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Abstract. Let T be a C0−semigroup on a real or complex Banach space X
and let J : C+[0,∞) → [0,∞] be a lower semicontinuous and nondecreasing
functional on C+[0,∞), the positive cone of C[0,∞), satisfying J(c1) =∞ for
all c > 0. We prove the following result: if T is not uniformly exponentially
stable, then the set ˘

x ∈ X : J(‖T (·)x‖) =∞
¯

is residual in X.

A C0−semigroup T = {T (t)}t>0 on a (real or complex) Banach space X is said
to be uniformly exponentially stable if there exist constants M > 1 and ω > 0 such
that

‖T (t)‖ 6Me−ωt, t > 0.

A well-known result of Datko and Pazy [6] states that T is uniformly exponentially
stable if there exists p ∈ [1,∞) such that

∫ ∞

0

‖T (t)x‖p dt <∞, x ∈ X.

This result was generalized by Zabczyk [8], who showed that a C0−semigroup on
X is uniformly exponentially stable if there exists a convex nondecreasing function
φ : [0,∞)→ [0,∞) with φ(0) = 0 and φ(t) > 0 for all t > 0 such that

∫ ∞

0

φ(‖T (t)x‖) dt <∞, x ∈ X.

Zabczyk’s result was improved and generalized to evolution families by Rolewicz
[7, Theorem 1]. In the semigroup case Rolewicz’s result reads as follows: if a
C0−semigroup T on X fails to be uniformly exponentially stable, then for every
nondecreasing continuous function φ : [0,∞) → [0,∞) with φ(0) = 0 and φ(t) > 0
for all t > 0 there exists a dense subset D ⊆ X such that∫ ∞

0

φ(‖T (t)x‖) dt =∞, x ∈ D;

it is implicit in the proof of [7, Theorem 2] that D is in fact residual.
In [5] it is shown that T is uniformly exponentially stable if there exists a Banach

function space E over [0,∞) with the property that

(1.1) lim
t→∞

‖1[0,t]‖E =∞,
such that

‖T (·)x‖ ∈ E, x ∈ X.
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The Datko-Pazy theorem follows from this by taking E = Lp[0,∞). As is shown in
[5], Rolewicz’s version of the Datko-Pazy theorem can be derived as well by taking
for E a suitable Orlicz space over [0,∞). This is a somewhat artifictial construction,
however. In this note we propose a more natural generalization of these results.

The proof of our main result, Theorem 4 below, is based upon results by Müller
about the orbits of a single operator T . For the convenience of the reader, we recall
these results first.

Proposition 1 ([3, Lemma 1]). Let E be a finite-dimensional subspace of a Banach
space X and let ε > 0. Then there exists a closed subspace F ⊆ X of finite
codimension such that

‖e+ f‖ > (1− ε) max
{
‖e‖, 1

2‖f‖
}
, e ∈ E, f ∈ F.

Proposition 2 ([4, Lemma 2.2]). Let T be a bounded linear operator on a Banach
space X with r(T ) = ress(T ) = 1. Then there is a constant c > 0 with the following
property: for every n ∈ N and every subspace Y ⊆ X of finite codimesion there
exists y ∈ Y with ‖y‖ = 1 such that

‖T jy‖ > c, j = 0, . . . , n.

Here ress(T ) denotes the essential spectral radius of T . In [4] this result is stated
real spaces only, but the proof also works for complex spaces.

Lemma 3. Let T be a bounded linear operator on a Banach space X, and assume
that its spectral radius satisfies r(T ) > 1. Then for all x ∈ X and δ > 0 there exists
a constant C > 0 with the following property: for all n ∈ N there exists y ∈ X such
that ‖x− y‖ < δ and ‖T jy‖ > C for all j = 0, . . . , n.

Proof. Without loss of generality we may assume that r(T ) = 1.
If ress(T ) < 1, then T has an eigenvalue λ with |λ| = 1, and we may proceed as

in part A of the proof of [4, Theorem 2.3].
Suppose next that ress(T ) = 1. Let c be the constant from Proposition 2. Fix

n ∈ N and let E denote the finite–dimensional linear subspace of X spanned by the
set {T jx : j = 0, . . . , n}. By Proposition 1, there exists a closed subspace F of X
of finite codimension such that

‖e+ f‖ > 1
2 max

{
‖e‖, 1

2‖f‖
}
, e ∈ E, f ∈ F.

Let F ′ = {f ∈ F : T jf ∈ F, j = 0, . . . n}. The assumption ress(T ) = 1 implies that
X is infinite-dimensional, and therefore F ′ is a nontrivial closed subspace of X of
finite codimension. By Proposition 2 there exists a vector f ∈ F ′ with ‖f‖ = 1 and
‖T jf‖ > c, j = 0, . . . , n. Let y := x+ 1

2δf . Then ‖x− y‖ < δ and

‖T jy‖ = ‖T jx+ 1
2δT

jf‖ > 1
8δ‖T jf‖ > 1

8c δ, j = 0, . . . , n.

If T is a Hilbert space operator and if there is a λ ∈ σ(T ) with |λ| = r(T ) > 1
which is not an eigenvalue, in the lemma we may take any constant 0 < C < δ; this
result is due to Beauzamy [1, Theorem 2.A.1].

We denote by C[0,∞) the space of all continuous functions on [0,∞). With the
topology of uniform convergence on compact sets, this is a separable Fréchet space.
By C+[0,∞) we denote the positive cone of C[0,∞).

Recall that a subset of a topological space is called residual if its complement is
of the first category.
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Theorem 4. Let J : C+[0,∞)→ [0,∞] be a map with the following properties:

(1) J is lower semicontinuous;
(2) J is nondecreasing, i.e. 0 6 f 6 g implies J(f) 6 J(g);
(3) J(c1) =∞ for all c > 0.

Let T be a C0−semigroup on a Banach space X which is not uniformly exponentially
stable. Then the set {

x ∈ X : J
(
‖T (·)x‖

)
=∞

}

is residual.

Proof. For k = 1, 2, . . . let

Xk =
{
x ∈ X : J

(
‖T (·)x‖

)
> k

}
.

The lower semicontinuity of J implies that each Xk is open. It suffices to prove
that each Xk is dense.

Fix k > 1 and let B(x, δ) be an open ball with centre x ∈ X and radius δ > 0.
We will show that Xk ∩ B(x, δ) 6= ∅.

Since T is not uniformly exponentially stable we have r(T (1)) > 1. By Lemma
3 there exists a constant C > 0 with the following property: for each n = 0, 1, . . .
there exists an yn ∈ X with ‖x − yn‖ < δ and ‖T (j)yn‖ > C for all j = 0, . . . , n.
Then,

‖T (t)yn‖ >
C

M
, t ∈ [0, n],

where M := sup06s61 ‖T (s)‖.
Let (fn)n>0 ⊆ C+[0,∞) be a sequence with

0 6 fn 6
C

M
1[0,n], n = 0, 1, . . .

and

lim
n→∞

fn =
C

M
1 uniformly on compact sets.

Then,

‖T (t)yn‖ >
C

M
1[0,n](t) > fn(t), t ∈ [0,∞), n = 0, 1, . . . .

By the monotonicity and lower semicontinuity of J we obtain

lim inf
n→∞

J(‖T (·)yn‖) > lim inf
n→∞

J(fn) > J
( C
M

1
)

=∞.

In particular, there exists an index n0 such that J(‖T (·)yn0‖) > k. Therefore,
yn0 ∈ Xk ∩ B(x, δ), showing that the intersection is nonempty.

The semigroup case of Rolewicz’s theorem follows from Theorem 4 by taking

J(f) =

∫ ∞

0

φ(f(t)) dt, f ∈ C+[0,∞).

This functional satisfies the three assumptions of Theorem 4; lower semicontinuity
follows from Fatou’s lemma. In fact, if T is not uniformly exponentially stable, we
obtain the somewhat stronger result that the set

{
x ∈ X :

∫ ∞

0

φ(‖T (t)x‖) dt =∞
}

is residual.
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The result from [5] mentioned above involving Banach function spaces satisfying
(1.1) also follows from Theorem 4: take

J(f) := lim
t→∞

‖1[0,t]f‖E = sup
t>0
‖1[0,t]f‖E.

To see that J is lower semicontinuous we argue as follows. For each t > 0, the map
Jt(f) := ‖1[0,t]f‖E is continuous. Indeed, if fn → f uniformly on compact sets,
then 1[0,t]fn → 1[0,t]f uniformly. Therefore, given ε > 0, for n large enough we
have

|1[0,t]fn − 1[0,t]f | 6 ε1[0,t]

in E, and therefore by the triangle inequality,

|J(fn)− J(f)| 6 ‖1[0,t]fn − 1[0,t]f‖E 6 ε‖1[0,t]‖E.
Being the supremum of a family of continuous maps, J is lower semicontinuous.
Thus, if T is not uniformly exponentially stable, then

(1.2) {x ∈ X : ‖T (·)x‖ 6∈ E} is residual.

The norm of a Banach function space E is said to have the Fatou property if the
following holds: if f is a measurable function and (fn)n>0 is a sequence in E such
that supn>0 ‖fn‖E < ∞ and 0 6 fn ↑ f , then f ∈ E and limn→∞ ‖fn‖E = ‖f‖E.
For Banach function spaces E whose norm has the Fatou property, in particular
for E = Lp[0,∞) with 1 6 p <∞, the result contained in (1.2) can be proved in a
more elementary way as follows.

Suppose E is a Banach function space satisfying (1.1) whose norm has the Fatou
property, and assume that the set of all x ∈ X with ‖T (·)x‖ ∈ E is of the second
category. We will show that T is uniformly exponentially stable.

For k = 1, 2, . . . define

Xk =
{
x ∈ X :

∥∥ ‖T (·)x‖
∥∥
E
6 k

}
.

In order to prove that Xk is closed, suppose that xn → x in X with xn ∈ Xk for
all n > 0. Defining fn := ‖T (·)xn‖ ∈ E and f := ‖T (·)x‖, we have 1[0,j]f ∈ E and
1[0,j]fn → 1[0,j]f uniformly, and hence in E, as n→∞. It follows that

‖1[0,j]f‖E = lim
n→∞

‖1[0,j]fn‖E 6 lim sup
n→∞

‖fn‖E 6 k.

By the Fatou property, it follows that f ∈ E and

‖f‖E = lim
j→∞

‖1[0,j]f‖E 6 k.

Therefore x ∈ Xk and Xk is closed.
Since by assumption

⋃
k>1 Xk is of the second category, at least one Xk0 has

nonempty interior. Let B(x0, δ0) be an open ball with centre x0 and radius δ0

contained in Xk0 . Then by the triangle inequality in E, the open ball B(0, δ0) is
contained in X2k0 . But then for all nonzero x ∈ X and 0 < δ < δ0,

∥∥ ‖T (·)x‖
∥∥
E

=
‖x‖
δ
·
∥∥ ‖T (·)(δx/‖x‖)‖

∥∥
E
6 ‖x‖

δ
· 2k0 <∞.

This shows that ‖T (·)x‖ ∈ E for all x ∈ E, and we may apply the result from
[5] (or the Datko-Pazy theorem if E = Lp[0,∞)) to conclude that E is uniformly
exponentially stable.

Remark 5. L. Weis has kindly pointed out that for E = Lp[0,∞) this, and related
residuality results, have been obtained by V. Wrobel (preprint).



LOWER SEMICONTINUITY AND THE DATKO-PAZY THEOREM 5

A C0−semigroup T on X is said to be strongly stable if

lim
t→∞

‖T (t)x‖ = 0, x ∈ X.
Every uniformly exponentially stable semigroup is strongly stable, but the con-
verse is not true: a simple counterexample is the semigroup of left translations on
C0[0,∞).

As a consequence, a function J satisfying the three assumptions of Theorem 4
cannot be finitely valued on the subset C+

0 [0,∞) of all positive functions vanishing
at infinity. Indeed, the existence of such J would imply that every strongly stable
C0−semigroup is uniformly exponentially stable. In fact we have the following
simple observation. First note that conditions 2 and 3 of Theorem 4 imply that
J(f) =∞ whenever f > c1 for some c > 0.

Proposition 6. Let J : C+[0,∞) → [0,∞] be lower semicontinuous, and assume
that J(f) = ∞ for all f ∈ C+[0,∞) for which there exists a constant c > 0 such
that f > c1. Then the set

{
f ∈ C+

0 [0,∞) : J(f) =∞
}

is residual in C+
0 [0,∞), endowed with the topology of uniform convergence.

Proof. Suppose, for a contradiction, that the set F :=
{
f ∈ C+

0 [0,∞) : J(f) <∞
}

is of the second category in C+
0 [0,∞). For k = 1, 2, . . . let

Fk :=
{
f ∈ C+

0 [0,∞) : J(f) 6 k
}
.

As a subset of C+
0 [0,∞), each Fk is closed. Indeed, if fn → f uniformly with fn ∈

Fk for all n, then fn → f uniformly on compact sets, and the lower semicontinuity
of J gives J(f) 6 lim infn→∞ J(fn) 6 k. Since by assumption

⋃
k>1 Fk is of the

second category in C+
0 [0,∞), there is an Fk0 with nonempty interior relative to

C+
0 [0,∞).
Let B(f0, δ0) be an open ball in C+

0 [0,∞) contained in Fk0 , and fix 0 < δ < δ0

arbitrary. Choose a sequence (gn)n>0 in C+
0 [0,∞) such that 0 6 gn 6 δ1 and

gn → δ1 uniformly on compact sets. We have f0 + gn ∈ B(f0, δ0) for each n, and
limn→∞(f0 +gn) = f0 +δ1 uniformly on compact sets. By the lower semicontinuity
of J ,

J
(
f0 + δ1

)
6 lim inf

n→∞
J(f0 + gn) 6 k0,

a contradiction.

We do not know whether Theorem 4 remains true if the conditions 2 and 3 are
replaced by the condition

2′. J(f) =∞ for all f ∈ C+[0,∞) with f > c1 for some c > 0.

We are going to check next that none of the three conditions in Theorem 4 can
be omitted.

Example 7. Define

J(f) :=

{
0, f ∈ C+

0 [0,∞),
∞, otherwise,

f ∈ C+[0,∞).

Then J is nondecreasing, J(c1) =∞ for all c > 0, but J is not lower semicontinuous.
If T is a C0−semigroup which is strongly stable, then J(‖T (·)x‖) = 0 for all x ∈ X ,
but T need not be uniformly exponentially stable.
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In order to give an example showing that the second condition of Theorem 4
cannot be omitted we need some preparation.

Let us call a subset K of C+[0,∞) solid if from 0 6 f 6 g and g ∈ K it follows
that f ∈ K.

Proposition 8. Let K be a closed, convex, solid subset of C+[0,∞) not containing
any nonzero constant function. If T is not uniformly exponentially stable, then the
set of all x ∈ X with the property c ‖T (·)x‖ 6∈ K for all c > 0 is residual.

Proof. Since K is closed and convex, its Minkowski functional

JK(f) := inf{λ > 0 : f ∈ λK}, f ∈ C+[0,∞),

is lower semicontinuous. Since K is solid, 0 6 f 6 g implies JK(f) 6 JK(g). Since
K does not contain any nonzero constant function we have JK(c1) = ∞ for all
c > 0. By Theorem 4, the set of all x ∈ X with JK(‖T (·)x‖) = ∞ is residual.
Noting that JK(‖T (·)x‖) < ∞ if and only if c ‖T (·)x‖ ∈ K for some c > 0, this
gives the result.

The solidity of K was needed only to verify condition 2 of Theorem 4. Thus
if Theorem 4 were true for every functional J satisfying only conditions 1 and 3,
then Proposition 8 would be true for every closed convex subset K of C+[0,∞)
containing 0. The following example shows that this is not true, however.

Example 9. Let T be a C0−semigroup on a Banach space X which is strongly
stable but not uniformly exponentially stable.

Let 0 < ε < 1 and n > 0 be fixed and define

Kε,n =
{
f ∈ C+[0,∞) : εf(n) > f(n+ 1)

}
.

This set is closed and convex, it contains no nonzero constant function, but it is
not solid. In order to obtain a contradiction let us assume that Proposition 8 may
be applied to the set Kε,n. We then find that the set

Xε,n = {x ∈ X : ε‖T (n)x‖ < ‖T (n+ 1)x‖}
is residual. Let (εk)k>0 be a sequence with 0 < εk < 1 for all k > 0 and εk ↑ 1 as
k →∞. Then

‖T (n)x‖ 6 ‖T (n+ 1)x‖
if and only if x ∈ ⋂k>0 Xεk,n =: Xn, and this set is residual. Next,

‖T (n)x‖ 6 ‖T (n+ 1)x‖, n = 0, 1, . . .

if and only if x ∈ ⋂n>0Xn, and this set is again residual. But since we assumed

that T is strongly stable,
⋂
n>0Xn = {0}, a contradiction.

The next example shows that condition 3 in Theorem 4 cannot be relaxed too
much.

Example 10. Let J(f) := |{t ∈ [0,∞) : f(t) > ε}|, where | · | denotes the Lebesgue
measure and ε > 0 is fixed. Then J is lower semicontinuous and nondecreasing,
and J(c1) =∞ if and only if c > ε. If T is a strongly stable semigroup on X , then
J(‖T (·)x‖) <∞ for all x ∈ X , but T need not be uniformly exponentially stable.
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For p ∈ [1,∞) the functional

(1.3) Jp(f) =

∫ ∞

0

(f(t))p dt, f ∈ C+[0,∞),

ocuuring in the Datko-Pazy theorem is not only nondecreasing but also convex. It
is not possible, however, to replace ‘nondecreasing’ by ‘convex’ in Theorem 4, as is
shown by the following example.

Example 11. Let Kε,n be the closed convex set of Example 9. Clearly, λKε,n = Kε,n

for all λ > 0, and therefore its Minkowski functional Jε,n is given by

Jε,n(f) =

{
0, f ∈ Kε,n;
∞, else.

In particular, Jε,n is convex. As we have seen, Jε,n is also lower semicontinuous
and Jε,n(c1) =∞ for all c > 0. Now let us assume that the conclusion of Theorem
4 holds for the functionals Jε,n. Then the conclusion of Proposition 8 holds for the
sets Kε,n, and it was shown in Example 9 that this leads to a contradiction.

For p ∈ (0, 1), the functional Jp defined by (1.3) is concave. Our final result
shows that Theorem 4 does remain true if we replace ‘nondecreasing’ by ‘concave’.

Theorem 12. Let J : C+[0,∞)→ [0,∞] be a map with the following properties:

(1) J is lower semicontinuous;
(2) J is concave;
(3) J(c1) =∞ for all c > 0.

Let T be a C0−semigroup on a Banach space X which is not uniformly exponentially
stable. Then the set {

x ∈ X : J
(
‖T (·)x‖

)
=∞

}

is residual.

Proof. For k = 1, 2, . . . let Xk be the open set

Xk :=
{
x ∈ X : J(‖T (·)y‖) > k

}
.

Let B(x, δ) be an arbitrary open ball in X ; we will show that Xk ∩ B(x, 2δ) 6= ∅.
Proceeding as in the proof of Theorem 4, we construct a sequence (yn)n>0 contained
in B(x, δ) and a sequence (fn)n>0 in C+[0,∞) with

‖T (·)yn‖ >
C

M
1[0,n] > fn, n = 0, 1, . . .

and
lim
n→∞

J(fn) =∞.
Let (αn)n>0 be a sequence of real numbers satisfying 0 < αn 6 1

2 for all n > 0 and

lim
n→∞

αn = 0, lim
n→∞

αnJ(fn) =∞.

Noting that αn/(1− αn) 6 1 for all n > 0 and using the concavity of J , it follows
that

lim inf
n→∞

J
(∥∥T (·)

(
(1− αn)yn

)∥∥)

> lim inf
n→∞

(
αnJ(fn) + (1− αn)J

(
‖T (·)yn‖ −

αn
1− αn

fn

))

> lim
n→∞

αnJ(fn) =∞.
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Given a fixed integer k > 1, it follows that there exists an index n0 such that

J
(∥∥T (·)

(
(1− αn)yn

)∥∥) > k, n > n0.

On the other hand, since limn→∞ αn = 0, there exists an index n1 > n0 such that
(1−αn)yn ∈ B(x, 2δ) for all n > n1. For such n we have (1−αn)yn ∈ Xk∩B(x, 2δ),
showing that the intersection is nonempty.

By a well-known result of Datko [2], a C0−semigroup T on X is uniformly expo-
nentially stable if and only if there exists p ∈ [1,∞) such that T∗f ∈ Lp([0,∞);X)
for all f ∈ Lp([0,∞);X). Here, the convolution T ∗ f is defined by

(T ∗ f)(t) =

∫ t

0

T (t− s)f(s) ds, t > 0.

In fact, let x ∈ X be arbitrary and define fx ∈ Lp([0,∞);X) by

fx(t) =

{
T (t)x, t ∈ [0, 1),

0, t > 1.

Then,

(T ∗ fx)(t) =

{
t T (t)x, t ∈ [0, 1),
T (t)x, t > 1.

Since by assumption T ∗ fx ∈ Lp([0,∞);X) for all x ∈ X , it follows that T (·)x ∈
Lp([0,∞);X) for all x ∈ X . Therefore T is uniformly exponentially stable by the
Datko-Pazy theorem. An easy modification of this argument shows that it is enough
to have T ∗ f ∈ Lp([0,∞);X) for all f ∈ Cc((0,∞);X), the space of continuous
X−valued functions with compact support in (0,∞); cf. the proof below.

The following result extends Datko’s theorem to the setting of lower semicontin-
uous functionals:

Theorem 13. Let T be a C0−semigroup on X and let J : C+[0,∞)→ [0,∞] be a
map with the following properties:

(1) J is lower semicontinuous;
(2) J is nondecreasing;
(3) J(f) =∞ for all f ∈ C+[0,∞) satisfying lim inf t→∞ f(t) > 0.

If J(‖T ∗ f‖) < ∞ for all f ∈ Cc((0,∞);X), then T is uniformly exponentially
stable.

Proof. Fix an arbitrary nonzero 0 6 φ ∈ Cc(0,∞), with support in [a, b] say, and
define

ψ(t) =

∫ t

0

φ(s) ds, t > 0.

Then for all t > b we have ψ(t) = ψ(b) > 0. For x ∈ X let fx ∈ Cc((0,∞);X) be
defined by

fx(t) := φ(t)T (t)x, t > 0.

Then J(‖T ∗ fx‖) < ∞ by assumption. By the Baire category theorem, there is a
ball B(x0, r) in X and an N ∈ N such that J(‖T ∗ fx‖) 6 N for all x ∈ B(x0, r).
Now suppose T were not uniformly exponentially stable. Then r(T ) > 1, and
by Lemma 3 there exists a constant c > 0 such that for all n ∈ N we can find
yn ∈ B(x0, r) with

‖T (t)yn‖ > c, t ∈ [0, n].
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Noting that

(T ∗ fyn)(t) =

∫ t

0

φ(s)T (t− s)T (s)yn ds = ψ(t)T (t)yn, t > 0,

we see that
J(cψ) 6 lim inf

n→∞
J(ψ · c1[0,n]) 6 J(T ∗ fyn) 6 N.

On the other hand, from lim inf t→∞ cψ(t) = cψ(b) > 0 it follows that J(cψ) =∞,
and we have arrived at a contradiction.

Acknowledgement - The author thanks the anonymous referee for suggesting
some improvements in the presentation of the paper.
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