: We only need to prove the globality assertion, which follows from Theorem 6.3. ////
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