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∥∥∥∥
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0. Introduction

It is well-known that the asymptotic behaviour of a C0-semigroup of linear oper-
ators T = {T (t)}t≥0 cannot be adequately described by the location of the spectrum
σ(A) of its infinitesimal generator A. If we define the growth bound ω0(T) as the
infimum of all ω ∈ IR for which a constant M > 0 exists such that

‖T (t)‖ ≤Meωt, ∀t ≥ 0,

and the spectral bound s(A) by

s(A) = sup{Reλ : λ ∈ σ(A)},
1 Supported by an Individual Fellowship in the Human Capital and Mobility pro-

gramme of the European Communities
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one has the inequality s(A) ≤ ω0(T), but strict inequality may occur. In their re-
cent paper [LM], Latushkin and Montgomery-Smith proved the following striking
fact: If one tensors an arbitrary C0-semigroup T on X with the translation group
on Lp(IR), the growth bound and the spectral bound of the resulting C0-semigroup Sp
on Lp(IR, X) coincide, and are equal to the growth bound of T. In fact, they proved
the stronger result that the spectral mapping theorem holds for Sp. Independently, for
p = 2 and X Hilbert, this result was obtained by Rau [Ra1]. These results also hold for
tensoring with the rotation group on Lp(Γ), where Γ is the unit circle. Furthermore,
the analogous results hold for C0(IR) and C(Γ).

These results drew much attention and were extended into various directions; cf.
[Ra2], [Ra3], [RS1], [Rs2], and the references given there. Also, L. Weis [W] recently
announced a proof of the stability conjecture for positive C0-semigroups on Lp which
is based on them.

The present paper was inspired by the Latushkin-Montgomery-Smith results in
the following way. Explicitly, Sp is given by

Sp(t)f(s) = T (t)f(s− t), s ∈ IR, t ≥ 0, f ∈ Lp(IR, X).

Integrating this over [0, s] with respect to t, the resulting integral can be interpreted
as the convolution of T with the restriction f |IR+

. Here, and in the rest of the pa-
per, IR+ = [0,∞). This observation motivates two questions: Firstly, do versions
of the Latushkin-Montgomery-Smith theorem exist for the translation semigroups on
Lp(IR+) and C0(IR+), and secondly, can one study the asymptotic behaviour of T by
looking at its convolution with functions in Lp(IR+, X) or C0(IR+, X)? In this paper,
we answer the second question affirmatively as follows. For a function f ∈ L1

loc(IR+, X)
we define the convolution T ∗ f by

(T ∗ f)(s) :=

∫ s

0

T (t)f(s− t) dt, s ≥ 0.

Theorem 0.1. Let T be a C0-semigroup on a Banach space X and let 1 ≤ p <∞.
Then the following assertions are equivalent:
(i) ω0(T) < 0;
(ii) T ∗ f ∈ Lp(IR+, X) for all f ∈ Lp(IR+, X);

(iii) T ∗ f ∈ C0(IR+, X) for all f ∈ C0(IR+, X).

Loosely speaking, this means that ω0(T) < 0 if and only if T acts on one of
the spaces Lp(IR+, X) or C0(IR+, X) by convolution. The proof, which is based on a
partial answer to the first question, is given in Section 1. In Section 2, we apply the
theorem to show that ω0(T) < 0 if and only if

sup
s>0

∥∥∥∥
∫ s

0

T (t)f(t) dt

∥∥∥∥ <∞, ∀f ∈ AP (IR+, X),

where AP (IR+, X) is the space of X-valued almost-periodic functions. In fact, we show
that the same result is true for a more general class of spaces of X-valued functions
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which contains C0(IR+, X) and AP (IR+, X). Also, we improve (iii) of Theorem 0.1 by
showing that ω0(T) < 0 if T ∗ f ∈ L∞(IR+, X) for all f in one of the spaces in this
class.

In Section 3, we discuss an extension of Theorem 0.1 to the action of T by
convolution on vector-valued Banach function spaces over IR+.

In Section 4, we deal with the weak analogue of Theorem 0.1. It is shown that the
condition that 〈x∗,T ∗ f〉 ∈ L1(IR+) for all x∗ ∈ X∗ and f ∈ L1(IR+, X) is equivalent
to ω0(T) < 0 in Hilbert spaces. We also show that this need not be true in arbitrary
Banach spaces.

1. Proof of Theorem 0.1

Let T be a C0-semigroup on a Banach space X. Let 1 ≤ p <∞. We define a C0-
semigroup Sp on Lp(IR+, X) by tensoring T with the semigroup of right translations
on Lp(IR+):

(Sp(t))f(s) =

{
T (t)f(s− t), s− t ≥ 0;
0, else.

(1.1)

We denote by Bp its infinitesimal generator. Similarly, by using the right translation
semigroup on C00(IR+), the subspace of all f ∈ C0(IR+) such that f(0) = 0, we obtain
a C0-semigroup S∞ on the corresponding X-valued space C00(IR+, X). Its generator
will be denoted by B∞.

For an operator T , we denote by Aσ(T ) the approximate point spectrum of T .

Lemma 1.1. If eiθ ∈ Aσ(T (1)) for some θ ∈ [0, 2π), then 0 ∈ Aσ(Bp), 1 ≤ p ≤ ∞.

Proof: The result is essentially contained in [RS2]. For reasons of self-containedness,
and since the setting in [RS2] is more general and slightly different, we give the proof
in some detail. First assume 1 ≤ p <∞. Since θ ∈ Aσ(T (1)), for each n = 1, 2, ... one
can find a norm one vector xn ∈ X such that

‖T (k)xn − eikθxn‖ ≤
1

2
, k = 1, ..., n.

In particular, 1
2 ≤ ‖T (k)xn‖ ≤ 2 for all n and k = 1, ..., n. Using the local boundedness

of T, it is easy to see that there are constants 0 < α ≤ β <∞ such that

α ≤ ‖T (t)xn‖ ≤ β, t ∈ [0, n]; n = 1, 2, ...

For each n, let an : IR+ → [0, 1] be a continuously differentiable function such that
an = 0 on [0, 1

8 ] ∪ [n− 1
8 ,∞), an = 1 on [ 1

4 , n − 1
4 ], and a′n(t) ≤ 10 for all t ≥ 0 and

n = 1, 2, .... Let gn := c−1
n an(t)T (t)xn, where

cn :=

(∫ n

0

‖T (t)xn‖p dt
) 1
p

.
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Then, using that an = 1 on [ 1
4 , n− 1

4 ], we have

α

2
1
p β
≤ α(n− 1

2)
1
p

βn
1
p

≤ ‖gn‖Lp(IR+,X) ≤ 1; n = 1, 2, ...

Also, by direct calculation one checks that

Bpgn(t) = −c−1
n a′n(t)T (t)xn, t ≥ 0.

Since |a′n| ≤ 10 on [ 1
8 ,

1
4 ] ∪ [n− 1

4 , n− 1
8 ] and 0 elsewhere, we have

‖BEgn‖Lp(IR+,X) ≤
10β · 8− 1

p + 10β · 8− 1
p

αn
1
p

; n = 1, 2, ...

Therefore limn→∞ ‖Bpgn‖Lp(IR+,X) = 0, which shows that
(
‖gn‖−1

Lp(IR+,X) · gn
)
n≥1

is

an approximate eigenvector for Bp with approximate eigenvalue 0.
Next, we show how to modify this argument for p =∞. In this case, we choose a

C1-function an that vanishes on [0, 1
4
] ∪ [n− 1

4
,∞), and further satisfies an( 1

2
n) = 1,

‖an‖∞ = 1, and ‖a′n‖∞ ≤ 5n−1. Then gn := an(t)T (t)xn, n = 1, 2, ..., defines an
approximate eigenvector for B∞ with approximate eigenvalue 0. ////

Lemma 1.2. With the above notations, for all 1 ≤ p ≤ ∞ we have s(Bp) = ω0(Sp) =
ω0(T).

Proof: Clearly, s(Bp) ≤ ω0(Sp) ≤ ω0(T). It remains to prove that ω0(T) ≤ s(Bp). By
rescaling, we may assume that ω0(T) = 0, and it suffices to show that this implies that
s(Bp) ≥ 0. Since r(T (1)) = eω0(T) = 1, there is a θ ∈ [0, 2π) such that eiθ ∈ σ(T (1)),
and in fact, eiθ ∈ Aσ(T (1)) since the boundary spectrum is always contained in the
approximate point spectrum. By Lemma 1.1, this implies that 0 ∈ σ(Bp). Therefore,
s(Bp) ≥ 0 and the proof is complete. ////

Theorem 1.3. Let T be a C0-semigroup on a Banach space X and let 1 ≤ p <∞.
Then the following assertions are equivalent:
(i) ω0(T) < 0;
(ii) T ∗ f ∈ Lp(IR+, X) for all f ∈ Lp(IR+, X);

(iii) T ∗ f ∈ C0(IR+, X) for all f ∈ C0(IR+, X).

Proof: First we prove (ii)⇒(i). By Lemma 1.2, we have to prove that s(Bp) < 0. For
this, it is enough to prove that the resolvent of Bp exists and is uniformly bounded in
the right half plane. Indeed, once this is established, a standard resolvent expansion
argument shows that the resolvent exists and is uniformly bounded in a half plane
{Rez > −ε} for some ε > 0; cf. [Hu] or [NSW]. Thus, s(Bp) ≤ −ε.

We start by observing that there is a constant M > 0 such that ‖T∗f‖Lp(IR+,X) ≤
M‖f‖Lp(IR+,X) for all f ∈ Lp(IR+, X). To see this, we claim that the map f 7→ T ∗ f
is closed as a map of Lp(IR+, X) into itself. Indeed, assume fn → f and T ∗ fn → g in
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Lp(IR+, X). Then it is immediate that (T ∗ fn)(s)→ (T ∗ f)(s) for all s > 0. On the
other hand, since a norm convergent sequence in Lp(IR+, X) contains a subsequence
that converges pointwise a.e., it follows that (T ∗ fnk)(s) → g(s) for some sequence
(nk) and almost all s. Therefore, T ∗ f = g, as was to be shown. The existence of the
constant M now follows from the closed graph theorem.

For T0 > 0, we define πT0
: Lp(IR+, X) → Lp([0, T0], X) by restriction: πT0

f =
f |[0,T0]. For T > 0, T0 > 0 and f ∈ Lp(IR+, X), we define the entire Lp(IR+, X)-valued
function FT,f and the entire Lp([0, T0], X)-valued function FT,T0,f by

FT,f (z) =

∫ T

0

e−ztSp(t)f dt,

FT,T0,f (z) = πT0
(FT,f (z)).

For each z, the map f 7→ FT,T0,f (z) is bounded as a map Lp(IR+, X)→ Lp([0, T0], X).
A trivial estimate shows that each of the functions z 7→ FT,f (z) and z 7→ FT,T0,f (z) is
bounded in each vertical strip {0 < Rez < c}, c > 0.

For λ ∈ IR and f ∈ Lp(IR+, X), let fλ(s) := eiλsf(s), s ≥ 0. The restriction of
Sp to the invariant subspace C00(IR+, X) ∩ Lp(IR+, X) extends to the C0-semigroup
S∞ on C00(IR+, X). Since point evaluations on the latter space are continuous, for
f ∈ C00(IR+, X) ∩ Lp(IR+, X), T ≥ T0, and 0 ≤ s ≤ T0 we have

(∫ T

0

e−iλtSp(t)f dt

)
(s) =

∫ T

0

e−iλtSp(t)f(s) dt

=

∫ s

0

e−iλtT (t)f(s− t) dt

= e−iλs
∫ s

0

T (t)fλ(s− t) dt.

Therefore, for T ≥ T0,

‖FT,T0,f (iλ)‖Lp([0,T0],X) =

∥∥∥∥∥πT0

(
e−iλ(·)

∫ (·)

0

T (t)fλ(· − t) dt
)∥∥∥∥∥

Lp([0,T0],X)

≤ ‖πT0
‖ · ‖T ∗ fλ‖Lp(IR+,X) ≤ ‖T ∗ fλ‖Lp(IR+,X)

≤M‖fλ‖Lp(IR+,X) = M‖f‖Lp(IR+,X).

Since C00(IR+, X) ∩ Lp(IR+, X) is dense in Lp(IR+, X), it follows that

‖FT,T0,f (iλ)‖Lp([0,T0],X) ≤M‖f‖Lp(IR+,X), ∀λ ∈ IR, T ≥ T0, f ∈ Lp(IR+, X).
(1.2)

Also, if we choose constants N > 0 and ω ≥ 0 such that ‖Sp(t)‖ ≤ Neωt for all t ≥ 0,
then for Rez = ω + 1 we have

‖FT,T0,f (z)‖Lp([0,T0],X) ≤ ‖πT0
‖
∫ T

0

e−(ω+1)tNeωt‖f‖Lp(IR+,X) dt

≤ N(1− e−T )‖f‖Lp(IR+,X) ≤ N‖f‖Lp(IR+,X).
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It follows that for each f ∈ Lp(IR+, X) and T0 > 0 fixed, the functions z 7→ FT,T0,f (z)
are bounded on the line Rez = ω + 1, uniformly with respect to T > 0, with bound
N‖f‖Lp(IR+,X). Therefore, by (1.2) and the Phragmen-Lindelöf theorem [R, Thm.
12.8], for each f and T0 fixed we have

‖FT,T0,f (z)‖Lp([0,T0],X) ≤ max{M,N}‖f‖Lp(IR+,X), ∀0 < Rez < ω + 1, T ≥ T0.
(1.3)

Also, for Rez > ω we have

lim
T→∞

FT,T0,f (z) = πT0
R(z, Bp)f.

Combining these facts, it follows from Vitali’s theorem [HPh, Thm 3.14.1] that for
each f ∈ Lp(IR+, X) and T0 > 0 the function z 7→ πT0

R(z, Bp)f has an analytic
continuation F∞,T0,f to {0 < Rez < ω + 1}, and that for 0 < Rez < ω + 1,

F∞,T0,f (z) = lim
T→∞

FT,T0,f (z)

uniformly on compacta. Moreover, by (1.3),

‖F∞,T0,f (z)‖Lp([0,T0],X) ≤ max{M,N}‖f‖Lp(IR+,X), ∀0 < Rez < ω + 1, T0 > 0.
(1.4)

By regarding Lp([0, T0], X) as a closed subspace of Lp(IR+, X), for all ω < Rez < ω+1
we have

lim
T0→∞

F∞,T0,f (z) = lim
T0→∞

πT0
R(z, Bp)f = R(z, Bp)f, (1.5)

the convergence being with respect to the norm of Lp(IR+, X). Again by Vitali’s
theorem, now using (1.4), it follows that R(z, Bp)f admits a holomorphic extension
F∞,∞,f to {0 < Rez < ω + 1}, and that for all 0 < Rez < ω + 1,

lim
T0→∞

lim
T→∞

FT,T0,f (z) = lim
T0→∞

F∞,T0,f (z) = F∞,∞,f (z) (1.6)

uniformly on compacta. By an easy analytic continuation argument, we must have
{0 < Rez < ω + 1} ⊂ %(Bp) and F∞,∞,f (z) = R(z, Bp)f .

Therefore, by (1.4), (1.6), and the uniform boundedness theorem, it follows that
R(z, Bp) is uniformly bounded in {0 < Rez < ω + 1}. By the Hille-Yosida theorem,
R(z, Bp) is also uniformly bounded in {Rez ≥ ω + 1}. Thus, R(z, Bp) exists and is
uniformly bounded in {Rez > 0}. This completes the proof of (ii)⇒(i).

Next, we prove (i) ⇒(ii). Assume ω0(T) < 0, and choose µ > 0 and M > 0 such
that ‖T (t)‖ ≤Me−µt for all t ≥ 0. Let 1 ≤ p <∞ be arbitrary and fixed. By applying
Jensen’s inequality [R, Thm. 3.3] to the probability measure µ(1− e−µs)−1e−µt dt on
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[0, s], we have, noting that µ−(p−1)(1− e−µs)p−1 ≤ µ−(p−1) for all s > 0,

∫ ∞

0

∥∥∥
∫ s

0

T (t)f(s− t) dt
∥∥∥
p

ds ≤
∫ ∞

0

(∫ s

0

Me−µt‖f(s− t)‖ dt
)p

ds

≤Mp

∫ ∞

0

µ−p(1− e−µs)p
∫ s

0

‖f(s− t)‖pµ(1− e−µs)−1e−µt dt ds

≤Mpµ−(p−1)

∫ ∞

0

∫ s

0

e−µt‖f(s− t)‖p dt ds

= Mpµ−(p−1)

∫ ∞

0

e−µt
∫ ∞

t

‖f(s− t)‖p ds dt

≤Mpµ−p‖f‖p.

This proves (i)⇒(ii).
The implication (i)⇒(iii) is proved as follows. Choose M > 0 and µ > 0 such that

‖T (t)‖ ≤ Me−µt for all t ≥ 0. Fix ε > 0 and f ∈ C0(IR+, X) arbitrary. Choose N so
large that se−µs ≤ ε and ‖f(s)‖ ≤ ε‖f‖C0(IR+,X) for all s ≥ N . Then, for s ≥ 2N ,

∥∥∥∥
∫ s

0

T (t)f(s− t) dt
∥∥∥∥ ≤

∫ s

s
2

Me−µ
s
2 ‖f‖C0(IR+,X) dt+

∫ s
2

0

Me−µtε‖f‖C0(IR+,X) dt

≤M(1 + µ−1)ε‖f‖C0(IR+,X).

Since T ∗ f also is continuous, we obtain the desired conclusion.
It remains to prove (iii)⇒(i). We do this by modifying the proof of (ii)⇒(i). First

we note that there exists a constant M > 0 such that

‖T ∗ f‖C0(IR+,X) ≤M‖f‖C0(IR+,X) ∀f ∈ C0(IR+, X).

Indeed, this follows from applying the uniform boundedness theorem to the operators
Ts : f 7→

∫ s
0
T (t)f(s− t) dt.

Let f ∈ C00(IR+, X) arbitrary. Since T ∗ f ∈ C0(IR+, X) by assumption and
(T ∗ f)(0) = 0, it follows that T acts boundedly on C00(IR+, X) by convolution, with
norm at most M .

Let C00([0, T0], X) be the closed subspace of C00(IR+, X) consisting of all functions
vanishing on [T0,∞). For each T0 ≥ 1, define the piecewise linear function g on IR+

by

gT0
(t) =

{
1, 0 ≤ t ≤ T0 − 1;
T0 − t, T0 − 1 ≤ t ≤ T0;
0, else

and the operator ΠT0
: C00(IR+, X)→ C00([0, T0], X) by

(ΠT0
f)(t) = gT0

(t)f(t), 0 ≤ t ≤ T0.

Note that, for any function f ∈ C00(IR+, X), ‖ΠT0
f‖C00([0,T0],X) ≤ ‖f‖C00(IR+,X).

With πT0
replaced by ΠT0

, the proof of now proceeds along the lines of (ii)⇒(i).
////
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The reason for introducing the operators ΠT0
is as follows. If we simply truncate

a function in C00(IR+, X) with πT0
, the resulting function need not define an element

of C00([0, T0], X), so that we cannot perform the limiting operation (1.5). With the
operator ΠT0

, this poses no problems.
In the next section, we will improve part of Theorem 1.3 by showing that ω0(T) <

0 if (and only if) T ∗ f is merely bounded for all f ∈ C0(IR+, X).

2. Applications

The main result of this section is an application of Theorem 1.3 for the case
of C0(IR+, X). We need the following definitions in order to state the result. Let
BUC(IR+, X) denote the space of all X-valued bounded uniformly continuous func-
tions on IR+. A linear subspace E of BUC(IR+, X) will be called locally dense in
BUC(IR+, X) if for every ε > 0, every bounded closed interval I ⊂ IR+, and every
f ∈ C(I) there exists a function fε,I ∈ E such that

sup
t∈I
‖f(t)− fε,I(t)‖ ≤ ε.

If, in addition, there is a constant K > 0, independent of I and ε, such that for
every f ∈ C(I) the function fε,I can be chosen in such a way that ‖fε,I‖BUC(IR+,X) ≤
K‖f‖C(I), we say that E is boundedly locally dense in BUC(IR+, X).

Theorem 2.1. Let T be a C0-semigroup a Banach space X and let E be a closed,
boundedly locally dense subspace of BUC(IR+, X). Then the following assertions are
equivalent:
(i) ω0(T) < 0;

(ii) sup
s>0

∥∥∥∥
∫ s

0

T (t)g(t) dt

∥∥∥∥ <∞ for all g ∈ E.

Proof: The implication (i)⇒(ii) is trivial. We will prove (ii)⇒(i). By the uniform
boundedness theorem, there is a constant C > 0 such that

sup
s>0

∥∥∥∥
∫ s

0

T (t)g(t) dt

∥∥∥∥ ≤ C‖g‖BUC(IR+,X), ∀g ∈ E. (2.1)

For a given f ∈ C0(IR+, X) and s > 0, let Ms = sup0≤t≤s ‖T (t)‖ and let fs ∈ E be
any function such that

sup
0≤t≤s

‖f(s− t)− fs(t)‖ ≤
1

sMs
‖f‖C0(IR+,X),

and
‖fs‖BUC(IR+,X) ≤ K‖f‖C0(IR+,X).
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Such an fs exists by the definition of a boundedly locally dense subspace; K is the
constant from the definition. Then, by (2.1),

‖(T ∗ f)(s)‖ =

∥∥∥∥
∫ s

0

T (t) (f(s− t)− fs(t) + fs(t)) dt

∥∥∥∥

≤ ‖f‖C0(IR+,X) +

∥∥∥∥
∫ s

0

T (t)fs(t) dt

∥∥∥∥
≤ ‖f‖C0(IR+,X) + C‖fs‖BUC(IR+,X) ≤ (1 + CK)‖f‖C0(IR+,X).

(2.2)

It follows that T ∗ f is a bounded continuous function. If we can prove that

lim
s→∞

∫ s

0

T (t)f(s− t) dt = 0,

it follows that convolution with T maps C0(IR+, X) into C0(IR+, X). Then we can
apply Theorem 1.3 to obtain that ω0(T) < 0.

Fix ε > 0 arbitrary and choose N so large that ‖f(s)‖ ≤ (1 + CK)−1ε for all
s ≥ N . Write f = f0 + f1, where f0 ∈ C0(IR+, X) is chosen in such a way that
f0(s) = f(s) for all s ≥ N and ‖f0‖C0(IR+,X) ≤ (1 + CK)−1ε. Note that the support
of f1 is contained in the interval [0, N ]. By (2.2), for all s ≥ 0 we have

∥∥∥∥
∫ s

0

T (t)f0(s− t) dt
∥∥∥∥ ≤ (1 + CK)‖f0‖C0(IR+,X) ≤ ε.

It follows that it is sufficient to prove that

lim
s→∞

T (s−N)

(∫ N

0

T (t)f1(N − t) dt
)

= lim
s→∞

∫ s

0

T (t)f1(s− t) dt = 0. (2.3)

Since limλ→∞ λ2R(λ,A)2f1(·) → f1(·) uniformly on [0, N ], and hence on all of IR+,
(2.2) shows that it is even sufficient to prove that

lim
s→∞

T (s−N)

(∫ N

0

T (t)λ2R(λ,A)2f1(N − t) dt
)

= 0 (2.4)

for all λ sufficiently large. Note that, for each such λ,

∫ N

0

T (t)λ2R(λ,A)2f1(N − t) dt ∈ D(A2). (2.5)

In order to prove (2.4), we claim that the resolvent of A exists and is uniformly
bounded in the right halfplane.

To prove this, fix µ > 0, g ∈ E, and s > 0 arbitrary. Choose a function gµ,s ∈ E
such that

sup
0≤t≤s

‖gµ,s(t)− e−µtg(t)‖ ≤ 1

sMs
‖g‖BUC(IR+,X)
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and ‖gµ,s‖BUC(IR+,X) ≤ K‖g‖BUC(IR+,X). Then, by (2.1),

∥∥∥∥
∫ s

0

e−µtT (t)g(t) dt

∥∥∥∥ ≤ ‖g‖BUC(IR+,X) + C‖gµ,s‖BUC(IR+,X)

≤ (1 + CK)‖g‖BUC(IR+,X).

(2.6)

Next, let ν ∈ IR and x ∈ X be arbitrary and fixed. Let gν,x,s ∈ E be a function such
that

sup
0≤t≤s

‖gν,x,s(t)− e−iνt ⊗ x‖ ≤
1

sMs
‖x‖

and ‖gν,x,s‖BUC(IR+,X) ≤ K‖x‖. Then, by (2.6) applied to gν,x,s,

∥∥∥∥
∫ s

0

e−(µ+iν)tT (t)x dt

∥∥∥∥ ≤ ‖x‖+

∥∥∥∥
∫ s

0

e−µtT (t)gν,x,s(t) dt

∥∥∥∥
≤ ‖x‖+ (1 + CK)‖gν,x,s‖BUC(IR+,X)

≤ (1 + (1 + CK)K)‖x‖.

(2.7)

Since s > 0 and µ > 0, ν > 0 are arbitrary, (2.7) shows that the entire X-valued
functions z 7→

∫ s
0
e−ztT (t)x dt are bounded in the right half plane, uniformly in s >

0. Moreover, for Re z sufficiently large, they converge to R(z, A)x as s → ∞. An
application of Vitali’s theorem and an analytic continuation argument show that the
right half plane is contained in %(A) and that the resolvent of A is uniformly bounded
there. This concludes the proof of the claim.

By a well-known theorem of Slemrod [Sl], the uniform boundedness of the resol-
vent in the right half plane implies that ω2(T) < 0, i.e. there are constants K > 0 and
µ > 0 such that ‖T (t)y‖ ≤ Ke−µt‖y‖D(A2) for all y ∈ D(A2) and t ≥ 0. Therefore,
(2.4) is a consequence of (2.5). ////

Since C0(IR+, X) is a closed, boundedly locally dense subspace of BUC(IR+, X),
Theorem 2.1 implies:

Corollary 2.2. Let T be a C0-semigroup on a Banach space X. Then ω0(T) < 0 if
and only if

sup
s>0

∥∥∥∥
∫ s

0

T (t)g(t) dt

∥∥∥∥ <∞, ∀g ∈ C0(IR+, X).

As another application, we define AP (IR+, X) as the closure in BUC(IR+, X) of
the set of all functions {eiλ(·) ⊗ x : λ ∈ IR, x ∈ X}. It is easy to see that AP (IR+, X)
is boundedly locally dense in BUC(IR+, X). Indeed, if I ⊂ IR+ is a bounded closed
interval and f ∈ C(I) is given, we choose N so large that I ⊂ [0, N ] and fix an
arbitrary continuous function fN ∈ C([0, N + 1]) that coincides with f on I and
satisfies f(0) = f(N + 1). Then we approximate fN uniformly in [0, N + 1] by linear
combinations of functions eiδt ⊗ x, δ ∈ {2πk/(N + 1) : k ∈ ZZ}, x ∈ X. Since these
functions are N + 1-periodic, their sup-norms on IR+ are the same as their sup-norms
in [0, N + 1]. Therefore, AP (IR+, X) is boundedly locally dense in BUC(IR+, X).
Since AP (IR+, X) is also closed in BUC(IR+, X), we obtain:
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Corollary 2.3. Let T be a C0-semigroup on a Banach space X. Then ω0(T) < 0 if
and only if

sup
s>0

∥∥∥∥
∫ s

0

T (t)g(t) dt

∥∥∥∥ <∞, ∀g ∈ AP (IR+, X). (2.8)

One should compare this theorem to the following result of [Ne]: if

sup
λ∈IR

sup
s>0

∥∥∥∥
∫ s

0

eiλtT (t)x dt

∥∥∥∥ <∞, (2.9)

then ω1(T) < 0. Here, ω1(T) denotes the growth bound of orbits originating from
D(A), i.e. the infimum of all ω ∈ IR for which there is an M > 0 such that ‖T (t)x‖ ≤
Meωt‖x‖D(A) for all x ∈ D(A). The difference between (2.8) and (2.9) is that in the

latter we consider one function eiλ(·)⊗x ∈ AP (IR+, X) at a time, whereas in (2.8) we
consider all functions in AP (IR+, X). The supremum over λ ∈ IR in (2.9) accounts
for the fact that the sup-norms of eiλ(·) ⊗ x are uniform in λ.

We conclude this section with an improvement of Theorem 1.3 for the case
C0(IR+, X).

Theorem 2.4. Let T be a C0-semigroup a Banach space X and let E be a closed,
boundedly locally dense subspace of BUC(IR+, X). Then the following assertions are
equivalent:
(i) ω0(T) < 0;
(ii) T ∗ f ∈ L∞(IR+, X) for all f ∈ E.

Proof: The implication (i)⇒(ii) is trivial. We will prove (ii)⇒(i). By the uniform
boundedness theorem applied to the operators Ts : f 7→

∫ s
0
T (t)f(s− t) dt, there is a

constant C > 0 such that

sup
s>0

∥∥∥∥
∫ s

0

T (t)f(s− t) dt
∥∥∥∥ ≤ C‖f‖BUC(IR+,X), ∀f ∈ E. (2.10)

For a given f ∈ E and s > 0, let Ms = sup0≤t≤s ‖T (t)‖ and let fs ∈ E be any function
such that

sup
0≤t≤s

‖f(s− t)− fs(t)‖ ≤
1

sMs
‖f‖BUC(IR+,X),

and
‖fs‖BUC(IR+,X) ≤ K‖f‖BUC(IR+,X).

Then, by (2.10),

∥∥∥∥
∫ s

0

T (t)f(t) dt

∥∥∥∥ ≤ ‖f‖BUC(IR+,X) +

∥∥∥∥
∫ s

0

T (t)fs(s− t) dt
∥∥∥∥

≤ ‖f‖BUC(IR+,X) + C‖fs‖BUC(IR+,X) ≤ (1 + CK)‖f‖BUC(IR+,X).

Since s > 0 is arbitrary, ω0(T) < 0 by Theorem 2.1. ////
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3. Generalization to Banach function spaces

Let E be a rearrangement invariant Banach function space over IR+. We will
adopt the terminology of the book [BS]. Although the definition of a Banach function
space given there is very restrictive, it is not difficult to show that in the rearrange-
ment invariant case the assumptions (P4) and (P5) of [BS], Def. I.1.1, are redundant
provided one assumes that E is carried by IR+. This means that for each measurable
H ⊂ IR+ of positive measure there exists a function f ∈ E that is not identically zero
a.e. on H.

The fundamental function is the function ϕE defined by

ϕE(t) := ‖χH‖E ,
where H is a subset of measure t. One can show that for every t ≥ 0, such a set exists.
By the rearrangement invariance, the function ϕE is well-defined.

By [BS, Lemma III.6.3], the right translation semigroup is strongly continuous
on E if and only if ϕE(0+) = 0, provided the simple functions are dense in E. This
is the case if E has order continuous norm, which in turn is the case if E is separable
(this follows from [BS, Chapters I.4 and I.5]). Examples of rearrangement invariant
Banach function spaces with order continuous norm satisfying ϕE(0+) = 0 are the
spaces Lp(IR+), 1 ≤ p < ∞, and all reflexive spaces rearrangement invariant Banach
function spaces.

If E = E(IR+) is a rearrangement invariant Banach function space over IR+ with
order continuous norm satisfying ϕE(0+) = 0, the operators SE(t) defined by

SE(t)f(s) :=

{
T (t)f(s− t), s− t ≥ 0;
0, else,

define a C0-semigroup SE on E(IR+, X). It generator will be denoted by BE. Here,
E(IR+, X) is the space of all Bochner measurable functions f : IR+ → X such that
‖f(·)‖ ∈ E(IR+). This space is a Banach space, as can be seen by a modification of
the proof of the completeness of Lp.

It is not hard to see that the proofs of Lemmas 1.1 and 1.2 carry over almost
verbatim to SE . One has to distiguish between the cases that limt→∞ ϕE(t) is infinite
or finite. In the first case, one argues as for Lp(IR+) and in the second case as for
C0(IR+).

Summarizing, we have:

Lemma 3.1. Let T be a C0-semigroup on X and let E(IR+) be a rearrangement
invariant Banach function space with order continuous norm satisfying ϕE(0+) = 0.
Then, for the semigroup SE we have s(BE) = ω0(SE) = ω0(T).

Theorem 3.2. Let T be a C0-semigroup on X and let E(IR+) be a rearrangement
invariant Banach function space with order continuous norm satisfying ϕE(0+) = 0.
Let T be a C0-semigroup on a Banach space X. Then the following assertions are
equivalent:
(i) ω0(T) < 0;
(ii) T ∗ f ∈ E(IR+, X) for all f ∈ E(IR+, X).
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Proof: (ii)⇒(i): Armed with Lemma 3.1, we can copy the proof of (ii)⇒(i) of Theorem
1.3 almost verbatim. In order to establish the boundedness of convolution with T as
a map of E(IR+, X) to itself, we now use the fact that a norm convergent sequence in
E(IR+, X) has a subsequence that converges pointwise a.e. This in turn follows from
the fact that fn → f in E(IR+, X) implies that fn|[0.k] → f |[0,k] in the norm of L1[0, k]
for all k = 1, 2, ... [BS, Cor. II.6.7] and a diagonal argument.

The proof that (i) implies (ii) proceeds as follows. For µ > 0 and g ∈ L1
loc(IR+),

define

(Tµ(g))(s) :=

∫ s

0

e−µtg(s− t) dt, s ≥ 0.

The proof of Theorem 1.3, (i)⇒(ii), shows that this defines a bounded operator Tµ :
L1(IR+)→ L1(IR+) of norm≤ µ−1. Also, it is trivial that Tµ is bounded as an operator
L∞(IR+)→ L∞(IR+), of norm ≤ µ−1. By a well-known theorem of Calderón [C] (see
also [BS, Thm. III.2.12]), every rearrangement invariant Banach function space over
IR+ is an exact interpolation space between L1(IR+) and L∞(IR+). Therefore, Tµ is
bounded as an operator E(IR+)→ E(IR+), of norm ≤ µ−1.

Let f ∈ E(IR+, X) be arbitrary. Since ω0(T) < 0, there are constants M > 0 and
µ > 0 such that ‖T (t)‖ ≤Me−µt for all t ≥ 0. Since ‖f(·)‖ ∈ E(IR+), we have

‖T ∗ f‖E(IR+,X) =
∥∥∥‖(T ∗ f)(·)‖

∥∥∥
E(IR+)

≤
∥∥∥∥∥

∫ (·)

0

Me−µt‖f(· − t)‖ dt
∥∥∥∥∥
E(IR+)

= M
∥∥∥Tµ(‖f‖)(·)

∥∥∥
E(IR+)

≤Mµ−1
∥∥∥‖f(·)‖

∥∥∥
E(IR+)

= Mµ−1‖f‖E(IR+,X).

////

4. The weak case

In this section, we study the weak analogue of Theorem 1.3. If E(IR+) is a given
function space over IR+, we want to characterize those semigroups T on X for which
〈x∗,T ∗ f〉 defines an element of E(IR+) for all x∗ ∈ X∗ and f ∈ E(IR+, X). Here,
and in the following, for a g ∈ L1

loc(IR+, X) and a functional x∗ ∈ X∗, the function
〈x∗, g〉 ∈ L1

loc(IR+) is defined in the natural way: 〈x∗, g〉(s) = 〈x∗, g(s)〉; s ≥ 0.
For E = L1 we solve this problem as follows. A semigroup T is said to be weakly

L1 if ∫ ∞

0

|〈x∗, T (t)x〉| dt <∞, ∀x ∈ X, x∗ ∈ X∗.

Theorem 4.1. Let T be a C0-semigroup on a Banach space X. Then the following
assertions are equivalent:
(i) T is weakly L1;
(ii) 〈x∗,T ∗ f〉 ∈ L1(IR+) for all f ∈ L1(IR+, X) and x∗ ∈ X∗.
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Proof: Assume (ii). Let S : Y0×Y1 → Z be a separately continuous bilinear map. For
y0 ∈ Y0 define S0 : Y1 → Z, Sy0

(y1) := S(y0, y1). Then each Sy0
is bounded by the

continuity in the Y1-variable. Using the continuity in the Y0-variable, it is easy to see
that the map y0 7→ Sy0

is closed, and hence bounded by the closed graph theorem. It
follows that there is an M > 0 such that

‖S(y0, y1)‖ ≤ ‖Sy0
‖ ‖y1‖ ≤M‖y0‖ ‖y1‖.

Applying this to the separately continuous bilinear map T : X∗ × L1(IR+, X) →
L1(IR+) defined by T (x∗, f) = 〈x∗,T ∗ f〉, it follows that there exists an M > 0 such
that

‖〈x∗,T ∗ f〉‖L1(IR+) ≤M‖f‖L1(IR+,X)‖x∗‖, ∀f ∈ L1(IR+, X), x∗ ∈ X∗.

Fix x ∈ X, x∗ ∈ X∗ and s0 > 1 arbitrary. Choose 0 < τ0 < 1 such that

1

τ0

∣∣∣∣
∫ τ0

0

〈x∗, T (s− t)x〉 dt
∣∣∣∣ ≥

1

2
|〈x∗, T (s)x〉|, ∀1 ≤ s ≤ s0.

Then,

∫ s0

1

|〈x∗, T (s)x〉| ds ≤ 2

∫ s0

1

1

τ0

∣∣∣∣
∫ τ0

0

〈x∗, T (s− t)x〉 dt
∣∣∣∣ ds

= 2

∫ s0

1

1

τ0

∣∣∣∣
∫ s

0

〈x∗, T (t)x〉χ[0,τ0](s− t) dt
∣∣∣∣ ds

≤ 2

τ0
‖〈x∗,T ∗ (χ[0,τ0] ⊗ x)〉‖L1(IR+)

≤ 2M

τ0
‖χ[0,τ0] ⊗ x‖L1(IR+,X)‖x∗‖ = 2M‖x‖ ‖x∗‖.

Since s0 > 1 is arbitrary, it follows that

∫ ∞

1

|〈x∗, T (s)x〉| ds ≤ 2M‖x‖ ‖x∗‖, ∀x ∈ X, x∗ ∈ X∗.

Therefore,
∫∞

0
|〈x∗, T (s)x〉| ds <∞ for all x ∈ X and x∗ ∈ X∗, which proves (i).

Now assume (i). As is well-known and easy to see, there exists a constant C such
that ∫ ∞

0

|〈x∗, T (t)x〉| dt ≤ C‖x‖ ‖x∗‖, ∀x ∈ X, x∗ ∈ X∗.

Let N := sup0≤s≤1 ‖T (s)‖. Fix x ∈ X, x∗ ∈ X∗ and real numbers 0 ≤ t0 < t1
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with t1 − t0 ≤ 1. Then,

∫ ∞

0

∣∣∣∣
〈
x∗,
∫ s

0

T (τ)(χ[t0,t1] ⊗ x)(s− τ) dτ

〉∣∣∣∣ ds

=

∫ ∞

0

∣∣∣∣∣

〈
x∗,
∫ max{s−t0,0}

max{s−t1,0}
T (τ)x dτ

〉∣∣∣∣∣ ds

≤
∫ t1

t0

∣∣∣∣
〈
x∗,
∫ s−t0

0

T (τ)x dτ

〉∣∣∣∣ ds+

∫ ∞

t1

∣∣∣∣
〈
x∗,
∫ s−t0

s−t1
T (τ)x dτ

〉∣∣∣∣ ds

≤
∫ t1

t0

(s− t0)N‖x‖ ‖x∗‖ ds+

∫ ∞

0

∣∣∣∣
〈
x∗, T (s)

∫ t1−t0

0

T (τ)x dτ

〉∣∣∣∣ ds

≤ (t1 − t0)N‖x‖ ‖x∗‖+ C

∥∥∥∥
∫ t1−t0

0

T (τ)x dτ

∥∥∥∥ ‖x∗‖

≤ (t1 − t0)N(1 + C)‖x‖ ‖x∗‖.

Therefore, with M = N(1 + C), we have

‖〈x∗,T ∗ (χ[t0,t1] ⊗ x)〉‖L1(IR)+
≤M(t1 − t0)‖x‖ ‖x∗‖.

Next, let f be a stepfunction of the form f =
∑n−1
k=0 χ[tk,tk+1] ⊗ xk. By splitting large

intervals into finitely many smaller ones, we may assume that 0 < tk+1 − tk ≤ 1 for
all k = 0, ..., n− 1. By the above estimate we have

‖〈x∗,T ∗ f〉‖L1(IR+) ≤
n−1∑

k=0

‖〈x∗,T ∗ (χ[tk,tk+1] ⊗ xk)〉‖L1(IR+)

≤M
n−1∑

k=0

(tk+1 − tk)‖xk‖ ‖x∗‖ = M‖f‖L1(IR+,X)‖x∗‖.
(4.1)

Since the stepfunctions supported by finite unions of intervals of length ≤ 1 are dense
in L1(IR+, X), (4.1) holds for arbitrary f ∈ L1(IR+, X). This proves the implication
(i)⇒ (ii). ////

Since there exist weakly L1 semigroups with positive growth bound, the theorem
shows that condition (ii) does not characterize exponential stability. In Hilbert space
however, a C0-semigroup T is weakly L1 if and only if ω0(T) < 0 [HK], [We]. In
combination with Theorem 4.1, this leads to the following result.

Corollary 4.2. Let T be a C0-semigroup on a Hilbert space H. Then the following
assertions are equivalent:
(i) ω0(T) < 0;
(ii) 〈y,T ∗ f〉 ∈ L1(IR+) for all f ∈ L1(IR+, H) and y ∈ H.

A positive C0-semigroup on a Banach lattice X is weakly L1 if and only if s(A) <
0. This is more or less folklore; a proof can be found in [NSW].
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Corollary 4.3. Let T be a positive C0-semigroup with generator A on a Banach
lattice X. Then the following assertions are equivalent:
(i) s(A) < 0;
(ii) 〈x∗,T ∗ f〉 ∈ L1(IR+) for all f ∈ L1(IR+, X) and x∗ ∈ X.
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