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Abstract. We study conical square function estimates for Banach-valued
functions, and introduce a vector-valued analogue of the Coifman–Meyer–Stein
tent spaces. Following recent work of Auscher–McIntosh–Russ, the tent spaces
in turn are used to construct a scale of vector-valued Hardy spaces associated
with a given bisectorial operator A with certain off-diagonal bounds, such that
A always has a bounded H∞-functional calculus on these spaces. This provides
a new way of proving functional calculus of A on the Bochner spaces Lp(Rn; X)
by checking appropriate conical square function estimates, and also a conical
analogue of Bourgain’s extension of the Littlewood-Paley theory to the UMD-
valued context. Even when X = C, our approach gives refined p-dependent
versions of known results.

1. Introduction

Since the development of the Littlewood-Paley theory, square function estimates
of the form ∥∥∥
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have been widely used in harmonic analysis. When dealing with functions which
take values in a UMD Banach space X , such estimates have to be given an appro-
priate meaning. This is done through a linearisation of the square function using
randomisation, which gives (see [14])

∥∥∥
� ∞

0

t
√

∆e−t
√

∆f
dWt√
t

∥∥∥
L2(Ω;Lp(Rn;X))

h ‖f‖Lp(Rn;X),

where the integral is a Banach space-valued stochastic integral with respect to a
standard Brownian motion W on a probability space (Ω,P) (see [25]), or, in a
simpler discrete form,
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where (εk) is a sequence of independent Rademacher variables on (Ω,P). The latter
was proven by Bourgain in [6], thereby starting the development of harmonic analy-
sis for UMD-valued functions. In recent years, research in this field has accelerated
as it appeared that its tools, and in particular square function estimates, are of
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fundamental importance in the study of the H∞-functional calculus (see [20]) and
in stochastic analysis in UMD Banach spaces (see [24]).

To some extent, even the scalar-valued theory (i.e. X = C) has benefited from
this probabilistic point of view (see for instance [16, 22]). However this fruitful
linearisation has, so far, been limited to the above “vertical” square functions esti-
mates, leaving aside the “conical” estimates of the form
(1.2)
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h ‖f‖Lp(Rn), 1 < p ≤ 2.

In the meantime, such estimates have attracted much attention as it was realised
that they could be used to extend the real variable theory of Hardy spaces in a
way which is suitable to treat operators beyond the Calderón-Zygmund class (see
[3, 9, 13]). Indeed, elliptic operators of the form −divB∇, where B is a matrix
with L∞ entries, are not, in general, sectorial on Lp for all 1 < p < ∞. Their
study thus requires the Lp-spaces to be replaced by appropriate Hardy spaces, on
which they have good functional calculus properties (in the same way as L1 has
to be replaced by H1 when dealing with the Laplacian). To define such spaces,
conical square functions have to be used, since the use of vertical ones would im-
pose severe restrictions on the class of operators under consideration (namely, Lp

(R-)sectoriality).
The present paper gives extensions of (1.2) to the UMD-valued context. This

starts with the construction of appropriate tent spaces, which is carried out in
Section 4 by reinterpreting and extending [11] using the methods of stochastic
analysis in Banach spaces from [19, 24, 25]. Relevant notions and results from this
theory are recalled in Section 2, while the crucial technical estimate is proven in
Section 3. Following ideas developed in [3], we then prove appropriate estimates
for operators acting on these tent spaces in Section 5. After collecting some basic
results on bisectorial operator in Section 6, this allows us in Section 7 to define
Hardy spaces associated with bisectorial operators of the form A⊗ IX , where X is
a UMD Banach space, and A acts on L2(Rn,CN ) and satisfies suitable off-diagonal
estimates. We prove that A ⊗ IX always has an H∞-functional calculus on these
Hardy spaces. Finally, in Section 8, we specialise to differential operators A, and,
in particular, give a conical analogue to Bourgain’s square function estimate (1.1).

Specialising to the case X = C, our approach allows to define Hardy spaces (as-
sociated with operators) using a class of functions which is wider than in [3]. This
is due to the fact that our estimates (see Proposition 7.5) are directly obtained for
a given value of p (and actually depend on the type and cotype of Lp), instead of
using interpolation.

To conclude this introduction, let us now point out the possible uses of our
results. First, one can deduce the boundedness of the functional calculus of an
operatorA⊗IX from conical square function estimates. For instance, with Theorem
8.2, we recover the well-known fact that, if X is UMD and 1 < p < ∞, ∆ ⊗ IX
admits an H∞-calculus on Lp(X). Note that this characterises the UMD spaces
among all Banach spaces and thus indicates that it cannot be expected that the
results presented here extend beyond the UMD setting.

Another application is to deduce conical square function estimates for functions
with limited decay from such estimates for functions with good decay properties.
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In their formulation we use the notations

S+
θ = {z ∈ C \ {0} : | arg(z)| < θ},

Ψβ
α(S+

θ ) =
{
f ∈ H∞(S+

θ ) : ∃C |f(z)| ≤ Cmin(|z|α, |z|−β) ∀ z ∈ S+
θ

}
.
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2. Preliminaries

In this section we establish some terminology and collect auxiliary results needed
in the main body of the paper.

Let X and Y be Banach spaces and let L (X,Y ) denote the space of all bounded
linear operators acting from X into Y . A family of bounded operators T ⊆
L (X,Y ) is called γ-bounded if there is a constant C such that for all integers
k > 1 and all T1, . . . , Tk ∈ T and ξ1, . . . , ξj ∈ X we have

(2.1) E

∥∥∥
k∑

j=1

γjTjξj

∥∥∥
2

6 C2
E

∥∥∥
k∑
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γjξj

∥∥∥
2

.

Here, γ1, . . . , γk are independent standard normal variables defined on some prob-
ability space (Ω,F ,P) and E denotes the expectation with respect to P. The least
admissible constant in (2.1) is denoted by γ(T ).

By the Kahane-Khintchine inequality, the exponent 2 may be replaced by any
exponent 1 6 p <∞ at the cost of a possibly different constant.

Upon replacing the standard normal variables by Rademacher variables in (2.1)
one arrives at the notion of R-boundedness. Every R-bounded family is γ-bounded,
and the converse holds if Y has finite cotype. Since we are primarily interested in
UMD spaces Y , which have finite cotype, the distinction between γ-boundedness
and R-boundedness is immaterial. We prefer the former since our techniques are
Gaussian and therefore the use of Gaussian variables seems more natural.
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Let H be a Hilbert space. A linear operator R : H → X is called γ-summing if

‖R‖γ∞(H,X) := sup
(
E

∥∥∥
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γjRhj
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2) 1

2

<∞,

where the supremum is taken over all integers k > 1 and all finite orthonormal
systems h1, . . . , hk in H . The space γ∞(H,X), endowed with the above norm,
is a Banach space. The closed subspace of γ∞(H,X) spanned by the finite rank
operators is denoted by γ(H,X). A linear operator R : H → X is said to be
γ-radonifying if it belongs to γ(H,X).

A celebrated result of Hoffman-Jørgensen and Kwapień [12, 21] implies that

γ∞(H,X) = γ(H,X)

for Banach spaces X not containing an isomorphic copy of c0.
If H is separable with orthonormal basis (hn)n>1, then an operator R : H → X

is γ-radonifying if and only if the sum
∑

n>1 γnRhn converges in L2(Ω;X), in which
case we have

‖R‖γ(H,X) =
(

E

∥∥∥
∑

j>1
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2) 1

2

.

The following criterium for membership of γ(H,X) will be referred to as covari-
ance domination.

Proposition 2.1. Let S ∈ L (H,X) and T ∈ γ(H,X) satisfy

‖S∗ξ∗‖ 6 C‖T ∗ξ∗‖, ξ∗ ∈ X∗,

with C independent of ξ∗. Then S ∈ γ(H,X) and ‖S‖γ(H,X) 6 C‖T ‖γ(H,X).

For more details we refer to [19, 24] and the references therein.
Let (A,Σ, µ) be a σ-finite measure space, and X a Banach space. In the for-

mulation of the next result, which is a multiplier result due to Kalton and Weis
[19], we identify X-valued functions f ⊗ ξ, where f ∈ L2(A) and ξ ∈ X , with the
operator Rf⊗ξ ∈ γ(L2(A), X) defined by

(2.2) Rf⊗ξg := 〈f, g〉 ⊗ ξ, g ∈ L2(A).

where 〈f, h〉 denotes the scalar product on L2(A).

Lemma 2.2. Let X be a Banach space, let (A,Σ, µ) be a σ-finite measure space,
and let M : A→ L (X) be a function such that a 7→ M(a)ξ is strongly µ-measurable
for all ξ ∈ X. If the set

M = {M(a) : a ∈ A}
is γ-bounded, then the mapping

f(·) ⊗ ξ 7→ f(·) ⊗M(·)ξ,
extends to a bounded operator M on γ(L2(A), X) of norm ‖M‖ 6 γ(M ).

Let us also recall that for all 1 6 p < ∞ the mapping f 7→ [h 7→ f(·)h] defines
an isomorphism of Banach spaces

(2.3) Lp(A; γ(H,X)) h γ(H,Lp(A;X)).

This follows from a simple application of the Kahane-Khintchine inequality; we
refer to [24, Proposition 2.6] for the details. Here, H and X are allowed to be
arbitrary Hilbert spaces and Banach spaces, respectively; the norm constants in
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the isomorphism are independent of H .

Let γ = (γn)n>1 be a sequence of independent standard normal variables on a
probability space (Ω,F ,P). Recall that a Banach space X is called K-convex if
the mapping

πγ : f 7→
∑

n>1

γnE(γnf), f ∈ L2(Ω;X),

defines a bounded operator on L2(Ω;X). This notion is well-defined: if πγ is
bounded for some sequence γ, then it is bounded for all sequences γ. A celebrated
result of Pisier [26] states that X is K-convex if and only if X is B-convex if and
only if X has nontrivial type.

If H is a Hilbert space and X is a K-convex Banach space, then the isometry
Iγ : γ(H,X) → L2(Ω;X) defined by

IγR :=
∑

n>1

γnRhn

maps γ(H,X) onto a complemented subspace of L2(Ω;X). Indeed, for all R ∈
γ(H,X) we have

πγIγR =
∑

n>1

γnEγn
∑

j>1

γjRhj =
∑

n>1

γnRhn = IγR.

Hence, the range of Iγ is contained in the range of πγ . Since the range of πγ is
spanned by the functions γn ⊗ ξ = Iγ(hn ⊗ ξ), the range is πγ is contained in the
range of Iγ . We conclude that the ranges of πγ and Iγ coincide and the claim is
proved. As an application of this we are able to describe complex interpolation
spaces of the spaces γ(H,X).

Proposition 2.3. If H is a Hilbert space and the Banach spaces X1 and X2 are
K-convex, then for all 0 < θ < 1 we have

[γ(H,X1), γ(H,X2)]θ = γ(H, [X1, X2]θ) with equivalent norms.

Proof. In view of the preceding observations this follows from general results on
interpolation of complemented subspaces [5, Chapter 5]. �

3. Main estimate

The main estimate of this paper is a γ-boundedness estimate for some averaging
operators, which is proven below.

We start by recalling some known results. The first is Bourgain’s extension to
UMD spaces of Stein’s inequality [6] (see [7] for a complete proof).

Lemma 3.1. Let 1 < p <∞ and let X be a UMD space. Let (Fm)m∈Z be a filtra-
tion on a probability space (Ω,F ,P). Then the family of conditional expectations

E = {E( · |Fm) : m ∈ Z}
is γ-bounded on Lp(Ω;X).

Let us agree that a cube in R
n is any set Q of the form x + [0, ℓ)n with x ∈ R

n

and ℓ > 0. We denote ℓ(Q) := ℓ and call it the side-length of Q. A system of dyadic
cubes is a collection ∆ =

⋃
k∈Z

∆2k , where ∆2k is a disjoint cover of Rn by cubes

of side-length 2k, and each Q ∈ ∆2k is the union of 2n cubes R ∈ ∆2k−1 . We recall
the following geometric lemma of Mei [23]:
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Lemma 3.2. There exist n+1 systems of dyadic cubes ∆0, . . . ,∆n and a constant
C < ∞ such that for any ball B ⊆ Rn there is a Q ∈

⋃n
k=0 ∆k which satisfies

B ⊆ Q and |Q| ≤ C |B|.

The following results can be found in [16]:

Lemma 3.3. Let X be a UMD space and 1 < p <∞. Let r ∈ Zn \{0} and xQ ∈ X
for all Q ∈ ∆. Then

E

∥∥∥
∑

k∈Z

εk
∑

Q∈∆
2k

1Q+rℓ(Q)xQ

∥∥∥
p
≤ C(1 + log |r|)E

∥∥∥
∑

k∈Z

εk
∑

Q∈∆
2k

1QxQ

∥∥∥
p
.

Lemma 3.4. Let X be a UMD space, 1 < p <∞, and m ∈ Z+. For each Q ∈ ∆,
let Q′, Q′′ ∈ ∆ be subcubes of Q of side-length 2−mQ. Then for all ℓ ∈ Z and all
xQ ∈ X

E

∥∥∥
∑

k≡ℓ
εk

∑

Q∈∆
2k

1Q′′xQ

∥∥∥
p
≤ CE

∥∥∥
∑

k≡ℓ
εk

∑

Q∈∆
2k

1Q′xQ

∥∥∥
p
,

where k ≡ ℓ is short-hand for k ≡ ℓ mod (m+ 1).

The previous lemmas will now be used to prove our main estimate.

Proposition 3.5. Let X be a UMD space, 1 < p <∞, and let Lp(X) have type τ .
For α > 1, let Aα be the family of operators

f 7→ AαBf := 1αB

 
B

f dx,

where B runs over all balls in R
n. Then Aα is γ-bounded on Lp(X) with the

γ-bound at most C(1 + logα)αn/τ and C depends only on X, p, τ and n.

Proof. We have to show that

E

∥∥∥
k∑

j=1

εj1αBj

 
Bj

fj dx
∥∥∥
p
≤ CE

∥∥∥
k∑

j=1

εjfj

∥∥∥
p
.

By splitting all the balls Bj into n + 1 subsets and considering each of them sep-
arately, we may assume by Mei’s lemma that there is a system of dyadic cubes ∆
and Q1, . . . , Qk ∈ ∆ such that Bj ⊆ Qj and |Qj| ≤ C |Bj |.

Let m be the integer for which 2m−1 ≤ α < 2m. Let Q∗
j ∈ ∆ be the unique cube

in the dyadic system which has side-length 2mℓ(Qj) and contains Qj . Then αBj is
contained in the union of Q∗

j and at most 2n − 1 of adjacent cubes R ∈ ∆ of the
same size. Writing gj = 1Bjfj , we observe that 

Bj

fj dx =
|Qj |
|Bj |

 
Qj

gj dx.

Since |Qj | / |Bj | ≤ C, by the contraction principle it suffices to show that

E

∥∥∥
k∑

j=1

εj1Rj

 
Qj

gj dx
∥∥∥
p
≤ CE

∥∥∥
k∑

j=1

εjgj

∥∥∥
p
,

where Rj = Q∗
j + rℓ(Q∗

j ) for some |r| ≤ n. Thanks to Lemma 3.3, it suffices to
consider r = 0.
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We next write Q∗
j as the union

⋃M
i=1Qji, where Qji ∈ ∆ are the M := 2nm

subcubes of Q∗
j of side-length ℓ(Qj). Let us fix the enumeration so that Qj1 = Qj.

Writing xj :=
�
Qj
gj dx for short, it follows that

E

∥∥∥
k∑

j=1

εj1Q∗
j
xj

∥∥∥
p

= E

∥∥∥
M∑

i=1

k∑

j=1

εj1Qjixj

∥∥∥
p
≤ CE

′
E

∥∥∥
M∑

i=1

ε′i

k∑

j=1

εj1Qjixj

∥∥∥
p

≤ C
( M∑

i=1

E

∥∥∥
k∑

j=1

εj1Qjixj

∥∥∥
τ

p

)1/τ

where the first estimate follows from the Khintchine–Kahane inequality and the
disjointness of the Qji for each fixed j, and the second from the assumed type-τ
property.

If we assume, for the moment, that all the side-lengths 2k(j) := ℓ(Qj) satisfy
k(j) ≡ k(j′) mod (m+1), we may apply Lemma 3.4 to continue the estimate with

≤ C
( M∑

i=1

E

∥∥∥
k∑

j=1

εj1Qjxj

∥∥∥
τ

p

)1/τ

≤ CM1/τ
E

∥∥∥
k∑

j=1

εj1Qj

 
Qj

gj dx
∥∥∥
p

≤ CM1/τ
E

∥∥∥
k∑

j=1

εjgj

∥∥∥
p
,

where the last estimate applied Stein’s inequality, observing that the operators g 7→
1Qj

�
Qj
g dx are conditional expectations related to the dyadic filtration induced by

∆. Since M = 2nm ≤ 2nαn, we obtain the assertion even without the logarithmic
factor in this case.

In general, the above assumption may not be satisfied, but we can always split
the indices j into m + 1 ≤ c(1 + logα) subsets which verify the assumption, and
this concludes the proof. �

Remark 3.6. The proof simplifies considerably in the important special case α = 1.

4. The vector-valued tent spaces T p,2(X)

In order to motivate our approach, we begin with a simple characterisation of
tent spaces in the scalar-valued case. We put R

n+1
+ := Rn × R+ and denote

Γ(x) = {(y, t) ∈ R
n+1
+ : |x− y| < t}.

Thus (y, t) ∈ Γ(x) ⇔ y ∈ B(x, t), where B(x, t) = {y ∈ Rn : |x− y| < t}. We shall
write

Lp = Lp(Rn), L2(
dy dt

tn+1
) = L2

(
R
n+1
+ ,

dy dt

tn+1

)
,

where dy and dt denote the Lebesgue measures on Rn and R+. Similar conventions
will apply to their vector-valued analogues. The dimension n > 1 is considered to
be fixed.

For 1 6 p, q < ∞, the tent space T p,q = T p,q(Rn+1
+ ) consists of all (equivalence

classes of) measurable functions f : R
n+1
+ → C with the property that�

Rn

(�
Γ(x)

|f(y, t)|q dy dt

tn+1

) p
q

dx
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is finite. With respect to the norm

‖f‖Tp,q :=
∥∥∥
(�

Γ(·)
|f(y, t)|q dy dt

tn+1

) 1
q
∥∥∥
Lp
,

T p,q is a Banach space. Tent spaces were introduced in the 1980’s by Coifman,
Meyer, and Stein [8]. Some of the principal results of that paper were simplified by
Harboure, Torrea, and Viviani [11], who exploited the fact that

J : f 7→
[
x 7→ [(y, t) 7→ 1B(x,t)(y)f(y, t)]

]

maps T p,q isometrically onto a complemented subspace of Lp(Lq( dy dt
tn+1 )) for 1 <

p, q <∞.
We now take q = 2, and extend the mapping J to functions in Cc ⊗ X by

J(g⊗ξ) := Jg⊗ξ and linearity. Here, Cc denotes the space of continuous functions
on R

n+1
+ with compact support. Note that by (2.2), J(g ⊗ ξ) defines an element of

Lp(γ(L2( dy dt
tn+1 ), X)) in a natural way.

Definition 4.1. Let 1 ≤ p <∞. The tent space T p,2(X) is defined as the completion
of Cc ⊗X with respect to the norm

‖f‖Tp,2(X) := ‖Jf‖Lp(γ(L2( dy dt

tn+1 ),X)).

It is immediate from this definition that J defines an isometry from T p,2(X) onto

a closed subspace of Lp(γ(L2( dy dt
tn+1 ), X)). In what follows we shall always identify

T p,2(X) with its image in Lp(γ(L2( dy dt
tn+1 ), X).

Using the identification γ(L2( dy dt
tn+1 ),C) = L2( dy dt

tn+1 ) we see that our definition
extends the definition of tent spaces in the scalar-valued case.

Our first objective is to prove that if X is a UMD space, then T p,2(X) is com-

plemented in Lp(γ(L2( dy dt
tn+1 ), X)).

Proposition 4.2. Let 1 < p <∞, and X a UMD space. The mapping

Nf(x, y, t) :=
1B(y,t)(x)

|B(y, t)|

�
B(y,t)

f(z, y, t) dz,

initially defined for operators of the form (2.2), extends to a bounded projection in

Lp(γ(L2( dy dt
tn+1 ), X))

whose range is T p,2(X).

Proof. We follow the proof of Harboure, Torrea, and Viviani [11, Theorem 2.1] for
the scalar-valued case, the main difference being that the use of maximal functions
is replaced by a γ-boundedness argument using averaging operators.

First we prove that N is a bounded operator. In view of the isomorphism (2.3)

it suffices to prove that N acts as a bounded operator on γ(L2( dy dt
tn+1 ), Lp(X)).

This will be achieved by identifying N as a pointwise multiplier on Lp(X) with
γ-bounded range, and then applying Lemma 2.2. In fact, putting

N(y, t) g :=
1B(y,t)

|B(y, t)|

�
B(y,t)

g(z) dz, g ∈ Lp(X),

and fy,t(x) := f(x, y, t) := f̃(y, t) ⊗ g(x), we have

Nf(·, y, t) = f̃(y, t) ⊗N(y, t)g = f̃(y, t) ⊗AB(y,t)g.
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The γ-boundedness of {N(y, t) : (y, t) ∈ R
n+1
+ } now follows from Proposition 3.5.

Knowing that N is bounded on Lp(γ(L2( dy dt
tn+1 ), X)), the fact that it is a pro-

jection follows from the scalar case, noting that the linear span of the functions
of the form 1B(x,t) ⊗ (f ⊗ ξ), with f ∈ Cc, x ∈ Rn, and t > 0, is dense in

Lp(γ(L2( dy dt
tn+1 ), X)). �

For α > 0 the vector-valued tent space T p,2α (X) may be defined as above in terms
of the norm

‖f‖Tp,2α (X) := ‖Jαf‖Lp(γ(L2( dy dt

tn+1 ),X)),

where Jαf :=
[
x 7→ [(y, t) 7→ 1B(x,αt)(y)f(y, t)]

]
.

Theorem 4.3. Let 1 < p <∞, and X a UMD space such that Lp(X) has type τ .
For all α > 0, a strongly measurable function f : R

n+1
+ → X belongs to T p,2(X) if

and only if it belongs to T p,2α (X). Moreover, there exists a constant C = C(p,X)
such that

(4.1) ‖f‖Tp,2(X) 6 ‖f‖Tp,2α (X) 6 C(1 + logα)αn/τ‖f‖Tp,2(X)

for f ∈ T p,2(X) and α > 1.

Proof. It suffices to prove the latter estimate in (4.1). On Lp(γ(L2( dy dt
tn+1 ), X)), we

consider the operator

Nαf(x, y, t) :=
1B(y,αt)(x)

|B(y, t)|

�
B(y,t)

f(z, y, t) dz.

Simple algebra shows that NαJf = Jαf , and hence

‖f‖Tp,2α (X) = ‖Jαf‖
Lp(γ(L2(

dy dt
tn+1 ),X))

= ‖NαJf‖
Lp(γ(L2(

dy dt
tn+1 ),X))

≤ ‖Nα‖
L (Lp(γ(L2(

dy dt
tn+1 ),X)))

‖Jf‖
Lp(γ(L2(

dy dt
tn+1 ),X))

.

By the isomorphism (2.3), we may consider the boundedness of Nα on the space

γ(L2( dy dt
tn+1 ), Lp(X)) instead, and here this operator acts as the pointwise multiplier

Nα(f̃ ⊗ g)(·, y, t) = f̃(y, t) ⊗AαB(y,t)g.

So, its boundedness with the asserted estimate follows from Proposition 3.5. �

Remark 4.4. If X = C, then one can take τ = min(2, p) in Theorem 4.3. Except
possibly for the logarithmic factor, (4.1) gives the correct order of growth of ‖f‖Tp,2α

in terms of the angle α > 1.
To see this, consider functions of the form f(y, t) = 1[1,2](t)g(y). Then

‖f‖Tp,2α
=

∥∥(ηα ∗ |g|2)1/2
∥∥
p
,

where the ηα are functions having pointwise bounds c1B(0,α) ≤ ηα ≤ C1B(0,Cα) for
some constants C > 1 > c > 0 depending only on n.

Let us take g = |g|2 = 1B(0,1). Then (ηα ∗ |g|2)1/2 = η̃α, where η̃α is another
similar function, and hence

‖f‖Tp,2α
=

∥∥(η̃α)1/2
∥∥
p

h αn/p h αn/p‖f‖Tp,2.
This proves the sharpness for p ≤ 2.

Let us then choose g = gα = 1B(0,α). Then

ηα ∗ |gα|2 = αnηα, η1 ∗ |gα|2 = η
α
,
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where ηα, ηα are yet more similar functions as ηα. Writing fα(y, t) = 1[1,2](t)gα(y),
we have

‖fα‖Tp,2α
=

∥∥(αnηα)1/2
∥∥
p

= αn/2
∥∥(ηα)1/2

∥∥
p

h αn/2
∥∥(η

α
)1/2

∥∥
p

= αn/2‖fα‖Tp,2 .
This proves the sharpness for p > 2.

In fact, for p = 2, a simple application of Fubini’s theorem shows that we have
the equality ‖f‖T 2,2

α
= αn/2‖f‖T 2,2 for all f ∈ T 2,2 and α > 0, so the logarithmic

factor is unnecessary in this case.

Sometimes it is useful to use tent space norms defined with a smooth cut-off
instead of the sharp cut-off 1B(x,t)(y). Given a function φ ∈ C∞

c (R) such that

φ(w) = 1 if |w| ≤ 1
2 and φ(w) = 0 if |w| > 1, we are thus led to consider the

mapping Jφf :=
[
x 7→ [(y, t) 7→ φ( |y−x|t )f(y, t)]

]
and

‖f‖Tp,2
φ

(X) := ‖Jφf‖
Lp(γ(L2(

dy dt
tn+1 ),X))

.

Proposition 4.5. Let 1 < p < ∞, and X a UMD space. A strongly measurable
function f : R

n+1
+ → X belongs to T p,2(X) if and only if it belongs to T p,2φ (X).

Moreover,
‖f‖Tp,2

φ
(X) h ‖f‖Tp,2(X)

for f ∈ T p,2(X).

Proof. The proof is the same as that of Theorem 4.3. Consider the operators

Nφf(x, y, t) :=
φ( |y−x|t )

|B(y, t)|

�
B(y,t)

f(z, y, t) dz,

Ñ 1
2
f(x, y, t) :=

1B(x, t2 )∣∣B(y, t2 )
∣∣

�
B(y, t2 )

f(z, y, t) dz.

We have Jφ = NφJ and J 1
2

= Ñ 1
2
Jφ. Moreover the operators Nφ and Ñ 1

2
act as

the pointwise multipliers

Nφ(f̃ ⊗ g)(·, y, t) = f̃(y, t) ⊗Mφ
y,tA

1
B(y,t)g,

Ñ 1
2
(f̃ ⊗ g)(·, y, t) = f̃(y, t) ⊗A1

B(y, t2 )g.

where Mφ
y,tg(x) := φ( |y−x|t )g(x). By Lemma 2.2 and Theorem 4.3 the result follows

from Proposition 3.5 and Kahane’s contraction principle. �

If X is a UMD space, and 1 < p, q < ∞ satisfy 1
p + 1

q = 1, we have natural

isomorphisms

(Lp(γ(L2( dy dt
tn+1 ), X)))∗ h Lq((γ(L2( dy dt

tn+1 ), X))∗) h Lq(γ(L2( dy dt
tn+1 ), X∗))).

The first of these follows from the fact that X , and therefore γ(L2( dy dt
tn+1 ), X), is

reflexive, and the second follows from the K-convexity of UMD spaces. Denoting
by N the projection of Proposition 4.2, it is easily verified that under the above
identification the adjoint N∗ is given by the same formula. As a result we obtain
the following representation for the dual of T p,2(X):

Theorem 4.6. If X is a UMD space, and 1 < p, q <∞ satisfy 1
p + 1

q = 1, we have

a natural isomorphism
(T p,2(X))∗ h T q,2(X∗).
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As an immediate consequence of Proposition 2.3 we obtain the following result.

Theorem 4.7. Let 1 < p0 6 p1 < ∞, and let X0 and X1 be UMD spaces. Then
for all 0 < θ < 1 we have

[T p0,2(X0), T
p1,2(X1)]θ = T pθ,2([X0, X1]θ),

1

pθ
=

1 − θ

p0
+

θ

p1
.

Proof. The result follows by combining (2.3) with the following facts: (i) if X is a
UMD space, then Lp(X) is a UMD space for all 1 < p < ∞, (ii) UMD spaces are
K-convex, (iii) for 1 6 p0 6 p1 <∞ we have [Lp0(X0), L

p1(X1)]θ = Lpθ([X0, X1]θ)
with pθ as above. �

We conclude this section with a result showing that certain singular integral
operators are bounded from Lp(X) to T p,2(X). This gives a Banach space-valued
extension of [11, Section 4].

Theorem 4.8. Let X be a UMD space. Consider the singular integral operator
defined by

Sf(t, y) =

�
Rn

kt(y, z)f(z) dz

for f ∈ Cc(R
n) and a measurable complex-valued function (t, y, z) 7→ kt(y, z). As-

sume that

(1) S ∈ L (L2, T 2,2),
(2) There exists α > 0 such that for all y, z ∈ Rn and t > 0 we have

|kt(y, z)| .
tα

(|y − z| + t)n+α
,

(3) There exists β > 0 such that for all t > 0 and all y, z, z′ ∈ Rn satisfying
|z − y| + t > 2|z − z′| we have

|kt(y, z) − kt(y, z
′)| .

tβ |z − z′|
(|y − z| + t)n+1+β

,

(4) For all t > 0 and y ∈ Rn we have�
Rn

kt(y, z) dz = 0.

Let 1 < p <∞. Then S⊗IX extends to a bounded operator from Lp(X) to T p,2(X).

Proof. We consider the auxiliary operator T takingX-valued functions to ones with
values in γ(L2( dy dt

tn+1 ), X), given by

Tf(x) =

�
Rn

K(x, z) ⊗ f(z) dz, f ∈ Cc(X),

where K(x, z) is the L2( dy dt
tn+1 )-valued kernel defined by

K(x, z) : (y, t) 7→ φ
( |y − x|

t

)
kt(y, z)

for some even φ ∈ C∞
c (R) such that φ(w) = 1 if |w| ≤ 1

2 , φ(w) = 0 if |w| > 1,

and
� 1

0
φ(r)rn−1 dr = 0. The claim of the theorem follows if we can show that T

extends to a bounded operator from Lp(X) to Lp(γ(L2( dy dt
tn+1 );X)). This is proved

by applying a version of the T (1) theorem for Hilbert space -valued kernels from [15]
(which, in turn, is based on results from [17, 18]). We first remark that the condition
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T (1) = 0 follows directly from (4), whereas the vanishing integral assumption on φ

guarantees that T ′(1) = 0, too. It remains to check the following L2( dy dt
tn+1 )-valued

versions of the standard estimates:

(4.2) sup
x,z∈Rn

|x− z|n‖K(x, z)‖
L2(

dy dt
tn+1 )

. 1,

(4.3) sup
x,x′,z∈Rn

|x−z|>2|x−x′|

|x− z|n+1

|x− x′| ‖K(x, z) −K(x′, z)‖
L2(

dy dt
tn+1 )

. 1,

(4.4) sup
x,z,z′∈Rn

|x−z|>2|z−z′|

|x− z|n+1

|z − z′| ‖K(x, z) −K(x, z′)‖
L2(

dy dt
tn+1 )

. 1,

and the weak boundedness property: for any η, η̃ ∈ C∞
c (B(0, 1)) which satisfy the

bounds ‖η‖∞, ‖η̃‖∞, ‖∇η‖∞, ‖∇η̃‖∞ ≤ 1, one should have

(4.5) sup
(u,r)∈Rn×R+

∥∥∥
�

Rn

�
Rn

K(x, z)η
(x− u

r

)
η̃(
z − u

r
)

dz dx

rn

∥∥∥
L2(

dy dt
tn+1 )

. 1.

Proof of (4.2): Using (2) and noting that we have φ
( |y−x|

t

)
= 0 for y 6∈ B(x, t),� ∞

0

�
Rn

∣∣∣φ
( |y − x|

t

)
kt(y, z)

∣∣∣
2 dy dt

tn+1

.

� |x−z|

0

�
B(x,t)

∣∣∣
tα

(|x− z| + t− |y − x|)n+α

∣∣∣
2 dy dt

tn+1
+

� ∞

|x−z|

�
B(x,t)

dy dt

t3n+1

.

� |x−z|

0

t2α−1

|x− z|2n+2α
dt+

� ∞

|x−z|

dt

t2n+1
. |x− z|−2n.

Proof of (4.3): Using (2) and the mean value theorem and reasoning as above, for
x, x′, z satisfying |x− z| > 2|x− x′| we have� ∞

0

�
Rn

∣∣∣
(
φ
( |y − x|

t

)
− φ

( |y − x′|
t

))
kt(y, z)

∣∣∣
2 dy dt

tn+1

.

� ∞

0

�
B(x,t)

( |x− x′|tα
t(|y − z| + t)n+α

)2 dy dt

tn+1
+ similar

.

� |x−z|

0

�
B(x,t)

( |x− x′|tα
t(|x − z|+ t− |y − x|)n+α

)2 dy dt

tn+1

+

� ∞

|x−z|
|x− x′|2 dt

t2n+3
+ similar

.

� |x−z|

0

t2α−3|x− x′|2
|x− z|2n+2α

dt+
|x− x′|2

|x− z|2n+2
+ similar

.
|x− x′|2

|x− z|2n+2
,

where the words “similar” above refer to a copy of the other terms appearing in
the same step, with all the occurrences of x and x′ interchanged.
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Proof of (4.4): Using (3), for x, z, z′ satisfying |x− z| > 2|z − z′| we have� ∞

0

�
Rn

∣∣∣φ
( |y − x|

t

)(
kt(y, z) − kt(y, z

′)
)∣∣∣

2 dy dt

tn+1

.

� ∞

0

�
B(x,t)

( tβ |z − z′|
(|z − y| + t)n+1+β

)2 dy dt

tn+1

.

� |x−z|

0

�
B(x,t)

( tβ |z − z′|
(|z − x| + t− |y − x|)n+1+β

)2 dy dt

tn+1
+

� ∞

|x−z|

|z − z′|2
t2n+3

dt

.

� |x−z|

0

t2β−1|z − z′|2
|z − x|2n+2+2β

dt+

� ∞

|x−z|

|z − z′|2
t2n+3

dt .
|z − z′|2

|x− z|2n+2
.

Proof of (4.5): Using the Cauchy-Schwarz inequality and (1) we have� ∞

0

�
Rn

∣∣∣
�

Rn

�
Rn

φ
( |y − x|

t

)
kt(y, z)η

(x− u

r

)
η̃
(z − u

r

) dz dx

rn

∣∣∣
2 dy dt

tn+1

.
1

rn

� ∞

0

�
Rn

�
Rn

∣∣∣φ
( |y − x|

t

) �
Rn

kt(y, z)η̃
(z − u

r

)
dz

∣∣∣
2 dy dt dx

tn+1

.
1

rn

∥∥S
(
η̃
( · − u

r

))∥∥2

T 2,2 . ‖η̃‖2
L2 . 1.

This concludes the proof. �

5. Off-diagonal estimates and their consequences

We start by recalling some terminology.

Definition 5.1. Let M, t > 0. An operator T ∈ L (L2) is said to have off-diagonal
estimates of order M at the scale of t if there is a constant C such that

‖Tf‖L2(E) ≤ C〈d(E,F )/t〉−M‖f‖L2(F )

for all Borel sets E,F ⊆ Rn and all f ∈ L2(Rn) with support in F . Here, 〈a〉 =
1 + |a| and d(E,F ) = inf{|x − y| : x ∈ E, y ∈ F}. The set of such operators is
denoted by ODt(M).

Note that a single operator belongs to ODt(M) if and only if it belongs to
ODs(M) whenever s, t > 0. However, the related constant C will typically not be
the same. The scale of the off-diagonal estimates becomes very relevant when we
want uniformity in the constants for a family of bounded operators. Thus we say
that (Tz)z∈Σ ⊆ L2, where Σ ⊆ C, satisfies off-diagonal estimates of order M if
Tz ∈ OD|z|(M) for all z ∈ Σ with the same constant C.

Theorem 5.2. Let 1 < p < ∞, X be a UMD Banach space, and Lp(X) have
type τ . Let (Tt)t>0 be a uniformly bounded family of operators on L2 satisfying off-
diagonal estimates of order M for some M > n/τ . Then the operator T , defined
on Cc ⊗X by

T (g ⊗ ξ)(y, t) := Tt(g(·, t))(y) ⊗ ξ,

extends uniquely to a bounded linear operator on T p,2(X).

Proof. Let us consider a function f =
∑
i

gi ⊗ ξi ∈ Cc ⊗X . We define the sets

C0(x, t) := B(x, 2t),

Cm(x, t) := B(x, 2m+1t) \B(x, 2m, t), m = 1, 2, . . . ,



14 TUOMAS HYTÖNEN, JAN VAN NEERVEN, AND PIERRE PORTAL

so that there is a disjoint union
⋃∞
m=0 Cm(x, t) = Rn. Let (um)∞m=0 be the functions

um : x 7→
[
(y, t) 7→ 1B(x,t)(y)Tt

(
1Cm(x,t)f(·, t)

)
(y)

]
,

where

Tt
(
1Cm(x,t)f(·, t)

)
(y) :=

∑

i

Tt(1Cm(x,t)gi(·, t))(y) ⊗ ξi.

We then have the formal expansion J(Tf) =
∑∞
m=0 um, and for a fixed x ∈ Rn, we

separately estimate the γ(L2( dy dt
tn+1 ), X)-norms of each um(x).

Fix ξ∗ ∈ X∗. Let us also write 〈f(y, t), ξ∗〉 :=
∑
i

gi(y, t)〈ξi, ξ∗〉. For m = 0 we

estimate, using the uniform boundedness of the operators Tt on L2,

‖u0(x)
∗ξ∗‖2

L2(
dy dt
tn+1 )

=

�
R
n+1
+

1B(x,t)(y)
∣∣Tt

(
1B(x,2t)〈f(·, t), ξ∗〉

)
(y)

∣∣2 dy dt

tn+1

.

�
R
n+1
+

1B(x,2t)(y)|〈f(y, t), ξ∗〉|2 dy dt

tn+1
.

Hence, by covariance domination (Proposition 2.1),

‖u0(x)‖
γ(L2(

dy dt
tn+1 ),X)

. ‖(y, t) 7→ 1B(x,2t)(y)f(y, t)‖
γ(L2(

dy dt
tn+1 ),X)

,

and we conclude that

‖u0‖
Lp(γ(L2(

dy dt
tn+1 ),X))

. ‖f‖Tp,22 (X) . ‖f‖Tp,2(X).

For m > 1, the off-diagonal estimates of order M imply

‖um(x)∗ξ∗‖2

L2(
dy dt
tn+1 )

=

�
R
n+1
+

1B(x,t)(y)
∣∣Tt

(
1Cm(x,t)〈f(·, t), ξ∗〉

)
(y)

∣∣2 dy dt

tn+1

≤ 2−2mM

�
R
n+1
+

1B(x,2m+1t)(y)|〈f(y, t), ξ∗〉
∣∣2 dy dt

tn+1
.

Hence, by covariance domination,

‖um(x)‖
γ(L2(

dy dt
tn+1 ),X)

. 2−mM‖(y, t) 7→ 1B(x,2m+1t)(y)f(y, t)‖
γ(L2(

dy dt
tn+1 ),X)

,

and from Theorem 4.3 we conclude that

‖um‖
Lp(γ(L2(

dy dt
tn+1 ),X))

. 2−mM‖f‖Tp,2
2m+1(X) . 2−mM ·m · 2mn/τ‖f‖Tp,2(X).

Keeping in mind that M > n/τ , we may sum over m to see that the formal

expansion J(Tf) =
∑∞

m=0 um converges absolutely in Lp(γ(L2( dy dt
tn+1 ), X)), and we

obtain the desired result. �

Remark 5.3. The T p,2(X)-boundedness of the operator T as considered above can
be seen as a (p and X dependent) property of the (parametrised) operator family
(Tt)t>0 ⊆ L (L2). Let us call this property tent-boundedness. A simple example of
a tent-bounded family consists of the translations Ttf(x) = f(x + ty), where y is
some unit vector. Indeed, these are obviously uniformly bounded in L2 (and in Lp

as well) and satisfy off-diagonal estimates of any order. In contrast to this, even
when X = C, it is well known that this family is not γ-bounded in Lp unless p = 2.
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We next consider operators of the form

(Tf)t :=

� ∞

0

Tt,sfs
ds

s
, f ∈ Cc ⊗X,

where Tt,s ∈ L (L2). This is first done separately for upper and lower diagonal
“kernels” Tt,s.

Proposition 5.4. Let 1 < p < ∞, X be a UMD space, and let Lp(X) have type
τ . Let (Ut,s)0<t≤s<∞ be a uniformly bounded family of operators on L2 such that
(Ut,s)s>t ∈ ODs(M) uniformly in t for some M > n/τ . Let further α > n/2. Then

(UF )t =

� ∞

t

( t
s

)α
Ut,sFs

ds

s

extends to a bounded operator on T p,2(X).

Proof. Let F ∈ Cc ⊗X be arbitrary and fixed. It suffices to estimate the norm of
the functions uk ∈ Lp(γ(L2( dy dt

tn+1 ), X)) defined by

uk : x 7→
[
(y, t) 7→ 1B(x,t)

� ∞

t

( t
s

)α
Ut,s(1Ck(x,s)Fs)(y)

ds

s

]
, k = 0, 1, . . . ,

where C0(x, s) := B(x, 2s), and Ck(x, s) := B(x, 2k+1s) \B(x, 2ks) for k > 1.

Let x ∈ Rn be fixed for the moment. To estimate the relevant γ(L2( dy dt
tn+1 ), X)-

norm at this point, we wish to use covariance domination. Hence let ξ∗ ∈ X∗, write
fs := 〈Fs(·), ξ∗〉 ∈ L2 for short, and consider the quantity

〈(uk(x))(y, t), ξ∗〉 = 1B(x,t)

� ∞

t

( t
s

)α
Ut,s(1Ck(x,s)fs)(y)

ds

s
.

Its norm in L2( dy dt
tn+1 ) is dominated by

(� ∞

0

[ � ∞

t

( t
s

)α‖1B(x,t)Ut,s(1Ck(x,s)fs)‖L2

ds

s

]2 dt

tn+1

)1/2

≤
(� ∞

0

[ � ∞

t

( t
s

)2ǫ ds

s

][ � ∞

t

( t
s

)2(α−ǫ)‖1B(x,t)Ut,s(1Ck(x,s)fs)‖2
L2

ds

s

] dt

tn+1

)1/2

.
(� ∞

0

� ∞

t

( t
s

)2(α−ǫ)(
2−kM‖1B(x,2k+1s)fs‖L2

)2 ds

s

dt

tn+1

)1/2

h 2−kM
( � ∞

0

‖1B(x,2k+1s)fs‖2
L2

ds

sn+1

)1/2

,

where in the last step we exchanged the order of integration and integrated out the
t variable; the convergence required that 2(α− ǫ) > n, which holds for sufficiently
small ǫ > 0, since α > n/2.

The right-hand side of our computation is 2−kM times the L2( dy dt
tn+1 )-norm of

1B(x,2k+1s)〈Fs(y), ξ∗〉, so that covariance domination gives us

‖uk(x)‖
γ(L2(

dy dt
tn+1 ),X)

. 2−kN‖(J2k+1F )(x)‖
γ(L2(

dy dt
tn+1 ),X)

.

Taking Lp-norms and using Theorem 4.3 yields

‖uk‖
Lp(γ(L2(

dy dt
tn+1 ),X))

. 2−kM‖F‖Tp,2
2k+1(X) . 2−kM (1 + k)2kn/τ‖F‖Tp,2(X).
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Recalling that M > n/τ , we find that the formal expansion J(UF ) =
∑∞
k=0 uk

converges absolutely in Lp(γ(L2( dy dt
tn+1 ), X)), and we obtain the desired estimate

‖UF‖Tp,2(X) . ‖F‖Tp,2(X). �

Proposition 5.5. Let 1 < p < ∞, X be a UMD space, and let Lp(X) have
type τ . Let (Lt,s)0<s≤t<∞ be a uniformly bounded family of operators on L2 such
that (Lt,s)t>s ∈ ODt(N) uniformly in s for some N > n/τ . Let further β >
n(1/τ − 1/2). Then

(LF )t =

� t

0

(s
t

)β
Lt,sFs

ds

s

extends to a bounded operator on T p,2(X).

Proof. The proof follows a similar approach as the previous one. This time, we
expand J(LF ) in a double series

∑∞
k,m=0 vk,m, where

vk,m : x 7→
[
(y, t) 7→

� 2−mt

2−(m+1)t

(s
t

)β
1B(x,t)(y)Lt,s(1Ck(x,t)Fs)(y)

ds

s

]
.

Again, we wish to estimate the γ(L2( dy dt
tn+1 ), X)-norm of vk,m(x) by covariance dom-

ination, for which purpose we take ξ∗ ∈ X∗, write fs := 〈Fs(·), ξ∗〉, and compute

‖〈vk,m(x), ξ∗〉‖
L2(

dy dt
tn+1 )

≤
(� ∞

0

[ � 2−mt

2−(m+1)t

2−mβ‖1B(x,t)Lt,s(1Ck(x,t)Fs)‖L2

ds

s

]2 dt

tn+1

)1/2

. 2−mβ
(� ∞

0

� 2−mt

2−(m+1)t

(
2−kN‖1B(x,2k+1t)Fs‖L2

)2 ds

s

dt

tn+1

)1/2

. 2−m(β+n/2)2−kN
(� ∞

0

‖1B(x,2k+m+2s)Fs‖2
L2

ds

sn+1

)1/2

.

This is 2−m(β+n/2)2−kN times the L2( dy dt
tn+1 )-norm of 1B(x,2k+m+2s)(y)〈Fs(y), ξ∗〉;

hence by covariance domination

‖vk,m(x)‖
γ(L2(

dy dt
tn+1 ),X)

. 2−m(β+n/2)2−kN‖(J2k+m+2F )(x)‖
γ(L2(

dy dt
tn+1 ),X)

.

Taking Lp-norms and using Theorem 4.3 we get

‖vk,m‖
Lp(γ(L2(

dy dt
tn+1 ),X))

. 2−m(β+n/2)2−kN‖F‖Tp,2
2k+m+2(X)

. 2−m(β+n/2)2−kN (1 + k +m)2(k+m)n/τ‖F‖Tp,2(X),

and we can sum up the series over k and m since β+n/2 > n/τ and N > n/τ . �

Combining the previous two propositions with a duality argument, we finally
obtain:

Theorem 5.6. Let 1 < p < ∞, X be a UMD space, and let Lp(X) have type τ
and cotype γ. Let (Tt,s)0<t,s<∞ be a uniformly bounded family of operators on L2

such that:

(i) (Tt,s)s>t ∈ ODs(M) uniformly in t,
(ii) (Tt,s)t>s ∈ ODt(N) uniformly in s.
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Then

(TF )t =

� ∞

0

min
{( t
s

)α
,
(s
t

)β}
Tt,sFs

ds

s

extends to a bounded operator on T p,2(X) if at least one of the following four
conditions is satisfied:

(a) M > n/τ , α > n/2, N > n/τ , and β > n(1/τ − 1/2),
(b) M > n/τ , α > n/2, N > n(1 − 1/γ), and β > n/2,
(c) M > n(1 − 1/γ), α > n(1/2 − 1/γ), N > n/τ , and β > n(1/τ − 1/2),
(d) M > n(1 − 1/γ), α > n(1/2 − 1/γ), N > n(1 − 1/γ), and β > n/2.

Proof. We split T into a sum U+L of upper and lower triangular parts as considered
in the previous two propositions. Part (a) is an immediate consequence, since the
conditions on M and α guarantee the boundedness of U and those on N and β that
of L.

For part (b), the boundedness of U follows as before. As for L, we observe that

its (formal) adjoint on T p
′,2(X∗) is the upper triangular operator

(L∗G)t =

� ∞

t

( t
s

)β
T ∗
s,tGs

ds

s
,

where T ∗
s,t ∈ ODs(N) and Lp

′

(X∗) = (Lp(X))∗ has type γ′ = γ/(γ − 1). We know

that this operator is bounded on T p
′,2(X∗) under the conditions that N > n/γ′ =

n(1 − 1/γ) and β > n/2.
Parts (c) and (d) are proved similarly by considering U∗ and L, and U∗ and L∗,

respectively. �

The most important case for us is when N = M , and we record this as a corollary
for later reference. In this situation, the condition (b) of Theorem 5.6 becomes
redundant, since it is always contained in condition (a).

Corollary 5.7. Let 1 < p < ∞, X be a UMD space, and let Lp(X) have type τ
and cotype γ. Let (Tt,s)0<t,s<∞ be a uniformly bounded family of operators on L2

such that Tt,s ∈ ODmax{t,s}(M) uniformly in t and s. Then

(5.1) (TF )t =

� ∞

0

min
{( t
s

)α
,
(s
t

)β}
Tt,sFs

ds

s

extends to a bounded operator on T p,2(X) if at least one of the following three
conditions is satisfied:

(a) M > n/τ , α > n/2, and β > n(1/τ − 1/2),
(c) M > n · max{1/τ, 1− 1/γ}, α > n(1/2 − 1/γ), and β > n(1/τ − 1/2),
(d) M > n(1 − 1/γ), α > n(1/2 − 1/γ), and β > n/2.

Remark 5.8. If X = C (or more generally a Hilbert space), then one can take
τ = min(2, p) and γ = max(2, p) in Corollary 5.7. For p ∈ [2,∞) (so that τ = 2),
part (a) provides the following sufficient condition for the T p,2-boundedness of (5.1):
M,α > n/2, and β > 0. For p ∈ (1, 2] (so that γ = 2), part (d) in turn gives
M,β > n/2, and α > 0. This recovers the corresponding result in [3] in the
Euclidean case for p ∈ (1,∞). Note that in [3] the end-points p ∈ {1,∞} are also
considered; in fact, the proof for p ∈ (1, 2) goes via interpolating between estimates
available in the atomic space T 1,2 and the Hilbert space T 2,2. See also [1], where a
weak type (1, 1) estimate is obtained.
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6. Bisectorial operators and functional calculus

In this section we collect some generalities concerning bisectorial operators and
their H∞-calculus. We denote by Sθ the (open) bisector of angle θ, i.e. Sθ =
S+
θ ∪S−

θ with S+
θ = {z ∈ C \ {0} : | arg(z)| < θ} and S−

θ = −S+
θ . We denote by Γθ

the boundary of Sθ, which is parametrised by arc-length and oriented anticlockwise
around Sθ.

A closed, densely defined, linear operator A acting in a Banach space Y is called
bisectorial (of angle ω, where 0 < ω < 1

2π) if the spectrum of A is contained in

Sω and for all ω < θ < 1
2π there exists a constant Cθ such that for all nonzero

z ∈ C \ Sθ

‖(I + zA)−1‖ 6 Cθ
|z|

d(z, Sθ)
.

For α, β > 0 we set

Ψα(Sθ) =
{
f ∈ H∞(Sθ) : ∃C |f(z)| ≤ Cmin(|z|α, 1) for all z ∈ Sθ

}
,

Ψβ(Sθ) =
{
f ∈ H∞(Sθ) : ∃C |f(z)| ≤ Cmin(1, |z|−β) for all z ∈ Sθ

}
,

Ψβ
α(Sθ) =

{
f ∈ H∞(Sθ) : ∃C |f(z)| ≤ Cmin(|z|α, |z|−β) for all z ∈ Sθ

}

and Ψ(Sθ) =
⋃
α,β>0 Ψβ

α(Sθ).

Let ω < θ < 1
2π be fixed. For ψ ∈ Ψ(Sθ), we define

ψ(A) =
1

2πi

�
Γθ

ψ(z)(z −A)−1 dz.

The resolvent bounds for A imply that this integral converges absolutely in L (Y ).
If one has, in addition, the quantitative estimate

‖ψ(A)‖L (Y ) . ‖ψ‖∞,

then A is said to have H∞(Sθ)-calculus on Y .

Lemma 6.1. Let A be bisectorial of angle ω and let θ > ω.

(1) For φ1, φ2 ∈ Ψ(Sθ) we have φ1(A)φ2(A) = (φ1 · φ2)(A); this is also true if
φ2 ∈ H∞(Sθ) is a rational function, in which case φ2(A) is defined in the
usual way by using the resolvents of A.

(2) For all ψ1 ∈ Ψ(Sθ), ψ2 ∈ H∞(Sθ), ψ3 ∈ Ψ(Sθ) we have

ψ1(A)(ψ2ψ3)(A) = (ψ1ψ2)(A)ψ3(A).

Proof. The first claim is the well-known homomorphism property, which in both
cases can be proved by writing out the definition of φ1(A)φ2(A), performing a
partial fraction expansion, and using Cauchy’s theorem. The second claim follows
from the homomorphism property for ψ2 ∈ Ψ(Sθ), and the general case can be
obtained from this by approximation (cf. [20, Theorem 9.2(i)]). �

Lemma 6.2. Let A be bisectorial of angle ω and let θ > ω. Let D(A) and R(A)
denote the domain and range of A, respectively. Then,

R(A) = R(A) ∩ D(A) = R(A(I +A)−2) =
⋃

ψ∈Ψ(Sθ)

R(ψ(A)).
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Proof. If f = ψ(A)g ∈ R(ψ(A)), let fε := A(ε+A)−1f ∈ R(A). Then

f − fε = ε(ε+A)−1ψ(A)g =
1

2πi

�
Γ

ε

ε+ z
ψ(z)(z −A)−1g dz.

The integrand is bounded by
∣∣ψ(z)z−1

∣∣ ∈ L1(Γ, | dz|) and tends pointwise to zero
as ε→ 0. Hence fε → f by dominated convergence.

Next we observe that fε = (I + εA)−1f → f as ε → 0. Indeed, if f ∈ D(A),
then f − fε = ε · (I + εA)−1Af has norm at most Cε, since the second factor
stays uniformly bounded. Since the operators (I + εA)−1 are uniformly bounded
and D(A) is dense, the convergence remains true for all f . If now f ∈ R(A), then
fε ∈ R(A) ∩ D(A).

To complete the chain, let f ∈ R(A) ∩ D(A). Then for some g ∈ D(A2) we
have f = Ag = A(I + A)−2(I + A)2g = ψ(A)h, where ψ(z) = z/(1 + z)2 ∈ Ψ and
h = (I +A)2g. This completes the proof. �

We say that ψ ∈ Ψβ
α(Sθ) is degenerate if (at least) one of the restrictions ψ|S±

θ

vanishes identically; otherwise it is called non-degenerate. The following two lem-
mas go back to Calderón, cf. [27, Section IV.6.19]. For the convenience of the
reader we include simple proofs.

Lemma 6.3 (Calderón’s reproducing formula, I). Let ψ ∈ Ψβ
α(Sθ) be non-degen-

erate. If α′ > α and β′ > β, there exists ψ̃ ∈ Ψβ′

α′(Sθ) such that

(6.1)

� ∞

0

ψ(tz)ψ̃(tz)
dt

t
= 1, z ∈ Sθ.

Proof. Let ψ(z) := ψ(z). Let m > max(α′ − α, β′ − β) and denote

c± :=

� ∞

0

(±t)m
(1 + t2)m

ψ(±t)ψ(±t) dt

t
.

By non-degeneracy, c± > 0. Hence the function ψ̃(z) = c−1
± zm(1 + z2)−mψ(z) for

z ∈ S±
θ has the desired properties. �

Lemma 6.4 (Calderón’s reproducing formula, II). Let ψ, ψ̃ ∈ Ψ(Sθ) satisfy (6.1).
Then � ∞

0

ψ(tA)ψ̃(tA)f
dt

t
= f, f ∈ R(A),

where the left side is defined as an indefinite Riemann integral in L2.

Proof. Let first f = φ(A)g for some φ ∈ Ψ(Sθ). Then� ∞

0

ψ(tA)ψ̃(tA)f
dt

t
=

� ∞

0

(ψ(t·)ψ̃(t·)φ(·))(A)g
dt

t

=

� ∞

0

1

2πi

�
Γθ′

ψ(tz)ψ̃(tz)φ(z)(z −A)−1g dz
dt

t

=
1

2πi

�
Γθ′

� ∞

0

ψ(tz)ψ̃(tz)
dt

t
φ(z)(z −A)−1g dz

=
1

2πi

�
Γθ′

φ(z)(z −A)−1g dz = φ(A)g = f

by Lemma 6.1, absolute convergence and Fubini’s theorem. To conclude, we re-

call from Lemma 6.2 that functions as above are dense in R(A), and notice that
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a ψ(sz)ψ̃(sz) ds/s are uniformly in H∞(Sθ) so that the corresponding operators

obtained by the formal substitution z := A are uniformly bounded by the func-
tional calculus. From this the convergence of the indefinite Riemann integral to the
asserted limit follows easily. �

7. Hardy spaces associated with bisectorial operators

We now move on to more specific spaces and operators. We are concerned with
systems of N2 operators on L2, which we shall view as single operators on (L2)N .
Off-diagonal estimates for families of such operators can be defined by the same
formal requirement as in the case N = 1 above. It is easy to see that off-diagonal
estimates for a family of operators in (L2)N are equivalent to off-diagonal estimates
for the N2 families of operators in L2 corresponding to the entries in the matrix
representation of the original operators.

In the vector-valued context we shall frequently use the natural identifications

(L2)N ⊗X = (L2 ⊗ C
N ) ⊗X = L2 ⊗ (CN ⊗X) ⊆ L2(XN ).

Under these identifications, the elementary tensor (0, . . . , 0, f, 0, . . . , 0) ⊗ x (with
f at the n-th entry) is identified with elementary tensor f ⊗ (0, . . . , 0, x, 0, . . . , 0)
(with x at the n-th entry).

Throughout this section we fix a UMD Banach space X and an exponent 1 <
p <∞, and suppose that the following assumptions are satisfied:

Assumption 7.1. The numbers 1 6 τ 6 2 and 2 6 γ 6 ∞ are fixed in such a way
that Lp(X) has type τ and cotype γ.

Assumption 7.2. The operator A in (L2)N is bisectorial of angle 0 < ω < π/2.
For ω < θ′ < θ < π/2, it also has an H∞(Sθ)-calculus on (L2)N . Moreover,
the family ((I + ζA)−1)ζ∈C\Sθ satisfies off-diagonal estimates of order M , where
M > n · min{1/τ, 1 − 1/γ}.

With only the above assumptions at hand, A may fail to be bisectorial even for
N = 1, and in particular to have an H∞-calculus, in Lp for some values of p 6= 2.
The tensor extension A⊗ IX may already fail these properties in L2(X). To study
problems involving operators f(A) in such spaces, we are thus led to define an
appropriate scale of Hardy spaces associated with A. When A is the Hodge–Dirac
operator or the Hodge–de Rham Laplacian on a complete Riemannian manifold,
this has been done in [3]. We build on the ideas of this paper.

Lemma 7.3. For ω < θ < π/2 and ε > 0, let g ∈ H∞(Sθ), and let ψ ∈ Ψε
M+ε(Sθ).

Then {(g · ψ(t·))(A)}t>0 satisfies off-diagonal estimates of order M , and the off-
diagonal constant has an upper bound which depends linearly on ‖g‖∞.

Proof. Let us denote by δ := d(E,F ) the ‘distance’ of two Borel sets E and F as
defined previously. Then, using the fact that (I−z−1A)−1 ∈ OD1/|z|(M) uniformly
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in z ∈ Sθ,

‖1E(g · ψ(t·))(A)1F f‖

=
∥∥∥

1

2πi

�
Γθ′

g(z)ψ(tz)1E
(
I − 1

z
A

)−1
1F f

dz

z

∥∥∥

.

�
Γθ′

min
{
(t|z|)M+ε, (t|z|)−ε

}
(δ|z|)−M‖f‖ | dz||z|

.

� 1/t

0

tM+εrM+ε · δ−Mr−M‖f‖ dr

r
+

� ∞

1/t

t−εr−ε · δ−Mr−M‖f‖ dr

r

h tMδ−M‖f‖,
and this proves the claim. �

Lemma 7.4. Let α, β, ε > 0, and

ψ ∈ Ψβ+ε
max{M−β,α}+ε(Sθ), ψ̃ ∈ Ψα+ε

max{M−α,β}+ε(Sθ), φ ∈ C1 ⊕ Ψ(Sθ).

Then

ψ(tA)φ(A)ψ̃(sA) = min
{( t
s

)α
,
(s
t

)β}
St,s,

where (St,s)t,s>0 is a uniformly bounded family of operators acting on (L2)N such
that St,s ∈ ODmax{t,s}(M), uniformly in t and s.

Proof. We have

ψ(tA)φ(A)ψ̃(sA) = (t/s)αψ0(tA)φ(A)ψ̃0(sA) = (s/t)βψ1(tA)φ(A)ψ̃1(sA),

where

ψ0(z) := z−αψ(z) ∈ Ψα+β+ε
ε , ψ̃0(z) := zαψ̃(z) ∈ Ψε

M+ε,

ψ1(z) := zβψ(z) ∈ Ψε
M+ε, ψ̃1(z) := z−αψ̃(z) ∈ Ψα+β+ε

ε .

The case s > t of the claim follows from Lemma 7.3 (with s in playing the role of

t in that Lemma) with g(z) = ψ0(tz)φ(z) and ψ̃0 in place of ψ, while for the other

case we take g(z) = φ(z)ψ̃1(sz) and ψ1 in place of ψ. �

It is immediate to check that T p,2(XN) h (T p,2(X))N . Just as we extended
the action of some operators on L2 to T p,2(X), we may use this isomorphism to
extend operators on (L2)N to T p,2(XN) by using their matrix representation and
the extension procedure already discussed when N = 1.

Proposition 7.5. Let ψ, ψ̃ ∈ Ψ(Sθ) and φ ∈ C1 ⊕ Ψ(Sθ). Then

(TF )t =

� ∞

0

ψ(tA)φ(A)ψ(sA)Fs
ds

s

extends to a bounded operator on T p,2(XN) if at least one of the following conditions
is satisfied:

(a) M > n/τ , ψ ∈ Ψ
n(1/τ−1/2)+ε
n/2+ε , and ψ̃ ∈ Ψ

n/2+ε
n(1/τ−1/2)+ε,

(c) M > max{n/τ, n(1 − 1/γ)}, ψ ∈ Ψ
n(1/τ−1/2)+ε
n/2+nmax{1/γ′−1/τ,0}+ε,

and ψ̃ ∈ Ψ
n(1/2−1/γ)+ε
n/2+nmax{1/τ−1/γ′,0}+ε,

(d) M > n(1 − 1/γ), ψ ∈ Ψ
n/2+ε
n(1/2−1/γ)+ε, and ψ̃ ∈ Ψ

n(1/2−1/γ)+ε
n/2+ε ,

where ε > 0 is arbitrary.
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Proof. This is directly, if slightly tediously, verified as a corollary of Lemma 7.4
and Corollary 5.7, so that the different conditions of Proposition 7.5 correspond to
those of Corollary 5.7. As for the application of Corollary 5.7, we simply apply this
to the N2 matrix elements of the full operator, each of which acts on T p,2(X). �

Definition 7.6. We say that a pair of functions (ψ, ψ̃) ∈ Ψ(Sθ)×Ψ(Sθ) has sufficient
decay if they verify at least one of the conditions (a), (c), or (d) of Proposition 7.5.

Remark 7.7. (i) Note that the notion of sufficient decay as defined above assumes
that the parameters appearing in Assumptions 7.1 and 7.2 have been fixed. Also
observe that if the parameters are such that for instance n(1 − 1/γ) < M ≤ n/τ ,
then only the condition (d) above is applicable.

(ii) If (ψ, 0) ∈ Ψ(Sθ) × Ψ(Sθ) has sufficient decay, by Calderón’s reproducing

formula there exists a ψ̃ ∈ Ψ(Sθ) which satisfies (6.1) and decays as rapidly as

desired; in particular, we may arrange so that the pair (ψ, ψ̃) also has sufficient

decay. A similar remark applies if we start from a ψ̃ ∈ Ψ(Sθ) such that (0, ψ̃) has
sufficient decay.

For f =
∑
i

gi ⊗ ξi ∈ (L2)N ⊗X and ψ ∈ Ψ(Sθ) we shall write

(Qψf)(y, t) :=
∑

i

ψ(tA)gi(y) ⊗ ξi := ψ(tA)f(y).

Definition 7.8. For 1 ≤ p < ∞ and a non-degenerate ψ ∈ Ψ(Sθ), the Hardy space
Hp
A,ψ(XN ) associated with A and ψ is the completion of the space

{f ∈ R(A) ⊗X ⊆ (L2)N ⊗X : Qψf ∈ T p,2(XN)}

with respect to the norm

‖f‖Hp
A,ψ

(XN ) := ‖Qψf‖Tp,2(XN ).

It is clear that ‖ · ‖Hp
A,ψ

(XN ) is a seminorm on R(A) ⊗ X ; that it is actually a

norm will be seen shortly.
By definition, the operator

(Qψf)(·, t) := ψ(tA)f

embeds the Hardy space Hp
A,ψ(XN) isometrically into the tent space T p,2(XN ).

Of importance will also be another operator acting to the opposite direction. For

ψ̃ ∈ Ψ(Sθ), we define Seψf ∈ (L2)N ⊗X by

(7.1) SeψF :=

� ∞

0

ψ̃(sA)F (s, ·) ds

s

for those functions F ∈ L1
loc(R+; (L2)N )⊗X for which the integral exists as a limit

in L2(CN ) of the finite integrals
� b
a , where a→ 0 and b→ ∞.

By Calderón’s reproducing formula, for a given ψ ∈ Ψ(Sθ), there exists a ψ̃ ∈
Ψ(Sθ) such that the defining formula (7.1) makes sense for all F ∈ Qψ(R(A)⊗X),
and we have

(7.2) Sψ̃Qψf = f, f ∈ R(A) ⊗X.
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Hence, if ‖f‖Hp
A,ψ

(XN ) = 0 for some f ∈ R(A) ⊗X , this means by definition that

Qψf = 0, and the identity (7.2) yields immediately f = 0. Thus ‖ · ‖Hp
A,ψ

(XN ) is

indeed a norm.

Proposition 7.9. Let (ψ, ψ̃) ∈ Ψ(Sθ)×Ψ(Sθ) be a pair with sufficient decay. If f ∈
T p,2(XN) is such that the defining formula (7.1) is valid, then Seψf ∈ Hp

A,ψ(XN ),

and the mapping f 7→ Seψf extends uniquely to a bounded operator from T p,2(XN)

to Hp
A,ψ(XN ).

Proof. Write g := Seψf . First we check that g ∈ R(A) ⊗ X : this is clear from

the defining formula, since ψ(sA)f(·, s) ∈ R(A) for each s > 0 by Lemma 6.2, and

Bochner integration in the Banach space (L2)N preserves the closed subspace R(A).
By Proposition 7.5,

(y, t) 7→ ψ(tA)g(y) =

� ∞

0

ψ(tA)ψ̃(sA)f(y, s)
ds

s

defines an element ψ(·A)g of T p,2(XN ) and we have

‖Seψf‖HpA,ψ(XN ) = ‖ψ(·A)g‖Tp,2(XN ) . ‖f‖Tp,2(XN ).

The subspace of T p,2(XN ) where the defining formula (7.1) is valid contains e.g.
(Cc)

N⊗X and is therefore dense in T p,2(XN). Hence the mapping Seψ has a unique

extension to a bounded operator from T p,2(XN) to Hp
A,ψ(XN). �

Next we show that Hp
A,ψ(XN) is independent of ψ ∈ Ψ(Sθ), provided (ψ, 0) has

sufficient decay. A typical function with this property is

ψ(z) = (
√
z2)n( 1

2− 1
γ
)+1e−

√
z2 ,

where γ denotes the cotype of Lp(X). This gives the classical definition by the
Poisson kernel when X = C and 1 < p ≤ 2, taking γ = 2.

Theorem 7.10. Let ψ, ψ ∈ Ψ(Sθ) be two functions such that (ψ, 0) and (ψ, 0) have
sufficient decay. Then:

(i) Hp
A,ψ(XN ) = Hp

A,ψ(XN) =: Hp
A(XN ).

(ii) A has an H∞-functional calculus on Hp
A(XN ).

Proof. Let φ ∈ C1⊕Ψ(Sθ) be arbitrary and fixed. Let f ∈ R(A)⊗X . By Calderón’s

reproducing formula, there exists ψ̃ ∈ Ψ(Sθ) (with any prescribed decay) such that

ψ(tA)φ(A)f =

� ∞

0

ψ(tA)φ(A)ψ̃(sA)ψ(sA)f
ds

s
.

Thus
‖φ(A)f‖Hp

A,ψ
(XN ) = ‖TQψf‖Tp,2(XN ),

where T is the operator on T p,2(XN ) given by

TF (y, t) =

� ∞

0

ψ(tA)φ(A)ψ̃(sA)F (y, s)
ds

s
.

From Proposition 7.5 we deduce that

‖φ(A)f‖Hp
A,ψ

(XN ) . ‖Qψf‖Tp,2(XN ) = ‖f‖Hp
A,ψ

(XN ).

Taking φ = 1, this gives (i). Taking φ ∈ Ψ(Sθ), we obtain (ii). �
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The following, by now quite simple result has some useful consequences:

Proposition 7.11. If (0, ψ̃) has sufficient decay, then the bounded mapping Seψ :

T p,2(XN) → Hp
A(XN) is surjective.

Proof. By Remark 7.7, we find a ψ ∈ Ψ(Sθ) such that (7.2) is satisfied and (ψ, ψ̃)
has sufficient decay. Now let f ∈ Hp

A(XN ) = Hp
A,ψ(XN ) be arbitrary and let

limn→∞ fn = f in Hp
A,ψ(XN ) with fn ∈ R(A) ⊗ X . The functions gn := Qψfn

belong to T p,2(XN) and ‖gn − gm‖Tp,2(XN ) = ‖fn − fm‖Hp
A,ψ

(XN ) for all m,n. It

follows that the sequence (fn) is Cauchy in T p,2(XN ) and therefore converges to
some f ∈ T p,2(XN ). From fn = Seψgn and the continuity of Seψ it follows that

f = Seψg. �

Corollary 7.12. Let (0, ψ̃) have sufficient decay. An equivalent description of the
Hardy space is

Hp
A(XN ) = H̃p

A, eψ
(XN) := {SeψF : F ∈ T p,2(XN )},

and an equivalent norm is given by

‖f‖ eHp
A, eψ

(XN ) := inf{‖F‖Tp,2(XN ) : f = SeψF}.

As a further consequence we deduce an interpolation result for Hardy spaces from
the following general principle (see Theorem 1.2.4 in [28]): Let X0, X1 and Y0, Y1

be two interpolation couples such that there exist operators S ∈ L (Yi, Xi) and Q ∈
L (Xi, Yi) with SQx = x for all x ∈ Xi and i = 0, 1. Then [X0, X1]θ = S[Y0, Y1]θ.

Here we take (ψ, ψ̃) as in the Calderón reproducing formula with sufficient decay,
S = Seψ and Q = Qψ.

Corollary 7.13. Let X be a UMD space. For all 1 < p0 < p1 < ∞, 0 < θ < 1,
and N > 1 we have

[Hp0
A (XN ), Hp1

A (XN)]θ = Hpθ
A (XN)

with equivalent norms, where 1
pθ

= 1−θ
p0

+ θ
p1

.

8. Hardy spaces associated with differential operators

The construction described in Section 7 is particularly relevant when dealing
with differential operators A = DB in L2 ⊕ (L2)n, where

DB =
(

0 −divB
∇ 0

)

with B a multiplication operator on (L2)n given by an (n × n)-matrix with L∞

entries. Such operators have been considered in connection with the celebrated
square root problem of Kato, which was originally solved in [2]. A new proof based
on first order methods was devised in [4], where it was shown that DB is bisectorial
on L2(C ⊕ Cn) and satisfies off-diagonal estimates of any order.

In [16], the H∞-functional calculus of DB ⊗ IX in Lp(X)⊕ (Lp(X))n = Lp(X ⊕
Xn) is described in terms of R-boundedness of the resolvents. Although these
resolvent conditions, and hence the functional calculus, may fail on Lp(X ⊕Xn) in
general, it follows from Section 7 that these operators do have an H∞-functional
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calculus on Hp
DB

(X ⊕Xn), which in particular implies Kato type estimates in this
space.

To express these estimates, observe first that R(DB) = R(divB) ⊕ R(∇). Let us

hence write a function f ∈ R(DB) ⊗X as (f0, f1), where

f0 ∈ R(divB) ⊗X ⊆ L2 ⊗X, f1 ∈ R(∇) ⊗X ⊆ (L2)n ⊗X = L2 ⊗Xn

denote the X-valued and Xn-valued parts of f , respectively. Defining

Hp
DB

(X ⊕Xn) := Hp
DB ,ψ

(X ⊕Xn)

by means of the (even!) function ψ(z) = (
√
z2)Ne−

√
z2 with N large enough, we

note that ψ(tDB) = φ(t2D2
B), where φ(z) =

√
z
N
e−

√
z and the operator

D2
B =

( −divB∇ 0
0 −∇divB

)
,

and hence φ(t2D2
B), is diagonal with respect to the splitting f = (f0, f1). In

particular this shows that

‖(f0, f1)‖HpDB (X⊕Xn) h ‖(f0, 0)‖HpDB (X⊕Xn) + ‖(0, f1)‖HpDB (X⊕Xn).

Hence also the full spaceHp
DB

(X⊕Xn) (constructed as the completion of R(DB)⊗X
with respect to the above-given norm) has the natural direct sum splitting into “X-
valued” and “Xn-valued” components. Let us denote these components byHp

DB
(X)

and Hp
DB

(Xn), so that

‖f0‖Hp
DB

(X) := ‖(f0, 0)‖Hp
DB

(X⊕Xn),

‖f1‖HpDB (Xn) := ‖(0, f1)‖HpDB (X⊕Xn).

Then we are ready to state:

Theorem 8.1. Let X be a UMD space, 1 < p <∞, and DB be as above. Then

‖
√
−divB∇u‖Hp

DB
(X) h ‖∇u‖Hp

DB
(Xn)

for all u ∈ D(∇) ⊗X ⊆ L2 ⊗X.

Proof. We know from [4] that (I + zDB)−1 satisfies off-diagonal estimates of arbi-
trary order and that DB has an H∞(Sθ)-calculus on L2 ⊕ (L2)n.

Consider the function φ(z) = z/
√
z2 ∈ H∞(Sθ). By the boundedness of the

H∞-calculus and the identity 1/φ(z) = φ(z),

(8.1) ‖φ(DB)f‖HpDB (X⊕Xn) h ‖f‖HpDB (X⊕Xn), f ∈ R(DB) ⊗X.

Observing that

φ(DB) =

(
0 −divB(−∇Bdiv)−1/2

∇(−divB∇)−1/2 0

)

and using (8.1) for f = (f0, 0) gives

(8.2) ‖∇(−divB∇)−1/2f0‖Hp
DB

(Xn) h ‖f0‖Hp
DB

(X), f0 ∈ R(divB) ⊗X.

Let then u ∈ D(∇) ⊗ X . By the solution of Kato’s problem we have D(∇) =
D(

√
−divB∇). Substituting

f0 =
√
−divB∇u ∈ R(

√
−divB∇) ⊗X ⊆ R(−divB∇) ⊗X ⊆ R(divB) ⊗X
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in (8.2), we obtain the assertion. We used above the inclusion R(
√
A) ⊆ R(A),

which is true for all sectorial operators (see [10], Corollary 3.1.11). �

Let D = DI be the unperturbed operator. Observe that D2(f, 0) = (∆f, 0) and

then, whenever ψ is even, ψ(tD)(f, 0) = (ψ(t
√

∆)f, 0). The space Hp
D(X) is then

the classical Hardy space.

Theorem 8.2. Let X be UMD. Then Hp
D(X) = Lp(X) for all 1 < p <∞.

Proof. Let us denote by N the smallest integer greater than n
2 and, for functions

f ∈ Cc, define

Sf(y, t) =

�
Rn

kt(y, z)f(z) dz,

where

kt(y, z) = tN
∂N

∂tN

(
t−np

((y − z)

t

))
,

and p(w) = 1/(1 + w2)
n+1

2 . For a fixed t > 0, f 7→ Sf(·, t) is thus a Fourier
multiplier with symbol mt(ξ) = (t|ξ|)Ne−t|ξ|. This implies assumptions (1) and
(4) in Theorem 4.8. Assumptions (2) and (3), with α = β = 1, follow from direct

computations of the N -th derivative of t 7→ t−np( |x|t ) and the mean value theorem.
Now, for f ∈ Lp(X), letting

Pf(y, t) := ψ(tD)(f, 0)(y) = ((t
√

∆)Ne−t
√

∆f(y), 0)

and applying Theorem 4.8, we thus obtain that

‖f‖HpD(X) . ‖f‖Lp(X)

for all f ∈ Lp(X). Now let f ∈ Lp(X) and g ∈ Lp
′

(X∗), and denote by 〈f, g〉 their

duality product. By Calderón’s reproducing formula there exists ψ̃ (with arbitrary
decay) such that

〈f, g〉 =

� ∞

0

〈ψ(t∆)f, ψ̃(t∆)∗g〉 dt

t
.

Therefore

|〈f, g〉| . ‖f‖Hp
D

(X)‖g‖Hp′D (X∗)
. ‖f‖Hp

D
(X)‖g‖Lp′(X),

and hence ‖f‖Lp(X) . ‖f‖Hp
D

(X). �

9. Extensions

It is possible to incorporate a Hilbert space -parameter in the definition of the
tent spaces in such a way that the results of the previous sections concerning Hardy
spaces may be generalised to deal with operators in L2(H), with H possibly infinite-

dimensional. In fact, the mapping J : Cc ⊗X → Lp(γ(L2( dy dt
tn+1 );X)) can also be

defined on Cc(H)⊗X with the same formal expression, and then we let T p,2(H ;X)
be the completion of this space with respect to the norm

‖f‖Tp,2(H;X) := ‖Jf‖
Lp(γ(L2(

dy dt
tn+1 ;H),X))

.

The so-far considered space T p,2(X) is seen to be the special case with H = C.
It is also easy to check that for finite dimensional H = CN we simply get

(9.1) T p,2(CN ;X) h T p,2(XN ).
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The proofs in the special case treated above carry over to show that also the gen-
eral T p,2(H ;X) becomes a complemented subspace of Lp(γ(L2( dy dt

tn+1 ;H), X)); it is

equivalent to the spaces T p,2α (H ;X) with different apertures α ∈ (0,∞); and so
forth.

Given a bisectorial operator A acting in L2(H), satisfying off-diagonal resolvent
bounds and with a bounded H∞-calculus on this space, we define the associated

Hardy space Hp
A,ψ(H ;X) as the completion of R(A)⊗X with respect to the norm

‖Qψf‖Tp,2(H;X). Due to (9.1), this is equivalent to what we did before. The various
results concerning these spaces, such as the independence of ψ under sufficient
decay, carry over to this generality with the same proofs. In fact, the proofs are
even slightly more streamlined in the general framework, since with H built inside
the tent space, we can treat the operators on L2(H) as a whole, instead of breaking
them down to the matrix entries as we did in the finite-dimensional case.
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[21] S. Kwapień. On Banach spaces containing c0. Studia Math., 52:187–188, 1974. A supplement
to the paper by J. Hoffmann-Jørgensen: “Sums of independent Banach space valued random
variables” (Studia Math. 52 (1974), 159–186).

[22] C. Le Merdy. On square functions associated to sectorial operators. Bull. Soc. Math. France,
132:137–156, 2004.

[23] T. Mei. BMO is the intersection of two translates of dyadic BMO. C. R. Acad. Sci. Paris,
Ser. I, 336(12):1003–1006, 2003.

[24] J.M.A.M. van Neerven, M.C. Veraar, and L. Weis. Stochastic integration in UMD Banach
spaces. Ann. Prob., 35:1438–1478, 2007.

[25] J.M.A.M. van Neerven and L. Weis. Stochastic integration of functions with values in a
Banach space. Studia Math., 166:131–170, 2005.

[26] G. Pisier. Holomorphic semigroups and the geometry of Banach spaces. Ann. of Math. (2),
115(2):375–392, 1982.

[27] E.M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory inte-
grals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton,
NJ, 1993.

[28] H. Triebel. Interpolation theory, function spaces, differential operators. North Holland, 1978.

Department of Mathematics and Statistics, University of Helsinki, Gustaf Häll-
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