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Abstract. We discuss existence, uniqueness, and space-time Hölder regular-

ity for solutions of the parabolic stochastic evolution equation{
dU(t) = (AU(t) + F (t, U(t))) dt+B(t, U(t)) dWH(t), t ∈ [0, T0],

U(0) = u0,

where A generates an analytic C0-semigroup on a UMD Banach space E

and WH is a cylindrical Brownian motion with values in a Hilbert space H.
We prove that if the mappings F : [0, T ] × E → E and B : [0, T ] × E →
L (H,E) satisfy suitable Lipschitz conditions and u0 is F0-measurable and

bounded, then this problem has a unique mild solution, which has trajectories
in Cλ([0, T ]; D((−A)θ)) provided λ > 0 and θ > 0 satisfy λ + θ < 1

2
. Vari-

ous extensions of this result are given and the results are applied to parabolic

stochastic partial differential equations.

1. Introduction and statement of the results

In this paper we prove existence, uniqueness, and space-time regularity results
for the abstract semilinear stochastic Cauchy problem

(SCP)

{
dU(t) = (AU(t) + F (t, U(t))) dt+B(t, U(t)) dWH(t), t ∈ [0, T0],

U(0) = u0.

Here A is the generator of an analytic C0-semigroup (S(t))t>0 on a UMD Banach
space E, H is a separable Hilbert space, and for suitable η > 0 the functions
F : [0, T ] × D((−A)η) → E and B : [0, T ] × D((−A)η) → L (H,E) enjoy suitable
Lipschitz continuity properties. The driving process WH is an H-cylindrical Brow-
nian motion adapted to a filtration (Ft)t>0. In fact we shall allow considerably less
restrictive assumptions on F and B; both functions may be unbounded and may
depend on the underlying probability space.

A Hilbert space theory for stochastic evolution equations of the above type has
been developed since the 1980s by the schools of Da Prato and Zabczyk [10]. Much
of this theory has been extended to martingale type 2-spaces [2, 3]; see also the
earlier work [34]. This class of Banach spaces covers the Lp-spaces in the range

Date: September 24, 2014.
2000 Mathematics Subject Classification. Primary: 47D06, 60H15 Secondary: 28C20, 46B09,

60H05.
Key words and phrases. Parabolic stochastic evolution equations, UMD Banach spaces, sto-

chastic convolutions, γ-radonifying operators, L2
γ -Lipschitz functions.

The first and second named authors are supported by a ‘VIDI subsidie’ (639.032.201) in the
‘Vernieuwingsimpuls’ programme of the Netherlands Organization for Scientific Research (NWO).
The second named author is also supported by the Humboldt Foundation. The third named

author is supported by a grant from the Deutsche Forschungsgemeinschaft (We 2847/1-2).

1



2 J.M.A.M. VAN NEERVEN, M.C. VERAAR, AND L. WEIS

2 6 p < ∞, which is enough for many practical applications to stochastic partial
differential equations. Let us also mention an alternative approach to the Lp-theory
of stochastic partial differential equations has been developed by Krylov [22].

Extending earlier work of McConnell [26], the present authors have developed
a theory of stochastic integration in UMD spaces [30, 31] based on decoupling
inequalities for UMD-valued martingale difference sequences due to Garling [14,
15]. This work is devoted to the application of this theory to stochastic evolution
equations in UMD spaces. In this introduction we will sketch in an informal way
the main ideas of our approach. For the simplicity of presentation we shall consider
the special case H = R and make the identifications L (R, E) = E and WR = W ,
where W is a standard Brownian motion. For precise definitions and statements of
the results we refer to the main body of the paper.

A solution of equation (SCP) is defined as an E-valued adapted process U which
satisfies the variation of constants formula

U(t) = S(t)u0 +

∫ t

0

S(t− s)F (s, U(s)) ds+

∫ t

0

S(t− s)B(s, U(s)) dW (s).

The relation of this solution concept with other type of solutions is considered in
[43]. The principal difficulty to be overcome for the construction of a solution, is
to find an appropriate space of processes which is suitable for applying the Banach
fixed point theorem. Any such space V should have the property that U ∈ V
implies that the deterministic convolution

t 7→
∫ t

0

S(t− s)F (s, U(s)) ds

and the stochastic convolution

t 7→
∫ t

0

S(t− s)B(s, U(s)) dW (s)

belong to V again. To indicate why this such a space is difficult to construct we
recall a result from [29] which states, loosely speaking, that if E is a Banach space
which has the property that f(u) is stochastically integrable for every E-valued
stochastically integrable function u and every Lipschitz function f : E → E, then
E is isomorphic to a Hilbert space. Our way out of this apparent difficulty is
by strengthening the definition of Lipschitz continuity to L2

γ-Lipschitz continuity,
which can be thought of as a Gaussian version of Lipschitz continuity. From the
point of view of stochastic PDEs, this strengthening does not restrict the range of
applications of our abstract theory. Indeed, we shall prove that under standard
measurability and growth assumptions, Nemytskii operators are L2

γ-Lipschitz con-

tinuous in Lp. Furthermore, in type 2 spaces the notion of L2
γ-Lipschitz continuity

coincides with the usual notion of Lipschitz continuity.
Under the assumption that F is Lipschitz continuous in the second variable

and B is L2
γ-Lipschitz continuous in the second variable, uniformly with respect

to bounded time intervals in their first variables, the difficulty described above is
essentially reduced to finding a space of processes V having the property that φ ∈ V
implies that the pathwise deterministic convolutions

t 7→
∫ t

0

S(t− s)φ(s) ds
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and the stochastic convolution integral

(1.1) t 7→
∫ t

0

S(t− s)φ(s) dW (s)

define processes which again belong to V . The main tool for obtaining estimates
for this stochastic integral is γ-boundedness. This is the Gaussian version of the
notion of R-boundedness which in the past years has established itself as a natural
generalization to Banach spaces of the notion of uniform boundedness in the Hilbert
space context and which played an essential role in much recent progress in the area
of parabolic evolution equations. The power of both notions derives from the fact
that they connect probability in Banach spaces with harmonic analysis.

From the point of view of stochastic integration, the importance of γ-bounded
families of operators is explained by the fact that they act as pointwise multipliers
in spaces of stochastically integrable processes. This would still not be very useful
if it were not the case that one can associate γ-bounded families of operators with
an analytic C0-semigroup (S(t))t>0 with generator A. In fact, for all η > 0 and
ε > 0, families such as {

tη+ε(−A)ηS(t) : t ∈ (0, T0)
}

are γ-bounded. Here, for simplicity, we are assuming that the fractional powers of
A exist; in general one has to consider translates of A. This suggests to rewrite the
stochastic convolution (1.1) as

(1.2) t 7→
∫ t

0

[
(t− s)η+ε(−A)ηS(t− s)

]
(t− s)−η−ε(−A)−ηφ(s) dW (s).

By γ-boundedness we can estimate the Lp-moments of this integral by the Lp-
moments of the simpler integral

(1.3) t 7→
∫ t

0

(t− s)−η−ε(−A)−ηφ(s) dW (s).

Thus we are led to define V pα,∞([0, T0]×Ω; D((−A)η)) as the space of all continuous
adapted processes φ : (0, T0)× Ω→ D((−A)η) for which the norm

‖φ‖V pα,∞([0,T0]×Ω;D((−A)η))

:=
(
E‖φ‖pC([0,T0];D((−A)η))

) 1
p

+ sup
t∈[0,T0]

(
E‖(t− ·)−αφ(·)‖pγ(L2(0,t),D((−A)η))

) 1
p

is finite. Here, γ(L2(0, t), F ) denotes the Banach space of γ-radonifying operators
from L2(0, t) into the Banach space F ; by the results of [32], a function f : (0, t)→ F
is stochastically integrable on (0, t) with respect to W if and only if it is the kernel
of an integral operator belonging to γ(L2(0, t), F ).

Now we are ready to formulate a special case of one of the main results (see
Theorems 6.2, 6.3, 7.3).

Theorem 1.1. Let E be a UMD space and let η > 0 and p > 2 satisfy η + 1
p <

1
2 .

Assume that:

(i) A generates an analytic C0-semigroup on E;
(ii) F : [0, T0]×D((−A)η)→ E is Lipschitz continuous and of linear growth in

the second variable, uniformly on [0, T0];
(iii) B : [0, T0]×D((−A)η)→ L (H,E) is L2

γ-Lipschitz continuous and of linear
growth in the second variable, uniformly on [0, T0];
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(iv) u0 ∈ Lp(Ω,F0; D((−A)η)).

Then:

(1) (Existence and uniqueness) For all α > 0 such that η + 1
p < α < 1

2 the

problem (SCP) admits a unique solution U in V pα,∞([0, T0]×Ω; D((−A)η)).

(2) (Hölder regularity) For all λ > 0 and δ > η such that λ+ δ < 1
2 the process

U − S(·)u0 has a version with paths in Cλ([0, T0]; D((−A)δ)).

For martingale type 2 spaces E, Theorem 1.1 was proved by Brzeźniak [3]; in
this setting the L2

γ-Lipschitz assumption in (iii) reduces to a standard Lipschitz
assumption. As has already been pointed out, the class of martingale type 2 spaces
includes the spaces Lp for 2 6 p < ∞, whereas the UMD spaces include Lp for
1 < p < ∞. The UMD assumption in Theorem 1.1 can actually be weakened
so as to include L1-spaces as well; see Section 9. The assumptions on F and B
as well as the integrability assumption on u0 can be substantially weakened; we
shall prove versions of Theorem 1.1 assuming that F and B are merely locally
Lipschitz continuous and locally L2

γ-Lipschitz continuous, respectively, and u0 is
F0-measurable.

Let us now briefly discuss the organization of the paper. Preliminary material on
γ-radonifying operators, stochastic integration in UMD spaces, and γ-boundedness
of families of operators, is collected in Section 2. In Sections 3 and 4 we prove
estimates for deterministic and stochastic convolutions. After introducing the no-
tion of L2

γ-Lipschitz continuity in Section 5 we take up the study of problem (SCP)
in Section 6, where we prove Theorem 1.1. The next two sections are concerned
with refinements of this theorem. In Section 7 we consider arbitrary F0-measurable
initial values, still assuming that the functions F and B are globally Lipschitz con-
tinuous and L2

γ-Lipschitz continuous respectively. In Section 8 we consider the
locally Lipschitz case and prove existence and uniqueness of solutions up to an ex-
plosion time. In Section 9 we discuss how the results of this paper can be extended
to a larger class of Banach spaces including the UMD spaces as well as the spaces
L1.

The final Section 10 is concerned with applications to stochastic partial differ-
ential equations. On bounded smooth domains S ⊆ Rd we consider the parabolic
problem

∂u

∂t
(t, s) = A(s,D)u(t, s) + f(t, s, u(t, s))

+ g(t, s, u(t, s))
∂w

∂t
(t, s), s ∈ S, t ∈ (0, T ],

Bj(s,D)u(t, s) = 0, s ∈ ∂S, t ∈ (0, T ],

u(0, s) = u0(s), s ∈ S.
Here A is of the form

A(s,D) =
∑
|α|≤2m

aα(s)Dα

with D = −i(∂1, . . . , ∂d) and for j = 1, . . . ,m,

Bj(s,D) =
∑
|β|≤mj

bjβ(s)Dβ

where 1 ≤ mj < 2m is an integer. As a sample existence result, we prove that if f
and g satisfy standard measurability assumptions and are locally Lipschitz and of
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linear growth in the third variable, uniformly with respect to the first and second
variables, and if u ∈ H2mη,p

{Bj} (S), then the above problem admits a solution with

paths in Cλ([0, T ];H2mδ,p
{Bj} (S)) for all δ > d

2mp and λ > 0 that satisfy δ+λ < 1
2−

d
4m

and 2mδ − 1
p 6= mj , for all j = 1, . . . ,m. Uniqueness results are obtained as well.

All vector spaces in this paper are real. Throughout the paper, H and E denote
a separable Hilbert space and a Banach space, respectively. We study the problem
(SCP) on a time interval [0, T0] which is always considered to be fixed. In many
estimates below we are interested on bounds on sub-intervals [0, T ] of [0, T0] and it
will be important to keep track of the dependence upon T of the constants appearing
in these bounds. For this purpose we shall use the convention that the letter C is
used for generic constants which are independent of T but which may depend on
T0 and all other relevant data in the estimates. The numerical value of C may vary
from line to line.

We write Q1 .A Q2 to express that there exists a constant c, only depending
on A, such that Q1 6 cQ2. We write Q1 hA Q2 to express that Q1 .A Q2 and
Q2 .A Q1.

2. Preliminaries

The purpose of this section is to collect the basic stochastic tools used in this
paper. For proofs and further details we refer the reader to our previous papers
[31, 32], where also references to the literature can be found.

Throughout this paper, (Ω,F ,P) always denotes a complete probability space
with a filtration (Ft)t>0. For a Banach space F and a finite measure space (S,Σ, µ),
L0(S;F ) denotes the vector space of strongly measurable functions φ : S → F , iden-
tifying functions which are equal almost everywhere. Endowed with the topology
induced by convergence in measure, L0(S;F ) is a complete metric space.

γ-Radonifying operators. A linear operator R : H → E from a separable Hilbert
space H into a Banach space E is called γ-radonifying if for some (and then for
every) orthonormal basis (hn)n>1 of H the Gaussian sum

∑
n>1 γnRhn converges

in L2(Ω;E). Here, and in the rest of the paper, (γn)n>1 is a Gaussian sequence, i.e.,
a sequence of independent standard real-valued Gaussian random variables. The
space γ(H,E) of all γ-radonifying operators from H to E is a Banach space with
respect to the norm

‖R‖γ(H,E) :=
(
E
∥∥∥∑
n>1

γnRhn

∥∥∥2) 1
2

.

This norm is independent of the orthonormal basis (hn)n>1. Moreover, γ(H,E) is
an operator ideal in the sense that if S1 : H ′ → H and S2 : E → E′ are bounded
operators, then R ∈ γ(H,E) implies S2RS1 ∈ γ(H ′, E′) and

(2.1) ‖S2RS1‖γ(H′,E′) 6 ‖S2‖‖R‖γ(H,E)‖S1‖.

We will be mainly interested in the case where H = L2(0, T ; H ), where H is
another separable Hilbert space.

The following lemma gives necessary and sufficient conditions for an operator
from H to an Lp-space to be γ-radonifying. It unifies various special cases in the
literature, cf. [4, 42] and the references given therein. In passing we note that
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by using the techniques of [24] the lemma can be generalized to arbitrary Banach
function spaces with finite cotype.

Lemma 2.1. Let (S,Σ, µ) be a σ-finite measure space and let 1 6 p <∞. For an
operator T ∈ L (H,Lp(S)) the following assertions are equivalent:

(1) T ∈ γ(H,Lp(S));

(2) For some orthonormal basis (hn)∞n=1 of H the function
(∑

n>1 |Thn|2
) 1

2

belongs to Lp(S);

(3) For all orthonormal bases (hn)∞n=1 of H the function
(∑∞

n=1 |Thn|2
) 1

2 be-
longs to Lp(S);

(4) There exists a function g ∈ Lp(S) such that for all h ∈ H we have |Th| 6
‖h‖H · g µ-almost everywhere;

(5) There exists a function k ∈ Lp(S;H) such that Th = [k(·), h]H µ-almost
everywhere.

Moreover, in this situation we may take k =
(∑∞

n=1 |Thn|2
) 1

2 and have

(2.2) ‖T‖γ(H,Lp(S)) hp
∥∥∥( ∞∑

n=1

|Thn|2
) 1

2
∥∥∥ 6 ‖g‖Lp(S).

Proof. By the Kahane-Khintchine inequalities and Fubini’s theorem we have, for
all f1, . . . , fN ∈ Lp(S),∥∥∥( N∑

n=1

|fn|2
) 1

2
∥∥∥
Lp(S)

=
∥∥∥(E∣∣∣ N∑

n=1

γnfn

∣∣∣2) 1
2
∥∥∥
Lp(S)

hp
∥∥∥(E∣∣∣ N∑

n=1

γnfn

∣∣∣p) 1
p
∥∥∥
Lp(S)

=
(
E
∥∥∥ N∑
n=1

γnfn

∥∥∥p
Lp(S)

) 1
p hp

(
E
∥∥∥ N∑
n=1

γnfn

∥∥∥2

Lp(S)

) 1
2

.

The equivalences (1)⇔(2)⇔(3) follow by taking fn := Thn, n = 1, . . . , N . This
also gives the first part of (2.2).

(2)⇒(4): Let g ∈ Lp(S) be defined as g =
(∑∞

n=1 |Thn|2
) 1

2 . For h =
∑N
n=1 anhn

we have, for µ-almost all s ∈ S,

|Th(s)| =
∣∣∣ N∑
n=1

anThn(s)
∣∣∣ 6 ( N∑

n=1

|an|2
) 1

2
( N∑
n=1

|Thn(s)|2
) 1

2

6 g(s)‖h‖H .

The case of a general h ∈ H follows by an approximation argument.
(4)⇒(5): Let H0 be a countable dense set in H which is closed under taking

Q-linear combinations. Let N ∈ Σ be a µ-null set such that for all s ∈ {N and for
all h ∈ H0, |Th(s)| 6 g(s)‖f‖H and h 7→ Th(s) is Q-linear on H0. By the Riesz
representation theorem, applied for each fixed s ∈ {N , the mapping h → Th(s)
has a unique extension to an element k(s) ∈ H with Th(s) = [h, k(s)]H for all
h ∈ H0. By an approximation argument we obtain that for all h ∈ H we have
Th(s) = [h, k(s)]H for µ-almost all s ∈ S. For all s ∈ {N ,

‖k(s)‖H = sup
‖h‖H61,h∈H0

|[h, k(s)]| = sup
‖h‖H61,h∈H0

|Th(s)| 6 g(s).

Putting k(s) = 0 for s ∈ N , we obtain (5) and the last inequality in (2.2).
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(5)⇒(3): Let (hn)∞n=1 be an orthonormal basis for H. Let N ∈ Σ be a µ-null
set such that for all s ∈ {N and all n > 1 we have Thn(s) = [hn, k(s)]. Then for
s ∈ {N , ( ∞∑

n=1

|Thn(s)|2
) 1

2

=
( ∞∑
n=1

|[hn, k(s)]|2
) 1

2

= ‖k(s)‖H .

This gives (3) and the middle equality of (2.2). �

Recall that for domains S ⊆ Rd and λ > d
2 one has Hλ,2(S) ↪→ Cb(S) (cf. [41,

Theorem 4.6.1]). Applying Lemma 2.1 with g ≡ C · 1S we obtain the following
result.

Corollary 2.2. Assume S ⊆ Rd is a bounded domain. If λ > d
2 , then for all

p ∈ [1,∞), the embedding I : Hλ,2(S)→ Lp(S) is γ-radonifying.

From the lemma we obtain an isomorphism of Banach spaces

Lp(S;H) ' γ(H,Lp(S)),

which is given by f 7→ (h 7→ [f(·), h]H). The next result generalizes this observation:

Lemma 2.3 ([31]). Let (S,Σ, µ) be a σ-finite measure space and let p ∈ [1,∞) be
fixed. Then f 7→ (h 7→ f(·)h) defines an isomorphism of Banach spaces

Lp(S; γ(H,E)) ' γ(H,Lp(S;E)).

Stochastic integration. In this section we recall some aspects of stochastic inte-
gration in UMD Banach spaces. For proofs and more details we refer to our paper
[31], whose terminology we follow.

A Banach space E is called a UMD space if for some (equivalently, for all)
p ∈ (1,∞) there exists a constant βp,E > 1 such that for all Lp-integrable E-valued
martingale difference sequences (dj)

n
j=1 and all {−1, 1}-valued sequence (εj)

n
j=1 we

have

(2.3)
(
E
∥∥∥ n∑
j=1

εjdj

∥∥∥p) 1
p

6 βp,E
(
E
∥∥∥ n∑
j=1

dj

∥∥∥p) 1
p

.

The class of UMD spaces was introduced in the 1970s by Maurey and Burkholder
and has been studied by many authors. For more information and references to
the literature we refer the reader to the review articles [5, 37]. Examples of UMD
spaces are all Hilbert spaces and the spaces Lp(S) for 1 < p < ∞ and σ-finite
measure spaces (S,Σ, µ). If E is a UMD space, then Lp(S;E) is a UMD space for
1 < p <∞.

Let H be a separable Hilbert space. An H-cylindrical Brownian motion is fam-
ily WH = (WH(t))t∈[0,T ] of bounded linear operators from H to L2(Ω) with the
following two properties:

(1) WHh = (WH(t)h)t∈[0,T ] is real-valued Brownian motion for each h ∈ H,
(2) E(WH(s)g ·WH(t)h) = (s ∧ t) [g, h]H for all s, t ∈ [0, T ], g, h ∈ H.

The stochastic integral of the indicator process 1(a,b]×A ⊗ (h ⊗ x), where 0 6 a <
b < T and the subset A of Ω is Fa-measurable, is defined as∫ T

0

1(a,b]×A ⊗ (h⊗ x) dWH := 1A(WH(b)h−WH(a)h)x.
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By linearity, this definition extends to adapted step processes Φ : (0, T ) × Ω →
L (H,E) whose values are finite rank operators.

In order to extend this definition to a more general class of processes we introduce
the following terminology. A process Φ : (0, T )×Ω→ L (H,E) is called H-strongly
measurable if Φh is strongly measurable for all h ∈ H. Here, (Φh)(t, ω) := Φ(t, ω)h.
Such a process is called stochastically integrable with respect to WH if it is adapted
and there exists a sequence of adapted step processes Φn : (0, T ) × Ω → L (H,E)
with values in the finite rank operators from H to E and a pathwise continuous
process ζ : [0, T ]× Ω→ E, such that the following two conditions are satisfied:

(1) limn→∞ Φnh = Φh in L0((0, T )× Ω;E) for all h ∈ H;

(2) lim
n→∞

∫ ·
0

Φn dWH = ζ in L0(Ω;C([0, T ];E)).

In this situation, ζ is determined uniquely as an element of L0(Ω;C([0, T ];E)) and
is called the stochastic integral of Φ with respect to WH , notation:

ζ =

∫ ·
0

Φ dWH .

The process ζ is a continuous local martingale starting at zero. The following result
from [30, 31] states necessary and sufficient conditions for stochastic integrability.

Proposition 2.4. Let E be a UMD space. For an adapted H-strongly measurable
process Φ : (0, T )× Ω→ L (H,E) the following assertions are equivalent:

(1) the process Φ is stochastically integrable with respect to WH ;
(2) for all x∗ ∈ E∗ the process Φ∗x∗ belongs to L0(Ω;L2(0, T ;H)), and there

exists a pathwise continuous process ζ : [0, T ] × Ω → E such that for all
x∗ ∈ E∗ we have

〈ζ, x∗〉 =

∫ ·
0

Φ∗x∗ dWH in L0(Ω;C([0, T ]);

(3) for all x∗ ∈ E∗ the process Φ∗x∗ belongs to L0(Ω;L2(0, T ;H)), and there
exists an operator-valued random variable R : Ω→ γ(L2(0, T ;H), E)) such
that for all f ∈ L2(0, T ;H) and x∗ ∈ E∗ we have

〈Rf, x∗〉 =

∫ T

0

[f(t),Φ∗(t)x∗]H dt in L0(Ω).

In this situation we have ζ =
∫ ·

0
Φ dWH in L0(Ω;C([0, T ];E)). Furthermore, for

all p ∈ (1,∞),

E sup
t∈[0,T ]

∥∥∥∫ t

0

Φ dWH

∥∥∥p hp,E E‖R‖pγ(L2(0,T ;H),E).

In the situation of (3) we shall say that R is represented by Φ. Since Φ is uniquely
determined almost everywhere on (0, T )×Ω by R and vise versa (this readily follows
from [31, Lemma 2.7 and Remark 2.8]), in what follows we shall frequently identify
R and Φ.

The next lemma will be useful in Section 7.

Lemma 2.5. Let Φ : (0, T )×Ω→ L (H,E) be stochastically integrable with respect
to WH . Suppose A ∈ F is a measurable set such that for all x∗ ∈ E∗ we have

Φ∗(t, ω)x∗ = 0 for almost all (t, ω) ∈ (0, T )×A.
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Then almost surely in A, for all t ∈ [0, T ] we have
∫ t

0
Φ dWH = 0.

Proof. Let x∗ ∈ E∗ be arbitrary. By strong measurability it suffices to show that,
almost surely in A, for all t ∈ [0, T ] we have

Mt :=

∫ t

0

Φ∗x∗ dWH = 0.

For the quadratic variation of the continuous local martingale M we have

[M ]T =

∫ T

0

‖Φ∗(s)x∗‖2 ds = 0 a.s. on A.

Therefore, M = 0 a.s. on A. Indeed, let

τ := inf{t ∈ [0, T ] : [M ]t > 0},

where we take τ = T if the infimum is taken over the empty set. Then Mτ is
a continuous local martingale with quadratic variation [Mτ ] = [M ]τ = 0. Hence
Mτ = 0 a.s. This implies the result. �

R-Boundedness and γ-boundedness. Let E1 and E2 be Banach spaces and let
(rn)n>1 be a Rademacher sequence, i.e., a sequence of independent random variables
satisfying P{rn = −1} = P{rn = 1} = 1

2 . A family T of bounded linear operators
from E1 to E2 is called R-bounded if there exists a constant C > 0 such that for all
finite sequences (xn)Nn=1 in E1 and (Tn)Nn=1 in T we have

E
∥∥∥ N∑
n=1

rnTnxn

∥∥∥2

6 C2E
∥∥∥ N∑
n=1

rnxn

∥∥∥2

.

The least admissible constant C is called the R-bound of T , notation R(T ). By the
Kahane-Khintchine inequalities the exponent 2 may be replaced by any p ∈ [1,∞).
This only affects the value of the R-bound; we shall use the notation Rp(T ) for
the R-bound of T relative to exponent p.

Upon replacing the Rademacher sequence by a Gaussian sequence we arrive at
the notion of a γ-bounded family of operators, whose γ-bound will be denoted by
γ(T ). A standard randomization argument shows that every R-bounded family
is γ-bounded, and both notions are equivalent if the range space has finite cotype
(the definitions of type and cotype are recalled in the next section).

The notion of R-boundedness has played an important role in recent progress in
the regularity theory of parabolic evolution equations. Detailed accounts of these
developments are presented in [12, 23], where more about the history of this concept
and further references to the literature can be found.

Here we shall need various examples of R-bounded families, which are stated in
the form of lemmas.

Lemma 2.6 ([45]). If Φ : (0, T ) → L (E1, E2) is differentiable with integrable
derivative, the family

TΦ =
{

Φ(t) : t ∈ (0, T )
}

is R-bounded in L (E1, E2), with

R(TΦ) 6 ‖Φ(0+)‖+

∫ T

0

‖Φ′(t)‖ dt.
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We continue with a lemma which connects the notions of R-boundedness and
γ-radonification. Let H be a Hilbert space and E a Banach space. For each h ∈ H
we obtain a linear operator Th : E → γ(H,E) by putting

Thx := h⊗ x, x ∈ E.

Lemma 2.7 ([17]). If E has finite cotype, the family

T =
{
Th : ‖h‖H 6 1

}
is R-bounded in L (E, γ(H,E)).

Following [20], a Banach space E is said to have property (∆) if there exists
a constant C∆ such that if (r′n)Nn=1 and (r′′n)Nn=1 are Rademacher sequences on
probability spaces (Ω′,P′) and (Ω′′,P′′) respectively, and (xmn)Nm,n=1 is a doubly
indexed sequence of elements of E, then

E′E′′
∥∥∥ N∑
n=1

n∑
m=1

r′mr
′′
nxmn

∥∥∥2

6 C2
∆E′E′′

∥∥∥ N∑
n=1

N∑
m=1

r′mr
′′
nxmn

∥∥∥2

.

Every UMD space has property (∆) [6] and every Banach space with property
(∆) has finite cotype. Furthermore the spaces L1(S) with (S,Σ, µ) σ-finite have
property (∆). The space of trace class operators does not have property (∆) (see
[20]).

The next lemma is a variation of Bourgain’s vector-valued Stein inequality for
UMD spaces [1, 6] and was kindly communicated to us by Tuomas Hytönen.

Lemma 2.8. Let WH be an H-cylindrical Brownian motion, adapted to a filtration
(Ft)t∈[0,T ], on a probability space (Ω, P ). If E is a Banach space enjoying property
(∆), then for all 1 6 p <∞ the family of conditional expectation operators

Ep =
{
E(·|Ft) : t ∈ [0, T ]

}
is R-bounded, with R-bound C∆, on the closed linear subspace Gp(Ω;E) of Lp(Ω;E)

spanned by all random variables of the form
∫ T

0
Φ dWH with Φ ∈ γ(L2(0, T ;H), E).

Proof. Let 1 6 p < ∞ be fixed and choose E1, . . . ,EN ∈ Ep, say En = E(·|Ftn)
with 0 6 tn 6 T . By relabeling the indices we may assume that t1 6 · · · 6 tN .

We must show that for all F1, . . . , FN ∈ Lp(Ω;E) of the form Fn =
∫ T

0
Φn dWH we

have

E′
∥∥ N∑
n=1

r′nEnFn
∥∥∥2

6 C2
∆E′

∥∥ N∑
n=1

r′nFn

∥∥∥2

.

We write En =
∑n
j=1Dj , where Dj := Ej − Ej−1 with the convention that E0 =

0. The important point to observe is that if Ψj ∈ γ(L2(0, T ;H), E) and Gj :=∫ T
0

Ψj dWH , the random variables DjGj are symmetric and independent. Hence,
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by a standard randomization argument,

E′
∥∥ N∑
n=1

r′nEnFn
∥∥∥2

Gp(Ω;E)
= E′

∥∥ N∑
n=1

n∑
j=1

r′nDjFn

∥∥∥2

Gp(Ω;E)

= E′
∥∥ N∑
j=1

Dj

N∑
n=j

r′nFn

∥∥∥2

Gp(Ω;E)
= E′E′′

∥∥ N∑
j=1

r′′jDj

N∑
n=j

r′nFn

∥∥∥2

Gp(Ω;E)

6 C2
∆E′E′′

∥∥ N∑
j=1

r′′jDj

N∑
n=1

r′nFn

∥∥∥2

Gp(Ω;E)
= C2

∆E′
∥∥ N∑
j=1

Dj

N∑
n=1

r′nFn

∥∥∥2

Gp(Ω;E)

= C2
∆E′

∥∥EN N∑
n=1

r′nFn

∥∥∥2

Gp(Ω;E)
6 C2

∆E′
∥∥ N∑
n=1

r′nFn

∥∥∥2

Gp(Ω;E)
.

�

The next lemma, obtained in [19] for the case H = R, states that γ-bounded
families act boundedly as pointwise multipliers on spaces of γ-radonifying operators.
The proof of the general case is entirely similar.

Lemma 2.9. Let E1, E2 be Banach spaces and let H be a separable Hilbert space.
Let T > 0. Let M : (0, T )→ L (E1, E2) be function with the following properties:

(1) for all x ∈ E1 the function M(·)x is strongly measurable in E2;
(2) the range M = {M(t) : t ∈ (0, T )} is γ-bounded in L (E1, E2).

Then for all step functions Φ : (0, T ) → L (H,E1) with values in the finite rank
operators from H to E1 we have

(2.4) ‖MΦ‖γ(L2(0,T ;H),E2) 6 γ(M )‖Φ‖γ(L2(0,T ;H),E1).

Here, (MΦ)(t) := M(t)Φ(t). As a consequence, the mapping Φ 7→MΦ has a unique
extension to a bounded operator from γ(L2(0, T ;H), E1) to γ(L2(0, T ;H), E2) of
norm at most γ(M ).

In [19] it is shown that under slight regularity assumptions on M , the γ-bounded-
ness is also a necessary condition.

3. Deterministic convolutions

After these preliminaries we take up our main line of study and begin with some
estimates for deterministic convolutions. The main tool will be a multiplier lemma
for vector-valued Besov spaces, Lemma 3.1, to which we turn first.

Let E be a Banach space, let I = (a, b] with −∞ 6 a < b 6 ∞ be a (possibly
unbounded) interval, and let s ∈ (0, 1) and 1 6 p, q 6 ∞ be fixed. Following [21,
Section 3.b], the Besov space Bsp,q(I;E) is defined as follows. For h ∈ R and a
function f : I → E, we define T (h)f : I → E as the translate of f by h, i.e.,

(T (h)f)(t) :=

{
f(t+ h) if t+ h ∈ I,
0 otherwise.

Put

I[h] := {t ∈ I : t+ h ∈ I}
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and, for f ∈ Lp(I;E) and t > 0,

%p(f, t) := sup
|h|6t

‖T (h)f − f‖Lp(I[h];E).

Now define

Bsp,q(I;E) := {f ∈ Lp(I;E) : ‖f‖Bsp,q(I;E) <∞},
where

(3.1) ‖f‖Bsp,q(I;E) := ‖f‖Lp(I;E) +
(∫ 1

0

(
t−s%p(f, t)

)q dt
t

) 1
q

with the obvious modification for q = ∞. Endowed with the norm ‖ · ‖Bsp,q(I;E),

Bsp,q(I;E) is a Banach space.
The following continuous inclusions hold for all s, s1, s2 ∈ (0, 1), p, q, q1, q2 ∈

[1,∞] with q1 6 q2, s2 6 s1:

Bsp,q1(I;E) ↪→ Bsp,q2(I;E), Bs1p,q(I;E) ↪→ Bs2p,q(I;E).

If I is bounded, then also

Bsp1,q(I;E) ↪→ Bsp2,q(I;E)

for 1 6 p2 6 p1 6∞.
The next lemma will play an important role in setting up our basic framework.

We remind the reader of the convention, made at the end of Section 1, that con-
stants appearing in estimates may depend upon the number T0 which is kept fixed
throughout the paper.

Lemma 3.1. Let 1 6 q < p < ∞, s > 0 and α > 0 satisfy s < 1
q −

1
p and

α < 1
q −

1
p − s, and let 1 6 r < ∞. For all T ∈ [0, T0] and φ ∈ Bsp,r(0, T ;E) the

function t 7→ t−αφ(t)1(0,T )(t) belongs to Bsq,r(0, T0;E) and there exists a constant
C > 0, independent of T ∈ [0, T0], such that

‖t 7→ t−αφ(t)1(0,T )(t)‖Bsq,r(0,T0;E) 6 CT
1
q−

1
p−s−α‖φ‖Bsp,r(0,T ;E).

Proof. We prove the lemma under the additional assumption that α > 0; the proof
simplifies for case α = 0. We shall actually prove the following stronger result

‖t 7→ t−αφ(t)1(0,T )(t)‖Bsq,r(R;E) 6 CT
1
q−

1
p−s−α‖φ‖Bsp,r(0,T ;E)

with a constant C independent of T ∈ [0, T0].
Fix u ∈ [0, T ] and |h| 6 u. First assume that h > 0. Then I[h] = [0, T − h] and,

by Hölder’s inequality,(∫
R

∥∥∥φ(t+ h)1(0,T )(t+ h)− φ(t)1(0,T )(t)

(t+ h)α

∥∥∥q dt) 1
q

≤
(∫ 0

−h

∥∥∥φ(t+ h)

(t+ h)α

∥∥∥q dt) 1
q

+
(∫ T−h

0

∥∥∥φ(t+ h)− φ(t)

(t+ h)α

∥∥∥q dt) 1
q

+
(∫ T

T−h

∥∥∥ φ(t)

(t+ h)α

∥∥∥q dt) 1
q

≤ Cu
1
q−

1
p−α‖φ‖Lp(0,T ;E) + CT

1
q−

1
p−α

(∫
I[h]

‖φ(t+ h)− φ(t)‖p dt
) 1
p

.
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Again by Hölder’s inequality,(∫
R

∥∥∥φ(t)1(0,T )(t)

(t+ h)α
−
φ(t)1(0,T )(t)

tα

∥∥∥q dt) 1
q

≤
(∫ T

0

∣∣(t+ h)−α − t−α
∣∣ pqp−q dt) p−qpq ‖φ‖Lp(0,T ;E)

with∫ T

0

∣∣(t+ h)−α − t−α
∣∣ pqp−q dt 6 ∫ T

0

t−
αpq
p−q − (t+ h)−

αpq
p−q dt 6 Ch1− αpq

p−q 6 Cu1− αpq
p−q .

Combining these estimates with the triangle inequality we obtain(∫
R

∥∥∥φ(t+ h)1(0,T )(t+ h)

(t+ h)α
−
φ(t)1(0,T )(t)

tα

∥∥∥q dt) 1
q

6 Cu
1
q−

1
p−α‖φ‖Lp(0,T ;E) + CT

1
q−

1
p−α

(∫
I[h]

‖φ(t+ h)− φ(t)‖p dt
) 1
p

.

A similar estimate holds for h 6 0.
Next we split [0, 1] = [0, T ∧ 1]∪ [T ∧ 1, 1] and estimate the integral in (3.1). For

the first we have(∫ T∧1

0

u−sr sup
|h|6u

∥∥∥t 7→ φ(t+ h)1(0,T )(t+ h)

(t+ h)α
−
φ(t)1(0,T )(t)

tα

∥∥∥r
Lq(R;E)

du

u

) 1
r

6 C
(∫ T∧1

0

u−sr
[
T

1
q−

1
p−α sup

|h|6u
‖φ(·+ h)− φ(·)‖Lp(I[h];E)

+ u
p−q
pq −α‖φ‖Lp(0,T ;E)

]r du
u

) 1
r

(i)

6 CT
1
q−

1
p−α

(∫ 1

0

u−sr
[

sup
|h|6u

‖φ(·+ h)− φ(·)‖Lp(I[h];E)

]r du
u

) 1
r

+ C
(∫ T

0

u−sru
(p−q)r
pq −αr du

u

) 1
r ‖φ‖Lp(0,T ;E)

(ii)

6 CT
1
q−

1
p−α‖φ‖Bsp,r(0,T ;E) + CT

1
q−

1
p−s−α‖φ‖Lp(0,T ;E).

In (i) we used the triangle inequality in Lr(0, T ∧ 1, duu ) and in (ii) we noted that

α < 1
q −

1
p − s.

Next,(∫
R

∥∥∥φ(t+ h)1(0,T )(t+ h)

(t+ h)α
−
φ(t)1(0,T )(t)

tα

∥∥∥q dt) 1
q

6 2
(∫ T

0

∥∥∥φ(t)

tα

∥∥∥q dt) 1
q

6 CT
1
q−

1
p−α‖φ‖Lp(0,T ;E).

Using this we estimate the second part:(∫ 1

T∧1

u−sr sup
|h|6u

∥∥∥φ(t+ h)1(0,T )(t+ h)

(t+ h)α
−
φ(t)1(0,T )(t)

tα

∥∥∥r
Lq(I[h];E)

du

u

) 1
r

6 CT
1
q−

1
p−α‖φ‖Lp(0,T ;E)

(∫ 1

T∧1

u−sr
du

u

) 1
r

6 CT
1
q−

1
p−s−α‖φ‖Lp(0,T ;E).
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Putting everything together and using Hölder’s inequality to estimate the Lq-norm
of t−αφ(t) we obtain

‖t 7→ t−αφ(t)‖Bsq,r(0,T ;E)

= ‖t 7→ t−αφ(t)‖Lq(0,T ;E)

+
(∫ 1

0

u−sr sup
|h|6u

∥∥∥φ(t+ h)1(0,T )(t+ h)

(t+ h)α
−
φ(t)1(0,T )(t)

tα

∥∥∥r
Lq(R;E)

du

u

) 1
r

6 CT
1
q−

1
p−α‖φ‖Lp(0,T ;E) + CT

1
q−

1
p−α‖φ‖Bsp,r(0,T ;E) + CT

1
q−

1
p−s−α‖φ‖Lp(0,T ;E).

�

A Banach space E has type p, where p ∈ [1, 2], if there exists a constant C > 0
such that for all x1, . . . , xn ∈ E we have(

E
∥∥∥ n∑
j=1

rj xj

∥∥∥2) 1
2

6 C
( n∑
j=1

‖xj‖p
) 1
p

.

Here (rj)j>1 is a Rademacher sequence. Similarly E has cotype q, where q ∈ [2,∞],
if there exists a constant C > 0 such that for all x1, . . . , xn ∈ E we have( n∑

j=1

‖xj‖q
) 1
q

6 C
(
E
∥∥∥ n∑
j=1

rj xj

∥∥∥2) 1
2

.

In these definitions the Rademacher variables may be replaced by Gaussian variables
without changing the definitions; for a proof and more information see [13]. Every
Banach space has type 1 and cotype ∞, the spaces Lp(S), 1 6 p < ∞, have type
min{p, 2} and cotype max{p, 2}, and Hilbert spaces have type 2 and cotype 2.
Every UMD space has nontrivial type, i.e., type p for some p ∈ (1, 2].

In view of the basic role of the space γ(L2(0, T ;H), E) in the theory of vector-
valued stochastic integration, it is natural to look for conditions on a function Φ :
(0, T )→ L (H,E) ensuring that the associated integral operator IΦ : L2(0, T ;H)→
E,

IΦf :=

∫ T

0

Φ(t)f(t) dt, f ∈ L2(0, T ;H),

is well-defined and belongs to γ(L2(0, T ;H), E). The next proposition, taken from
[30], states such a condition for functions Φ belonging to suitable Besov spaces of
γ(H,E)-valued functions.

Lemma 3.2. If E has type τ ∈ [1, 2), then Φ 7→ IΦ defines a continuous embedding

B
1
τ−

1
2

τ,τ (0, T0; γ(H,E)) ↪→ γ(L2(0, T0;H), E),

where the constant of the embedding depends on T0 and the type τ constant of E.

Conversely, if Φ 7→ IΦ defines a continuous embedding B
1
τ−

1
2

τ,τ (0, T0; γ(H,E)) ↪→
γ(L2(0, T0;H), E), then E has type τ (see [18]); we will not need this result.

Lemma 3.3. Let E be a Banach space with type τ ∈ [1, 2). Let α > 0 and q > 2
be such that α < 1

2 −
1
q . There exists a constant C > 0 such that for all T ∈ [0, T0]

and Φ ∈ B
1
τ−

1
2

q,τ (0, T ; γ(H,E)) we have

sup
t∈(0,T )

‖s 7→ (t− s)−αΦ(s)‖γ(L2(0,t;H),E) 6 CT
1
2−

1
q−α‖Φ‖

B
1
τ
− 1

2
q,τ (0,T ;γ(H,E))

.
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Proof. Fix T ∈ [0, T0] and t ∈ [0, T ]. Then,

‖s 7→ (t− s)−αΦ(s)‖γ(L2(0,t;H),E) = ‖s 7→ s−αΦ(t− s)‖γ(L2(0,t;H),E)

= ‖s 7→ s−αΦ(t− s)1(0,t)(s)‖γ(L2(0,T0;H),E)

(i)

6 C‖s 7→ s−αΦ(t− s)1(0,t)(s)‖
B

1
τ
− 1

2
τ,τ (0,T0;γ(H,E))

(ii)

6 Ct
1
2−

1
q−α‖s 7→ Φ(t− s)‖

B
1
τ
− 1

2
q,τ (0,t;γ(H,E))

6 CT
1
2−

1
q−α‖Φ‖

B
1
τ
− 1

2
q,τ (0,T ;γ(H,E))

.

In (i) we used Lemma 3.2 and (ii) follows from Lemma 3.1. �

In the remainder of this section we assume that A is the infinitesimal generator
of an analytic C0-semigroup S = (S(t))t>0 on E. We fix an arbitrary number w ∈ R
such that the semigroup generated by A−w is uniformly exponentially stable. The
fractional powers (w −A)η are then well-defined, and for η > 0 we put

Eη := D((w −A)η).

This is a Banach space with respect to the norm

‖x‖Eη := ‖x‖+ ‖(w −A)ηx‖.
As is well known, up to an equivalent norm this definition is independent of the
choice of w. The basic estimate

(3.2) ‖S(t)‖L (E,Eη) 6 Ct
−η, t ∈ [0, T0],

valid for η > 0 with C depending on η, will be used frequently.
The extrapolation spaces E−η are defined, for η > 0, as the completion of E

with respect to the norm

‖x‖E−η := ‖(w −A)−ηx‖.
Up to an equivalent norm, this space is independent of the choice of w.

We observe at this point that the spaces Eη and E−η inherit all isomorphic
Banach space properties of E, such as (co)type, the UMD property, and property
(∆), via the isomorphisms (w −A)η : Eη ' E and (w −A)−η : E−η ' E.

The following lemma is well-known; a sketch of a proof is included for the con-
venience of the reader.

Lemma 3.4. Let q ∈ [1,∞) and τ ∈ [1, 2) be given, and let η > 0 and θ > 0 satisfy
η + θ < 3

2 −
1
τ . There exists a constant C > 0 such that for all T ∈ [0, T0] and

φ ∈ L∞(0, T ;E−θ) we have S ∗ φ ∈ B
1
τ−

1
2

q,τ (0, T ;Eη) and

‖S ∗ φ‖
B

1
τ
− 1

2
q,τ (0,T ;Eη)

6 CT
1
q ‖φ‖L∞(0,T ;E−θ).

Proof. Without loss of generality we may assume that η, θ > 0. Let ε > 0 be such
that η + θ < 3

2 −
1
τ − ε. Then

‖S ∗ φ‖
B

1
τ
− 1

2
q,τ (0,T ;Eη)

≤ CT
1
q ‖S ∗ φ‖

C
1
τ
− 1

2
−ε([0,T ];Eη)

≤ CT
1
q ‖φ‖L∞(0,T ;E−θ).

The first estimate is a direct consequence of the definition of the Besov norm, and
the second follows from [25, Proposition 4.2.1]. �
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From the previous two lemmas we deduce the next convolution estimate.

Proposition 3.5. Let E be a Banach space with type τ ∈ [1, 2] and let 0 6 α < 1
2 .

Let η > 0 and θ > 0 satisfy η + θ < 3
2 −

1
τ . Then there is a constant C > 0 such

that for all 0 6 t 6 T 6 T0 and φ ∈ L∞(0, T ;E),

‖s 7→ (t− s)−α(S ∗ φ)(s)‖γ(L2(0,t),Eη) 6 CT
1
2−α‖φ‖L∞(0,T ;E−θ).

Proof. First assume that 1 6 τ < 2. It follows from Lemmas 3.3 and 3.4 that for
any q > 2 such that α < 1

2 −
1
q ,

‖s 7→ (t− s)−αS ∗ φ(s)‖γ(L2(0,t),Eη) 6 CT
1
2−

1
q−α‖S ∗ φ‖

B
1
τ
− 1

2
q,τ (0,T ;Eη)

6 CT
1
2−α‖φ‖L∞(0,T ;E−θ).

For τ = 2 we argue as follows. Since Eη has type 2, we have a continuous
embedding L2(0, t;Eη) ↪→ γ(L2(0, t), Eη); see [36]. Therefore, using (3.2),

‖s 7→ (t− s)−αS ∗ φ(s)‖γ(L2(0,t),Eη) 6 C‖s 7→ (t− s)−αS ∗ φ(s)‖L2(0,t;Eη)

6 C‖s 7→ (t− s)−α‖L2(0,t)‖S ∗ φ‖L∞(0,T ;Eη)

6 CT
1
2−αT 1−η−θ‖φ‖L∞(0,T ;E−θ).

�

The following lemma, due to Da Prato, Kwapień and Zabczyk [9, Lemma 2] in
the Hilbert space case, gives a Hölder estimate for the convolution

Rαφ(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1S(t− s)φ(s) ds.

The proof carries over to Banach spaces without change.

Lemma 3.6 ([9]). Let 0 < α 6 1, 1 < p < ∞, λ > 0, η > 0, and θ > 0 satisfy
λ + η + θ < α − 1

p . Then there exist a constant C > 0 and an ε > 0 such that for

all φ ∈ Lp(0, T ;E) and T ∈ [0, T0],

‖Rαφ‖Cλ([0,T ];Eη) 6 CT
ε‖φ‖Lp(0,T ;E−θ).

4. Stochastic convolutions

We now turn to the problem of estimating stochastic convolution integrals. We
start with a lemma which, in combination with Lemma 2.9, can be used to estimate
stochastic convolutions involving analytic semigroups.

Lemma 4.1. Let S be an analytic C0-semigroup on a Banach space E. For all
0 6 a < 1 and ε > 0 the family{

ta+εS(t) ∈ L (E,Ea) : t ∈ [0, T ]
}

is R-bounded in L (E,Ea), with R-bound of order O(T ε) as T ↓ 0.

Proof. Let N : [0, T ] → L (E,Ea) be defined as N(t) = ta+εS(t). Then N is
continuously differentiable on (0, T ) and N ′(t) = (a + ε)ta+ε−1S(t) + ta+εAS(t),
where A is the generator of S. Hence, by (3.2),

‖N ′(t)‖L (E,Ea) 6 Ct
ε−1 for t ∈ (0, T ).
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By Lemma 2.6 the R-bound on [0, T ] can now be bounded from above by∫ T

0

‖N ′(t)‖L (E,Ea) dt 6 CT
ε.

�

We continue with an extension of the Da Prato-Kwapień-Zabczyk factorization
method [9] for Hilbert spaces to UMD spaces. For deterministic Φ, the assumption
that E is UMD can be dropped. A related regularity result for arbitrary C0-
semigroups is due to Millet and Smoleński [27].

It will be convenient to introduce the notation

S � Φ(t) :=

∫ t

0

S(t− s)Φ(s) dWH(s)

for the stochastic convolution with respect to WH of S and Φ, where WH is an
H-cylindrical Brownian motion.

Proposition 4.2. Let 0 < α < 1
2 , λ > 0, η > 0, θ > 0, and p > 2 satisfy

λ + η + θ < α − 1
p . Let A be the generator of an analytic C0-semigroup S on a

UMD space E and let Φ : (0, T ) × Ω → L (H,E−θ) be H-strongly measurable and
adapted. Then there exist ε > 0 and C > 0 such that

E‖S � Φ‖p
Cλ([0,T ];Eη)

6 CpT εp
∫ T

0

E‖s 7→ (t− s)−αΦ(s)‖pγ(L2(0,t;H),E−θ) dt.

Here, and in similar formulations below, it is part of the assumptions that the
right-hand side is well-defined and finite. In particular it follows from the proposi-
tion there exist ε > 0 and C > 0 such that

E‖S � Φ‖p
Cλ([0,T ];Eη)

6 CpT εp sup
t∈[0,T ]

E‖s 7→ (t− s)−αΦ(s)‖pγ(L2(0,t;H),E−θ)

provided the right-hand side is finite.

Proof. The idea of the proof is the same as in [9], but there are some technical
subtleties which justify us to outline the main steps.

Let β ∈ (0, 1
2 ) be such that λ+ η < β − 1

p < α− θ − 1
p . It follows from Lemmas

2.9 and 4.1 that, for almost all t ∈ [0, T ], almost surely we have

(4.1)
‖s 7→ (t− s)−βS(t− s)Φ(s)‖γ(L2(0,t;H),E)

6 Ctα−β−θ‖s 7→ (t− s)−αΦ(s)‖γ(L2(0,t;H),E−θ).

By Proposition 2.4, the process ζβ : [0, T ]× Ω→ E,

ζβ(t) :=
1

Γ(1− β)

∫ t

0

(t− s)−βS(t− s)Φ(s) dWH(s),

is well-defined for almost all t ∈ [0, T ] and satisfies(
E‖ζβ(t)‖p

) 1
p 6 Ctα−β−θ

(
E‖s 7→ (t− s)−αΦ(s)‖pγ(L2(0,t;H),E−θ)

) 1
p .

By Proposition A.1 the process ζβ is strongly measurable. Therefore, by Fubini’s
theorem,

‖ζβ‖Lp(Ω;Lp(0,T ;E)) 6 CT
α−β−θ

∫ T

0

E‖s 7→ (t− s)−αΦ(s)‖pγ(L2(0,t;H),E−θ) dt.
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By Lemma 3.6, the paths of Rβζβ belong to Cλ([0, T ];Eη) almost surely, and for
some ε′ > 0 independent of T ∈ [0, T0] we have

(4.2)

‖Rβζβ‖Lp(Ω;Cλ([0,T ];Eη))

6 CT ε
′
‖ζβ‖Lp(Ω;Lp(0,T ;E))

6 CTα−β−θ+ε
′
(∫ T

0

E‖s 7→ (t− s)−αΦ(s)‖pγ(L2(0,t;H),E−θ) dt
) 1
p

.

The right ideal property (2.1), (4.1), and Proposition 2.4 imply the stochastic
integrability of s 7→ S(t− s)Φ(s) for almost all t ∈ [0, T ]. The proof will be finished
(with ε = α− β − θ + ε′) by showing that almost surely on (0, T )× Ω,

S � Φ = Rβζβ .

It suffices to check that for almost all t ∈ [0, T ] and x∗ ∈ E∗ we have, almost surely,

(4.3) 〈S � Φ(t), x∗〉 =
1

Γ(β)

∫ t

0

(t− s)β−1〈S(t− s)ζβ(s), x∗〉 ds.

This follows from a standard argument via the stochastic Fubini theorem, cf. [9],
which can be applied here since almost surely we have, writing 〈Φ(r), x∗〉 :=
Φ∗(r)x∗,∫ t

0

∥∥〈(t− s)β−1S(t− s)(s− ·)−βS(s− ·)Φ(·)1[0,s](·), x∗
〉∥∥
L2(0,t;H)

ds

=

∫ t

0

∥∥〈(s− ·)−βS(s− ·)Φ(·), (t− s)β−1S∗(t− s)x∗
〉∥∥
L2(0,t;H)

ds

6
∫ t

0

‖(s− ·)−βS(s− ·)Φ(·)‖γ(L2(0,t;H),E)‖(t− s)β−1S∗(t− s)x∗‖ ds,

which is finite for almost all t ∈ [0, T ] by Hölder’s inequality. �

Remark 4.3. The stochastic integral S�Φ in Proposition 4.2 may be defined only for
almost all t ∈ [0, T ]. If in addition one assumes that Φ ∈ Lp((0, T )×Ω; γ(H,E−θ)),
then S �Φ(t) is well-defined in Eη for all t ∈ [0, T ]. This follows readily from (4.3),
[31, Theorem 3.6(2)] and the density of E∗ in (Eη)∗. Since we will not need this in
the sequel, we leave this to the interested reader.

As a consequence we have the following regularity result of stochastic convolu-
tions in spaces with type τ ∈ [1, 2). We will not need this result below, but we find
it interesting enough to state it separately.

Corollary 4.4. Let E be a UMD space with type τ ∈ [1, 2). Let p > 2, q > 2, λ > 0,
η > 0, θ > 0 be such that λ+ η + θ < 1

2 −
1
p −

1
q . Then there is an δ > 0 such that

for all H-strongly strongly measurable and adapted Φ : (0, T )× Ω→ L (H,E−θ),

(4.4) E‖S � Φ‖p
Cλ([0,T ];Eη)

≤ CpT δpE‖Φ‖p
B

1
τ
− 1

2
q,τ (0,T ;γ(H,E−θ))

.

Proof. By assumption we may choose α ∈ (0, 1
2 ) such that λ+η+θ+ 1

p < α < 1
2−

1
q .

The result now follows from Proposition 4.2 and Lemma 3.3 (noting that E−θ has
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type τ):

E‖S � Φ‖p
Cλ([0,T ];Eη)

≤ CpT εp sup
t∈[0,T ]

E‖s 7→ (t− s)−αΦ(s)‖pγ(L2(0,t;H),E−θ)

≤ CpT ( 1
2−

1
q−α+ε)pE‖Φ‖p

B
1
τ
− 1

2
q,τ (0,T ;γ(H,E−θ))

.

�

The main estimate of this section is contained in the next result.

Proposition 4.5. Let E be a UMD Banach space. Let η > 0, θ > 0, α > 0 satisfy
0 6 η + θ < α < 1

2 . Let Φ : (0, T ) × Ω → L (H,E−θ) be adapted and H-strongly
measurable. Then for all 1 < p <∞ and all 0 6 t 6 T 6 T0,

E‖(t− ·)−αS � Φ(·)‖pγ(L2(0,t),Eη) 6 C
pT ( 1

2−η−θ)pE‖(t− ·)−αΦ(·)‖pγ(L2(0,t;H),E−θ).

Proof. Fix 0 6 t 6 T 6 T0. As in Proposition 4.2 one shows that the finiteness
of the right-hand side implies that s 7→ S(t − s)Φ(s) is stochastically integrable
on [0, t]. We claim that s 7→ S(t − s)Φ(s) takes values in Eη almost surely and is
stochastically integrable on [0, t] as an Eη-valued process. Indeed, let ε > 0 be such
that β := η + θ + ε < α and put

Nβ(t) := tβ(µ−A)η+θS(t).

It follows from Lemmas 2.9 and 4.1 that

E‖S(t− ·)Φ(·)‖pγ(L2(0,t;H),Eη) 6 CE‖Nβ(t− ·)(t− ·)−βΦ(·)‖pγ(L2(0,t;H),E−θ)

6 CT εpE‖(t− ·)−βΦ(·)‖pγ(L2(0,t;H),E−θ),

and the expression on the right-hand side is finite by the assumption. The stochastic
integrability now follows from Proposition 2.4. This proves the claim. Moreover, by
Proposition A.1, the stochastic convolution process S � Φ is adapted and strongly
measurable as an Eη-valued process.

Let Gp(Ω;Eη) and Gp(Ω × Ω̃;Eη) denote the closed subspaces in Lp(Ω;Eη)

and Lp(Ω× Ω̃;Eη) spanned by all elements of the form
∫ T

0
Ψ dWH and

∫ T
0

Ψ dW̃H ,

respectively, where W̃H is an independent copy of WH and Ψ ranges over all adapted
elements in Lp(Ω; γ(L2(0, T ;H), E)). Since Eη is a UMD space, by Proposition 2.4
the operator

Dp

∫ T

0

Ψ dW̃H :=

∫ T

0

Ψ dWH ,

is well defined and bounded from Gp(Ω × Ω̃;Eη) to Gp(Ω;Eη). Using the Fubini
isomorphism of Lemma 2.3 twice, we estimate∥∥s 7→ (t− s)−αS � Φ(s)

∥∥
Lp(Ω;γ(L2(0,t),Eη))

h
∥∥∥s 7→ ∫ s

0

(t− s)−αS(s− r)Φ(r) dWH(r)
∥∥∥
γ(L2(0,t),Gp(Ω;Eη))

=
∥∥∥s 7→ Dp

∫ t

0

1(0,s)(r)(t− s)−αS(s− r)Φ(r) dW̃H(r)
∥∥∥
γ(L2(0,t),Gp(Ω;Eη))

.
∥∥∥s 7→ ∫ t

0

1(0,s)(r)(t− s)−αS(s− r)Φ(r) dW̃H(r)
∥∥∥
γ(L2(0,t),Gp(Ω×Ω̃;Eη))

h
∥∥∥s 7→ ∫ s

0

(t− s)−αS(s− r)Φ(r) dW̃H(r)
∥∥∥
Lp(Ω;γ(L2(0,t),Lp(Ω̃;Eη)))

.
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Rewriting the right-hand side in terms of the function Nβ(t) = tβ(µ−A)η+θS(t) in-
troduced above and using the stochastic Fubini theorem to interchange the Lebesgue
integral and the stochastic integral, the right-hand side can be estimated as∥∥∥s 7→ ∫ s

0

(t− s)−αS(s− r)Φ(r) dW̃H(r)
∥∥∥
Lp(Ω;γ(L2(0,t),Lp(Ω̃;Eη)))

h
∥∥∥s 7→ ∫ s

0

(t− s)−α(µ−A)η+θS(s− r)Φ(r) dW̃H(r)
∥∥∥
Lp(Ω;γ(L2(0,t),Lp(Ω̃;E−θ)))

=
∥∥∥s 7→ ∫ s

0

(t− s)−α(s− r)−βN(s− r)Φ(r) dW̃H(r)
∥∥∥
Lp(Ω;γ(L2(0,t),Lp(Ω̃;E−θ)))

=
∥∥∥s 7→ ∫ s

0

(t− s)−α

× (s− r)−β
∫ s−r

0

N ′β(w)Φ(r) dw dW̃H(r)
∥∥∥
Lp(Ω;γ(L2(0,t),Lp(Ω̃;E−θ)))

=
∥∥∥s 7→ ∫ s

0

N ′β(w)

×
∫ s−w

0

(t− s)−α(s− r)−βΦ(r) dW̃H(r) dw
∥∥∥
Lp(Ω;γ(L2(0,t),Lp(Ω̃;E−θ)))

=
∥∥∥s 7→ ∫ t

0

N ′β(w)1(0,s)(w)

× EF̃s−w

∫ s

0

(t− s)−α(s− r)−βΦ(r) dW̃H(r) dw
∥∥∥
Lp(Ω;γ(L2(0,t),Lp(Ω̃;E−θ)))

,

where EF̃t
(ξ) := E(ξ|F̃t) is the conditional expectation with respect to F̃t =

σ(W̃H(s)h : 0 6 s 6 t, h ∈ H}. Next we note that∫ t

0

‖N ′β(w)‖ dw . T ε.

Applying Lemmas 2.8 and 2.9 pointwise with respect to ω ∈ Ω, we may estimate
the right-hand side above by∫ t

0

‖N ′β(w)‖
∥∥∥s 7→ 1(w,t)(s)

× EF̃s−w

∫ s

0

(t− s)−α(s− r)−βΦ(r) dW̃H(r)
∥∥∥
Lp(Ω;γ(L2(0,t),Lp(Ω̃;E−θ)))

dw

. T ε
∥∥∥s 7→ EF̃s−w

∫ s

0

(t− s)−α(s− r)−βΦ(r) dW̃H(r)
∥∥∥
Lp(Ω;γ(L2(0,t),Lp(Ω̃;E−θ)))

. T ε
∥∥∥s 7→ ∫ s

0

(t− s)−α(s− r)−βΦ(r) dW̃H(r)
∥∥∥
Lp(Ω;γ(L2(0,t),Lp(Ω̃;E−θ)))

. T ε
∥∥s 7→ [

r 7→ (t− s)−α(s− r)−β1(0,s)(r)Φ(r)
]∥∥
Lp(Ω;γ(L2(0,t),γ(L2(0,t;H),E−θ)))

.

Using the isometry

γ(H1, γ(H2, F )) ' γ(H2, γ(H1;F )),
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and the Fubini isomorphism, the right hand side is equivalent to

h T ε
∥∥s 7→ [

r 7→ (t− s)−α(s− r)−β1(0,s)(r)Φ(r)
]∥∥
Lp(Ω;γ(L2(0,t),γ(L2(0,t;H),E−θ)))

h T ε
∥∥r 7→[s 7→ (t− s)−α(s− r)−β1(0,s)(r)Φ(r)

]∥∥
Lp(Ω;γ(L2(0,t;H),γ(L2(0,t),E−θ)))

.

To proceed further we want to apply, pointwise with respect to Ω, Lemma 2.9
to the multiplier

M : (0, t)→ L (E−θ, γ(L2(0, t), E−θ))

defined by

M(r)x := fr,t ⊗ x, s ∈ (0, t), x ∈ E−θ,
where fr,t ∈ L2(0, t) is the function

fr,t(s) := (t− r)α(t− s)−α(s− r)−β1(r,t)(s).

We need to check that the range of M is γ-bounded in L (E−θ, γ(L2(0, t), E−θ)).
For this we invoke Lemma 2.7, keeping in mind that R-bounded families are always
γ-bounded and that UMD spaces have finite cotype. To apply the lemma we check
that functions fs,t are uniformly bounded in L2(0, t):∫ t

0

|fr,t(s)|2 ds = (t− r)2α

∫ t

r

(t− s)−2α(s− r)−2β ds

= (t− r)1−2β

∫ 1

0

(1− u)−2αu−2β du

6 T 1−2β

∫ 1

0

(1− u)−2αu−2β du.

It follows from Lemma 2.9 that∥∥∥s 7→ (t− s)−α(s− ·)−β1(0,s)(·)Φ(·)
∥∥∥
Lp(Ω;γ(L2(0,t;H),γ(L2(0,t),E−θ)))

6 CT
1
2−β

∥∥∥r 7→ (t− r)−αΦ(r)
∥∥∥
Lp(Ω;γ(L2(0,t;H),E−θ))

= CT
1
2−η−θ−ε

∥∥∥r 7→ (t− r)−αΦ(r)
∥∥∥
Lp(Ω;γ(L2(0,t;H),E−θ))

.

Combining all estimates we obtain the result. �

5. L2
γ-Lipschitz functions

Let (S,Σ) be a countably generated measurable space and let µ be a finite
measure on (S, µ). Then L2(S, µ) is separable and we may define

L2
γ(S, µ;E) := γ(L2(S, µ);E) ∩ L2(S, µ;E).

Here, γ(L2(S, µ);E) ∩ L2(S, µ;E) denotes the Banach space of all strongly µ-
measurable functions φ : S → E for which

‖φ‖L2
γ(S,µ;E) := ‖φ‖γ(L2(S,µ);E) + ‖φ‖L2(S,µ;E)

is finite. One easily checks that the simple functions are dense in L2
γ(S, µ;E).

Next let H be a nonzero separable Hilbert space, let E1 and E2 be Banach
spaces, and let f : S × E1 → L (H,E2) be a function such that for all x ∈ E1

we have f(·, x) ∈ γ(L2(S, µ;H), E2). For simple functions φ : S → E1 one easily
checks that s 7→ f(s, φ(s)) ∈ γ(L2(S, µ;H), E2). We call f L2

γ-Lipschitz function
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with respect to µ if f is strongly continuous in the second variable and for all simple
functions φ1, φ2 : S → E1,

(5.1) ‖f(·, φ1)− f(·, φ2)‖γ(L2(S,µ;H),E2) 6 C‖φ1 − φ2‖L2
γ(S,µ;E1).

In this case the mapping φ 7→ Sµ,fφ := f(·, φ(·)) extends uniquely to a Lipschitz
mapping from L2

γ(S, µ;E1) into γ(L2(S, µ;H), E2). Its Lipschitz constant will be

denoted by Lγµ,f .
It is evident from the definitions that for simple functions φ : S → E1, the

operator Sf (φ) ∈ γ(L2(S, µ;H), E2) is represented by the function f(·, φ(·)) The
next lemma extends this to arbitrary functions φ ∈ L2

γ(S, µ;E1).

Lemma 5.1. If f : S × E1 → L (H,E2) is an L2
γ-Lipschitz function, then for

all φ ∈ L2
γ(S, µ;E1) the operator Sµ,fφ ∈ γ(L2(S, µ;H), E2) is represented by the

function f(·, φ(·)).

Proof. Let (φn)n>1 be a sequence of simple functions such that φ = limn→∞ φn in
L2
γ(S, µ;E1). We may assume that φ = limn→∞ φn µ-almost everywhere. It follows

from (5.1) that (f(·, φn(·)))n>1 is a Cauchy sequence in γ(L2(S, µ;H), E2). Let R ∈
γ(L2(S, µ;H), E2) be its limit. We must show that R is represented by f(·, φ(·)).
Let x∗ ∈ E∗2 be arbitrary. Since R∗x∗ = limn→∞ f∗(·, φn(·))x∗ in L2(S, µ;H) we
may choose a subsequence (nk)k>1 such that R∗x∗ = limk→∞ f∗(·, φnk(·))x∗ µ-
almost everywhere. On the other hand since f is strongly continuous in the second
variable we have

lim
k→∞

f∗(s, φnk(s))x∗ = f∗(s, φ(s))x∗ for µ-almost all s ∈ S.

This proves that for all h ∈ H we have R∗x∗ = f∗(·, φ(·))x∗ µ-almost everywhere
and the result follows. �

Justified by this lemma, in what follows we shall always identify Sµ,fφ with
f(·, φ(·)).

If f is L2
γ-Lipschitz with respect to all finite measures µ on (S,Σ) and

Lγf := sup{Lγµ,f : µ is a finite measure on (S,Σ)}

is finite, we say that f is a L2
γ-Lipschitz function. In type 2 spaces there is the

following easy criterium to check whether a function is L2
γ-Lipschitz.

Lemma 5.2. Let E2 have type 2. Let f : S × E1 → γ(H,E2) be such that for all
x ∈ E1, f(·, x) is strongly measurable. If there is a constant C such that

‖f(s, x)‖γ(H,E2) 6 C(1 + ‖x‖), s ∈ S, x ∈ E1,(5.2)

‖f(s, x)− f(s, y)‖γ(H,E2) 6 C‖x− y‖, s ∈ S, x, y ∈ E1,(5.3)

then f is a L2
γ-Lipschitz function and Lγf 6 C2C, where C2 is the Rademacher type

2 constant of E2. Moreover, it satisfies the following linear growth condition

‖f(·, φ)‖γ(L2(S,µ;H),E2) 6 C2C(1 + ‖φ‖L2(S,µ;E1)).

If f does not depend on S, one can check that (5.1) implies (5.2) and (5.3).

Proof. Let φ1, φ2 ∈ L2(S, µ;E1). Via an approximation argument and (5.3) one
easily checks that f(·, φ1) and f(·, φ2) are strongly measurable. It follows from
(5.2) that f(·, φ1) and f(·, φ2) are in L2(S, µ; γ(H,E2)) and from (5.3) we obtain

(5.4) ‖f(·, φ1)− f(·, φ2)‖L2(S,µ;γ(H,E2)) 6 C‖φ1 − φ2‖L2(S,µ;E1).
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Recall from [33] that L2(S, µ; γ(H,E1)) ↪→ γ(L2(S, µ;H), E1) where the norm of
the embedding equals C2. From this and (5.4) we conclude that

‖f(·, φ1)− f(·, φ2)‖γ(L2(S,µ;H),E2) 6 C2C‖φ1 − φ2‖L2(S,µ;E1).

This clearly implies the result. The second statement follows in the same way. �

A function f : E1 → L (H,E2) is said to be L2
γ-Lipschitz if the induced function

f̃ : S × E1 → L (H,E2), defined by f̃(s, x) = f(x), is L2
γ-Lipschitz for every finite

measure space (S,Σ, µ).

Lemma 5.3. For a function f : E1 → L (H,E2), the following assertions are
equivalent:

(1) f is L2
γ-Lipschitz;

(2) There is a constant C such that for some (and then for every) orthonormal
basis (hm)m>1 of H and all finite sequences (xn)Nn=1, (yn)Nn=1 in E1 we have

E
∥∥∥ N∑
n=1

∑
m>1

γnm(f(xn)hm − f(yn)hm)
∥∥∥2

6 C2E
∥∥∥ N∑
n=1

γn(xn − yn)
∥∥∥2

+ C2
N∑
n=1

‖xn − yn‖2.

Proof. (1) ⇒ (2): Let (hm)m>1 be an orthonormal basis and let (xn)Nn=1 and
(yn)Nn=1 in E1 be arbitrary. Take S = (0, 1) and µ the Lebesgue measure and
choose disjoint sets (Sn)Nn=1 in (0, 1) such that µ(Sn) = 1

N for all n = 1, . . . , N .

Now define φ1 :=
∑N
n=1 1Sn ⊗ xn and φ2 :=

∑N
n=1 1Sn ⊗ yn. Then (2) follows from

(5.1).
(2) ⇒ (1): Since the distribution of Gaussian vectors is invariant under or-

thogonal transformations, if (2) holds for one orthonormal basis (hm)m>1, then it
holds for every orthonormal basis (hm)n>1. By a well-known argument (cf. [16,
Proposition 1]), (2) implies that for all (an)Nn=1 in R we have

E
∥∥∥ N∑
n=1

∑
m>1

anγnm(f(xn)hm − f(yn)hm)
∥∥∥2

6 C2E
∥∥∥ N∑
n=1

anγn(xn − yn)
∥∥∥2

+ C2
N∑
n=1

a2
n‖xn − yn‖2.

Now (5.1) follows for simple functions φ, and the general case follows from this by
an approximation argument. �

Clearly, every L2
γ-Lipschitz function f : E1 → γ(H,E2) is a Lipschitz function.

It is a natural question whether Lipschitz functions are automatically L2
γ-Lipschitz.

Unfortunately, this is not true. It follows from the proof of [29, Theorem 1] that
if dim(H) > 1, then every Lipschitz function f : E1 → γ(H,E2) is L2

γ-Lipschitz if
and only if E2 has type 2.

A Banach space E has property (α) if for all N > 1 and all sequences (xmn)Nm,n=1

in E we have

E
∥∥∥ N∑
m,n=1

rmnxmn

∥∥∥2

h E′E′′
∥∥∥ N∑
m,n=1

r′mr
′′
nxmn

∥∥∥2

.
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Here, (rmn)m,n>1, (r′m)m>1, and (r′′n)n>1 are Rademacher sequences, the latter two
independent of each other. By a randomization argument one can show that the
Rademacher random variables can be replaced by Gaussian random variables. It
can be shown using the Kahane-Khintchine inequalities that the exponent 2 in the
definition can be replaced by any number 1 6 p <∞.

Property (α) has been introduced by Pisier [35]. Examples of spaces with this
property are the Hilbert spaces and the spaces Lp for 1 6 p <∞.

The next lemma follows directly from the definition of property (α) and Lemma
5.3.

Lemma 5.4. Let E2 be a space with property (α). Then f : E1 → γ(H,E2) is L2
γ-

Lipschitz if and only if there exists a constant C such that for all finite sequences
(xn)Nn=1 and (yn)Nn=1 in E1 we have

E
∥∥∥ N∑
n=1

γn(f(xn)− f(yn))
∥∥∥2

γ(H,E2)
6 C2E

∥∥∥ N∑
n=1

γn(xn − yn)
∥∥∥2

+ C2
N∑
n=1

‖xn − yn‖2.

In particular, every f ∈ L (E1, γ(H,E2)) is L2
γ-Lipschitz.

When H is finite dimensional, this result remains valid even if E2 fails to have
property (α).

The next example identifies an important class of L2
γ-Lipschitz continuous func-

tions.

Example 5.5 (Nemytskii maps). Fix p ∈ [1,∞) and let (S,Σ, µ) be a σ-finite mea-
sure space. Let b : R→ R be a Lipschitz function; in case µ(S) =∞ we also assume
that b(0) = 0. Define the Nemytskii map B : Lp(S)→ Lp(S) by B(x)(s) := b(x(s)).
Then B is L2

γ-Lipschitz with respect to µ. Indeed, it follows from the Kahane-
Khintchine inequalities that(

E
∥∥∥ N∑
n=1

γn(B(xn)−B(yn))
∥∥∥2) 1

2 hp
(∫

S

( N∑
n=1

|b(xn(s))− b(yn(s))|2
) p

2

dµ(s)
) 1
p

6 Lb
(∫

S

( N∑
n=1

|xn(s)− yn(s)|2
) p

2

dµ(s)
) 1
p

hp Lb
(
E
∥∥∥ N∑
n=1

γn(xn − yn)
∥∥∥2) 1

2

.

Now we apply Lemma 5.3.

6. Stochastic evolution equations I: integrable initial values

On the space E we consider the stochastic equation:

(SCP)

{
dU(t) = (AU(t) + F (t, U(t))) dt+B(t, U(t)) dWH(t), t ∈ [0, T0],

U(0) = u0,

where WH is an H-cylindrical Brownian motion. We make the following assump-
tions on A, F , B, u0, the numbers η, θF , θB > 0:

(A1) The operator A is the generator of an analytic C0-semigroup S on a UMD
Banach space E.
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(A2) The function

F : [0, T0]× Ω× Eη → E−θF

is Lipschitz of linear growth uniformly in [0, T0]×Ω, i.e., there are constants
LF and CF such that for all t ∈ [0, T0], ω ∈ Ω and x, y ∈ Eη,

‖(F (t, ω, x)− F (t, ω, y))‖E−θF 6 LF ‖x− y‖Eη ,
‖F (t, ω, x)‖E−θF 6 CF (1 + ‖x‖Eη ).

Moreover, for all x ∈ Eη, (t, ω) 7→ F (t, ω, x) is strongly measurable and
adapted in E−θF .

(A3) The function

B : [0, T0]× Ω× Eη → L (H,E−θB )

is L2
γ-Lipschitz of linear growth uniformly in Ω, i.e., there are constants LγB

and CγB such that for all finite measures µ on ([0, T0],B[0,T0]), for all ω ∈ Ω,

and all φ1, φ2 ∈ L2
γ((0, T0), µ;Eη),

‖(B(·, ω, φ1)− B(·, ω, φ2))‖γ(L2((0,T0),µ;H),E−θB )

6 LγB‖φ1 − φ2‖L2
γ((0,T0),µ;Eη),

and

‖B(·, ω, φ)‖γ(L2((0,T0),µ;H),E−θB ) 6 C
γ
B(1 + ‖φ‖L2

γ((0,T0),µ;Eη)).

Moreover, for all x ∈ Eη, (t, ω) 7→ B(t, ω, x) is H-strongly measurable and
adapted in E−θB .

(A4) The initial value u0 : Ω→ Eη is strongly F0-measurable.

We call a process (U(t))t∈[0,T0] a mild Eη-solution of (SCP) if

(i) U : [0, T0]× Ω→ Eη is strongly measurable and adapted,
(ii) for all t ∈ [0, T0], s 7→ S(t− s)F (s, U(s)) is in L0(Ω;L1(0, t;E)),

(iii) for all t ∈ [0, T0], s 7→ S(t − s)B(s, U(s)) H-strongly measurable and
adapted and in γ(L2(0, t;H), E) almost surely,

(iv) for all t ∈ [0, T0], almost surely

U(t) = S(t)u0 + S ∗ F (·, U)(t) + S �B(·, U)(t).

By (ii) the deterministic convolution is defined pathwise as a Bochner integral,
and since E is a UMD space, by (iii) and Proposition 2.4 the stochastic convolutions
is well-defined.

We shall prove an existence and uniqueness result for (SCP) using a fixed point
argument in a suitable scale of Banach spaces of E-valued processes introduced
next. Fix T ∈ (0, T0], p ∈ [1,∞), α ∈ (0, 1

2 ). We define V pα,∞([0, T ] × Ω;E) as the
space of all continuous adapted processes φ : [0, T ]× Ω→ E for which

‖φ‖V pα,∞([0,T ]×Ω;E)

:=
(
E‖φ‖pC([0,T ];E)

) 1
p + sup

t∈[0,T ]

(
E‖s 7→ (t− s)−αφ(s)‖pγ(L2(0,t),E)

) 1
p
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is finite. Similarly we define V pα,p([0, T ]×Ω;E) as the space of pathwise continuous
and adapted processes φ : [0, T ]× Ω→ E for which

‖φ‖V pα,p([0,T ]×Ω;E)

:=
(
E‖φ‖pC([0,T ];E)

) 1
p +

(∫ T

0

E‖s 7→ (t− s)−αφ(s)‖pγ(L2(0,t),E) dt
) 1
p

is finite. Identifying processes which are indistinguishable, the above norm on
V pα,p([0, T ]× Ω;E) and V pα,∞([0, T ]× Ω;E) turn these spaces into Banach spaces.

The main result of this section, Theorem 6.2 below, establishes existence and
uniqueness of a mild solution of (SCP) with initial value u0 ∈ Lp(Ω,F0;Eη) in
each of the spaces V pα,p([0, T0] × Ω;E) and V pα,∞([0, T0] × Ω;E). Since we have a
continuous embedding V pα,∞([0, T0] × Ω;E) ↪→ V pα,p([0, T0] × Ω;E), the existence
result is stronger for V pα,∞([0, T0]×Ω;E) while the uniqueness result is stronger for
V pα,p([0, T0]× Ω;E).

For technical reasons, in the next section we will also need the space Ṽ pα,p([0, T ]×
Ω;E) which is obtained by ‘pathwise continuous’ replaced by ‘pathwise bounded and
B[0,T ] ⊗F -measurable’ and C([0, T ];E) replaced by Bb([0, T ];E) in the definition

of Ṽ pα,p([0, T ] × Ω;E). Here Bb([0, T ];E) denotes the Banach space of bounded
strongly Borel measurable functions on [0, T ] with values in E, endowed with the
supremum norm.

Consider the fixed point operator

LT (φ) =
[
t 7→ S(t)u0 + S ∗ F (·, φ)(t) + S �B(·, φ)(t)

]
.

In the next proposition we show that LT is well-defined on each of the three spaces
introduced above and that it is a strict contraction for T small enough.

Proposition 6.1. Let E be a UMD space with type τ ∈ [1, 2]. Suppose that (A1)-
(A4) are satisfied and assume that 0 6 η + θF < 3

2 −
1
τ and 0 6 η + θB < 1

2 . Let

p > 2 and α ∈ (0, 1
2 ) be such that η + θB < α − 1

p . If u0 ∈ Lp(Ω;Eη), then the

operator LT is well-defined and bounded on each of the spaces

V ∈
{
V pα,∞([0, T ]× Ω;Eη), V pα,p([0, T ]× Ω;Eη), Ṽ pα,p([0, T ]× Ω;Eη)

}
,

and there exist a constant CT , with limT↓0 CT = 0, such that for all φ1, φ2 ∈ V ,

(6.1) ‖LT (φ1)− LT (φ2)‖V 6 CT ‖φ1 − φ2‖V .

Moreover, there is a constant C > 0, independent of u0, such that for all φ ∈ V ,

(6.2) ‖LT (φ)‖V 6 C(1 + (E‖u0‖pEη )
1
p ) + CT ‖φ‖V .

Proof. We give a detailed proof for the space V pα,∞([0, T ] × Ω;Eη). The proof for

V pα,p([0, T ] × Ω;Eη) is entirely similar. For the proof for Ṽ pα,p([0, T ] × Ω;Eη) one
replaces C([0, T ];E) by Bb((0, T );E).

Step 1: Estimating the initial value part. Let ε ∈ (0, 1
2 ). From Lemmas 2.9 and

4.1 we infer that

‖s 7→ (t− s)−αS(s)u0‖γ(L2(0,t),Eη) 6 C‖s 7→ (t− s)−αs−εu0‖γ(L2(0,t),Eη)

= C‖s 7→ (t− s)−αs−ε‖L2(0,t)‖u0‖Eη
≤ C‖u0‖Eη .
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For the other part of the V pα,∞([0, T ]× Ω;Eη)-norm we note that

‖Su0‖C([0,T ];Eη) 6 C‖u0‖Eη .

It follows that

‖Su0‖V pα,∞([0,T ]×Ω;Eη) 6 C‖u0‖Lp(Ω;Eη).

Step 2: Estimating the deterministic convolution. We proceed in two steps.
(a): For ψ ∈ C([0, T ];E−θF ) we estimate the V pα,∞([0, T ]×Ω;Eη)-norm of S ∗ψ.
By Lemma 3.6 (applied with α = 1 and λ = 0) S ∗ψ is continuous in Eη. Using

(3.2) we estimate:

(6.3)
‖S ∗ ψ‖C([0,T ];Eη) 6 C

∫ t

0

(t− s)−η−θF ds ‖ψ‖C([0,T ];E−θF )

6 CT 1−η−θF ‖ψ‖C([0,T ];E−θF ).

Also, since E has type τ , it follows from Proposition 3.5 that

(6.4) ‖s 7→ (t− s)−αS ∗ ψ(s)‖γ(L2(0,t),Eη) 6 T
1
2−α‖ψ‖C([0,T ];E−θF ).

Now let Ψ ∈ Lp(Ω;C([0, T ];E−θF )). By applying (6.3) and (6.4) to the paths
Ψ(·, ω) one obtains that S ∗Ψ ∈ V pα,∞([0, T ]× Ω;Eη) and

(6.5) ‖S ∗Ψ‖V pα,∞([0,T ]×Ω;Eη) 6 CT
min{ 1

2−α,1−η−θF }‖Ψ‖Lp(Ω;C([0,T ];E−θF )).

(b): Let φ1, φ2 ∈ V pα,∞([0, T ] × Ω;Eη). Since F is of linear growth, F (·, φ1)
and F (·, φ2) belong to Lp(Ω;C([0, T ];E−θF )). From (6.5) and the fact that F is
Lipschitz continuous in its Eη-variable we deduce that S ∗(F (·, φ1)), S ∗(F (·, φ2)) ∈
V pα,∞([0, T ]× Ω;Eη) and

(6.6)

‖S ∗ (F (·, φ1)− F (·, φ2))‖V pα,∞([0,T ]×Ω;Eη)

6 CTmin{ 1
2−α,1−η−θF }‖(F (·, φ1)− F (·, φ2))‖Lp(Ω;C([0,T ];E−θF ))

6 CTmin{ 1
2−α,1−η−θF }LF ‖φ1 − φ2‖V pα,∞([0,T ]×Ω;Eη).

Step 3: Estimating the stochastic convolution. Again we proceed in two steps.
(a): Let Ψ : [0, T ] × Ω → L (H,E−θB ) be H-strongly measurable and adapted

and suppose that

(6.7) sup
t∈[0,T ]

E‖s 7→ (t− s)−αΨ(s)‖pγ(L2(0,t;H),E−θB ) <∞.

We estimate the V pα,∞([0, T ]× Ω;Eη)-norm of S �Ψ.
From Proposition 4.2 we obtain an ε > 0 such that(
E‖S �Ψ‖pC([0,T ];Eη)

) 1
p

6 CT ε sup
t∈[0,T ]

(
E‖s 7→ (t− s)−αΨ(s)‖pγ(L2(0,t;H),E−θB )

) 1
p .

For the other part of the norm, by Proposition 4.5 we obtain that(
E‖s 7→ (t− s)−αS �Ψ(s))‖pγ(L2(0,t;H),Eη)

) 1
p

6 CT
1
2−η−θB

(
E‖s 7→ (t− s)−αΨ‖pγ(L2(0,t;H),E−θB )

) 1
p

.
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Combining things we conclude that

(6.8)

‖S �Ψ‖V pα,∞([0,T ]×Ω;Eη)

6 CTmin{ 1
2−η−θB ,ε}

(
sup
t∈[0,T ]

(
E‖s 7→ (t− s)−αΨ(s)‖pγ(L2(0,t;H),E−θB )

) 1
p

.

(b): For t ∈ [0, T ] let µt,α be the finite measure on ((0, t),B(0,t)) defined by

µt,α(B) =

∫ t

0

(t− s)−2α1B(s) ds.

Notice that for a function φ ∈ C([0, t];E) we have

φ ∈ γ(L2((0, t), µt,α), E)⇐⇒ s 7→ (t− s)−αφ(s) ∈ γ(L2(0, t), E).

Trivially,

‖φ‖L2((0,t),µt,α;E) = ‖(t− ·)−αφ(·)‖L2(0,t;E) 6 Ct
1
2−α‖φ‖C([0,T ];E).

Now let φ1, φ2 ∈ V pα,∞([0, T ] × Ω;Eη). Since B is L2
γ-Lipschitz and of linear

growth and φ1 and φ2 belong to L2
γ((0, t), µt,α;Eη) uniformly, B(·, φ1) and B(·, φ2)

satisfy (6.7). Since B(·, φ1) and B(·, φ2) are H-strongly measurable and adapted,
it follows from (6.8) that B(·, φ1), B(·, φ2) ∈ V pα,∞([0, T ]× Ω;Eη) and
(6.9)
‖S � (B(·, φ1)−B(·, φ2))‖V pα,∞([0,T ]×Ω;Eη)

. Tmin{ 1
2−η−θB ,ε}

× sup
t∈[0,T ]

(
E‖s 7→ (t− s)−α[B(s, φ1(s))−B(s, φ2(s))]‖pγ(L2(0,t;H),E−θB )

) 1
p

= Tmin{ 1
2−η−θB ,ε} sup

t∈[0,T ]

(
E‖B(·, φ1)−B(·, φ2)‖pγ(L2((0,t),µt,α;H),E−θB )

) 1
p

. LγBT
min{ 1

2−η−θB ,ε} sup
t∈[0,T ]

(
E‖φ1 − φ2‖pL2

γ((0,t),µt,α;Eη)

) 1
p

. LγBT
min{ 1

2−η−θB ,ε}
[

sup
t∈[0,T ]

(
E‖s 7→ (t− s)−α[φ1 − φ2]‖pγ(L2(0,t),Eη)

) 1
p

+ T
1
2−α

(
E‖φ1 − φ2‖pC([0,T ];Eη)

) 1
p

]
. LγBT

min{ 1
2−η−θB ,ε}‖φ1 − φ2‖V pα,∞([0,T ]×Ω;Eη).

Step 4: Collecting the estimates. It follows from the above considerations that
LT is well-defined on V pα,∞([0, T ] × Ω;Eη) and there exist constants C > 0 and
β > 0 such that for all φ1, φ2 ∈ V pα,∞([0, T ]× Ω;Eη) we have

(6.10) ‖LT (φ1)− LT (φ2)‖V pα,∞([0,T ]×Ω;Eη) 6 CT
β‖φ1 − φ2‖V pα,∞([0,T ]×Ω;Eη).

The estimate (6.2) follows from (6.10) and

‖LT (0)‖V pα,∞([0,T ]×Ω;Eη) 6 C(1 + (E‖u0‖pEη )
1
p .

�

Theorem 6.2 (Existence and uniqueness). Let E be a UMD space with type τ ∈
[1, 2]. Suppose that (A1)-(A4) are satisfied and assume that 0 6 η + θF < 3

2 −
1
τ

and 0 6 η + θB < 1
2 . Let p > 2 and α ∈ (0, 1

2 ) be such that η + θB < α − 1
p . If
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u0 ∈ Lp(Ω,F0;Eη), then there exists a mild solution U in V pα,∞([0, T0] × Ω;Eη)
of (SCP). As a mild solution in V pα,p([0, T ] × Ω;Eη), this solution U is unique.
Moreover, there exists a constant C > 0, independent of u0, such that

(6.11) ‖U‖V pα,∞([0,T0]×Ω;Eη) 6 C(1 + (E‖u0‖pEη )
1
p ).

Proof. By Proposition 6.1 we can find T ∈ (0, T0], independent of u0, such that
CT < 1

2 . It follows from (6.1) and the Banach fixed point theorem that LT has
a unique fixed point U ∈ V pα,∞([0, T ] × Ω;Eη). This gives a continuous adapted
process U : [0, T ]× Ω→ Eη such that almost surely for all t ∈ [0, T ],

(6.12) U(t) = S(t)u0 + S ∗ F (·, U)(t) + S �B(·, U)(t).

Noting that U = limn→∞ LnT (0) in V pα,∞([0, T ]×Ω;Eη), (6.2) implies the inequality

‖U‖V pα,∞([0,T ]×Ω;Eη) 6 C(1 + (E‖u0‖pEη )
1
p ) + CT ‖U‖V pα,∞([0,T ]×Ω;Eη),

and then CT <
1
2 implies

(6.13) ‖U‖V pα,∞([0,T ]×Ω;Eη) 6 C(1 + (E‖u0‖pEη )
1
p ).

Via a standard induction argument one may construct a mild solution on each of
the intervals [T, 2T ], . . . , [(n − 1)T, nT ], [nT, T0] for an appropriate integer n. The
induced solution U on [0, T0] is the mild solution of (SCP). Moreover, by (6.13)
and induction we deduce (6.11).

For small T ∈ (0, T0], uniqueness on [0, T ] follows from the uniqueness of the fixed
point of LT in V pα,p([0, T ]× Ω;Eη). Uniqueness on [0, T0] follows by induction. �

In the next theorem we deduce regularity properties of the solution. They are
formulated for U − Su0; if u0 is regular enough, regularity of U can be deduced.

Theorem 6.3 (Regularity). Let E be a UMD space with type τ ∈ [1, 2] and suppose
that (A1)-(A4) are satisfied. Assume that 0 6 η+θF <

3
2−

1
τ and 0 6 η+θB < 1

2−
1
p

with p > 2. Let λ > 0 and δ > η satisfy λ + δ < min{ 1
2 −

1
p − θB , 1 − θF }. Then

there exists a constant C > 0 such that for all u0 ∈ Lp(Ω;Eη),

(6.14)
(
E‖U − Su0‖pCλ([0,T0];Eδ)

) 1
p

6 C(1 + (E‖u0‖pEη )
1
p .

Proof. Choose r > 1 and 0 < α < 1
2 such that λ+ δ < 1− 1

r − θF , η+ θB < α− 1
p ,

and λ + δ + θB < α − 1
p . Let Ũ ∈ V pα,∞([0, T0] × Ω;Eη) be the mild solution from

Theorem 6.2. It follows from Lemma 3.6 (with α = 1) that we may take a version

of S ∗ F (·, Ũ) with

E‖S ∗ F (·, Ũ)‖p
Cλ([0,T0];Eδ)

6 CE‖F (·, Ũ)‖pLr(0,T0;E−θF )

6 CE‖F (·, Ũ)‖pC([0,T0];E−θF ).

Similarly, via Proposition 4.2 we may take a version of S ∗B(·, Ũ) with

E‖S �B(·, Ũ)‖p
Cλ([0,T0];Eδ)

6 C sup
t∈[0,T0]

E‖s 7→ (t− s)−αB(·, Ũ(s))‖pγ(L2(0,t;H),E−θB ).

Define U : [0, T0]× Ω→ Eη as

U(t) = S(t)u0 + S ∗ F (·, Ũ)(t) + S �B(·, Ũ)(t),
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where we take the versions of the convolutions as above. By uniqueness we have
almost surely U ≡ Ũ . Arguing as in (6.9) deduce that

E‖U − Su0‖pCλ([0,T0];Eδ)
6 C(1 + ‖U‖p

V pα,∞([0,T0]×Ω;Eη)
).

Now (6.14) follows from (6.11). �

7. Stochastic evolution equations II: measurable initial values

So far we have solved the problem (SCP) for initial values u0 ∈ Lp(Ω,F0;Eη).
In this section we discuss the case of initial values u0 ∈ L0(Ω,F0;Eη).

Fix T ∈ (0, T0]. For p ∈ [1,∞) and α ∈ (0, 1
2 ) we define V 0

α,p([0, T ]×Ω;E) as the
linear space of continuous adapted processes φ : [0, T ] × Ω → E such that almost
surely,

‖φ‖C([0,T ];E) +
(∫ T

0

‖s 7→ (t− s)−αφ(s)‖pγ(L2(0,t),E) dt
) 1
p

<∞.

As usual we identify indistinguishable processes.

Theorem 7.1 (Existence and uniqueness). Let E be a UMD space of type τ ∈ [1, 2]
and suppose that (A1)-(A4) are satisfied. Assume that 0 6 η + θF < 3

2 −
1
τ and

η+ θB < 1
2 . If α ∈ (0, 1

2 ) and p > 2 are such that η+ θB < α− 1
p , then there exists

a unique mild solution U ∈ V 0
α,p([0, T0]× Ω;Eη) of (SCP).

For the proof we need the following uniqueness result.

Lemma 7.2. Under the conditions of Theorem 6.2 let U1 and U2 in V pα,∞([0, T ]×
Ω;Eη) be the mild solutions of (SCP) with initial values u1 and u2 in Lp(Ω,F0;Eη).
Then almost surely on the set {u1 = u2} we have U1 ≡ U2.

Proof. Let Γ = {u1 = u2}. First consider small T ∈ (0, T0] as in Step 1 in the proof
of Theorem 6.2. Since Γ is F0-measurable we have

‖U11Γ − U21Γ‖V pα,∞([0,T ]×Ω;Eη) = ‖LT (U1)1Γ − LT (U2)1Γ‖V pα,∞([0,T ]×Ω;Eη)

= ‖(LT (U11Γ)− LT (U21Γ))1Γ‖V pα,∞([0,T ]×Ω;Eη)

6 1
2‖U11Γ − U21Γ‖V pα,∞([0,T ]×Ω;Eη),

hence almost surely U1|[0,T ]×Γ ≡ U2|[0,T ]×Γ.
To obtain uniqueness on the interval [0, T0] one may proceed as in the proof of

Theorem 6.2. �

Proof of Theorem 7.1. (Existence): Define (un)n>1 in Lp(Ω,F0;Eη) as

un := 1{‖u0‖Eη6n}u0.

By Theorem 6.2, for each n > 1 there is a unique solution Un ∈ V pα,∞([0, T ]×Ω;Eη)
of (SCP) with initial value un. By Lemma 7.2 we may define U : (0, T0)×Ω→ Eη
as U(t) = limn→∞ Un(t) if this limit exists and 0 otherwise. Then, U is strongly
measurable and adapted, and almost surely on {‖u0‖Eη 6 n}, for all t ∈ (0, T0) we

have U(t) = Un(t). Hence, U ∈ V 0
α,p([0, T ] × Ω;Eη). It is routine to check that U

is a solution of (SCP).
(Uniqueness): The argument is more or less standard, but there are some sub-

leties due to the presence of the radonifying norms.
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Let U, V ∈ V 0
α,p([0, T0] × Ω;Eη) be mild solutions of (SCP). For each n > 1 let

the stopping times µUn and νUn be defined as

µUn = inf
{
r ∈ [0, T0] :

∫ T0

0

‖s 7→ (t− s)−αU(s)1[0,r](s)‖pγ(L2(0,t),Eη) dt > n
}
,

νUn = inf
{
r ∈ [0, T ] : ‖U(r)‖Eη > n

}
.

This is well-defined since

r 7→
∫ T0

0

‖s 7→ (t− s)−αU(s)1[0,r](s)‖pγ(L2(0,t),Eη) dt

is a continuous adapted process by [31, Proposition 2.4] and the dominated conver-
gence theorem. The stopping times µVn and νVn are defined in a similarly. For each
n > 1 let

τn = µUn ∧ νUn ∧ µVn ∧ νVn ,

and let Un = U1[0,τn] and Vn = V 1[0,τn]. Then for all n > 1, Un and Vn are in

Ṽ pα,p([0, T0]× Ω;Eη). One easily checks that

Un = 1[0,τn](LT (Un))τn and Vn = 1[0,τn](LT (Vn))τn ,

where LT is the map introduced preceding Proposition 6.1 and (LT (Un))τn(t) :=
(LT (Un))(t ∧ τn). By Proposition 6.1 we can find T ∈ (0, T0] such that CT 6 1

2 . A
routine computation then implies

‖Un − Vn‖Ṽ pα,p([0,T ]×Ω;Eη) 6
1
2‖Un − Vn‖Ṽ pα,p([0,T ]×Ω;Eη).

We obtain that Un = Vn in Ṽ pα,p([0, T ] × Ω;Eη), hence P-almost surely, Un ≡ Vn.
Letting n tend to infinity, we may conclude that almost surely, U ≡ V on [0, T ].
This gives the uniqueness on the interval [0, T ]. Uniqueness on [0, T0] can obtained
by the usual induction argument. �

Note that in the last paragraph of the proof we needed to work in the space
Ṽ pα,p([0, T ]×Ω;Eη) rather than in V pα,p([0, T ]×Ω;Eη) because the truncation with
the stopping time destroys the pathwise continuity.

By applying Theorem 6.3 to the unique solution Un with initial value un :=
1{‖u0‖Eη6n}u0, the solution U := limn→∞ Un constructed in Theorem 7.1 enjoys

the following regularity property.

Theorem 7.3 (Hölder regularity). Let E be a UMD space and type τ ∈ [1, 2]
and suppose that (A1)-(A4) are satisfied. Assume that 0 6 η + θF < 3

2 −
1
τ and

0 6 η + θB < 1
2 . Let λ > 0 and δ > η satisfy λ + δ < min{ 1

2 − θB , 1 − θF }.
Then the mild solution U of (SCP) has a version such that almost all paths satisfy
U − Su0 ∈ Cλ([0, T0];Eδ).

Proof of Theorem 1.1. Part (1) is a the special case of Theorem 6.2 corresponding
to τ = 1 and θF = θB = 0. For part (2) we apply Theorem 7.3, again with τ = 1
and θF = θB = 0. �
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8. Stochastic evolution equations III: the locally Lipschitz case

Consider the following assumptions on F and B.

(A2)′ The function F : [0, T0]×Ω×Eη → E−θF is locally Lipschitz, uniformly in
[0, T0] × Ω, i.e., for all R > 0 there exists a constant LRF such that for all
t ∈ [0, T0], ω ∈ Ω and ‖x‖Eη , ‖y‖Eη ≤ R,

‖F (t, ω, x)− F (t, ω, y)‖E−θF ≤ L
R
F ‖x− y‖Eη .

Moreover, for all x ∈ Eη, (t, ω) 7→ F (t, ω, x) ∈ E−θF is strongly mea-
surable and adapted, and there exists a constant CF,0 such that for all
t ∈ [0, T0] and ω ∈ Ω,

‖F (t, ω, 0)‖E−θF ≤ CF,0.

(A3)′ The function B : [0, T0] × Ω × Eη → L (H,E−θB ) is locally L2
γ-Lipschitz,

uniformly in Ω, i.e., there exists a sequence of L2
γ-Lipschitz functions Bn :

[0, T0]×Ω×Eη → L (H,E−θB ) such that B(·, x) = Bn(·, x) for all ‖x‖Eη <
n. Moreover, for all x ∈ Eη, (t, ω) 7→ B(t, ω, x) ∈ E−θB is H-strongly
measurable and adapted, and there exists a constant CB,0 such that for all
finite measures µ on ([0, T0],B[0,T0]) and all ω ∈ Ω,

‖t 7→ B(t, ω, 0)‖γ(L2((0,T0),µ;H),E−θB ) ≤ CB,0.
One may check that the locally Lipschitz version of Lemma 5.2 holds as well. This
gives an easy way to check (A3)′ for type 2 spaces E.

Let % be a stopping time with values in [0, T0]. For t ∈ [0, T0] let

Ωt(%) = {ω ∈ Ω : t < %(ω)},
[0, %)× Ω = {(t, ω) ∈ [0, T0]× Ω : 0 ≤ t < %(ω)},
[0, %]× Ω = {(t, ω) ∈ [0, T0]× Ω : 0 ≤ t ≤ %(ω)}.

A process ζ : [0, %)×Ω→ E (or (ζ(t))t∈[0,%)) is called admissible if for all t ∈ [0, T0],
Ωt(%) 3 ω → ζ(t, ω) is Ft-measurable and for almost all ω ∈ Ω, [0, %(ω)) 3 t 7→
ζ(t, ω) is continuous.

Let E be a UMD space. An admissible Eη-valued process (U(t))t∈[0,%) is called
a local solution of (SCP) if % ∈ (0, T0] almost surely and there exists an increasing
sequence of stopping times (%n)n>1 with % = limn→∞ %n such that

(i) for all t ∈ [0, T0], s 7→ S(t− s)F (·, U(s))1[0,%n](s) ∈ L0(Ω;L1(0, t;Eη)),
(ii) for all t ∈ [0, T0], s 7→ S(t−s)B(·, U(s))1[0,%n](s)∈L0(Ω; γ(L2(0, t;H), Eη)),
(iii) almost surely for all t ∈ [0, ρn],

U(t) = S(t)u0 + S ∗ F (·, U)(t) + S �B(·, U)(t).

By (i) the deterministic convolution is defined pathwise as a Bochner integral.
Since E is a UMD space, by (ii) and Proposition 2.4 we may define the stochastic
convolution as

S �B(·, U)(t) =

∫ t

0

S(t− s)B(s, U(s))1[0,%n](s) dWH(s), t ∈ [0, ρn].

A local solution (U(t))t∈[0,%) is called maximal for a certain space V of Eη-valued

admissible processes if for any other local solution (Ũ(t))t∈[0,%̃) in V , almost surely

we have %̃ ≤ % and Ũ ≡ U |[0,%̃). Clearly, a maximal local solution for such a space
V is always unique in V . We say that a local solution (U(t))t∈[0,%) of (SCP) is
a global solution of (SCP) if % = T0 almost surely and U has an extension to a
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solution Û : [0, T0]× Ω→ Eη of (SCP). In particular, almost surely “no blow” up
occurs at t = T0.

We say that % is an explosion time if for almost all ω ∈ Ω with %(ω) < T0,

lim sup
t↑%(ω)

‖U(t, ω)‖Eη =∞.

Notice that if % = T0 almost surely, then % is always an explosion time in this
definition. However, there need not be any “blow up” in this case.

Let % be a stopping time with values in [0, T0]. For p ∈ [1,∞), α ∈ [0, 1
2 )

and η ∈ [0, 1] we define V 0,loc
α,p ([0, %) × Ω;E) as all E-valued admissible processes

(φ(t))t∈[0,%) such that there exists an increasing sequence of stopping times (%n)n>1

with % = limn→∞ %n and almost surely

‖φ‖C([0,%n];E) +
(∫ T

0

‖s 7→ (t− s)−αφ(s)1[0,%n](s)‖pγ(0,t;E) dt
) 1
p

<∞.

In the case that for almost all ω, %n(ω) = T for n large enough,

V 0,loc
α,p ([0, %)× Ω;E) = V 0

α,p([0, T ]× Ω;E).

Theorem 8.1. Let E be a UMD space with type τ ∈ [1, 2] and suppose that (A1),
(A2)′, (A3)′, (A4) are satisfied, and assume that 0 ≤ η + θF <

3
2 −

1
τ .

(1) For all α ∈ (0, 1
2 ) and p > 2 such that η+ θB < α− 1

p there exists a unique

maximal local solution (U(t))[0,%) in V 0,loc
α,p ([0, %)× Ω;Eη) of (SCP).

(2) For all λ > 0 and δ > η such that λ + δ < min{ 1
2 − θB , 1 − θF }, U has a

version such that for almost all ω ∈ Ω,

t 7→ U(t, ω)− S(t)u0(ω) ∈ Cλloc([0, %(ω));Eδ),

If in addition the linear growth conditions of (A2) and (A3) hold, then the above
function U is the unique global solution of (SCP) in V 0

α,p([0, T0] × Ω;Eη) and the
following assertions hold:

(3) The solution U satisfies the statements of Theorems 7.1 and 7.3.
(4) If α ∈ (0, 1

2 ) and p > 2 are such that α > η+θB+ 1
p and u0 ∈ Lp(Ω,F0;Eη),

then the solution U is in V pα,∞([0, T0]×Ω;Eη) and (6.11) and the statements
of Theorem 6.3 hold.

Before we proceed, we prove the following local uniqueness result.

Lemma 8.2. Suppose that the conditions of Theorem 8.1 are satisfied and let
(U1(t))t∈[0,%1) in V 0,loc

α,p ([0, %1)×Ω;Eη) and (U2(t))t∈[0,%2) in V 0,loc
α,p ([0, %2)×Ω;Eη)

be local solutions of (SCP) with initial values u1
0 and u2

0. Let Γ = {u1
0 = u2

0}. Then
almost surely on Γ, U1|[0,%1∧%2) ≡ U2|[0,%1∧%2). Moreover, if %1 is an explosion time
for U1, then almost surely on Γ, %1 > %2. If %1 and %2 are explosion times for U1

and U2, then almost surely on Γ, %1 = %2 and U1 ≡ U2.

Proof. Let % = %1∧%2. Let (µn)n>1 be an increasing sequences of bounded stopping
times such that limn→∞ µn = % and for all n > 1, U11[0,µn] and U21[0,µn] are in

Ṽ pα,p([0, T0]× Ω;Eη). Let

ν1
n = inf{t ∈ [0, T0] : ‖U1(t)‖Eη > n} and ν2

n = inf{t ∈ [0, T0] : ‖U2(t)‖Eη > n}

and let σin = µn ∧ νin and let σn = σ1
n ∧ σ2

n. On [0, T0]×Ω× {x ∈ Eη : ‖x‖Eη ≤ n}
we may replace F and B by Fn (for a possible definition of Fn, see the proof of
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Theorem 8.1) and Bn which satisfy (A2) and (A3). As in the proof of Theorem 7.1
it follows that for all 0 < T ≤ T0,

‖Uσn1 1[0,σn]×Γ − Uσn2 1[0,σn]×Γ‖Ṽ pα,p([0,T ]×Ω;Eη)

= ‖(LT (Uσn1 1[0,σn]×Γ)− LT (Uσn2 1[0,σn]×Γ))1[0,σn]×Γ‖Ṽ pα,p([0,T ]×Ω;Eη)

≤ ‖LT (Uσn1 1[0,σn]×Γ)− LT (Uσn2 1[0,σn]×Γ)‖Ṽ pα,p([0,T ]×Ω;Eη)

≤ CT ‖Uσn1 1[0,σn]×Γ − Uσn2 1[0,σn]×Γ‖Ṽ pα,p([0,T ]×Ω;Eη),

where CT satisfies limT↓0 CT = 0. Here 1[0,σn]×Γ should be interpreted as the pro-
cess (t, ω) 7→ 1[0,σn(ω)]×Γ(t, ω). For T small enough it follows that Uσn1 1[0,σn]×Γ =

Uσn2 1[0,σn]×Γ in Ṽ pα,p([0, T ]×Ω;Eη). By an induction argument this holds on [0, T0]
as well. By path continuity it follows that almost surely, U1 ≡ U2 on [0, σn] × Γ.
Since % = limn→∞ σn we may conclude that almost surely, U1 ≡ U2 on [0, %)× Γ.

If %1 is an explosion time, then as in [39, Lemma 5.3] this yields %1 > %2 on Γ
almost surely. Indeed, if for some ω ∈ Γ, %1(ω) < %2(ω), then we can find an n such
that %1(ω) < ν2

n(ω). We have U1(t, ω) = U2(t, ω) for all 0 ≤ t ≤ ν1
n+1(ω) < %1(ω).

If we combine both assertions we obtain that

n+ 1 = ‖U1(ν1
n+1(ω), ω)‖Ea = ‖U2(ν1

n+1(ω), ω)‖Ea ≤ n.

This is a contradiction. The final assertion is now obvious. �

Proof of Theorem 8.1. We follow an argument of [3, 39].
For n > 1 let Γn = {‖u0‖ ≤ n

2 } and un = u01Γn . Let (Bn)n>1 be the sequence of

L2
γ-Lipschitz functions from (A3)′. Fix an integer n > 1. Let Fn : [0, T0]×Ω×Eη →

E−θF be defined by

Fn(·, x) = F (·, x) for ‖x‖Eη ≤ n,

and Fn(·, x) = F
(
·, nx
‖x‖Eη

)
otherwise. Clearly, Fn and Bn satisfy (A2) and (A3).

It follows from Theorem 6.2 that there exists a solution Un ∈ V pα,∞([0, T0]×Ω;Eη)
of (SCP) with u0, F and B replaced by un, Fn and Bn. In particular, Un has a
version with continuous paths. Let %n be the stopping time defined by

%n(ω) = inf{t ∈ [0, T0] : ‖Un(t, ω)‖Eη > n}.

It follows from Lemma 8.2 that for all 1 ≤ m ≤ n, almost surely, Um ≡ Un on
[0, %m ∧ %n] × Γm. By path continuity this implies %m ≤ %n. Therefore, we can
define % = limn→∞ %n and on Γn, U(t) = Un(t) for t ≤ %n. By approximation and
Lemma 2.5 it is clear that U ∈ V 0,loc

α,p ([0, %) × Ω;Eη) is a local solution of (SCP).
Moreover, % is an explosion time. This proves the existence part of (1). Maximality
is a consequence of Lemma 8.2. Therefore, (U(t))t∈[0,%) is a maximal local solution.
This concludes the proof of (1).

We continue with (2). By Corollary 6.3, each Un has the regularity as stated by
(2). Therefore, the construction yields the required pathwise regularity properties
of U .

Turning to (4), let (Un)n>1 be as before. As in the proof of Proposition 6.1 one
can check that by the linear growth assumption,

‖Un‖V pα,∞([0,T ]×Ω;Eη) = ‖LT (Un)‖V pα,∞([0,T ]×Ω;Eη)

≤ CT ‖Un‖V pα,∞([0,T ]×Ω;Eη) + C + C‖un‖Lp(Ω;Eη),
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where the constants do not depend on n and u0 and we have limT↓0 CT = 0. Since
‖un‖Lp(Ω;Eη) ≤ ‖u0‖Lp(Ω;Eη), it follows that for T small we have

‖Un‖V pα,∞([0,T ]×Ω;Eη) ≤ C(1 + ‖u0‖Lp(Ω;Eη)),

where C is a constant independent of n and u0. Repeating this inductively, we
obtain a constant C independent of n and u0 such that ‖Un‖V pα,∞([0,T0]×Ω;Eη) ≤
C(1 + ‖u0‖Lp(Ω;Eη)). In particular,

E sup
s∈[0,T0]

‖Un(s)‖pEη ≤ C
p(1 + ‖u0‖Lp(Ω;Eη))

p.

It follows that

P( sup
s∈[0,T0]

‖Un(s)‖Eη > n) ≤ Cpn−p.

Since
∑
n>1 n

−p <∞, the Borel-Cantelli Lemma implies that

P
( ⋂
k>1

⋃
n>k

{
sup

s∈[0,T0]

‖Un(s)‖Eη > n
})

= 0.

This gives that almost surely, %n = T0 for all n large enough, where %n is as before.
In particular, % = T0 and by Fatou’s lemma

‖U‖V pα,∞([0,T0]×Ω;Eη) ≤ lim inf
n→∞

‖Un‖V pα,∞([0,T0]×Ω;Eη) ≤ C(1 + ‖u0‖Lp(Ω;Eη)).

Via an approximation argument one can check that U is a global solution. The
final statement in (4) can be obtained as in Theorem 6.3.

For the proof of (3) one may repeat the construction of Theorem 7.1, using
Lemma 8.2 instead of Lemma 7.2. �

9. Generalizations to one-sided UMD spaces

In this section we explain how the theory of the preceding sections can be ex-
tended to a class of Banach spaces which contains, besides all UMD spaces, the
spaces L1.

A Banach space E is called a UMD+-space if for some (equivalently, for all)
p ∈ (1,∞) there exists a constant β+

p,E > 1 such that for all E-valued Lp-martingale

difference sequences (dj)
n
j=1 we have(

E
∥∥∥ n∑
j=1

rjdj

∥∥∥p) 1
p

6 β+
p,E

(
E
∥∥∥ n∑
j=1

dj

∥∥∥p) 1
p

where (rj)
n
j=1 is a Rademacher sequence independent of (dj)

n
j=1. The space E is

called a UMD− space if the reverse inequality holds:(
E
∥∥∥ n∑
j=1

dj

∥∥∥p) 1
p

6 β−p,E

(
E
∥∥∥ n∑
j=1

rjdj

∥∥∥p) 1
p

Both classes of spaces were introduced and studied by Garling [15]. By a standard
randomization argument, every UMD spaces is both UMD+ and UMD−, and con-
versely a Banach space which is is both UMD+ and UMD− is UMD. At present, no
examples are known of UMD+-spaces which are not UMD. For the UMD−property
the situation is different: if E is UMD−, then also L1(S;E) is UMD−. In particular,
every L1-space is UMD− (cf. [28]).
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Assume that (Ft)t>0 is the complete filtration induced by WH . If E is a UMD−-
space, condition (3) still gives a sufficient condition for stochastic integrability of
Φ, and instead of a norm equivalence one obtains the one-sided estimate

E
∥∥∥∫ T

0

Φ dWH

∥∥∥p .p,E E‖R‖pγ(L2(0,T ;H),E)

for all p ∈ (1,∞), where we use the notations of Proposition 2.4. The condition
on the filtration is needed for the approximation argument used in [14]. By using
Fubini’s theorem it is obvious that the result also holds if the probability space has
the following product structure Ω = Ω1 × Ω2, F = F ⊗ G , P = P1 ⊗ P2, and the
filtration is of the form (Ft ⊗ G )t>0.

Mutatis mutandis, the theory presented in the previous sections extends to
UMD− spaces E, with two exceptions: (i) Proposition 4.5 relies, via the use of
Lemma 2.8, on the fact that UMD spaces have property (∆); this property should
now be included into the assumptions. (ii) One needs the above assumption on the
filtration. We note that it follows from [7] that for E = L1 the assumption on the
filtration is not needed.

10. Applications to stochastic PDEs

Case of bounded A. We start with the case of a bounded operator A. By putting
F̃ := A+ F it suffices to consider the case A = 0.

Let E be a UMD− space with property (α) (see Section 5). Consider the equation

(10.1)
dU(t) = F (t, U(t)) dt+B(U(t)) dWE(t), t ∈ [0, T ],

U(0) = u0,

where WE is an E-valued Brownian motion. With every E-valued Brownian motion
WE one can canonically associate an H-cylindrical Brownian motion WH , where
H is the so-called reproducing kernel Hilbert space associated with WE(1) (see the
proof of Theorem 10.1 below). Using this H-cylindrical Brownian motion WH , the
problem (10.1) can be rewritten as a special instance of (SCP).

We make the following assumptions:

(1) F : [0, T ]× Ω× E → E satisfies (A2) with a = θF = 0;
(2) B ∈ L (E,L (E));
(3) u0 : Ω→ E is F0-measurable.

Theorem 10.1. Under these assumptions, for all α > 0 and p > 2 such that
α < 1

2 −
1
p there exists a unique strong and mild solution U : [0, T ] × Ω → E of

(10.1) in V 0
α,p([0, T ] × Ω;E). Moreover, for all 0 6 λ < 1

2 , U has a version with

paths in Cλ([0, T ];E).

Proof. Let H be the reproducing kernel Hilbert space associated with WE(1). Then
H is a separable Hilbert space which is continuously embedded into E by means of
an inclusion operator i : H ↪→ E which belongs to γ(H,E). Putting WH(t)i∗x∗ :=
〈WE(t), x∗〉 (cf. [32, Example 3.2]) we obtain an H-cylindrical Brownian motion.

Assumption (A1) is trivially fulfilled, and (A2) and (A4) hold by assumption.

Let B̂ ∈ L (E, γ(H,E)) be given by B̂(x)h = B(x)ih. Using Lemma 5.4 one checks

that B̂ satisfies (A3) with a = θB = 0. Therefore, the result follows from Theorems

7.1 and 7.3 (applied to B̂ and the H-cylindrical Brownian motion WH). Here we
use the extension to UMD− space as explained in Section 9. �
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Elliptic equations on bounded domains. Below we will consider an elliptic
equation of order 2m on a domain S ⊆ Rd. We will assume the noise is white in
space and time. The regularizing effect of the elliptic operator will be used to be
able to consider the white-noise in a suitable way. Space-time white noise equations
seem to be studied in the literature in the case m = 1 (cf. [3, 11]).

Let S ⊆ Rd be a bounded domain with C∞ boundary. We consider the problem

(10.2)

∂u

∂t
(t, s) = A(s,D)u(t, s) + f(t, s, u(t, s))

+ g(t, s, u(t, s))
∂w

∂t
(t, s), s ∈ S, t ∈ (0, T ],

Bj(s,D)u(t, s) = 0, s ∈ ∂S, t ∈ (0, T ],

u(0, s) = u0(s), s ∈ S.

Here A is of the form

A(s,D) =
∑
|α|≤2m

aα(s)Dα

where D = −i(∂1, . . . , ∂d) and for j = 1, . . . ,m,

Bj(s,D) =
∑
|β|≤mj

bjβ(s)Dβ

where 1 ≤ mj < 2m is an integer. We assume that aα ∈ C(S) for all |α| = 2m. For
|α| < 2m the coefficients aα are in L∞(S). For the principal part

∑
|α|=2m aα(s)Dα

of A we assume that there is a κ > 0 such that

(−1)m+1
∑
|α|=2m

aα(s)ξα > κ|ξ|2m, s ∈ S, ξ ∈ Rd.

For the coefficients of the boundary value operator we assume that for j = 1, . . . ,m
and |β| ≤ mj we have bjβ ∈ C∞(S). The boundary operators (Bj)

m
j=1 define a

normal system of Dirichlet type, i.e. 0 ≤ mj < m (cf. [40, Section 3.7]). The
C∞ assumption on the boundary of S and on the coefficients bjβ is made for
technical reasons. We will need complex interpolation spaces for Sobolev spaces
with boundary conditions. It is well-known to experts that one can reduce the the
assumption to S has a C2m-boundary and bjβ ∈ C2m−mj (S). However, this seems
not to be explicitly contained in the literature.

The functions f, g : [0, T ]×Ω× S ×R→ R are jointly measurable, and adapted
in the sense that for each t ∈ [0, T ], f(t, ·) and g(t, ·) are Ft⊗BS⊗BR-measurable.
Finally, w is a space-time white noise (see, e.g., [44]) and u0 : S × Ω → R is an
BS ⊗F0-measurable initial value condition. We say that u : [0, T ] × Ω × S → R
is a solution of (10.2) if the corresponding functional analytic model (SCP) has a
mild solution U and u(t, s, ω) = U(t, ω)(s).

Consider the following conditions:

(C1) The functions f and g are locally Lipschitz in the fourth variable, uniformly
on [0, T ] × Ω × S, i.e., for all R > 0 the exist constants LRf and LRg such
that

|f(t, ω, s, x)− f(t, ω, s, y)| ≤ LRf |x− y|,
|g(t, ω, s, x)− g(t, ω, s, y)| ≤ LRg |x− y|,
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for all t ∈ [0, T ], ω ∈ Ω, s ∈ S, and |x|, |y| < R. Furthermore, f and g
satisfy the boundedness conditions

sup |f(t, ω, s, 0)| <∞, sup |g(t, ω, s, 0)| <∞,
where the suprema are taken over t ∈ [0, T ], ω ∈ Ω, and s ∈ S.

(C2) The functions f and g are of linear growth in the fourth variable, uniformly
in [0, T ]× Ω× S, i.e., there exist constants Cf and Cg such that

|f(t, ω, s, x)| ≤ Cf (1 + |x|), |g(t, ω, s, x)| ≤ Cg(1 + |x|),
for all t ∈ [0, T ], ω ∈ Ω, s ∈ S, and x ∈ R.

Obviously, if f and g are Lipschitz and f(·, 0) and g(·, 0) are bounded, i.e., if (C1)
holds with constants Lf and Lg not depending on R, then (C2) is automatically
fulfilled.

The main theorem of this section will be formulated in the terms of the spaces
Bsp,1,{Bj}(S). For their definition and further properties we refer to [41, Section

4.3.3] and references therein. For p ∈ [1,∞], q ∈ [1,∞] and s > 0, let

Hs,p
{Bj}(S) :=

{
f ∈ Hs,p(S) : Bjf = 0 for mj < s− 1

p
, j = 1, . . . ,m},

Cs{Bj}(S) :=
{
f ∈ Cs(S) : Bjf = 0 for mj ≤ s, j = 1, . . . ,m

}
.

For p ∈ (1,∞) let Ap be the realization of A on the space Lp(S) with domain

H2m,p
{Bj}(S). In this way −Ap is the generator of an analytic C0-semigroup (Sp(t))t>0.

Since we may replace A and f in (10.2) by A − w and w + f , we may assume
that (Sp(t))t>0 is uniformly exponentially stable. From [38, Theorem 4.1] and [41,
Theorem 1.15.3] (also see [8]) we deduce that if θ ∈ (0, 1) and p ∈ (1,∞) are such
that

(10.3) 2mθ − 1

p
6= mj , for all j = 1, . . . ,m,

then
[Lp(S), D(Ap)]θ = [Lp(S), H2m,p

{Bj}(S)]θ = H2mθ,p
{Bj} (S)

isomorphically.

Theorem 10.2. Assume that (C1) holds, let d
m < 2, and let p ∈ (1,∞) be such

that d
2mp <

1
2 −

d
4m .

(1) If η ∈ ( d
2mp ,

1
2 −

d
4m ) is such that (10.3) holds for the pair (η, p) and if u0 ∈

H2mη,p
{Bj} (S) almost surely, then for all r > 2 and α ∈ (η + d

4m ,
1
2 −

1
r ) there

exists a unique maximal solution (u(t))t∈[0,%) of (10.2) in V 0,loc
α,r ([0, %) ×

Ω;H2mη,p
{Bj} (S)).

(2) Moreover, if δ > d
2mp and λ > 0 are such that δ + λ < 1

2 −
d

4m and (10.3)

holds for the pair (δ, p), and if u0 ∈ H
m− d2 ,p
{Bj} (S) almost surely, then u has

paths in Cλloc([0, τ);H2mδ,p
{Bj} (S)) almost surely.

Furthermore, if condition (C2) holds as well, then:

(3) If η ∈ ( d
2mp ,

1
2 −

d
4m ) is such that (10.3) holds for the pair (η, p) and if u0 ∈

H2mη,p
{Bj} (S) almost surely, then for all r > 2 and α ∈ (η + d

4m ,
1
2 −

1
r ) there

exists a unique global solution u of (10.2) in V 0
α,r([0, T ]× Ω;H2mη,p

{Bj} (S)).
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(4) Moreover, if δ > d
2mp and λ > 0 are such that δ + λ < 1

2 −
d

4m and (10.3)

holds for the pair (δ, p), and if u0 ∈ H
m− d2 ,p
{Bj} (S) almost surely, then u has

paths in Cλ([0, T ];H2mδ,p
{Bj} (S)) almost surely.

Remark 10.3.

(i) For p ∈ [2,∞) the uniqueness result in (1) and (3) can be simplified. In
that case one obtains a unique solution in

L0(Ω;C([0, T ];H2mη,p
{Bj} (S))) ⊆ V 0

α,r([0, T ]× Ω;H2mη,p
{Bj} (S)).

For this case on could also apply martingale type 2 integration theory from
[3] to obtain the result.

(ii) By the Sobolev embedding theorem one obtains Hölder continuous solutions

in time and space. For instance, assume in (4) that u0 ∈ C
m− d2
{Bj} (S) almost

surely. It follows from

C
m− d2
{Bj} (S) ↪→ Hη,p

{Bj}(S) = [E,D(−Ap)] η
2m

↪→ D((−Ap)
η−ε
2m )

for all p ∈ (1,∞) and η < m − d
2 and ε > 0, that t 7→ S(t)u0 is in

Cλ([0, T ];D((−Ap)δ) for all δ, λ > 0 that satisfy δ + λ < 1
2 −

d
4m . Since

D((−Ap)δ) ↪→ [E,D(−Ap)]δ−ε = H
2m(δ−ε),p
{Bj} (S)

for all p ∈ (1,∞) and ε > 0, by Sobolev embedding we obtain that the
solution u has paths in Cλ([0, T ];C2mδ

B (S)) for all δ, λ > 0 that satisfy

δ + λ < 1
2 −

d
4m .

Proof of Theorem 10.2. Let p ∈ (1,∞) be as in the theorem and take E := Lp(S).
For b ∈ (0, 1) let Eb denote the complex interpolation space [E,D(Ap)]b. Note
that we use the notation Eb for complex interpolation spaces instead of fractional
domain spaces as we did before. This will be more convenient, since we do not
assume that Ap has bounded imaginary powers, and therefore we do not know the
fractional domain spaces explicitly. Recall (cf. [25]) that Ea ↪→ D((−A)b) and that
D((−A)a) ↪→ Eb for all a ∈ (b, 1) for all b ∈ (0, 1).

If b > d
2mp , then by [41, Theorem 4.6.1] we have

[E,D(Ap)]b ↪→ C(S).

Assume now that η ∈ ( d
2mp ,

1
2−

d
4m ). Let F,G : [0, T ]×Ω×Eη → L∞(S) be defined

as

(F (t, ω, x))(s) = f(t, ω, s, x(s)) and (G(t, ω, x))(s) = g(t, ω, s, x(s)).

We show that F and G are well-defined and locally Lipschitz. Fix x, y ∈ Eη and
let

R := max{ess sup
s∈S
|x(s)|, ess sup

s∈S
|y(s)|} <∞.

From the measurability of x, y and f it is clear that s 7→ (F (t, ω, x))(s) and s 7→
(F (t, ω, y))(s) are measurable. By (C1) it follows that for almost all s ∈ S, for all
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t ∈ [0, T ] and ω ∈ Ω we have

|(F (t, ω, x))(s)− (F (t, ω, y))(s)| = |f(t, ω, s, x(s))− f(t, ω, s, y(s))|
≤ LRf |x(s)− y(s)|
≤ LRf ‖x− y‖L∞(S)

.η L
R
f ‖x− y‖Eη .

Also, by the second part of (C1), for almost all s ∈ S, for all t ∈ [0, T ] and ω ∈ Ω
we have

|(F (t, ω, 0))(s)| = |f(t, ω, s, 0)| < sup
t,s,ω
|f(t, ω, s, 0)| <∞.

Combing the above results we see that F is well-defined and locally Lipschitz. In a
similar way one shows that F has linear growth (see (A2)) if (C2) holds. The same
arguments work for G.

Since L∞(S) ↪→ Lp(S) = E we may consider F as an E-valued mapping. It
follows from the Pettis measurability theorem that for all x ∈ Eη, (t, ω) 7→ F (t, ω, x)
is strongly measurable in E and adapted.

To model the term g(t, x, u(t, s)) ∂w(t,s)
∂t , let H := L2(S) and let WH be a cylin-

drical Brownian motion. Define the multiplication operator function Γ : [0, T ] ×
Ω× Eη → L (H) as

(Γ(t, ω, x)h)(s) := (G(t, ω, x))(s)h(s), s ∈ S.

Then Γ is well-defined, because for all t ∈ [0, T ], ω ∈ Ω we have G(t, ω, x) ∈ L∞(S).
Now let θB > θ′B > d

4m be such that θB + η < 1
2 and (10.3) holds for the pair

(θB , 2). Define (−A)−θBB : [0, T ]× Ω× Eη → γ(H,E) as

(−A)−θBB(t, ω, x)h = i(−A)−θBG(t, ω, x)h,

where i : H2mθ′B ,2(S) → Lp(S) is the inclusion operator. This is well-defined,

because (−A)−θB : H → H2mθ′B ,2(S) is a bounded operator and therefore by the
right-ideal property and Corollary 2.2 it follows that

‖i(−A)−θB‖γ(H,E) ≤ ‖(−A)−θB‖
L (L2(S),H2mθ′

B
,2(S))

‖i‖
γ(H2mθ′

B
,2(S),Lp(S))

<∞.

Moreover, B is locally Lipschitz. Indeed, fix x, y ∈ Eη and let

R := max{ess sup
s∈S
|x(s)|, ess sup

s∈S
|y(s)|} <∞.

It follows from the right-ideal property that

‖i(−A)θB (B(t, ω, x)−B(t, ω, y))‖γ(H,E)

≤ ‖i(−A)−θB‖γ(H,E)‖Γ(t, ω, x)− Γ(t, ω, y)‖L (H)

≤ ‖i(−A)θB‖γ(H,E)‖G(t, ω, x)−G(t, ω, y)‖L∞(S)

≤ ‖i(−A)θB‖γ(H,E)L
R
g ‖x− y‖L∞(S)

.a,p ‖i(−A)θB‖γ(H,E)L
R
g ‖x− y‖Eη .

In a similarly way one shows that B has linear growth. Notice that B is H-strongly
measurable and adapted by the Pettis measurability theorem.

If p ∈ [2,∞), then E has type 2 and it follows from Lemma 5.2 that (−A)−θBB
is locally L2

γ-Lipschitz and B has linear growth in the sense of (A3) if (C2) holds.
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In case p ∈ (1, 2) the above result holds as well. This may be deduced from the
previous case. Indeed, for each n define (−A)−θBBn : [0, T ] × Ω × Eη → γ(H,E)
as (−A)−θBBn(x) = (−A)−θBB(x) for all ‖x‖Eη ≤ n and (−A)−θBBn(x) =

(−A)−θBBn
(
nx
‖x‖
)

otherwise. Define (−A)−θBB∞n : [0, T ]× Ω× L∞(S)→ γ(H,H)

as (−A)−θBB∞n (x) = (−A)−θBBn(x). Replacing E with L2(S) in the above cal-
culation it follows that B∞n is a Lipschitz function uniformly on [0, T ] × Ω. Since
H has type 2, (−A)−θBB∞n is L2

γ-Lipschitz. Fix a finite Borel measure µ on (0, T )

and fix φ1, φ2 ∈ L2
γ((0, T ), µ;Eη). Since H ↪→ E continuously, it follows that

‖(−A)−θB (Bn(t, ω, φ1)−Bn(t, ω, φ2))‖γ(L2((0,T ),µ;H),E)

≤ C‖(−A)−θB (B∞n (t, ω, φ1)−B∞n (t, ω, φ2))‖γ(L2((0,T ),µ;H),H)

≤ C‖φ1 − φ2‖L2((0,T ),µ;L∞(S))

≤ C‖φ1 − φ2‖L2((0,T ),µ;Eη),

where C also depends on n. In a similarly way one shows that B has linear growth
in the sense of (A3) if g has linear growth.

If u0 ∈ H2mβ,p
{Bj} (S) almost surely, where β ∈ ( d

2mp ,
1
2 −

d
4m ] is such that (10.3)

holds for the pair (β, p), then ω 7→ u0(·, ω) ∈ H2mβ,p
{Bj} (S) = Eβ is strongly F0-

measurable. This follows from the Pettis measurability theorem.
(1): It follows from Theorem 8.1 with η, θB as above and with η + θB < 1

2 and
θF = 0, τ = p ∧ 2 that there is a unique maximal local mild solution (U(t))t∈[0,%)

in V 0,loc
α,r ([0, %)× Ω;Eη) for all α > 0 and r > 2 satisfying η + θB < α < 1

2 −
1
r . In

particular U has almost all paths in C([0, %), Eη). Now take u(t, ω, s) := U(t, ω)(s)
to finish the proof of (1).

(2): Let δ = η > d
2mp and λ > 0 be such that λ+ δ < 1

2 −
d

4m . Choose θB > d
4m

such that λ+δ < 1
2−θB . It follows from Theorem 8.1 that almost surely, U−Su0 ∈

Cλloc([0, %(ω));H2mδ,p
{Bj} (S)). First consider the case that ( 1

2 −
d

4m , p) satisfies (10.3).

Since u0 ∈ H
m− d2 ,p
{Bj} (S) = E 1

2−
d

4m
⊆ Eδ almost surely and λ+ δ < 1

2 −
d

4m we have

Su0 ∈ Cλ([0, T ];H2mδ,p
{Bj} (S)) almost surely. Therefore, almost all paths of U are in

Cλloc([0, %(ω));H2mδ,p
{Bj} (S)). In the case ( 1

2 −
d

4m , p) does not satisfy (10.3) one can

redo above argument with 1
2 −

d
4m − ε for ε > 0 small. This proves (2).

(3), (4): This follows from Theorems 8.1 and parts (3), (4) of 8.1. �

Remark 10.4. The above approach also works for systems of equations.

Laplacian in Lp. Let S be a open subset (not necessarily bounded) of Rd. Consider
the following perturbed heat equation with Dirichlet boundary values:

∂u

∂t
(t, s) = ∆u(t, s) + f(t, s, u(t, s))

+
∑
n>1

bn(t, s, u(t, s))
∂Wn(t)

∂t
, s ∈ S, t ∈ (0, T ],

u(t, s) = 0, s ∈ ∂S, t ∈ (0, T ],

u(0, s) = u0(s), s ∈ S.
The functions f, bn : [0, T ]×Ω×S×R→ R are jointly measurable, and adapted in
the sense that for each t ∈ [0, T ], f(t, ·) and bn(t, ·) are Ft⊗BS ⊗BR-measurable.
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We assume that (Wn)n>1 is a sequence of independent standard Brownian motions
on Ω and u0 : S×Ω→ R is an BS⊗F0-measurable initial value condition. We say
that u : [0, T ] × Ω × S → R is a solution of (10.4) if the corresponding functional
analytic model (SCP) has a mild solution U and u(t, s, ω) = U(t, ω)(s).

Let p ∈ [1,∞) be fixed and let E := Lp(S). It is well-known that the Dirichlet
Laplacian ∆p generates a uniformly exponentially stable and analytic C0-semigroup
(Sp(t))t>0 on Lp(S), and under a regularity assumption on ∂S one can identify

D(∆p) as W 2,p(S) ∩W 1,p
0 (S). Consider the following p-dependent condition:

(C) There exist constants Lf and Lbn such that

|f(t, ω, s, x)− f(t, ω, s, y)| ≤ Lf |x− y|,
|bn(t, ω, s, x)− bn(t, ω, s, y)| ≤ Lbn |x− y|,

for all t ∈ [0, T ], ω ∈ Ω, s ∈ S, and x, y ∈ R. Furthermore, f satisfies the
boundedness condition

sup ‖f(t, ω, ·, 0)‖Lp(S) <∞,

where the supremum is taken over all t ∈ [0, T ] and ω ∈ Ω, and the bn
satisfy the following boundedness condition: for all finite measures µ on
(0, T ),

sup
∥∥∥(∫ T

0

∑
n>1

|bn(t, ω, ·, 0)|2 dµ(t)
) 1

2
∥∥∥
Lp(S)

<∞,

where the supremum is taken over all ω ∈ Ω.

Theorem 10.5. Let S be an open subset of Rd and let p ∈ [1,∞). Assume that
condition (C) holds with

∑
n>1 L

2
bn
<∞. If u0 ∈ Lp(S) almost surely, then for all

α > 0 and r > 2 such that α < 1
2 −

1
r , the problem (10.4) has a unique solution

U ∈ V 0
α,r([0, T ]×Ω;Lp(S)). Moreover, for all λ > 0 and δ > 0 such that λ+ δ < 1

2

there is a version of U such that almost surely, t 7→ U(t) − Sp(t)u0 belongs to
Cλ([0, T ]; [Lp(S),D(∆p)]δ).

Remark 10.6. Under regularity conditions on ∂S and for p ∈ (1,∞) one has

[Lp(S), D(∆p)]δ =
{
x ∈ H2δ,p(S) : x = 0 on ∂S if 2δ − 1

p
> 0
}

provided δ ∈ (0, 1) is such that 2δ − 1
p 6= 0.

Proof. We check the conditions of Theorem 7.1 (for p = 1 we use the extensions of
our results to UMD− spaces described in Section 9, keeping in mind that L1-spaces
have this property). It was already noted that (A1) is fulfilled. Let E := Lp(S) and
define F : E → E as F (t, x)(s) := f(t, s, x(s)). One easily checks that F satisfies
(A2) with θF = η = 0. Let H := l2 with standard unit basis (en)n>1, and let
B : [0, T ] × Ω × E → L (H,E) be defined as (B(t, ω, x)en)(s) := bn(t, ω, s, x(s)).
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Then for all finite measures µ on (0, T ) and all φ1, φ2 ∈ γ(L2((0, T ), µ;H), E),

‖B(·, φ1)−B(·, φ2)‖γ(L2((0,T ),µ;H),E)

hp
∥∥∥(∫ T

0

∑
n>1

|bn(t, ·, φ1(t)(·))− bn(t, ·, φ2(t)(·))|2 dµ(t)
) 1

2
∥∥∥
E

≤
∥∥∥(∫ T

0

∑
n>1

L2
bn |φ1(t)(·)− φ2(t)(·)|2 dµ(t)

) 1
2
∥∥∥
E

hp L‖φ1 − φ2‖γ(L2((0,T ),µ),E),

where L = (
∑
n>1 L

2
bn

)
1
2 . Moreover,

‖B(·, 0)‖γ(L2(0,T ),µ;H),E)) hp
∥∥∥(∫ T

0

∑
n>1

|bn(t, ·, 0)|2 dµ(t)
) 1

2
∥∥∥
E
<∞.

From these two estimates one can obtain (A3). �

Appendix A. Measurability of stochastic convolutions

In this appendix we study progressive measurability properties of processes of
the form

t 7→
∫ t

0

Φ(t, s) dWH(s)

where Φ is a two-parameter process with values in L (H,E).

Proposition A.1. Let E be a UMD space. Assume that Φ : R+ × R+ × Ω →
L (H,E) is H-strongly measurable and for each t ∈ R+, Φ(t, ·) is adapted and has
paths in γ(L2(R+;H), E) almost surely. Then the process ζ : R+ × Ω→ E,

ζ(t) =

∫ t

0

Φ(t, s) dWH(s),

has a version which is adapted and strongly measurable.

Proof. It suffices to show that ζ has a strongly measurable version ζ̃, the adapt-
edness of ζ̃ being clear. Below we use strong measurability for metric spaces as in
[42].

Let L0
F(Ω; γ(L2(R+;H), E)) denote the closure of all adapted strongly measur-

able processes which are almost surely in γ(L2(R+;H), E). Note that by [31] the
stochastic integral mapping extends to L0

F(Ω; γ(L2(R+;H), E)).
Let G ⊆ R+ × Ω be the set of all (t, ω) such that Φ(t, ·, ω) ∈ γ(L2(R+;H), E).

Since Φ is H-strongly measurable, we have G ∈ BR+
⊗ A . Moreover, letting

Gt = {ω ∈ Ω : (t, ω) ∈ G} for t ∈ R+, we have P(Gt) = 1 and therefore Gt ∈
F0. Define the H-strongly measurable function Ψ : R+ × R+ × Ω → B(H,E)
as Ψ(t, s, ω) := Φ(t, s, ω)1[0,t](s)1G(t, ω). It follows from [31, Remark 2.8] that

the map R+ × Ω 3 (t, ω) → Ψ(t, ·, ω) ∈ γ(L2(R+;H), E) is strongly measurable.
Hence, the map R+ 3 t→ Ψ(t, ·) ∈ L0(Ω; γ(L2(R+;H), E)) is strongly measurable.
Since it takes values in L0

F(Ω; γ(L2(R+;H), E)) it follows from an approximation
argument that it is strongly measurable as an L0

F(Ω; γ(L2(R+;H), E))-valued map.
Since the elements which are represented by an adapted step process are dense in
L0
F(Ω; γ(L2(R+;H), E)), it follows from [42, Proposition 1.9] that we can find a
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sequence of processes (Ψn)n>1, where each Ψn : R+ → L0
F(Ω; γ(L2(R+;H), E)) is

a countably valued simple function of the form

Ψn =
∑
k>1

1Bnk Φnk , with Bnk ∈ BR+ and Φnk ∈ L0
F(Ω; γ(L2(R+;H), E)),

such that for all t ∈ R+ we have ‖Ψ(t) − Ψn(t)‖L0(Ω;γ(L2(R+;H),E)) 6 2−n, where
with a slight abuse of notation we write

‖ξ‖L0(Ω;F ) := E(‖ξ‖F ∧ 1)

keeping in mind that this is not a norm. Notice that by the Chebyshev inequality,
for a random variable ξ : Ω → F , where F is a normed space, and ε ∈ (0, 1], we
have

P(‖ξ‖F > ε) = P((‖ξ‖F ∧ 1) > ε) 6 ε−1‖ξ‖L0(Ω;F ).

It follows from [31, Theorems 5.5 and 5.9] that for all t ∈ R+, for all n > 1 and for
all ε, δ ∈ (0, 1],

P
(∥∥∥∫

R+

Ψ(t, s)−Ψn(t, s) dWH(s)
∥∥∥ > ε

)
6
Cδ2

ε2
+

1

δ2n
.

Taking ε ∈ (0, 1] arbitrary and δ = 1
n , it follows from the Borel-Cantelli lemma

that for all t ∈ R+,

P
( ⋂
N>1

⋃
n>N

{∥∥∥∫
R+

Ψ(t, s)−Ψn(t, s) dWH(s)
∥∥∥ > ε

})
= 0.

Since ε ∈ (0, 1], was arbitrary, we may conclude that for all t ∈ R+, almost surely,

ζ(t, ·) =

∫
R+

Ψ(t, s) dWH(s) = lim
n→∞

∫
R+

Ψn(t, s) dWH(s).

Clearly, ∫
R+

Ψn(·, s) dWH(s) =
∑
k>1

1Bnk (·)
∫
R+

Φnk (s) dWH(s)

has a strongly BR+
⊗ F∞-measurable version, say ζn : R+ × Ω → E. Let C ⊆

R+ ×Ω be the set of all points (t, ω) such that (ζn(t, ω))n>1 converges in E. Then

C ∈ BR+ ⊗F∞ and we may define the process ζ̃ as ζ̃ = limn→∞ ζn1C . It follows

that ζ̃ is strongly BR+
⊗F∞-measurable and for all t ∈ R+, almost surely, ζ̃(t, ·) =

ζ(t, ·). �
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