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Abstract. We study the asymptotic behaviour of solutions of the stochastic
abstract Cauchy problem

(

dU(t) = AU(t) dt + B dWH(t), t > 0,

U(0) = 0,

where A is the generator of a C0-semigroup on a Banach space E, WH is
a cylindrical Brownian motion over a separable Hilbert space H, and B ∈
L (H, E) is a bounded operator. Assuming the existence of a solution U , we
prove that a unique invariant measure exists if the resolvent R(λ, A) is R-
bounded in the right half-plane {Re λ > 0}, and that conversely the existence
of an invariant measure implies the R-boundedness of R(λ, A)B in every half-
plane properly contained in {Re λ > 0}. We study various abscissae related
to the above problem and show, among other things, that the abscissa of R-
boundedness of the resolvent of A coincides with the abscissa corresponding to
the existence of invariant measures for all γ-radonifying operators B provided
the latter abscissa is finite. For Hilbert spaces E this result reduces to the
Gearhart-Herbst-Prüss theorem.

1. Introduction and statement of the results

Let A be the generator of a C0-semigroup S = {S(t)}t>0 on a Banach space
E. Denoting the abscissa of uniform boundedness of the resolvent by s0(A) and
the growth bound by ω0(A), cf. [2, 22], the easy part of the Hille-Yosida theorem
implies that s0(A) 6 ω0(A). A classical theorem of Gearhart, Herbst, and Prüss
[12, 16, 28] states that in Hilbert spaces E, equality s0(A) = ω0(A) holds. More
precisely, if the resolvent R(λ,A) = (λ−A)−1 is uniformly bounded on {Reλ > 0},
then S is uniformly exponentially stable. The main result of this paper is a version
of the Gearhart-Herbst-Prüss theorem for the linear stochastic Cauchy problem

(SCPB)

{
dU(t) = AU(t) dt+B dWH(t), t > 0,

U(0) = 0,
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where WH is a cylindrical Brownian motion over a separable real Hilbert space H
and B ∈ L (H,E) is a fixed operator. The notion of a cylindrical Brownian motion,
as well as other unexplained notions used in this introduction, will be explained in
later sections.

Theorem 1.1. Assume that the problem (SCPB) has a solution. If the resolvent

R(λ,A) is γ-bounded on {Reλ > 0}, then (SCPB) admits a unique invariant mea-

sure.

In particular an invariant measure exists under the stronger assumption that the
resolvent R(λ,A) is R-bounded on {Reλ > 0}.

The existence of an invariant measure implies that the solution U is bounded in
all means. This will be elaborated further in Section 4.

In the converse direction we prove:

Theorem 1.2. If the problem (SCPB) admits an invariant measure, then R(λ,A)B
has an analytic extension to {Reλ > 0} which is R-bounded on {Reλ > δ} for every

δ > 0, with an R-bound of order O(1/
√
δ) as δ ↓ 0.

In some sense Theorems 1.1 and 1.2 are optimal even if E is a Hilbert space, as
is shown by the following example [15, Example 7.1].

Example 1. Let H = E = ℓ2 with standard unit basis (un)n>1. Let (bn)n>1 be a
bounded sequence of positive real numbers and define B ∈ L (H,E) by Bun :=
bnun. Let (an)n>1 be a sequence of positive real numbers and define the operator A
with maximal domain D(A) by Aun := −anun. Then A generates a C0-semigroup
S on E given by S(t)un = e−antun.

• Take bn = 1/n and an = 1/
√
n. Then the problem (SCPB) admits a

solution, for all δ > 0 the resolvent R(λ,A) is (R-)bounded on {Reλ > δ},
but no invariant measure exists.

• Take bn = 1/n
√
n and an = 1/

√
n. Then the problem (SCPB) admits a

unique invariant measure, but R(λ,A)B is (R-)unbounded on {Reλ > 0}.

Remark 2. A solution of (SCPB) always exists under the following assumptions:

• B is γ-radonifying and A generates an analytic C0-semigroup [10];
• B is γ-radonifying and E has type 2 [25];
• B is γ-radonifying, E has property (α+), and (SCPC) admits a solution for

all rank 1 operators C : H → E [26].

For γ-radonifying operators B the problem (SCPB) may be equivalently reformu-
lated as

(SCPW )

{
dU(t) = AU(t) dt+ dW (t), t > 0,

U(0) = 0,

where W is the unique E-valued Brownian motion satisfying

〈W (t), x∗〉 = WH(t)B∗x∗, t > 0, x∗ ∈ E∗.

Conversely every problem of the form (SCPW ), with W an E-valued Brownian
motion, may be reformulated in the form (SCPB), where B : H →֒ E is the γ-
radonifying embedding of the reproducing kernel Hilbert space H associated with
B. We refer to [24, 26] for more details.
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If a solution of (SCPB) exists, it is unique up to modification. Even if B is a
rank 1 operator, solutions may fail to exist, however; examples are presented in
[9, 24] and in Example 8 below.

Theorem 1.3. Assume that the problem (SCPB) admits an invariant measure for

all rank 1 operators B ∈ L (H,E). Then {Reλ > 0} ⊆ ̺(A) and the resolvent

R(λ,A) is R-bounded on {Reλ > δ} for every δ > 0, with an R-bound of order

O(1/
√
δ) as δ ↓ 0.

If (SCPB) admits an invariant measure for all γ-radonifying operators B ∈
L (H,E) a stronger conclusion holds; see Remark 10 at the end of the paper.

Theorems 1.2 and 1.3 are deduced from an abstract result on the R-boundedness
of operator-valued Laplace transforms, presented in Section 3. The notion of R-
boundedness has been studied recently by many authors and has played a crucial
role in the solution of the maximal regularity problem for parabolic evolution equa-
tions in Banach spaces; cf. [5, 8, 19, 32] and the references given therein. Every
R-bounded family of operators is γ-bounded and every γ-bounded family is uni-
formly bounded.

Motivated by the above results we introduce the abscissae

sB
γ (A) := inf

{
ω > s(A) : λ 7→ R(λ,A)B has a γ-bounded

analytic extension to {Reλ > ω}
}
,

sB
R(A) := inf

{
ω > s(A) : λ 7→ R(λ,A)B has an R-bounded

analytic extension to {Reλ > ω}
}
,

where B ∈ L (H,E) is fixed, and

sγ(A) := inf
{
ω > s(A) : λ 7→ R(λ,A) is γ-bounded on {Reλ > ω}

}
,

sR(A) := inf
{
ω > s(A) : λ 7→ R(λ,A) is R-bounded on {Reλ > ω}

}
.

We use the convention that the infimum over the empty set equals ∞. Clearly,

sB
γ (A) 6 sB

R(A) and s0(A) 6 sγ(A) 6 sR(A).

An example showing that strict inequality s0(A) < sγ(A) may occur is given in [17].
No example seems to be known of a generator A for which sγ(A) < sR(A) holds.
If E has finite cotype, then Gaussian sums and Rademacher sums are comparable
and therefore equality sγ(A) = sR(A) holds. It will follow from Theorem 1.5 that
sγ(A) = sR(A) also holds if (SCPB) has a solution for all rank 1 operators B.

Example 3. If A is the generator of a positive C0-semigroup on a Banach lattice
E which is q-concave with 1 6 q < ∞, then s(A) = s0(A) = sγ(A) = sR(A) [14,
Example 5.5(b)].

As an application of Theorem 1.1 we shall construct next an example of a
C0-semigroup with positive growth bound which has the property that for all γ-
radonifying operators B, the problem (SCPB) has an invariant measure. This re-
markable phenomenon cannot occur in Hilbert spaces, and more generally in cotype
2 spaces; cf. Example 7 below.
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Example 4. For 1 6 p 6 q < ∞ consider the space E := Lp(1,∞) ∩ Lq(1,∞)
endowed with the norm ‖f‖ := max{‖f‖p, ‖f‖q}. On E we define the C0-semigroup
S by

(S(t)f)(s) := f(set), s > 1, t > 0.

It was shown by Arendt [1] that

(1.1) s0(A) = − 1
p
< − 1

q
= ω0(A).

By Example 3, sγ(A) = sR(A) = − 1
p
. Now let 2 6 p < q < ∞ and put Sc(t) :=

ectS(t) and A−c := A+ c, where 1
q
< c < 1

p
is an arbitrary but fixed number. Then

E has type 2 and the problem (SCPB) with A replaced by A−c has a solution for
all γ-radonifying operators B, cf. Remark 2. In view of sγ(A−c) = − 1

p
+ c < 0,

Theorem 1.1 shows that an invariant measure always exists. On the other hand,
ω0(A−c) = − 1

q
+ c > 0.

For a fixed operator B ∈ L (H,E) we introduce the following abscissa for the
existence of an invariant measure for the problem (SCPB):

ωB
inv(A) := inf

{
ω ∈ R : the problem (SCPB) with A replaced

by A− ω admits an invariant measure
}
.

In Section 4 it will be shown that ωB
inv(A) < ∞ if and only if (SCPB) has a

solution, in which case ωB
inv(A) is equal to the abscissa of existence of a solution of

(SCPB) which is bounded in p-th moment for some (all) p ∈ [1,∞). In terms of the
abscissa ωB

inv(A), the main assertions of Theorems 1.1 and 1.2 admit the following
functional analytic formulation.

Theorem 1.4. If the problem (SCPB) admits a solution, then

sB
γ (A) 6 sB

R(A) 6 ωB
inv(A) 6 sγ(A) 6 sR(A).

In view of Remark 2 it is natural to define two more abscissae related to the
existence of invariant measures, viz.

ω
(1)
inv(A) := inf

{
ω ∈ R : the problem (SCPB) with A replaced

by A− ω admits an invariant measure

for all rank 1 operators B ∈ L (H,E)
}
,

ωγ
inv(A) := inf

{
ω ∈ R : the problem (SCPB) with A replaced

by A− ω admits an invariant measure

for all γ-radonifying operators B ∈ L (H,E)
}
.

We have ω
(1)
inv(A) < ∞ (resp. ωγ

inv(A) < ∞) if and only if (SCPB) has a solution
for all rank 1 (resp. γ-radonifying) operators B.

Theorem 1.5.

(1) If the problem (SCPB) admits a solution for all rank 1 operators B ∈
L (H,E), then

s0(A) 6 sγ(A) = sR(A) = ω
(1)
inv(A) 6 ω0(A).



INVARIANT MEASURES AND R-BOUNDEDNESS 5

(2) If the problem (SCPB) admits a solution for all γ-radonifying operators

B ∈ L (H,E), then

s0(A) 6 sγ(A) = sR(A) = ω
(1)
inv(A) = ωγ

inv(A) 6 ω0(A).

Example 5. If E is a Hilbert space, then Theorem 1.5 reduces to the Gearhart-
Herbst-Prüss theorem. To see this, first note that on the one hand we have

s0(A) = sγ(A) = sR(A)

since the notions of uniform boundedness, γ-boundedness, and R-boundedness
agree for Hilbert spaces. On the other hand, (SCPB) has a solution for all γ-
radonifying operators B. If B is a rank 1 operator, say Bh = [h, h0]Hx0 for h ∈ H ,
then by Proposition 4.4 below an invariant measure for (SCPB) exists with A re-
placed by A−ω if and only if the orbit t 7→ e−ωtS(t)x0 belongs to L2(R+;E). The
Datko-Pazy theorem therefore implies that

ω
(1)
inv(A) = ωγ

inv(A) = ω0(A).

Example 6. If A is the generator of a C0-semigroup on a real Banach space E
and (SCPB) has a solution for all rank 1 (resp. γ-radonifying) operators B, then

s(A) = s0(A) = sR(A) = sγ(A) = ω
(1)
inv(A) (= ωγ

inv(A)) = ω0(A) under each of the
following additional assumptions:

• S is eventually norm continuous;
• S is positive on E = C0(Ω) with Ω locally compact Hausdorff;
• S is positive on E = Lp with p ∈ [1,∞).

Indeed, well-known results from semigroup theory imply that in each of these cases
we have s(A) = ω0(A) and the result follows from Theorem 1.5.

It follows from Example 4 that under the assumption of Theorem 1.5, strict
inequality ωγ

inv(A) < ω0(A) may occur. On the other hand, the next example

shows that in cotype 2 spaces one always has ω
(1)
inv(A) = ω0(A) provided the former

abscissa is finite.

Example 7. If E has cotype 2 and ω
(1)
inv(A) <∞, then sR(A) = sγ(A) = ω

(1)
inv(A) =

ω0(A). To see this, let ω
(1)
inv(A) < c. It will be enough to prove that ω0(A) < c. Fix

x0 ∈ E arbitrary and consider the rank 1 operatorBh = [h, h0]Hx0. By Proposition
4.4, the function t 7→ e−ctS(t)x0 belongs to the space γ(R+;E), which is introduced
in Section 2. Since E has cotype 2, by a result of Rosiński and Suchanecki [29] this
implies that t 7→ e−ctS(t)x0 belongs to L2(R+;E); cf. also [24]. Since x0 ∈ E is
arbitrary, the Datko-Pazy theorem now shows that ω0(A) < c.

We show next how Examples 3 and 7 may be combined to derive nonexistence
results for the problem (SCPB).

Example 8. Let 1 6 p < 2 and consider the generator A in Lp(1,∞) of the semi-
group S defined by

(S(t)f)(s) := f(set), s > 1, t > 0.

We take H = R. For g ∈ Lp(1,∞) let Bg ∈ L (R, Lp(1,∞)) be given by Bg1 := g.
We shall prove that there exists a function g ∈ Lp(1,∞) ∩ L2(1,∞) such that the
problem (SCPBg

) fails to have a solution in Lp(1,∞).

To this end let E := Lp(1,∞) ∩ L2(1,∞). We claim that in E, the problem
(SCPBg0

) fails to have a solution for some g0 ∈ E. Indeed, otherwise we would have
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s(AE) = ω
(1)
inv(AE) by Example 3 and Theorem 1.5, where AE denotes the part of

A in E. But since E has cotype 2, by Example 7 we have ω
(1)
inv(AE) = ω0(AE).

It would follow with (1.1) that − 1
p

= s(AE) = ω
(1)
inv(AE) = ω0(AE) = − 1

2 , a

contradiction. This proves the claim.
In L2(1,∞), the problem (SCPBg0

) does have a solution, cf. Remark 2. It follows

that (SCPBg0
) fails to have a solution in Lp(1,∞). For otherwise Proposition 4.1

would guarantee the existence of a solution in Lp(1,∞) ∩ L2(1,∞) = E, which
contradicts the choice of g0.

Together with Example 3, this example also shows that sR(A) < ∞ may occur

even if ω
(1)
inv(A) = ∞. In particular, the finiteness of the abscissa sR(A) gives no

guarantee for the existence of solutions of (SCPB).

Acknowledgment – The first named author thanks Zdzis law Brzeźniak for his kind
invitation to present the results of this paper at the East Midlands Stochastic
Analysis Seminar (June, 2004). Both authors thank Mark Veraar for some helpful
comments.

2. γ-Radonifying operators

Solutions of (SCPB), if they exist, are Gaussian processes. This explains the
important role played by the operator ideal of γ-radonifying operators in the study
of (SCPB). In this section we review some of its properties which shall be used
throughout this paper. For proofs and more information we refer to [3].

Let H be a separable real Hilbert space and E a real Banach space. A bounded
operatorR ∈ L (H,E) is said to be γ-radonifying ifR◦R∗ ∈ L (E∗, E) is a Gaussian
covariance operator, i.e., if there exists a centred Gaussian Radon measure µ on E
such that

〈RR∗x∗, y∗〉 =

∫

E

〈x, x∗〉〈x, y∗〉 dµ(x) ∀x∗, y∗ ∈ E∗.

If (gn)n>1 is a sequence of independent standard normal random variables (briefly,
an orthogaussian sequence) on some probability space (Ω,F ,P) and (hn)n>1 is an
orthonormal basis of H , then R ∈ L (H,E) is γ-radonifying if and only if the series∑

n>1 gnRhn converges in L2(Ω;E); the distribution µR of its sum is then a centred

Gaussian Radon measure on E with covariance R ◦ R∗. The space γ(H,E) of all
γ-radonifying operators from H into E is a Banach space with respect to the norm
‖ · ‖γ(H,E) defined by

‖R‖2
γ(H,E) := E

∥∥∥
∑

n>1

gnRhn

∥∥∥
2

=

∫

E

‖x‖2 dµR(x).

If E is a Hilbert space, then γ(H,E) = L2(H,E) with equal norms.
By Anderson’s inequality, any positive symmetric operator which is dominated by

a Gaussian covariance is itself a Gaussian covariance. More precisely, let Q1, Q2 ∈
L (E∗, E) be positive symmetric operators satisfying

〈Q1x
∗, x∗〉 6 〈Q2x

∗, x∗〉
for all x∗ ∈ E∗. Then Q1 is a Gaussian covariance if Q2 is a Gaussian covariance.
Moreover, if in this situation R1 : H1 → E and R2 : H2 → E satisfy R1 ◦R∗

1 = Q1

and R2 ◦R∗
2 = Q2, then R1 and R2 are γ-radonifying and

‖R1‖γ(H1,E) 6 ‖R2‖γ(H2,E).
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A simple consequence of Anderson’s inequality is the following ideal property of
Gaussian covariances: if S ∈ L (H1, H), R ∈ γ(H,E), and T ∈ L (E,E1), then
T ◦R ◦ S ∈ γ(H1, E1) and

‖T ◦R ◦ S‖γ(H1,E1) 6 ‖T ‖ ‖R‖γ(H,E) ‖S‖.

In particular every bounded operator S : H1 → H2 induces a bounded operator

S̃ : γ(H1, E) → γ(H2, E) by the formula

S̃R := R ◦ S∗.

Moreover,

(2.1) ‖S̃‖L (γ(H1,E),γ(H2,E)) 6 ‖S‖L (H1,H2).

This extension procedure has been introduced in [18] and will be applied below to
the Fourier-Plancherel transform.

Let (M,m) be a separable and σ-finite measure space. We say that a function
φ : M → E is weakly L2 if 〈φ, x∗〉 ∈ L2(M) for all x∗ ∈ E∗. Such a function is said
to represent an operator R ∈ L (L2(M), E) if for all f ∈ L2(M) and x∗ ∈ E∗ we
have

〈Rf, x∗〉 =

∫

M

f(t)〈φ(t), x∗〉 dm(t).

Following [18], the vector space of all weakly L2-functions φ representing an element
R of γ(L2(M), E) is denoted by γ(M ;E). We identify functions representing the
same operator. Endowed with the norm

‖φ‖γ(M ;E) := ‖R‖γ(L2(M),E),

γ(M ;E) is isometric with a dense subspace of γ(L2(M), E). We will frequently
apply Anderson’s inequality in the following form: if φ : M → E and ψ : M → E
are weakly L2 and satisfy

∫

M

〈φ(t), x∗〉2 dm(t) 6

∫

M

〈ψ(t), x∗〉2 dm(t) ∀x∗ ∈ E∗,

then ψ ∈ γ(M ;E) implies φ ∈ γ(M ;E) and we have ‖φ‖γ(M ;E) 6 ‖ψ‖γ(M ;E). As a
special case we have the following ideal property for γ(M ;E): if a ∈ L∞(M) and
φ ∈ γ(M ;E), then aφ ∈ γ(M ;E) and

‖aφ‖γ(M ;E) 6 ‖a‖∞ ‖φ‖γ(M ;E).

We say that a function φ : M → L (H,E) is H-weakly L2 if φ∗x∗ ∈ L2(M ;H) for
all x∗ ∈ E∗; such a function is said to represent an operator R ∈ L (L2(M ;H), E)
if for all f ∈ L2(M ;H) and x∗ ∈ E∗ we have

〈Rf, x∗〉 =

∫

M

[φ∗(t)x∗, f(t)]H dm(t).

Again we identify functions representing the same operator. Endowed with the
norm

‖φ‖γ(M ;H,E) := ‖R‖γ(L2(M ;H),E),

γ(M ;H,E) is isometric with a dense subspace of γ(L2(M ;H), E).
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3. R-boundedness and γ-boundedness

Let (rn)n>1 be a sequence of independent Rademacher variables on some prob-
ability space (Ω,F ,P). A family of operators T ⊆ L (E) is called R-bounded if
there exists a constant C such that for all N > 1 and all sequences (Tn)N

n=1 ⊆ T

and (xn)N
n=1 ⊆ E we have

E

∥∥∥
N∑

n=1

rnTnxn

∥∥∥
2

6 C2
E

∥∥∥
N∑

n=1

rnxn

∥∥∥
2

.

The least possible constant C is called the R-bound of T , notation R(T ). By
replacing the Rademacher sequence (rn)n>1 by an orthogaussian sequence (gn)n>1

we obtain the corresponding notion of a γ-bounded family. Its γ-bound is denoted
by γ(T ).

Every γ-bounded family T is uniformly bounded and for all T ∈ T we have
‖T ‖ 6 γ(T ). Every R-bounded family is γ-bounded, with γ(T ) 6 R(T ). Indeed,
by randomizing with an independent Rademacher sequence (r̃n)n>1 and using Fu-
bini’s theorem,

E

∥∥∥
N∑

n=1

gnTnxn

∥∥∥
2

= Ẽ E

∥∥∥
N∑

n=1

r̃ngnTnxn

∥∥∥
2

= E Ẽ

∥∥∥
N∑

n=1

r̃ngnTnxn

∥∥∥
2

6 (R(T ))2 E Ẽ

∥∥∥
N∑

n=1

r̃ngnxn

∥∥∥
2

= (R(T ))2 Ẽ E

∥∥∥
N∑

n=1

r̃ngnxn

∥∥∥
2

= (R(T ))2 E

∥∥∥
N∑

n=1

gnxn

∥∥∥
2

.

In spaces with finite cotype, Rademacher sums and Gaussian sums are compa-
rable [11, Chapter 12] and the notions of R-boundedness and γ-boundedness are
equivalent. In Hilbert spaces, both notions are equivalent to uniform boundedness.

If S and T are R-bounded (γ-bounded), then S T = {ST : S ∈ S , T ∈ T }
is R-bounded (γ-bounded), and we have

(3.1) R(S T ) 6 R(S )R(T ) (γ(S T ) 6 γ(S )γ(T )).

Moreover, if T is R-bounded (γ-bounded), then its closure in the strong operator

topology, T , is R-bounded (γ-bounded), and

(3.2) R(T ) = R(T ) (γ(T ) = γ(T )).

By viewing a complex Banach space as a real Banach space of twice the di-
mension, the definitions of R-boundedness and γ-boundedness trivially extend to
complex Banach spaces. This will be used tacitly at various places where we discuss
R-boundedness and γ-boundedness of certain operator-valued analytic functions.

There exist intimate connections between γ-bounded families and γ-radonifying
operators. As a first illustration of this principle we state a simple extension of a
multiplier result from [18].

Proposition 3.1. Let µ be a σ-finite Radon measure on a separable metric space

X. Let E and F be real Banach spaces, and let N : X → L (E,F ) a strongly

measurable function. Assume that N has γ-bounded range, with γ-bound γ(N).
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Then for all φ ∈ γ(X ;H,E) we have Nφ ∈ γ(X ;H,F ) and

‖Nφ‖γ(X;H,F ) 6 γ(N) ‖φ‖γ(X;H,E).

Here, (Nφ)(ξ) := N(ξ)φ(ξ) for ξ ∈ X .
As a second illustration we shall prove an R-boundedness result for the Laplace

transform of operators taking values in γ(R+;E). We start with two lemmas.

Lemma 3.2. Let E and F be real Banach spaces and let T1, . . . , TN be operators

in L (E,F ). If C is a constant such that

E

∥∥∥
N∑

n=1

gnTnx
∥∥∥

2

6 C2‖x‖2 ∀x ∈ E,

then for all finite sequences (xn)N
n=1 in E we have

E

∥∥∥
N∑

n=1

rnTnxn

∥∥∥
2

6 1
2πC

2
E

∥∥∥
N∑

n=1

rnxn

∥∥∥
2

.

Proof. This follows from the estimates

E

∥∥∥
N∑

n=1

rnTnxn

∥∥∥
2 (∗)

6 E Ẽ

∥∥∥
N∑

n,m=1

rnr̃m Tmxn

∥∥∥
2 (∗∗)

6 1
2πE Ẽ

∥∥∥
N∑

n,m=1

rng̃m Tmxn

∥∥∥
2

= 1
2πE Ẽ

∥∥∥
N∑

m=1

g̃m Tm

( N∑

n=1

rnxn

)∥∥∥
2

6 1
2πC

2
E

∥∥∥
N∑

n=1

rnxn

∥∥∥
2

,

where in (∗) and (∗∗) we used [13, Lemma 3.12] and [11, Proposition 12.11], re-
spectively. �

In the next lemma, S denotes the open strip {λ ∈ C : 0 < Reλ < 1}.

Lemma 3.3. Let N : S → L (E,F ) be strongly continuous and bounded, and

assume that N is harmonic on S. If the sets Nρ
k = {N(k + i(n + ρ)) : n ∈ Z}

are R-bounded, uniformly with respect to k ∈ {0, 1} and ρ ∈ [0, 1), then for all

0 < η < 1 the function N is R-bounded on the line {Reλ = η} and there exists a

constant Cη, independent of k and ρ, such that

R
(
{N(λ) : Reλ = η}

)
6 Cη sup

k∈{0,1}
ρ∈[0,1)

R(Nρ
k ).

Proof. By the Poisson formula for the strip we have, for λ = α+ iβ with 0 < α < 1
and β ∈ R,

N(λ)x =
∑

k=0,1

∫ ∞

−∞

Pk(α, β − t)N(k + it)xdt, x ∈ E,

with

Pk(α, s) =
eπs sin(πα)

sin2(πα) + (cos(πα) − (−1)keπs)2
.

Fix 0 < η < 1 arbitrary. For λj ∈ S with Reλj = η choose nj ∈ Z and ρj ∈ [0, 1)
such that λj = η + i(nj + ρj). For all finite sequences (xj)N

j=1 in E we have, using
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the contraction principle for Rademacher sums,

(
E

∥∥∥
N∑

j=1

rj N(λj)xj

∥∥∥
) 1

2

=
∥∥∥

∑

k=0,1

N∑

j=1

rj

∫ ∞

−∞

Pk(η, nj + ρj − t)N(k + it)xj dt
∥∥∥

L2(Ω;E)

6
∑

k=0,1

∫ ∞

−∞

∥∥∥
N∑

j=1

rj Pk(η, ρj − τ)N(k + i(nj + τ))xj

∥∥∥
L2(Ω;E)

dτ

6
∑

k=0,1

∫ ∞

−∞

sup
ρ∈[0,1)

Pk(η, ρ− τ)
∥∥∥

N∑

j=1

rj N(k + i(nj + τ))xj

∥∥∥
L2(Ω;E)

dτ

6 sup
k∈{0,1}
ρ∈[0,1)

R(Nρ
k )

∑

k=0,1

∫ ∞

−∞

sup
ρ∈[0,1)

Pk(η, ρ− τ) dτ ·
(

E

∥∥∥
N∑

j=1

rj xj

∥∥∥
2) 1

2

.

�

Note that in combination with [32, Proposition 2.8], the stronger result is ob-
tained that N has R-bounded range on every strip {η1 6 Reλ 6 η2} with 0 < η1 6

η2 < 1.

For an operator T ∈ L (L2(R+), E) we define the Laplace transform T̂ : {Reλ >
0} → E by

T̂ (λ) := Teλ, Reλ > 0,

where eλ ∈ L2(R+) is the function eλ(t) = e−λt. It is easily seen that T̂ is
weakly analytic, hence analytic, on its domain. For a bounded operator Θ : F →
L (L2(R+), E), where F is another real Banach space, we define the Laplace trans-

form Θ̂ : {Reλ > 0} → L (F,E) by

Θ̂(λ)y := Θ̂y(λ), y ∈ F, Reλ > 0.

Clearly, Θ̂ is uniformly bounded on every half-plane {Reλ > δ} with a bound of

order 1/
√
δ as δ ↓ 0.

Theorem 3.4. Let Θ : F → γ(L2(R+), E) be a bounded operator. Then Θ̂ is

R-bounded on every half-plane {Reλ > δ} and there exists a universal constant C
such that

R
(
{Θ̂(λ) : Reλ > δ}

)
6 C‖Θ‖max

{
1,

1√
δ

}
.

Proof. Let δ > 0 and min{ 1
4δ,

1
2} 6 r 6 min{ 1

2δ,
1
2} be arbitrary and fixed. For

n ∈ Z and ρ ∈ [0, 1) let Dρ
n denote the disc of radius r with centre δ + 2i(n+ ρ)r

and define

fρ
n(s, t) :=

1√
πr2

1D
ρ

n
(s+ it).

For each ρ, the sequence (fρ
n)n∈Z is an orthonormal system in L2((δ− r, δ+ r)×R).

Since λ 7→ Θ̂y(λ) is analytic in {Reλ > 0} for all y ∈ F , the mean value property
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for harmonic functions implies that

1√
πr2

∫∫

(δ−r,δ+r)×R

fρ
n(s, t)Θ̂y(s+ it) ds dt = Θ̂y(δ + 2i(n+ ρ)r).

Let us write Fy(s, t) := Θ̂y(s+ it). Applying (2.1) to the operator F : L2(R+) →
L2((δ − r, δ + r) × R) defined by

(Ff)(λ, µ) =

∫ ∞

0

e−(λ+iµ)tf(t) dt, f ∈ L1(R+) ∩ L2(R+),

and noting that F̃ (Θy) is represented by Fy, we obtain

E

∥∥∥
N∑

n=−N

gn Θ̂y(δ + 2i(n+ ρ)r)
∥∥∥

2

=
1

πr2
E

∥∥∥
N∑

n=−N

gn

∫∫

(δ−r,δ+r)×R

fρ
n(s, t)Fy(s, t) ds dt

∥∥∥
2

6
1

πr2
‖Fy‖2

γ((δ−r,δ+r)×R;E)

(∗)

6
4

r
‖Θy‖2

γ(L2(R+),E)

(∗∗)

6 16‖Θ‖2 max
{

1,
1

δ

}
‖y‖2.

In (∗) we used the estimate ‖F‖2 6 4πr and in (∗∗) the choice of r. By Lemma

3.2, the sequence
(
Θ̂(δ + 2i(n+ ρ)r)

)
n∈Z

is R-bounded, uniformly with respect to

ρ ∈ [0, 1), with an R-bound of order CΘ max{1, 1/
√
δ}.

For 0 < δ < 1, by a scaling argument we may apply Lemma 3.3 with η = 1
2 to

the points δ + i(n + ρ)δ (for k = 0; this corresponds to the choice r = 1
2δ) and

2δ+ i(n+ ρ)δ (for k = 1; this corresponds to the choice r = 1
4δ). We obtain that Θ̂

is R-bounded on the vertical line {Reλ = 3
2δ} with an R-bound of order ‖Θ‖/

√
δ.

Similarly, for δ > 1 we apply Lemma 3.3 with η = 1
2 to the points δ + i(n + ρ)

and δ + 1 + i(n+ ρ) (for k = 0, 1; this corresponds to r = 1
2 ). We obtain that Θ̂ is

R-bounded on the vertical line {Reλ = δ + 1
2} with an R-bound of order ‖Θ‖.

Now let δ > 0 be fixed again and consider, for ε > 0, the strip Sδ,ε = {δ 6

Reλ 6 ε}. By the above, Θ̂ is R-bounded on ∂Sδ,ε with an R-bound of order

‖Θ‖max{1, 1/
√
δ}. By [32, Proposition 2.8], Θ̂ is R-bounded on Sδ,ε with the

same R-bound. �

If E has property (α+), a considerably simpler proof of this result can be based
upon [26, Theorem 6.5].

4. Invariant measures

In this section we return to the problem (SCPB) and discuss existence and
uniqueness of solutions and their asymptotic behaviour. Throughout this section,
A is the generator of a C0-semigroup on E, H is a separable real Hilbert space, and
B ∈ L (H,E) is a fixed bounded operator.

A cylindrical H-Brownian motion on a probability space (Ω,F ,P) is a fam-
ily WH = {WH(t)}t∈[0,T ] bounded linear operators from H into L2(Ω) with the
following properties:

(1) For all h ∈ H , {WH(t)h}t∈[0,T ] is a standard Brownian motion;
(2) For all s, t ∈ [0, T ] and g, h ∈ H , E (WH(s)g ·WH(t)h) = (s ∧ t)[g, h]H .
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We shall always assume that the Brownian motions WHh are adapted to some given
filtration.

An E-valued process U = {U(t)}t>0 on (Ω,F ,P) is called a weak solution of the
problem (SCPB) if it is weakly progressively measurable and for all x∗ ∈ D(A∗),
the domain of the adjoint operator A∗, the following two conditions are satisfied:

(1) Almost surely, the paths t 7→ 〈U(t), A∗x∗〉 are locally integrable;
(2) For all t > 0 we have, almost surely,

〈U(t), x∗〉 =

∫ t

0

〈U(s), A∗x∗〉 ds+WH(t)B∗x∗.

To simplify terminology we shall simply speak of a solution. The following result
from [24] gives necessary and sufficient conditions for existence (and uniqueness) of
solutions; see also [4, 6].

Proposition 4.1. The following assertions are equivalent:

(1) The function t 7→ S(t)B belongs to γ(0, T ;H,E) for some T > 0;
(2) The function t 7→ S(t)B belongs to γ(0, T ;H,E) for all T > 0;
(3) The problem (SCPB) admits a solution U .

The solution U is unique up to a modification and Gaussian. The covariance oper-

ator Qt ∈ L (E∗, E) of U(t) is given by

E 〈U(t), x∗〉2 = 〈Qtx
∗, y∗〉 =

∫ t

0

〈S(s)BB∗S∗(s)x∗, y∗〉 ds, x∗, y∗ ∈ E∗, t > 0.

Moreover,

E ‖U(t)‖2 = ‖S ◦B‖2
γ(0,t;H,E), t > 0.

In combination with Anderson’s inequality, it follows from this proposition that
the problem (SCPB) has a solution if and only if it has a solution with A replaced
by the rescaled operator A− ω.

If U is a solution of (SCPB), its transition semigroup on the space Bb(E) of all
real-valued bounded Borel functions on E is defined by

(P (t)f)(x) = E (f(S(t)x + U(t))), t > 0, x ∈ E, f ∈ Bb(E).

A Radon measure µ on E is said to be invariant under the semigroup P = {P (t)}t>0

if for all f ∈ Bb(E) and t > 0 we have

(4.1)

∫

E

P (t)f dµ =

∫

E

f dµ.

The following two propositions, 4.2 and 4.4, extend corresponding Hilbert space
results in [7, Chapter 6].

Proposition 4.2. Assume that the problem (SCPB) admits a solution, and let µ
be a Radon probability measure on E. The following assertions are equivalent:

(1) µ is is an invariant measure for (SCPB);
(2) (i) The weak operator limit Q∞ = limt→∞Qt exists in L (E∗, E) and is

the covariance of a centred Gaussian Radon measure µ∞ on E,

(ii) We have µ = ν ∗ µ∞, where ν is an invariant measure for S.

Moreover, µ∞ is an invariant measure for (SCPB).
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Explicitly, ν is a Radon probability measure on E which satisfies, for all f ∈
Bb(E) and t > 0, ∫

E

f(S(t)x) dν(x) =

∫

E

f(x) dν(x).

For the reader’s convenience we sketch the proof of the implication (1) ⇒ (2); the
converse implication is obvious.

Proof of (1) ⇒ (2). Taking f(x) = exp(−i〈x, x∗〉) in (4.1) we obtain, for all x∗ ∈ E∗

and t > 0,

exp(− 1
2 〈Qtx

∗, x∗〉)µ̂(S∗(t)x∗) = E exp(−i〈U(t), x∗〉µ̂(S∗(t)x∗)

=

∫

E

E exp(−i〈S(t)x+ U(t), x∗〉) dµ(x)

=

∫

E

E exp(−i〈x, x∗〉) dµ(x) = µ̂(x∗).

If µ̂(x∗) 6= 0, then µ̂(S∗(t)x∗) 6= 0 and

exp(− 1
2 〈Qtx

∗, x∗〉) =
∣∣∣ µ̂(x∗)

µ̂(S∗(t)x∗)

∣∣∣ > |µ̂(x∗)|.

On the other hand, t 7→ 〈Qtx
∗, x∗〉 is nondecreasing. It follows that the limit

q∞(x∗) := limt→∞〈Qtx
∗, x∗〉 exists and is finite. This, in turn, implies that the

limit n(x∗) := limt→∞ µ̂(S∗(t)x∗) exists, and we obtain the identity

(4.2) exp(− 1
2q∞(x∗))n(x∗) = µ̂(x∗).

If µ̂(x∗) = 0, then µ̂(S∗(t)x∗) = 0 for all t > 0 and we put n(x∗) := 0. Also,
q∞(cx∗) 6= 0 for c > 0 sufficiently small, and we put q∞(x∗) := c−2q∞(cx∗). In
this way, (4.2) extends to all x∗ ∈ E∗. Moreover, the functions x∗ 7→ n(x∗) and
x∗ 7→ r(x∗) := exp(− 1

2q∞(x∗)) are positive definite in the sense that

n∑

i,j=1

cicj n(x∗i − x∗j ) > 0 and

n∑

i,j=1

cicj r(x
∗
i − x∗j ) > 0

for all finite sequences c1, . . . , cn ∈ C and x∗1, . . . , x
∗
n ∈ E∗, and pseudocontinuous

in the sense that their restrictions to any finite-dimensional subspace of E∗ are
continuous. Also, r is symmetric in the sense that r(x∗) = r(−x∗) for all x∗ ∈ E∗.
Hence by [31, Proposition VI.3.2], n and r are the Fourier transforms of cylindrical
measures ν and µ∞ on E. Clearly, ν ∗µ∞ = µ as cylindrical measures. Since µ is a
Radon measure on E, it follows from [31, Proposition VI.3.4] that ν and µ∞ have
Radon extensions as well. In view of

ν̂(S∗(s)x∗) = n(S∗(s)x∗) = lim
t→∞

µ̂(S∗(t+ s)x∗) = n(x∗) = ν̂(x∗),

the measure ν is invariant under S. The measure µ∞ is Gaussian, and its covariance
operator Q∞ is given by 〈Q∞x

∗, x∗〉 = q∞(x∗). The proof that µ∞ is invariant is
standard. �

In general an invariant measure, if it exists, is not unique. A simple sufficient
condition for uniqueness is stated in the following result, which is closely related to
[23, Corollary 2.13].
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Corollary 4.3. Assume that the problem (SCPB) admits a solution. If there exists

a weak∗-sequentially dense subspace F of E∗ such that weak∗-limt→∞ S∗(t)x∗ = 0
for all x∗ ∈ F , then (SCPB) admits at most one invariant measure.

Proof. Suppose an invariant measure µ exists; we shall prove that µ = µ∞ by
showing that ν = δ0.

Since ν is invariant for S, for all x∗ ∈ E∗ and t > 0 we have
∫

E

exp(−i〈S(t)x, x∗〉) dν(x) =

∫

E

exp(−i〈x, x∗〉) dν(x),

or equivalently, ν̂(S∗(t)x∗) = ν̂(x∗). By the dominated convergence theorem, for
all x∗ ∈ F we obtain

ν̂(x∗) = lim
t→∞

ν̂(S∗(t)x∗) = ν̂(0) = 1.

Since F is weak∗-sequentially dense in E∗, another application of the dominated
convergence theorem shows that ν̂(x∗) = 1 for all x∗ ∈ E∗. Hence ν = δ0 as
claimed. �

The assumption on S is satisfied if the resolvent R(λ,A) is uniformly bounded

on {Reλ > 0}. To see this, let A⊙ denote the part of A∗ in E⊙ := D(A∗). The
restriction S⊙ := S∗|E⊙ is strongly continuous on E⊙ and its generator is A⊙. Also,
R(λ,A⊙) is uniformly bounded on {Reλ > 0}. An elementary stability result for
C0-semigroups due to Slemrod [30] then implies that limt→∞ S⊙(t)x⊙ = 0 strongly
for all x⊙ ∈ D((A⊙)2) (by [33] this actually holds for all x⊙ ∈ D(A⊙)). Note that
D((A⊙)2) is indeed weak∗-sequentially dense in E∗.

The following proposition describes the precise relationship between the spaces
γ(0, T ;H,E), the existence of solutions for (SCPB) and their asymptotic behaviour.

Proposition 4.4. The following assertions are equivalent:

(1) The function t 7→ S(t)B belongs to γ(0, T ;H,E) for all T > 0 and

sup
T>0

‖S ◦B‖γ(0,T ;H,E) <∞;

(2) The problem (SCPB) admits a weak solution which is bounded in probability.

Also, the following assertions are equivalent:

(1′) The function t 7→ S(t)B belongs to γ(R+;H,E);
(2′) The problem (SCPB) admits an invariant measure.

Furthermore, (1′) and (2′) imply (1) and (2), and all four assertions are equivalent

if E does not contain an isomorphic copy of c0.

Proof. The proof is a routine generalization of the corresponding Hilbert space
results in [6, 7], modulo some subtle points involving the geometry of Banach spaces.
For the convenience of the reader we spell out the details.

(1) ⇒ (2): Let U be a weak solution of the problem (SCPB). For t > 0 let µt

denote the distribution of the random variable U(t). By Chebyshev’s inequality we
have

P(‖U(t)‖ > r) 6
1

r2

∫

E

‖x‖2 dµt(x) =
1

r2
‖S ◦B‖2

γ(0,t;H,E),

where we used the identity in Proposition 4.1. Since by assumption we have
supt>0 ‖S ◦B‖γ(0,t;H,E) <∞ it follows that U is bounded in probability.
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(2) ⇒ (1): As in [7, Theorem 6.2.3] this follows from Fernique’s theorem [6,
Theorem 2.6].

(1′) ⇒ (2′): By assumption, the L (H,E)-valued function S ◦ B represents the
operator R ∈ γ(L2(R+;H), E) given by

〈Rf, x∗〉 =

∫ ∞

0

[B∗S∗(t)x∗, f(t)]H dt, f ∈ L2(R+;H), x∗ ∈ E∗.

By direct computation, RR∗ satisfies

〈RR∗x∗, y∗〉 =

∫ ∞

0

〈S(t)BB∗S∗(t)x∗, y∗〉 dt, x∗, y∗ ∈ E∗.

By Proposition 4.2 the centred Gaussian measure on E with covariance operator
RR∗ is an invariant measure for (SCPB).

(2′) ⇒ (1′): Let µ∞ be the invariant measure with covariance operator Q∞ as
defined in Proposition 4.2. We have

(4.3) 〈Q∞x
∗, x∗〉 =

∫ ∞

0

〈S(t)BB∗S∗(t)x∗, x∗〉 dt =

∫ ∞

0

‖B∗S∗(t)x∗‖2
H dt,

which shows that B∗S∗(·)x∗ belongs to L2(R+;H). Hence we may define a bounded
operator R : L2(R+;H) → E∗∗ by

〈x∗, Rf〉 :=

∫ ∞

0

[B∗S∗(t)x∗, f(t)]H dt, f ∈ L2(R+;H), x∗ ∈ E∗.

If f ∈ L2(R+;H) is supported in an interval [0, r], then

Rf =

∫ r

0

S(t)Bf(t) dt,

where the integral exists as a Bochner integral in E. Since the functions with
bounded support are dense in L2(R+;H) it follows that R takes values in E. Hence
R is represented by S ◦ B, and since R ◦ R∗ = Q∞ is a Gaussian covariance this
implies that S ◦B ∈ γ(R+;H,E).

(1′) ⇒ (1): This is immediate from the ideal property.
Finally assume that E does not contain a copy of c0.

(1) ⇒ (1′): As in [18, Lemma 4.10] this follows from Fatou’s lemma in combina-
tion with a theorem of Hoffmann-Jørgensen and Kwapień [21, Theorem 9.29]. �

The assumption that E should not contain a copy of c0 cannot be omitted from
the final assertion of the proposition. As a consequence we see that the problem
(SCPB) may fail to admit an invariant measure even if a solution exists which
is bounded in probability. This is shown by the following example, in which the
operator B is of rank 1.

Example 9. Let ϕ : [0,∞) → R+ be a C1-function with compact support in (0, 1)
such that ‖ϕ‖2 = 1 and define

φ(t) :=
∑

n>1

ϕ(t− n)xn,

where xn ∈ c0 is the seqence

xn =
(
0, . . . , 0, 1/

√
ln(n+ 1), 0, . . .

)
.
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We claim that the function φ does not belong to γ(R+; c0). To see this, note that
∫ ∞

0

〈φ(t), e∗n〉2 dt =
1

ln(n+ 1)

∫ n+1

n

ϕ2(t− n) dt =
1

ln(n+ 1)
,

where e∗n = (0, . . . , 0, 1, 0. . . . ) is the n-th unit vector of c∗0 = l1. Hence,
∫ ∞

0

〈φ(t), x∗〉2 dt = 〈Qx∗, x∗〉 ∀x∗ ∈ l1,

where Q ∈ L (l1, c0) is given by Q((αn)n>1) := (αn/ln(n+ 1))n>1. It is shown in
[20, Theorem 11] that this operator is not a Gaussian covariance and it follows that
φ 6∈ γ(R+; c0) as claimed. By the same argument, [20, Theorem 11] further shows
that for all T > 0 we have φ ∈ γ(0, T ; c0) and

(4.4) sup
T>0

‖φ‖γ(0,T ;c0) <∞.

Let E := BUC([0,∞); c0) denote the Banach space of all bounded and uniformly
continuous functions f : [0,∞) → c0. It is easily checked that the function φ
constructed above belongs to E. Let S denote the left translation semigroup on E,
S(t)f(s) = f(t+ s).

Since φ is C1, for all s > 0 this function is stochastically integrable with respect
to the Brownian motion defined by Ws(t) := W (s+ t) −W (s), and an integration
by parts gives

(4.5)

∫ T

0

φ(s+ t) dWs(t) = φ(s+ T )Ws(T ) −
∫ T

0

φ′(s+ t)Ws(t) dt

= φ(s+ T )W (s+ T ) − φ(s)W (s) −
∫ s+T

s

φ′(t)W (t) dt

=

∫ s+T

s

φ(t) dW (t).

The E-valued function Sφ, being C1 as well, belongs to γ(0, T ;E). Evaluating its
γ-norm of by means of the second moment of its stochastic integral, with (4.5) and
Doob’s maximal inequality we obtain

‖Sφ‖γ(0,T ;E) =
(
E

∥∥∥
∫ T

0

S(t)φdW (t)
∥∥∥

2

E

) 1
2

=
(
E sup

s>0

∥∥∥
∫ T

0

φ(s+ t) dW (t)
∥∥∥

2

c0

) 1
2

=
(
E sup

s>0

∥∥∥
∫ T

0

φ(s+ t) dWs(t)
∥∥∥

2

c0

) 1
2

=
(
E sup

s>0

∥∥∥
∫ s+T

s

φ(t) dW (t)
∥∥∥

2

c0

) 1
2

6 2
(
E sup

r>0

∥∥∥
∫ r

0

φ(t) dW (t)
∥∥∥

2

c0

) 1
2

6 4 sup
r>0

(
E

∥∥∥
∫ r

0

φ(t) dW (t)
∥∥∥

2

c0

) 1
2

6 4 sup
r>0

‖φ‖γ(0,r;c0).

With (4.4) it follows that supT>0 ‖Sφ‖γ(0,T ;E) <∞ and the claim is proved.
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Next we check that Sφ 6∈ γ(R+;E). Let δ0 : E → c0 be defined by δ0f := f(0).
Then 〈S(t)φ, δ0〉 = φ(t) for all t > 0, which implies that 〈Sφ, δ0〉 = φ 6∈ γ(R+; c0).
Therefore, Sφ 6∈ γ(R+;E) as claimed.

This example shows that the implication (1) ⇒ (1′) of Proposition 4.4 fails for
the semigroup S on E = BUC([0,∞); c0) if we take H = R and define B : R → E
by Bt := tφ.

The content of the following proposition is that (SCPB) admits a unique invariant
measure whenever (SCPB) admits a solution and the semigroup generated by A
is uniformly exponentially stable. It can be thought of as a preliminary version of
Theorem 1.1.

Proposition 4.5. Let T > 0 and B ∈ L (H,E) be fixed. If the function t 7→ S(t)B
belongs to γ(0, T ;H,E), then for all ω > ω0(A) the function t 7→ e−ωtS(t)B belongs

to γ(R+;H,E).

Proof. First we note that by the semigroup property and the ideal property, t 7→
S(t)B belongs to γ(0, T ;H,E) for all T > 0; cf. [24, Corollary 7.2]. Choose t0 > 0
large enough such that e−ωt0‖S(t0)‖ < 1. By the ideal property, the operators Vn

defined by

Vnf :=

∫ (n+1)t0

nt0

e−ωtS(t)Bf(t) dt, n ∈ N, f ∈ L2(R+;H),

belong to γ(L2(R+;H), E). We have Vnf = e−ωnt0S(nt0)V0Tnf, where Tn is the
left translation operator over nt0, i.e., Tnf(t) := f(t + nt0) for t ∈ R+ and f ∈
L2(R+;H). Writing ‖ · ‖γ := ‖ · ‖γ(L2(R+;H),E), it follows from the ideal property
that

‖Vn‖γ 6 e−ωnt0‖S(nt0)‖ ‖V0‖γ‖Tn‖ 6 e−ωnt0‖S(t0)‖n‖V0‖γ .

Since e−ωt0‖S(t0)‖ < 1 it follows that
∑

n>0 ‖Vn‖γ < ∞. By the completeness

of γ(L2(R+;H), E), the sum
∑

n>0 Vn converges absolutely to some operator V ∈
γ(L2(R+;H), E). This operator is represented by t 7→ e−ωtS(t)B, and therefore
t 7→ e−ωtS(t)B belongs to γ(R+;H,E). �

By combining the propositions and considering the special case H = R in the
second statement, we obtain the following result.

Corollary 4.6. The following assertions hold.

(1) We have ωB
inv(A) < ∞ if and only if (SCPB) admits a solution, in which

case ωB
inv(A) 6 ω0(A);

(2) We have ω
(1)
inv(A) <∞ if and only if (SCPB) admits a solution for all rank

1 operators B ∈ L (H,E), in which case ω
(1)
inv(A) 6 ω0(A);

(3) We have ωγ
inv(A) < ∞ if and only if (SCPB) admits a solution for all

γ-radonifying operators B ∈ L (H,E), in which case ωγ
inv(A) 6 ω0(A).

To conclude this section we prove a result which relates the existence of an
invariant measure to the moments of the solution. Define, for p ∈ [1,∞),

ωB
p (A) = inf

{
ω ∈ R : the problem (SCPB) with A replaced by A− ω

has a solution Uω which satisfies sup
t>0

E ‖Uω(t)‖p <∞
}
.
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Proposition 4.7. If the problem (SCPB) admits a solution, then for all p ∈ [1,∞)
we have ωB

inv(A) = ωB
p (A).

Proof. Let p ∈ [1,∞) be fixed.
If ωB

inv(A) < c, then the problem (SCPB) with A replaced by Ac := A− c admits
an invariant measure µc,∞ whose convariance operator Qc,∞ is given as in (4.3).
Denote the solution of (SCPB) by Uc and let µt,c be the distribution of Uc(t). By
Anderson’s inequality and general convergence results for Gaussian measures [3,
Chapter 3] we have

sup
t>0

E ‖Uc(t)‖p = lim
t→∞

E ‖Uc(t)‖p = lim
t→∞

∫

E

‖x‖p dµc,t(x) =

∫

E

‖x‖p dµc,∞(x).

The right hand side is finite by Fernique’s theorem. Accordingly we find that
ωB

p (A) 6 c. This proves the inequality ωB
p (A) 6 ωB

inv(A).

If ωB
p (A) < c, then the solution of (SCPB) with A replaced by Ac is bounded in

probability, and therefore Proposition 4.4 shows that supt>0 ‖Sc◦B‖γ(0,t;H,E) <∞.
Arguing as in Proposition 4.5 we obtain from this that Sc′ ◦B ∈ γ(R+;H,E) for all
c′ > c. Another application of Proposition 4.4 then shows that ωB

inv(A) 6 c. This
proves the inequality ωB

inv(A) 6 ωB
p (A). �

5. Proofs of the main theorems

We now turn to the proofs of the theorems stated in the introduction.

Lemma 5.1. The following assertions are equivalent:

(1) The function t 7→ e−ωtS(t)B belongs to γ(R+;H,E);
(2) The function t 7→ R(ω + it, A)B belongs to γ(R;H,E).

In this situation we have

‖e−ω(·)S(·)B‖2
γ(R+;H,E) =

1

2π
‖R(ω + i(·), A)B‖2

γ(R;H,E).

Proof. Apply (2.1) to the Fourier-Plancherel transform on L2(R;H). �

Proof of Theorem 1.1. The proof is divided into two steps.
Step 1 – First we show that sγ(A) < 0. Let Γ := γ(R) denote the γ-bound of

the family R := {R(λ,A) : Reλ > 0} and put δ := 1/Γ. Since ‖R(λ,A)‖ 6 Γ for
all Reλ > 0, standard arguments from spectral theory imply that Sδ := {λ ∈ C :
−δ < Reλ < δ} ⊆ ̺(A) and

R(λ,A) =
∑

n>0

(−Reλ)nR(iImλ,A)n+1, ∀λ ∈ Sδ.

By (3.2) the set {R(it, A) : t ∈ R} is γ-bounded with γ-bound Γ. Hence by (3.1)
the family {R(λ,A) : λ ∈ S 1

2
δ} is γ-bounded with γ-bound 2Γ. It follows that

sγ(A) 6 − 1
2δ.

Step 2 – Now we turn to the actual proof of the theorem.
We shall prove that the orbit t 7→ S(t)B belongs to γ(R+;H,E). The existence

of an invariant measure then follows from Proposition 4.4. Its uniqueness follows
from Corollary 4.3, the remark following it, and the fact that R-boundedness implies
uniform boundedness.
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Fix sγ(A) < ζ < 0 and ω > ω0(A). The rescaled orbit t 7→ e−ωtS(t)B belongs
to γ(R+;H,E) by Proposition 4.5, which applies thanks to Proposition 4.1. By
Lemma 5.1, t 7→ R(ω + it, A)B belongs to γ(R;H,E).

Let γ(Rζ) denote the γ-bound of the set Rζ := {R(λ,A) : Reλ > ζ}. By the
resolvent identity and Proposition 3.1, t 7→ R(it, A)B belongs to γ(R;H,E) and

‖R(i(·), A)B‖γ(R;H,E)

= ‖[I − ωR(i(·), A)]R(ω + i(·), A)B‖γ(R;H,E)

6
(
1 + |ω|γ(Rζ)

)
‖R(ω + i(·), A)B‖γ(R;H,E).

Another application of Lemma 5.1 shows that t 7→ fB(t) := S(t)B belongs to
γ(R+;H,E). �

Proof of Theorem 1.2. By Proposition 4.4 we have S(·)B ∈ γ(R+;H,E). Hence
S(·)Bh ∈ γ(R+;E) for all h ∈ H . Let RBh denote the operator in γ(L2(R+);E)
represented by S(·)Bh. Theorem 1.2 is obtained by applying Theorem 3.4 to the
operator Θ : H → γ(L2(R+);E), Θh := RBh. �

Proof of Theorem 1.3. By Proposition 4.4 we have S(·)x ∈ γ(R+, E) for all x ∈ E.
Let Rx denote the operator in γ(L2(R+);E) represented by S(·)x. Theorem 1.3
is obtained by applying Theorem 3.4 to the operator Θ : E → γ(L2(R+);E),
Θx := Rx. �

Remark 10. If (SCPB) has a solution for all γ-radonifying operators B ∈ L (H,E),
then for all δ > 0 the family {R(λ,A) : Reλ > δ} is R-bounded as a family of

operators in L (γ(H,E)) with R-bound of order O(1/
√
δ) as δ ↓ 0; here R(λ,A) ∈

L (γ(H,E)) is defined by the action B 7→ R(λ,A)B. This is proved by extending
Theorem 3.4 to the following more general situation. First, for an operator B ∈
L (L2(R+;H), E) its the Laplace transform B̂ : {Reλ > 0} → L (H,E) is defined
by

B̂(λ)h := B(eλ ⊗ h).

The Laplace transform Θ̂ : {Reλ > 0} → L (F,L (H,E)) of a bounded operator
Θ : F → L (L2(R+;H), E) is then defined by

(Θ̂(λ)y)h := Θ̂y(λ)h.

If Θ takes values in γ(L2(R+;H), E), then Θ̂ takes values in L (F, γ(H,E)). The-
orem 3.4 extends to this situation mutatis mutandis.

Finally, Theorem 1.4 follows from Theorems 1.1 and 1.2, and Theorem 1.5 follows
from Theorems 1.1, 1.3, and Corollary 4.6.
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2001.

[3] V.I. Bogachev, “Gaussian Measures”, Math. Surveys and Monographs, Vol. 62, Amer. Math.
Soc., 1998.
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