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Abstract. We prove a Lie–Trotter product formula for the Ornstein–Uhlen-
beck semigroup associated with the stochastic linear Cauchy problem

dX(t) = AX(t) dt + dW (t), t > 0,

X(0) = x0.

Here A is the generator of a C0−semigroup on a separable real Banach space
E and {W (t)}t>0 is an E-valued Brownian motion.

1. Introduction

In this paper we prove a Lie–Trotter product formula for the Ornstein–Uhlenbeck
semigroup associated with the stochastic linear Cauchy problem

(1.1)
dX(t) = AX(t) dt+ dW (t), t > 0,

X(0) = x0,

where A is the generator of a C0−semigroup {S(t)}t>0 on a separable real Banach
space E and {W (t)}t>0 is an E-valued Brownian motion. A predictable E-valued
process {X(t, x0)}t>0 is called a weak solution of (1.1) if for all x∗ ∈ D(A∗) the
process {〈X(t, x0), A∗x∗〉}t>0 is locally integrable almost surely and for all t > 0
we have, almost surely,

〈X(t, x0), x∗〉 = 〈x0, x
∗〉+

∫ t

0

〈X(s, x0), A∗x∗〉 ds+ 〈W (t), x∗〉.

It is well-known [4] that (1.1) has a unique weak solution {X(t, x0)}t>0 for some
(hence, for all) x0 ∈ E if and only if for all t > 0 the operator Qt ∈ L (E∗, E)
defined by

(1.2) Qtx
∗ :=

∫ t

0

S(s)QS∗(s)x∗ ds, x∗ ∈ E∗,

is the covariance operator of a centred Gaussian measure on E; here Q ∈ L (E∗, E)
is the covariance operator of the random variable W (1). We then may define a
one-parameter semigroup {P(t)}t>0 of linear contractions on Cb(E), the space of
all bounded continuous real-valued functions on E, by

P(t)f(x) := E(f(X(t, x))), t > 0, x ∈ E.
This semigroup is usually referred to as the transition semigroup or the Ornstein–
Uhlenbeck semigroup associated with equation (1.1). The random variables X(t, x)
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are Gaussian with mean S(t)x and covariance Qt. Denoting by µt the centred
Gaussian measure with covariance Qt, we have

P(t)f(x) =

∫

E

f(S(t)x+ y) dµt(x), t > 0, x ∈ E.

In general, {P(t)}t>0 fails to be strongly continuous in the supremum norm of
Cb(E). In this paper we consider Cb(E) in its topology τc of uniform convergence
on compact sets. In this topology, the Ornstein–Uhlenbeck semigroup is known
to be strongly continuous [9]. We shall prove that under suitable conditions the
following Lie–Trotter product formula holds:

P(t)f = τc− lim
m→∞

[
T ( tm )S ( tm )

]m
f

for all f ∈ Cb(E), the convergence being uniform on every bounded time interval
[0, T ]. In this formula, {S (t)}t>0 and {T (t)}t>0 are the semigroups on Cb(E)
corresponding to the drift term and the diffusion term in (1.1). Thus,

S (t)f(x) = f(S(t)x),

T (t)f(x) =

∫

E

f(x+ y) dνt(y),
t > 0, x ∈ E,

where νt is distribution of the random variable W (t).

2. Preliminaries

In this preliminary section we recall some well-known facts about Gaussian mea-
sures and reproducing kernel Hilbert spaces. For more details we refer to the books
[2, 18].

2.1. Gaussian measures. Let E be a separable real Banach space. A Gaussian
measure on E is a Borel probability measure µ on E with the property that for all
x∗ ∈ E∗ the image measure 〈µ, x∗〉 := µ ◦x∗−1 is Gaussian on R. The mean of µ is
defined by

m :=

∫

E

x dµ(x);

this integral can be shown to converge absolutely in E. We call µ centred if m = 0.
If µ is a Gaussian measure on E with mean m, there exists a unique compact
operator Q ∈ L (E∗, E), the covariance operator of µ, with the property that

(2.1) 〈Qx∗, y∗〉 =

∫

E

〈x−m,x∗〉〈x−m, y∗〉 dµ(x), x∗, y∗ ∈ E∗.

In terms of m and Q, the Fourier transform of µ is given by

(2.2)

∫

E

exp
(
−i〈x, x∗〉

)
dµ(x) = exp

(
−i〈m,x∗〉 − 1

2 〈Qx∗, x∗〉
)
, x∗ ∈ E∗.

Hence as a Gaussian measure, µ is determined uniquely by m and Q. Sometimes
we shall use the notation N(m,Q) to denote the Gaussian measure with mean m
and covariance Q.

If {W (t)} is an E-valued Brownian motion, then the distribution of the random
variableW (1) is a centred Gaussian measure on E. Denoting its covariance operator
by Q, for all s, t > 0 and x∗, y∗ ∈ E∗ we have

(2.3) E(〈W (s), x∗〉 〈W (t), y∗〉) = (s ∧ t) 〈Qx∗, y∗〉, x∗, y∗ ∈ E∗.
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Conversely, if Q is the covariance operator of a Gaussian measure on E, there
exist E-valued Brownian motions whose covariance is given by (2.3) [2, Proposition
7.2.3].

Let M (E) denote the set of all Borel probability measures on E. Every µ ∈
M (E) determines a positive linear functional on Cb(E) in a canonical way. The
induced weak∗-topology on M (E) is usually referred to as the weak topology of
M (E).

Every measure µ ∈ M (E) is tight, i.e., for every ε > 0 there exists a compact
subset K ⊆ E such that µ(K) > 1− ε. A family M ⊆M (E) is said to be tight if
for every ε > 0 there exists a compact subset K ⊆ E such that µ(K) > 1− ε for all
µ ∈ M . By Prohorov’s theorem [2, Theorem 3.8.4], the family M is tight if and
only if it is relatively compact with respect to the weak topology.

The covariance operator Q of a Gaussian measure on E is always positive, i.e.,

〈Qx∗, x∗〉 > 0 for all x∗ ∈ E∗

and symmetric, i.e.,

〈Qx∗, y∗〉 = 〈Qy∗, x∗〉 for all x∗, y∗ ∈ E∗.
The converse does not hold: not every positive symmetric operatorQ ∈ L (E∗, E) is
the covariance operator of some Gaussian measure. In this connection the following
result, which is a special case of [2, Theorem 3.3.6], will be useful:

Proposition 2.1. Let R ∈ L (E∗, E) be the covariance operator of a Gaussian
measure on E. Let Q ⊆ L (E∗, E) be a family of positive symmetric operators. If
there exists a constant C > 0 such that

〈Qx∗, x∗〉 6 C〈Rx∗, x∗〉
for all x∗ ∈ E∗ and Q ∈ Q, then every Q ∈ Q is the covariance of a centred
Gaussian measure µQ on E. Moreover, the family {µQ : Q ∈ Q} is tight.

The following result is concerned with weak convergence of sequences of Gaussian
measures [2, Theorem 3.8.9].

Proposition 2.2. Let (mn) be a sequence in E and (Qn) a sequence of covariance
operators in L (E∗, E). For each n, put νn := N(0, Qn) and µn := N(mn, Qn). Let
further an element m ∈ E and a covariance operator Q ∈ L (E∗, E) be given, and
put ν := N(0, Q) and µ := N(m,Q). Then the following assertions are equivalent.

(1) limn→∞ µn = µ weakly.
(2) limn→∞mn = m strongly and limn→∞ νn = ν weakly.

In this situation, for all x∗, y∗ ∈ E∗ we have

(2.4) lim
n→∞

〈Qnx∗, y∗〉 = 〈Qx∗, y∗〉.
Let us now assume that E is a separable real Hilbert space with inner product

[ · , · ]E. Identifying E∗ with E in the canonical way, positive symmetric operators
from E∗ into E can be identified with positive selfadjoint operators on E. Under
this identification, Such an operator Q is the covariance of a centred Gaussian
measure µ on E if and only if it is a trace class operator. Moreover, if {ek}∞k=1 is
an orthonormal basis for E, then by (2.1) we have

(2.5) trQ =
∞∑

k=1

[Qek, ek]E =

∫

E

∞∑

k=1

[x, ek]2E dµ(x) =

∫

E

‖x‖2 dµ(x).
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Proposition 2.3. Let E be a separable real Banach space and let (µn) be a sequence
of centred Gaussian measures on E with covariances (Qn). Let µ be a centred
Gaussian measure on E with covariance Q.

(i) If limn→∞ µn = µ weakly, then:
(1) limn→∞[Qnx, y]E = [Qx, y]E for all x, y ∈ E,

(2) lim
n→∞

∫

E

‖x‖2 dµn(x) =

∫

E

‖x‖2 dµ(x).

(ii) If E is a separable real Hilbert space, then conversely the conditions (1) and
(2) imply that limn→∞ µn = µ weakly.

In (i), (1) follows by considering Fourier transforms and (2) is a special case
of [2, Lemma 3.8.7]. In a formulation where (1) is replaced by a slightly stronger
hypothesis, the converse assertion (ii) is proved in [2, Example 3.8.15]. For the
convenience of the reader we include a proof of (ii) in its present formulation in the
Appendix.

2.2. Reproducing kernel Hilbert spaces. We return to the situation where E
is a separable real Banach space. Let Q ∈ L (E∗, E) be an arbitrary positive
symmetric operator. The mapping

(Qx∗, Qy∗) 7→ 〈Qx∗, y∗〉, x∗, y∗ ∈ E∗,
defines an inner product on the range of Q. The completion of range (Q) with
respect to this inner product is a separable real Hilbert space HQ, the reproduc-
ing kernel Hilbert space (RKHS) associated with Q. The inclusion mapping from
range (Q) into E extends to a continuous inclusion mapping iQ : HQ ↪→ E. We
have the operator identity

(2.6) Q = iQ ◦ i∗Q.
The following simple observation will be useful in the next section.

Lemma 2.4. Let Q,R ∈ L (E∗, E) be positive and symmetric operators and as-
sume that HQ ⊆ HR as subsets of E. Then the inclusion mapping iQ,R from HQ

into HR is bounded, and for all x∗ ∈ E∗ we have

〈Qx∗, x∗〉 6 ‖iQ,R‖2〈Rx∗, x∗〉.
Proof. First we claim that iQ,R is closed. Indeed, suppose that hn → h in HQ and

iQ,Rhn → h̃ in HR, Then iQhn → iQh in E and also iQhn = iRiQ,Rhn → iRh̃ in E.

Hence iQh = iRh̃ in E. But also, iQh = iRiQ,Rh, and therefore h̃ = iQ,Rh, by the
injectivity of iR. This proves the claim. Boundedness of iQ,R is now an immediate
consequence of the closed graph theorem.

Next, for all x∗ ∈ E∗ and all h ∈ HQ we have

|[h, i∗Qx∗]HQ | = |〈iQh, x∗〉| = |〈iRiQ,Rh, x∗〉| = |[iQ,Rh, i∗Rx∗]HR |
6 ‖iQ,Rh‖HR‖i∗Rx∗‖HR 6 ‖iQ,R‖ ‖h‖HQ‖i∗Rx∗‖HR .

Taking the supremum over all h ∈ HQ with ‖h‖HQ 6 1 we obtain ‖i∗Qx∗‖HQ 6
‖iQ,R‖ ‖i∗Rx∗‖HR , and hence

〈Qx∗, x∗〉 = ‖i∗Qx∗‖2HQ 6 ‖iQ,R‖2 ‖i∗Rx∗‖2HR = ‖iQ,R‖2〈Rx∗, x∗〉.
�
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If E is a separable real Hilbert space and Q is a positive selfadjoint operator on

E, then the RKHS associated with Q equals range (Q
1
2 ) with inner product

[
Q

1
2x,Q

1
2 y
]
HQ

= [x, y]E , x, y ∈ E.

3. The Lie–Trotter product formula

For the rest of the paper we will make the following standing assumption.

Assumption 3.1.

(1) {S(t)}t>0 is a C0−semigroup on a separable real Banach space E.
(2) Q ∈ L (E∗, E) is the covariance of a centred Gaussian measure ν on E.
(3) For all t > 0, the operator Qt ∈ L (E∗, E) defined by

Qtx
∗ :=

∫ t

0

S(s)QS∗(s)x∗ ds, x∗ ∈ E∗,

is the covariance of a centred Gaussian measure µt on E.

In the following situations, (3) automatically follows from (1) and (2).

• If {S(t)}t>0 restricts to a C0-semigroup on the RKHS HQ associated with
Q. This is an easy consequence of Proposition 2.1; cf. [12].

• If E has type 2 (in particular, if E is a Hilbert space) [14]. For the special
case of M -type 2 spaces a more general result was proved by Brzeźniak [3,
Section 2].

Let us pause to make a number of simple observations. First, by the positivity
of Q, for all 0 6 s 6 t and x∗ ∈ E∗ we have

(3.1)

0 6 〈Qsx∗, x∗〉 =

∫ s

0

〈QS∗(σ)x∗, S∗(σ)x∗〉 dσ

6
∫ t

0

〈QS∗(σ)x∗, S∗(σ)x∗〉 dσ = 〈Qtx∗, x∗〉.

Next, for all s, t > 0 and x∗ ∈ E∗ we have

Qt+sx
∗ = Qtx

∗ + S(t)QsS
∗(t)x∗

and therefore

(3.2) µt+s = µt ∗ S(t)µs,

where the ∗ denotes convolution and S(t)µs := µs ◦ S(t)−1 denotes the image
measure.

We define linear contractions P(t) on Cb(E) by

(3.3) P(t)f(x) :=

∫

E

f(S(t)x+ y) dµt(y), x ∈ E, t > 0.

It is an easy consequence of (3.2) that the family {P(t)}t>0 is a semigroup on
Cb(E). In general, this semigroup fails to be strongly continuous in the supremum
norm, even on the closed invariant subspace BUC(E) of bounded uniformly conti-
nous functions on E. In fact, {P(t)}t>0 is strongly continuous on BUC(E) if and
only if A = 0, i.e., if the drift term is trivial [15, 13]. For this reason many authors
have studied strong continuity of {P(t)}t>0 in various locally convex topologies on
Cb(E), cf. [5], [6], [8], [11], [16]. They only consider the situation where E is a
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Hilbert space, in which case Itô calculus may be applied. Using analytic methods,
the Banach space case was studied in [10], [12], [13], [9].

We will need the following result from [13], which is an easy consequence of
Proposition 2.1 and (3.1).

Proposition 3.2. We have limt↓0 µt = µ0 = δ0 weakly, where δ0 is the Dirac
measure on E concentrated at 0.

For the proof of the Lie–Trotter product formula it will be necessary to study
tightness of a family of measures that is obtained by ‘discretizing’ the covariance
operators of the measures µt.

Let P = {t0, . . . , tN} be a partition of the interval [0, t]; i.e., 0 = t0 < · · · < tN =
t. We define positive symmetric operators QPt ∈ L (E∗, E) by

(3.4) QPt x
∗ :=

N∑

j=1

(tj − tj−1)S(tj)QS
∗(tj)x

∗, x∗ ∈ E∗.

Note that the sum defining QPt x
∗ is the Riemann sum for the integral

Qtx
∗ =

∫ t

0

S(s)QS∗(s)x∗ ds

corresponding with the right endpoints of the partition intervals.
For every partition P of [0, t], the operator QPt is the covariance of a centred

Gaussian measure µPt on E. To see this, first note that for all λj > 0, the operator

Rj := λjQ is the covariance of the scaled measure νj(B) := ν(B/
√
λj), B ⊆ E

Borel. Next, if Rj is the covariance of a centred Gaussian measure νj on E and

if S1, . . . , SN are bounded operators on E, then
∑N

j=1 SjRjS
∗
j is the covariance

of the centred Gaussian measure S1ν1 ∗ · · · ∗ SNνN . We finally apply this with
λj = tj − tj−1 and Sj = S(tj).

The mesh of a partition P is the number mesh (P ) := maxj=1,...,N (tj − tj−1).

Lemma 3.3. Let (tn) be a sequence of strictly positive real numbers satisfying
limn→∞ tn = t. For each n let Pn be a partition of [0, tn], and assume that
limn→∞mesh (Pn) = 0. Then, for all x∗, y∗ ∈ E∗, we have

lim
n→∞

〈QPntn x∗, y∗〉 = 〈Qtx∗, y∗〉.

Proof. Fix x∗, y∗ ∈ E. Being a Gaussian covariance operator, Q is compact and
therefore the function

φ(s) := 〈S(s)QS∗(s)x∗, y∗〉 = 〈QS∗(s)x∗, S∗(s)y∗〉, s ∈ [0,∞),

is continuous for all x∗ ∈ E∗. Indeed, this follows from the weak∗-continuity of the
adjoint semigroup {S∗(t)}t>0 which is uniform on compact subsets of E.

Fix ε > 0 arbitrary and fix T > 0 large enough such that 0 6 tn 6 T for all n.
The uniform continuity of φ on [0, T ] enables us to find δ > 0 small enough such
that |φ(s) − φ(s′)| < ε/T for all s, s′ ∈ [0, T ] with |s− s′| < δ. Choose N so large
that mesh (Pn) < δ for all n > N . Then, for all n > N we have

∣∣∣∣〈Q
Pn
tn x

∗, y∗〉 −
∫ tn

0

φ(s) ds

∣∣∣∣ < ε.
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Therefore,

∣∣∣〈QPntn x∗, y∗〉 − 〈Qtx∗, y∗〉
∣∣∣ =

∣∣∣∣〈Q
Pn
tn x

∗, y∗〉 −
∫ t

0

φ(s) ds

∣∣∣∣ < ε+ |t− tn| · sup
s∈[0,T ]

|φ(s)|.

From this we conclude that

lim sup
n→∞

∣∣∣〈QPntn x∗, y∗〉 − 〈Qtx∗, y∗〉
∣∣∣ < ε.

Since ε > 0 was arbitrary, this proves the lemma. �

We define semigroups {S (t)}t>0 and {T (t)}t>0 on Cb(E) by

S (t)f(x) := f(S(t)x),

T (t)f(x) :=

∫

E

f(x+ y) dνt(y),
t > 0, x ∈ E,

where νt denotes the centred Gaussian measure on E with covariance tQ. The first
semigroup, {S (t)}t>0, can be interpreted as the transition semigroup correspond-
ing to the deterministic equation

(3.5) dX(t) = AX(t) dt.

The second semigroup, {T (t)}t>0, can be interpreted as the transition semigroup
corresponding to the equation

(3.6) dX(t) = dW (t),

assuming that {W (t)}t>0 is an E-valued Brownian motion such that for all t > 0
the random variable W (t) has distribution νt. Comparing this with (1.1), we see
that equations (3.5) and (3.6) correspond to the drift term and the diffusion term
in (1.1), respectively.

Our main abstract result relates the transition semigroup {P(t)}t>0 to the semi-
groups {S (t)}t>0 and {T (t)}t>0.

Theorem 3.4. Let (tn) be a sequence of strictly positive real numbers satisfy-
ing limn→∞ tn = t. For each n let Pn be a partition of [0, tn], and assume that
limn→∞mesh (Pn) = 0. Write Pn = {t0,n, . . . , tNn,n}, and for j = 1, . . . , Nn put
∆tj,n := tj,n − tj−1,n and

V (∆tj,n) := T (∆tj,n) ◦S (∆tj,n).

If

(3.7) lim
n→∞

µPntn = µt weakly,

then for all f ∈ Cb(E) and all sequences (xn) in E with limn→∞ xn = x we have

(3.8) P(t)f(x) = lim
n→∞

[V (∆tNn,n) ◦ · · · ◦ V (∆t1,n)] f(xn).

Remark 3.5. In Sections 4 and 5 below we will show that condition (3.7) is auto-
matically satisfied in each of the following two situations:

• {S(t)}t>0 restricts to a C0−semigroup on the RKHS HQ.
• E is a Hilbert space.
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Proof of Theorem 3.4. Fix f ∈ Cb(E) and ξ ∈ E. For all s > 0 we have

[T (s) ◦S (s)] f(ξ) =

∫

E

S (s)f(ξ + y) dνs(y) =

∫

E

f(S(s)ξ + S(s)y) dνs(y).

Writing νts for the image measure S(t)νs, for all s1, s2 > 0 we obtain

[T (s2) ◦S (s2)] ◦ [T (s1) ◦S (s1)] f(ξ)

=

∫

E

[T (s1) ◦S (s1)] f(S(s2)ξ + S(s2)y) dνs2(y)

=

∫

E

∫

E

f(S(s1 + s2)ξ + S(s1 + s2)y + S(s1)z) dνs1(z) dνs2(y)

=

∫

E

∫

E

f(S(s1 + s2)ξ + η + ζ) dνs1s1 (ζ) dνs1+s2
s2 (η)

=

∫

E

f(S(s1 + s2)ξ + %) d(νs1s1 ∗ νs1+s2
s2 )(%).

By induction, for all s1, . . . , sN > 0 we obtain

[T (sN ) ◦S (sN )] ◦ · · · ◦ [T (s1) ◦S (s1)] f(ξ)

=

∫

E

f(S(s1 + · · ·+ sN)ξ + %) d(νs1s1 ∗ · · · ∗ νs1+···+sN
sN )(%).

Let us now fix a partition P = {τ0, . . . , τN} of an interval [0, τ ], take sj = ∆τj :=
τj−τj−1 in the identity above and note that ∆τ1 + · · ·+∆τk = τk for k = 1, . . . , N .
The covariance operator of ντ1∆τ1

∗ · · · ∗ ντN∆τN
equals

N∑

j=1

S(τj)
(
∆τjQ

)
S∗(τj) = QPτ .

Thus, we obtain

[V (∆τN ) ◦ · · · ◦ V (∆τ1)] f(ξ) =

∫

E

f(S(τN )ξ + %) d(ντ1∆τ1
∗ · · · ∗ ντN∆τN

)(%)

=

∫

E

f(S(τ)ξ + %) dµPτ (%).

After these preparations we turn to the proof of (3.8). Let N(m,R) denote the
Gaussian measure on E with mean m and covariance R. If limn→∞ xn = x in E,
then by (3.7) and Proposition 2.2, we have

lim
n→∞

N
(
S(tn)xn, Q

Pn
tn

)
= N

(
S(t)x,Qt

)
weakly.

It follows that

lim
m→∞

[V (∆tNn,n) ◦ · · · ◦ V (∆t1,n)] f(xn) = lim
n→∞

∫

E

f(S(tn)xn + %) dµPntn (%)

=

∫

E

f(S(t)x+ %)dµt(%) = P(t)f(x).

This proves (3.8). �
From this result we deduce the following Lie–Trotter product formula for the

semigroup {P(t)}t>0:
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Theorem 3.6. For t > 0, let µt,n := µπnt , where πn is the equipartition of [0, t]
into n subintervals of equal length. If for all t > 0 we have

(3.9) lim
n→∞

µt,n = µt weakly,

then for all f ∈ Cb(E) and all t > 0 and x ∈ E we have

(3.10) P(t)f(x) = lim
n→∞

[
T ( tn ) ◦S ( tn )

]n
f(x),

the convergence being uniform on finite time intervals [0, T ] and compact subsets
K ⊆ E.

Proof. Suppose (3.9) holds but (3.10) fails. We will deduce a contradiction as
follows.

By assumption there exist an ε > 0, a compact set K ⊆ E, a real number T > 0,
and a subsequence (nk) such that

sup
(t,x)∈[0,T ]×K

∣∣∣P(t)f(x)−
[
T ( t

nk
) ◦S ( t

nk
)
]nk

f(x)
∣∣∣ > ε

for all k. Thus, we can choose points (tk , xk) ∈ [0, T ]×K such that

(3.11)
∣∣∣P(tk)f(xk)−

[
T ( tknk ) ◦S ( tknk )

]nk
f(xk)

∣∣∣ > 1
2ε

for all k. By passing to a further subsequence we may assume that limk→∞ tk =
t ∈ [0, T ] and limk→∞ xk = x ∈ K exist.

Let πk denote the equipartition of [0, tk] into k subintervals of equal length, and
note that limk→∞mesh (πk) = 0. Applying Theorem 3.4 to the sequences (tk), (xk)
and the partitions (πk), and recalling that {P(t)}t>0 is τc-continuous, we see that

lim
k→∞

P(tk)f(xk) = P(t)f(x) = lim
k→∞

[
T ( tknk ) ◦S ( tknk )

]nk
f(xk).

This contradicts (3.11). �

4. The case when {S(t)}t>0 restricts to a C0−semigroup on HQ

In this section we will show that condition (3.7) holds whenever the RKHS HQ

associated with Q is {S(t)}t>0-invariant and {S(t)}t>0 restricts to a C0−semigroup
on HQ.

Let us fix t > 0 and recall that Qt ∈ L (E∗, E) is the positive symmetric operator
defined by

Qtx
∗ :=

∫ t

0

S(s)QS∗(s)x∗ ds, x∗ ∈ E∗.

The RKHS associated with Qt will be denoted by Ht and the inclusion operator of
Ht ↪→ E by it. It is well-known that

Ht =

{∫ t

0

S(s)iQf(s) ds : f ∈ L2((0, t);HQ)

}

and that

‖h‖Ht = inf

{
‖f‖L2((0,t);HQ) : h =

∫ t

0

S(s)iQf(s) ds

}
.

For Hilbert spaces E this is shown in [7, Appendix B]; the proof carries over to the
Banach space case without difficulty.
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Given a partition P = {t0, . . . , tN} of the interval [0, t], we define the positive
symmetric operator QPt ∈ L (E∗, E) as before by

QPt x
∗ :=

N∑

j=1

(tj − tj−1)S(tj)QS
∗(tj)x

∗, x∗ ∈ E∗.

Let HP
t denote the associated RKHS with inclusion mapping iPt : HP

t ↪→ E. Define

H P
t :=





N∑

j=1

∫ tj

tj−1

S(tj)iQf(s) ds : f ∈ L2((0, t);HQ)



 .

Endowed with the norm

‖h‖H P
t

:= inf



‖f‖L2((0,t);HQ) : h =

N∑

j=1

∫ tj

tj−1

S(tj)iQf(s) ds



 ,

it is easy to see that H P
t is a separable real Hilbert space.

Lemma 4.1. For all x∗ ∈ E∗ we have QPt x
∗ ∈H P

t and

‖QPt x∗‖H P
t
6 ‖QPt x∗‖HPt .

Proof. Fix an arbitrary x∗ ∈ E∗ and define fx∗ ∈ L2((0, t);HQ) by

fx∗(s) := i∗QS
∗(tj)x

∗, s ∈ (tj−1, tj), j = 1, . . . , N.

Then, using that iQ ◦ i∗Q = Q, we have

N∑

j=1

∫ tj

tj−1

S(tj)iQfx∗(s) ds =
N∑

j=1

(tj − tj−1)S(tj)Q
∗S∗(tj)x

∗ = QPt x
∗.

This shows that QPt x
∗ ∈ H P

t . Furthermore,

‖QPt x∗‖2HPt = 〈QPt x∗, x∗〉

=

N∑

j=1

(tj − tj−1) 〈QS∗(tj)x∗, S∗(tj)x∗〉 =

N∑

j=1

(tj − tj−1) ‖i∗QS∗(tj)x∗‖2HQ .

Hence,

‖QPt x∗‖2H P
t
6 ‖fx∗‖2L2((0,t);HQ) =

N∑

j=1

(tj − tj−1) ‖i∗QS∗(tj)x∗‖2HQ = ‖QPt x∗‖2HPt .

�

As a consequence, we see that the identity mapping QPt x
∗ 7→ QPt x

∗ extends
uniquely to a linear contraction mapping IPt : HP

t →H P
t . We will see below that

IPt is injective.

Lemma 4.2. Suppose that {S(t)}t>0 restricts to a C0−semigroup {SQ(t)}t>0 on
HQ. Then H P

t ⊆ Ht as subsets of E, and for all h ∈H P
t we have

(4.1) ‖h‖Ht 6
(

sup
s∈[0,t]

‖SQ(s)‖
)
‖h‖H P

t
.
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Proof. Let h ∈H P
t be arbitrary and fixed, and choose f ∈ L2((0, t);HQ) such that

h =
∑N

j=1

∫ tj
tj−1

S(tj)iQf(s) ds. Define g ∈ L2((0, t);HQ) by

g(s) := SQ(tj − s)f(s), s ∈ (tj−1, tj), j = 1, . . . , N.

Noting that S(tj) ◦ iQ = S(s) ◦ S(tj − s) ◦ iQ = S(s) ◦ iQ ◦ SQ(tj − s) we have

h =

N∑

j=1

∫ tj

tj−1

S(tj)iQf(s) ds =

N∑

j=1

∫ tj

tj−1

S(s)iQg(s) ds =

∫ t

0

S(s)iQg(s) ds ∈ Ht.

This proves the inclusion H P
t ⊆ Ht. Moreover,

‖h‖Ht 6 ‖g‖L2((0,t);HQ) 6
(

sup
s∈[0,t]

‖SQ(s)‖
)
‖f‖L2((0,t);HQ).

Taking the infimum over all function f representing h we obtain (4.1). �

Putting things together we obtain the following commutative diagram:

HP
t −−−−→

IPt

H P
t

y
y

E ←−−−− Ht

In this diagram, the lower three arrows denote inclusion mappings. Since they are
injective, it follows that also IPt is injective and we obtain a (contractive) inclusion
mapping IPt : HP

t ↪→H P
t . Composing this mapping with the inclusion H P

t ↪→ Ht

we obtain an inclusion mapping JPt : HP
t ↪→ Ht, which by Lemma 4.2 has norm

(4.2) ‖JPt ‖ 6 sup
s∈[0,t]

‖SQ(s)‖.

Theorem 4.3. Suppose {S(t)}t>0 restricts to a C0-semigroup on HQ. Let (tn) be
a sequence of strictly positive real numbers with limn→∞ tn = t. For each n let Pn
be a partition of [0, tn], and assume that limn→∞mesh (Pn) = 0. Then,

(4.3) lim
n→∞

µPntn = µt weakly.

Proof. Choose T > 0 so large that 0 6 tn 6 T for all n. Combination of Lemma
2.4, (3.1), and (4.2), shows that for all n we have

〈QPntn x∗, x∗〉 6
(

sup
s∈[0,tn]

‖SQ(s)‖
)2

〈Qtnx∗, x∗〉 6
(

sup
s∈[0,T ]

‖SQ(s)‖
)2

〈QTx∗, x∗〉.

Hence, by Proposition 2.1, the sequence (µPntn ) is tight.
By Lemma 3.3 we have

lim
n→∞

〈QPntn x∗, y∗〉 = 〈Qtx∗, y∗〉,

so from (2.2) we conclude that µt is the only possible weak limit point of the tight

sequence (µPntn ). A standard argument now gives (4.3). �

Upon combining this result with Theorem 3.6, we obtain:
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Theorem 4.4. If {S(t)}t>0 restricts to a C0−semigroup on HQ, then for all f ∈
Cb(E) and all t > 0 and x ∈ E we have

P(t)f(x) = lim
n→∞

[
T ( tn ) ◦S ( tn )

]n
f(x),

the convergence being uniform on finite time intervals [0, T ] and compact subsets
K ⊆ E.

5. The case when E is a Hilbert space

In this section we will show that condition (3.7) always holds if E is a separable
real Hilbert space.

In the following lemma, E is still allowed to be a separable real Banach space.
Recall the standing assumption that ν is a centred Gaussian measure on E with
covariance operator Q. For t > 0 let ρt denote the image measure of ν under the
operator S(t); this is a centred Gaussian measure on E with covariance operator
S(t)QS∗(t).

Lemma 5.1. The function t 7→
∫
E ‖x‖2 dρt(x) is continuous on [0,∞).

Proof. We start by showing that for all t > 0, the family {ρs : s ∈ [0, t]} is
tight. Fix ε > 0 and choose a compact subset K of E with ν(K) > 1 − ε. Define
L = {S(s)x : s ∈ [0, t], x ∈ K}. Being the image of the compact set [0, t] × K
under the continuous mapping (s, x) 7→ S(s)x, L is compact. For all s ∈ [0, t] we
now have

ρs(L) > ρs(S(s)K) = ν{y ∈ E : S(s)y ∈ S(s)K} > ν(K) > 1− ε.

This proves the asserted tightness.
Fix a nonnegative convergent sequence (tn) with limit t. Consider an arbitrary

subsequence (tnk). The lemma will be proved if we find a further subsequence with
the property that

(5.1) lim
j→∞

∫

E

‖x‖2 dρtnkj (x) =

∫

E

‖x‖2 dρt(x).

By the above, the sequence (ρtnk ) is tight. Consequently, there is a subsequence

(ρtnkj
) converging weakly to some probability measure ρ̃t. Since the weak limit of

a sequence of centred Gaussian measures is a centred Gaussian measure and since

lim
j→∞
〈S(tnkj )QS∗(tnkj )x∗, y∗〉 = 〈S(t)QS∗(t)x∗, y∗〉

for all x∗, y∗ ∈ E∗, it follows that ρ̃t = ρt. Hence, (5.1) follows from Proposition
2.3, part (i). �

Suppose now that E is a separable real Hilbert space. Then, we may identify Q
with a positive selfadjoint operator on E. Since, by assumption, Q is a Gaussian
covariance, Q may be identified with a trace class operator on E and by (2.5),
Lemma 5.1 may be reformulated as saying that the function t 7→ trS(t)QS∗(t)
is continuous on [0,∞). Only this fact will be needed below, and it is worthwile
to point out that this can be proved more directly as follows. Let (ej) be an
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orthonormal basis of E and suppose that tn → t in [0,∞). Then,

lim
n→∞

trS(tn)QS∗(tn) = lim
n→∞

∑

j

‖Q 1
2S∗(tn)ej‖2

= lim
n→∞

∑

j

∑

k

[Q
1
2S∗(tn)ej , ek]2E = lim

n→∞

∑

k

‖S(tn)Q
1
2 ek‖2

=
∑

k

‖S(t)Q
1
2 ek‖2 =

∑

k

∑

j

[S(t)Q
1
2 ek, ej ]

2
E

=
∑

j

‖Q 1
2S∗(t)ej‖2 = trS(t)QS∗(t),

the convergence of the series being justified by dominated convergence, since we

have, for some constant C > 0, ‖S(tn)Q
1
2 ej‖2 6 C‖Q 1

2 ej‖2, and the latter is a
summable sequence: ∑

j

‖Q 1
2 ej‖2 = trQ.

Theorem 5.2. Let E be a separable real Hilbert space. Let (tn) be a sequence of
strictly positive real numbers with limn→∞ tn = t. For each n let Pn be a partition
of [0, tn], and assume that limn→∞mesh (Pn) = 0. Then,

lim
n→∞

µPntn = µt weakly.

Proof. By Lemma 3.3, for all x, y ∈ E we have

lim
n→∞

[QPntn x, y]E = [Qtx, y]E .

Hence, by part (ii) of Proposition 2.3, it remains to check that

lim
n→∞

∫

E

‖x‖2 dµPntn (x) =

∫

E

‖x‖2 dµt(x).

This is equivalent to the condition

lim
n→∞

trQPntn = trQt.

Choose an orthonormal basis {ek}∞k=1 for E. Then,

(5.2)

trQPntn =

∞∑

k=1

Nn∑

j=1

(tj,n − tj−1,n)
[
S(tj,n)QS∗(tj,n)ek, ek

]
E

=

Nn∑

j=1

(tj,n − tj−1,n)

∞∑

k=1

[
S(tj,n)QS∗(tj,n)ek, ek

]
E

=

Nn∑

j=1

(tj,n − tj−1,n) trS(tj,n)QS∗(tj,n),

where the change in the order of summation is justified by the fact that each term[
S(tj,n)QS∗(tj,n)ek, ek

]
E

=
[
QS∗(tj,n)ek, S

∗(tj,n)ek
]
E

is nonnegative.

The right hand side of (5.2) is a Riemann sum of the integral
∫ tn

0

trS(s)QS(s) ds.



14 FRANZISKA KÜHNEMUND AND JAN VAN NEERVEN

As we noted, by Lemma 5.1 the function s 7→ trS(s)QS(s) is continuous on [0, t].
Arguing as in the proof of Lemma 3.3, this implies

lim sup
n→∞

∣∣∣∣trQ
Pn
tn −

∫ t

0

trS(s)QS(s) ds

∣∣∣∣ < ε

for all ε > 0. Hence,

lim
n→∞

trQPntn =

∫ t

0

trS(s)QS(s) ds = trQt.

�

Upon combining this result with Theorem 3.6, we obtain:

Corollary 5.3. If E is a separable real Hilbert space, then for all f ∈ Cb(E) and
all t > 0 and x ∈ E we have

P(t)f(x) = lim
n→∞

[
T ( tn ) ◦S ( tn )

]n
f(x),

the convergence being uniform on finite time intervals [0, T ] and compact subsets
K ⊆ E.

For separable real Hilbert spaces E, a Lie-Trotter product formula for a class of
transition semigroups on Cb(E) associated with nonlinear stochastic equations of
the form

(5.3)
dX(t) = F (X(t)) dt+B(X(t)) dW (t), t > 0,

X(0) = x0,

has been obtained recently by G. Tessitore and J. Zabczyk. Here, {W (t)}t>0 is
a Brownian motion with values in E, and F : E → E and B : E → L (E) are
Lipschitz functions. In the linear case there is a small overlap with our Corollary
5.3. To make this explicit we make two special choices of F and B in (5.3). First,
we let T be the transition semigroup on Cb(E) obtained by taking F ≡ A, with A
a given bounded operator on E, and B ≡ 0 in (5.3); thus,

T (t)f(x) = f(etAx), t > 0, x ∈ E.
Second, we let S be the transition semigroup on Cb(E) obtained by taking F ≡
0 ∈ L (E) and B ≡ I in (5.3); thus,

S (t)f(x) =

∫

E

f(x+ y) dµt(y), t > 0, x ∈ E,

where µt is the distribution of W (t). This puts us into the setting considered in
Corollary 5.3. From [17, Proposition 3.5] (the special case for uniformly bounded
F and B of the main result, [17, Theorem 3.4]) we now see the following. Let Y
denote the closure with respect to the supremum norm in Cb(E) of the space of all
functions which are bounded and uniformly continuous along with their first and
second Fréchet derivatives. Then for all f ∈ Y , t > 0, and x ∈ E,

P(t)f(x) = lim
n→∞

[
T ( tn ) ◦S ( tn )

]n
f(x),

the convergence being uniform on finite time intervals and bounded subsets B ⊆ E.
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6. Appendix: Proof of Proposition 2.3, part (ii)

Although part (ii) of Proposition 2.3 may be well-known to specialists, we could
not find an explicit reference for it, and for the convenience of the reader we include
a proof here.

Let E be a separable real Hilbert space and let (µn)∞n=1 and µ satisfy the condi-
tions (1) and (2) in Proposition 2.3. We choose an orthonormal basis {ej}∞j=1 of E
and denote by Pj the orthogonal projection onto the linear span of {e1, . . . , ej}.
Lemma 6.1. Let ε > 0 be arbitrary and fixed. For all k > 1 there exists an index
Jk with the following property: for all j > Jk and all n > 1 we have

µn

{
x ∈ E : ‖x− Pjx‖2 >

1

k

}
6 ε

2k+1
.

Proof. The proof is inspired by an argument in [1].
Denote µn,j := Pjµn and µj := Pjµ, and let Qn,j and Qj denote their covariance

operators. By condition (1), for all x, y ∈ E we have

lim
n→∞

[Qn,jx, y]E = lim
n→∞

[PjQnPjx, y]E = lim
n→∞

[QnPjx, Pjy]E

= [QPjx, Pjy]E = [PjQjPjx, y] = [Qjx, y]E .

Hence by (2.1),

(6.1)

lim
n→∞

∫

E

‖Pjx‖2 dµn(x) = lim
n→∞

∫

PjE

‖y‖2 dµn,j(y)

= lim
n→∞

j∑

k=1

∫

PjE

[y, ek]2E dµn,j(y) = lim
n→∞

j∑

k=1

[Qn,jek, ek]E

=

j∑

k=1

[Qjek, ek]E =

j∑

k=1

∫

PjE

[y, ek]2E dµj(y)

=

∫

PjE

‖y‖2 dµj(y) =

∫

E

‖Pjx‖2 dµ(x).

By the absolute continuity of the measure ‖x‖2 dµ(x) with respect to dµ(x), for
every integer k > 1 we can pick δk > 0 such that∫

A

‖x‖2 dµ(x) 6 ε

k2k+3

for all Borel sets A ⊆ E with µ(A) 6 δk. Define

Aj,k :=
{
x ∈ E : ‖x− Pjx‖2 >

ε

k2k+3

}
.

By dominated convergence we have limj→∞ µ(Aj,k) = 0 for all k > 1. It follows
that there exists an index J(k) such that µ(Aj,k) 6 δk for all j > J(k). Then, for
all j > J(k) we have∫

E

‖x‖2 − ‖Pjx‖2 dµ(x) =

∫

E

‖x− Pjx‖2 dµ(x)

6
∫

Aj,k

‖x‖2 dµ(x) +

∫

E\Aj,k
‖x− Pjx‖2 dµ(x)

6 ε

k2k+3
+

ε

k2k+3
=

ε

k2k+2
.
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Next, choose an index Nk so large that for all n > Nk we have∣∣∣∣
∫

E

‖x‖2 dµn(x) −
∫

E

‖x‖2 dµ(x)

∣∣∣∣ 6
ε

k2k+3

and ∣∣∣∣
∫

E

‖PJ(k)x‖2 dµ(x) −
∫

E

‖PJ(k)x‖2 dµn(x)

∣∣∣∣ 6
ε

k2k+3
.

The second condition can be met in view of (6.1). Then, for all n > Nk and
j > J(k),∫

E

‖x− Pjx‖2 dµn(x) 6
∫

E

‖x− PJ(k)x‖2 dµn(x) =

∫

E

‖x‖2 − ‖PJ(k)x‖2 dµn(x)

6
∣∣∣∣
∫

E

‖x‖2 dµn(x)−
∫

E

‖x‖2 dµ(x)

∣∣∣∣+

∫

E

‖x‖2 − ‖PJ(k)x‖2 dµ(x)

+

∣∣∣∣
∫

E

‖PJ(k)x‖2 dµn(x)−
∫

E

‖PJ(k)x‖2 dµ(x)

∣∣∣∣

6 ε

k2k+3
+

ε

k2k+2
+

ε

k2k+3
=

ε

k2k+1
.

It follows that for all n > Nk and all j > J(k) we have

µn

{
x ∈ E : ‖x− Pjx‖2 >

1

k

}
6 k

∫

E

‖x− Pjx‖2 dµn(x) 6 ε

2k+1
.

By dominated convergence, for every k > 1 we can find an index Jk > J(k) such
that for all n = 1, . . . , Nk − 1 and all j > Jk we have

µn

{
x ∈ E : ‖x− Pjx‖2 >

1

k

}
6 ε

2k+1
.

This Jk has the desired properties. �
Proof of Proposition 2.3, part (ii). We follow the argument of [18, Theorem I.3.7].
Define

Vj,k :=

{
x ∈ E : ‖x− Pjx‖2 >

1

k

}
.

Fix ε > 0 arbitrary. By Lemma 6.1, for every k > 1 we can find an index jk such
that for all n > 1 we have

µn(Vjk ,k) 6 ε

2k+1
.

For all n > 1 and r > 0 we have

µn{x ∈ E : ‖x‖ > r} 6 1

r2

∫

E

‖x‖2 dµn(x) 6 1

r2
· sup
m>1

∫

E

‖x‖2 dµm(x).

Hence, we may choose r0 so large that for all n > 1 we have

µn{x ∈ E : ‖x‖ > r0} 6
ε

2
.

Set

F :=


⋂

k>1

E\Vjk ,k


 ⋂ {

x ∈ E : ‖x‖ 6 r0

}
.

Then, F is bounded and closed, and for all k > 1 we have

F ⊆
{
x ∈ E : ‖x− Pjkx‖2 6

1

k

}
.
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Since every Pjk has finite-dimensional range, an elementary argument implies that
F is compact. Moreover, for all n > 1 we have

µn(E\F ) 6
( ∞∑

k=1

ε

2k+1

)
+
ε

2
6 ε.

We have shown that for every ε > 0 there exists a compact set F ⊆ E with
µn(F ) > 1− ε for n > 1. This proves that the sequence (µn) is tight.

By condition (1) and (2.2), µ is the only possible weak limit point of (µn). A
standard argument now gives the weak convergence limn→∞ µn = µ. �
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[4] Z. Brzeźniak and J.M.A.M. van Neerven, Stochastic convolution in separable Banach spaces
and the stochastic linear Cauchy problem, Studia Math. 143 (2000), 43–74.

[5] S. Cerrai, A Hille–Yosida theorem for weakly continuous semigroups, Semigroup Forum 49
(1994), 349–367.

[6] S. Cerrai and F. Gozzi, Strong solutions of Cauchy problems associated to weakly continuous
semigroups, Diff. Integral Eq. 8 (1995), 465–486.

[7] G. Da Prato and J. Zabczyk, “Stochastic Equations in Infinite Dimensions”, Encyclopedia
of Mathematics and its Applications, Cambridge University Press, Cambridge, 1992.

[8] B. Goldys and M. Kocan, Diffusion semigroups in spaces of continuous functions with mixed
topology, J. Differential Equations 173 (2001), 17–39.

[9] B. Goldys and J.M.A.M. van Neerven, Transition semigroups of Ornstein-Uhlenbeck pro-
cesses on Banach spaces, submitted.
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