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Abstract - Let X be a Banach space and 1 6 p < ∞. Let L be a bounded

linear operator from Lp([−1, 0], X) into X. Consider the delay differential equation

u̇(t) = Lut, u(0) = x, u0 = f on the state space Lp([−1, 0], X). We prove

that a mild solution u(t) = u(t;x, f) is a small solution if and only if the Laplace

transform of u(t;x, f) extends to an entire function. The same result holds for the

state space C([−1, 0], X).
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Let X be a Banach space and let 1 6 p < ∞. For a bounded linear operator L
from Lp([−1, 0], X) into X, on the state space Lp([−1, 0], X) we consider the delay
differential equation

(DDE)

{
u̇(t) = Lut, t > 0,

u(0) = x, u0 = f.

Here, for a function u ∈ Lploc([−1,∞), X), the functions ut ∈ Lp([−1, 0], X) are defined
by ut(s) := u(t + s), t > 0, −1 6 s 6 0, and f ∈ Lp([−1, 0], X) is a given ‘history’
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function. A mild solution is function u ∈ Lp([−1,∞), X) such that u(s) = f(s) for
−1 6 s < 0 and

u(t) = x+

∫ t

0

Lus ds, t > 0.

A mild solution u(t) of (DDE) is called a small solution if ‖u(t)‖ decays to zero faster
than any exponential.

For the theory of delay functional differential equations in finite-dimensional
spaces X = R n we refer to the books [HV] or [DGVW]. Delay equations in infinite-
dimensional spaces have been considered, e.g., in [AS], [BHS], [En], [Kp], [Ma], [Nk1,2],
[Pr].

The purpose of this paper is prove that a mild solution u(t) of (DDE) is a small
solution if and only if its Laplace transform extends to an entire function. In Hilbert
space this is an easy result, but the general case where X is allowed to be an arbitrary
Banach space depends the following individual stability theorem for C0−semigroups
[Ne].

Proposition 1. Let T be a C0−semigroup on a Banach space X, with generator
A. Let x0 ∈ X be such that the local resolvent λ 7→ R(λ,A)x0 admits a bounded
holomorphic extension to the open right half-plane {Reλ > 0}. Then for every λ0 ∈
%(A) there exists a constant M > 0 such that

‖T (t)R(λ0, A)x0‖ 6M(1 + t) for all t > 0.

Here, as usual, %(A) denotes the set of all λ ∈ C such that the resolvent R(λ,A) :=
(λ − A)−1 exists as a bounded linear operator on X. An improvement of this result
for B-convex spaces is given in [HN].

Let 1 6 p <∞ and let L be a bounded linear operator from Lp([−1, 0], X) into X.
In order to treat the problem (DDE) by semigroup methods, we consider the following
first order Cauchy problem on the product space X := X ×Lp([−1, 0], X) (cf. [BHS],
[Kp] and [En]):

(ACP)





d

dt

(
v(t)
w(t)

)
= A

(
v(t)
w(t)

)

v(0) = x, w(0) = f,

where the operator matrix A with domain

D(A) :=

{(
x
f

)
∈ X ×W 1,p([−1, 0], X) : x = f(0)

}

is defined by

A
(
f(0)
f

)
:=

(
Lf
f ′

)
, f ∈ W 1,p([−1, 0], X).
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As shown in [BHS] (see also [En] and [Kp]), A generates a C0−semigroup T on X . It

is easy to see that if u(t) = u(t;x, f) is a mild solution of (DDE) then

(
u(t)
ut

)
is a

mild solution of (ACP) with initial value

(
x
f

)
, i.e. we have

(
u(t)
ut

)
= T (t)

(
x
f

)
. (1)

If u(t) is a small solution of (DDE), then an easy direct calculation shows that the map
t 7→ ‖ut‖ decays faster than any exponential. It follows that u(t) is a small solution

of (DDE) if and only if

(
u(t)
ut

)
is a small solution of (ACP).

In order to describe the spectrum of A we define the characteristic operators on
X by

Lλx := λx− L(ελ ⊗ x), x ∈ X; λ ∈ C ,

where ελ(s) := eλs, s ∈ [−1, 0]. Let Hλ be the bounded operator on Lp([−1, 0], X)
defined by

Hλf(s) :=

∫ 0

s

eλ(s−τ)f(τ) dτ, −1 6 s 6 0; f ∈ Lp([−1, 0], X).

It can be shown (see the proof of Lemma 2.3 in [BHS]; see also [Kp] or [En]) that
λ ∈ %(A) if and only if the operator Lλ is invertible. In this case the resolvent of A is
given by

R(λ,A)

(
x
f

)
=

(
xλ
fλ

)
, (2)

where

xλ := L−1
λ (x− LHλf) (3)

and

fλ(s) := eλsxλ −Hλf(s), −1 6 s 6 0. (4)

It is clear from (1) and (2) that for Reλ sufficiently large the maps λ 7→ xλ and λ 7→ fλ
are the Laplace transforms of the maps t 7→ u(t) and t 7→ ut, respectively.

Lemma 2. For every r ∈ R , the set σ(A) ∩ {Reλ > −r} is compact, and for all
ε > 0 we have the estimate

sup{‖R(λ,A)‖ : Reλ > −r, dist(λ, σ(A)) > ε} <∞. (5)

Proof: From the estimate

‖L(ελ ⊗ x)‖ 6 ‖L‖ · ‖ελ ⊗ x‖ 6 ‖L‖ · emax{0,−Reλ} · ‖x‖, x ∈ X,
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we deduce that Lλ is invertible for all λ ∈ C with |λ| > ‖L‖ · emax{0,−Reλ}, and

‖L−1
λ ‖ 6

(
|λ| − ‖L‖ · emax{0,−Reλ})−1

. (6)

Since λ ∈ %(A) if and only if Lλ is invertible, it follows that the set {λ ∈ σ(A) :
Reλ > −r} is compact.

For Hλ we have the estimate

‖Hλf(s)‖ 6
∫ 0

s

eRe λ(s−τ)‖f(τ)‖ dτ 6 emax{0,−Reλ}
∫ 0

s

‖f(τ)‖ dτ

6 emax{0,−Reλ}
(∫ 0

s

‖f(τ)‖p dτ
)1/p

6 emax{0,−Reλ} · ‖f‖p.

It follows that
‖Hλf‖p 6 emax{0,−Reλ} · ‖f‖p (7)

for all λ ∈ C and f ∈ Lp([−1, 0], X). Hence the entire function λ 7→ Hλ is bounded in
every right half-plane.

Now (5) follows from (3), (4), (6), and (7). ////

Lemma 3. Let u(t) = u(t;x, f) be the mild solution of (DDE). Assume that for
some ω ∈ R the Laplace transform of u(t) extends to a holomorphic function F on a
neighbourhood of the closed half-plane {Reλ > −ω}. Then,

λF (λ)− L(ελ ⊗ F (λ)) = x− LHλf (8)

for all Reλ > −ω, and we have

lim
t→∞

eωt‖u(t)‖ = 0. (9)

Conversely, if F is holomorphic on {Reλ > −ω} and satisfies (8), then F is a holo-
morphic extension of the Laplace transform of u(t).

Proof: We start with the proof of (9). By Lemma 2, there exists an r > ω such that
F is bounded in the half-plane {Reλ > −r}. Using (4) and (7), it follows that the
map λ 7→ fλ admits a bounded holomorphic extension, which equals ελ⊗F (λ)−Hλf,
in the half-plane {Reλ > −r}. By Proposition 1 applied to the scaled semigroup
{ertT (t)}t>0,

lim sup
t→∞

t−1ert
∥∥∥∥R(λ0,A)

(
u(t)
ut

)∥∥∥∥ = lim sup
t→∞

t−1ert
∥∥∥∥T (t)R(λ0,A)

(
x
f

)∥∥∥∥ <∞ (10)

for all λ0 ∈ %(A). Fix λ0 ∈ %(A). Then, by (2) and (3) and using that r > ω,

lim
t→∞

eωt‖L−1
λ0

(u(t)− LHλ0
ut)‖ = 0
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and hence, by multiplying with the bounded operator Lλ0
,

lim
t→∞

eωt‖u(t)− LHλ0
ut‖ = 0. (11)

Also, by (2), (3), (4), (10), and (11),

lim
t→∞

eωt‖Hλ0
ut‖ = 0. (12)

Noting that ‖LHλ0
ut‖ 6 ‖L‖ · ‖Hλ0

ut‖, it follows from (11) and (12) that (9) holds.
The remaining assertions are an obvious consequence of the fact that by (3), the

Lapalce transform of u(t) satisfies (8) for all Reλ large. ////

Putting these results together we have established the following characterization
of small solutions of (DDE) in Lp([−1, 0], X).

Theorem 4. Let X be a Banach space, let 1 6 p < ∞, and let L be a bounded
linear operator from Lp([−1, 0], X) into X. Consider the problem (DDE) on the space
Lp([−1, 0], X). Then, for a mild solution u(t) := u(t;x, f) the following assertions are
equivalent:

(i) u(t) is a small solution;
(ii) The Laplace transform of u(t) extends to an entire function;

(iii) There exists an entire function F : C → X such that

λF (λ)− L(ελ ⊗ F (λ)) = x− LHλf, λ ∈ C .

Proof: It is obvious that (i) implies (ii). The implication (ii)⇒(iii) follows from (8) in
Lemma 3. Finally, if (iii) holds for some entire function F , then by Lemma 3 F must
be the Laplace transform of u(t), and then (9) shows that u(t) is a small solution. ////

The above approach also works for the delay differential equation

(DDE)

{
u̇(t) = Lut, t > 0,

u(0) = f(0), u0 = f.

in the state space C([−1, 0], X), with L a bounded operator from C([−1, 0], X) into
X. Parallel to Theorem 4 we obtain:

Theorem 5. Let X be a Banach space and let L be a bounded linear operator for
C([−1, 0], X) into X. Consider the problem (DDE) in the state space C([−1, 0], X).
For a mild solution u(t) := u(t; f) the following assertions are equivalent:

(i) u(t) is a small solution;
(ii) The Laplace transform of u(t) extends to an entire function;

(iii) There exists an entire function F : C → X such that

λF (λ)− L(ελ ⊗ F (λ)) = f(0)− LHλf, λ ∈ C .

We refer to [Na, pp. 219-231] or [Kp] for more details of the basic theory of
(DDE) in C([−1, 0], X).
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Remark 6.
(i) In Hilbert space, Theorems 4 and 5 are considerably easier to prove.
(ii) In finite dimensions more complete results are known; in particular, small solu-

tions can be characterized in terms of the coefficients of the equation.

From Lemma 3 we obtain the following characterization of uniform exponential
stability of mild solutions.

Theorem 7. Consider the problems (DDE) in E = Lp([−1, 0], X), 1 6 p <∞, and
E = C([−1, 0], X), respectively, and let L : E → X be bounded. Let ω ∈ R . If the
operators Lλ are invertible for all Re λ > −ω, then there exists constant M > 0 such
that

‖u(t;x, f)‖ 6Me−ωt‖(x, f)‖
for all t > 0 and all initial values (x, f).

In terms of the generator A, this result can be restated as asserting that the
growth bound and the spectral bound of A coincide.

We conclude with some remarks concerning the finite-dimensional setting. For
X = C n, Henry’s theorem [He] (see also [HV, pp. 74-85] and [V]) asserts that there
exists a constant t0 > 0 such that if u(t) = u(t; f) is a small solution for (DDE) in
C([−1, 0],C n), then u(t) = 0 for all t > t0. This result is no longer true if the space
X has infinite dimension; this can be seen from an easy direct sum construction such
that on the n-th summand we have a small solution which do not vanishes for some
t > n.

For X = C n, Theorem 6 shows that the following are equivalent (cf. [HV, p.32]):

(i) All mild solutions u(t) = u(t;x, f) of (DDE) in the state space Lp([−1, 0],C n) or
C([−1, 0],C n) are uniformly exponentially stable;

(ii) All roots of the characteristic equation detLλ = 0 have strictly negative real
parts.
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